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Highlights

• Presented a rigorous FEM for a multiphase phase field method for martensitic transformation.
• Derived consistent tangent modulus due to elastic and structural stresses.
• Studied simple shear problem with single variant and two variant-based twinning problem.
• Obtained complex microstructures under nanoindentation.

Abstract

A detailed finite element procedure for a new phase field approach (Basak and Levitas, 2018) to temperature- and stress induced
multivariant martensitic transformations at large strains and with interfacial stresses is developed. A system with austenite and N
martensitic variants is considered. N + 1 order parameters related to the transformation strains are used, one of which describes
the austenite↔martensite transformation; the other N order parameters describe N martensitic variants. Evolution of the order
parameters is governed by coupled Ginzburg–Landau and mechanics equations. Assuming a non-monolithic strategy for solving
the governing equations by using Newton’s iterative method, a weak formulation with emphasis on the derivation of the tangent
modulus has been presented. Notably, the fourth order tangent modulus for the equilibrium equations has a contribution not only
from the elastic stresses but also from the structural interfacial stresses, which appears here for the first time. A second order
backward difference scheme is used to discretize the time derivative in the Ginzburg–Landau equations. An adaptive time stepping
is considered. A finite element code has been developed within an open source package deal.II for a system with austenite and two
martensitic variants and used to solve three problems: (i) simple shear deformation of a rectangular parallelepiped with evolution
of austenite and single martensitic variant; (ii) twinning in martensite and the effect of sample size on the twinned microstructures;
(iii) a rectangular block under nanoindentation. The results for the first two problems describe the well-known analytical solutions.
Two kinematic models (KMs) for the transformation deformation gradient tensor are used and the corresponding results are
compared: KM-I represents a linear transformation rule in the Bain tensors and KM-II is an exponential-logarithmic type of
transformation rule in the Bain tensors. The algorithm can naturally be extended for the study of phase transformations in
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multiphase solids, solidification, diffusive phase transitions, interaction between phase transformations and plasticity and/or
fracture, etc.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The phase field (PF) approach to phase transformations (PTs) dates back to Landau, who introduced the order
parameters related to the symmetry of the phases, and also to Ginzburg, who introduced a gradient-based interfacial
energy (see e.g. [1] for a review). This approach is popularly known as the Ginzburg–Landau theory, which is also
similar to the Allen–Cahn approach [2]. The PF approaches of the Ginzburg–Landau type have been extensively
used to study a wide range of physical problems such as solid↔melt transitions (see [3–10] and the references
therein), grain growth (see [11–16] and the references therein), evolution of domain structures (see e.g. [12,17,18]),
martensitic transformations (MTs) [19–34], and interaction between MTs and plasticity [35–37]. Our focus in this
paper will be mainly on MT, which is a diffusion-less, displacive process with dominating shear deformation. Such
transformation yields the shape memory effect, ferroelectricity, and magnetoelasticity in various alloys [38,39].
Complex microstructures are formed within the materials undergoing MTs, which usually include laminated structures
consisting of martensitic (M) plates of alternative variants called twinned martensite, as well as twins within twins,
wedge, etc. [38,40], which usually consist of austenite (A) and all possible martensitic variants Mi (i = 1, 2, . . . , N ,
and N is the number of variants).

One should also note that all of the A-M and variant–variant interfaces possess finite energy and are subjected
to biaxial stresses, which act in a plane tangential to the interface [41]; the schematic is shown in Fig. 1 when
the elastic stresses are neglected. Such stresses play a very important role in the nucleation and propagation of
the interfaces [42,43]. According to the Shuttleworth equation, the total interfacial stress tensor σ̄ = σ̄ st + σ̄ e =

γ (I − n ⊗ n) + ∂γ /∂ ε̄ (a tangential tensor) is composed of an elastic part σ̄ e = ∂γ /∂ ε̄ that depends on the strain
tensor within the interface, ε̄, and a structural part, σ̄ st = γ (I−n⊗n), where n is the unit normal to the interface, γ is
the interfacial energy, I is the identity tensor, and ⊗ denotes the dyadic product. Within the phase field models where
the interfaces are finite-width regions, the elastic part of the interfacial stresses arises naturally due to the elastic
strains. To introduce the other part, i.e. the structural stress tensor, Levitas and coworkers [20,21,29,44] multiplied
the double-well barrier energy and the gradient energy in the Helmholtz’s free energy by the determinant of the
total deformation gradient tensor, and considered the gradient of the order parameters in the deformed configuration.
When the structural stresses are considered, the tangent modulus for the mechanical equilibrium equations would
obviously have contributions from both the elastic response and the structural stresses in both finite strain and small
strain models [21,45]. The structural stresses obviously depend on nontraditional mechanics parameters (gradient of
the order parameters in the deformed configuration). We are not aware of any algorithmic treatment for the models
with structural interfacial stresses as it is done in the current paper. Note that it is very important to have the correct
expressions for the tangent modulus for both mechanics and PF problems, at least for a good convergence within the
Newton’s iterations.

All the PF approaches introduce order parameters which describe the phases. The interfaces are of finite width and
have well-defined structures. The volume fraction (e.g. [4,24,26,46]) or transformation strain-based order parameters
(e.g. [30,32]) are usually used. In this paper, the transformation strain-related order parameters, which describe the
change in symmetries (the PT process) in a continuous way, are considered. A system of Ginzburg–Landau equations
governs the evolution of the order parameters, which are highly-nonlinear parabolic partial differential equations
(PDEs). When the PT phenomenon is stress- and temperature-induced, the mechanical equilibrium equations also
play a non-trivial role and are coupled to the system of Ginzburg–Landau equations.

The finite element method (FEM) has been used in this paper to solve the coupled PF and equilibrium equations.
FEM is preferred over the finite difference method (see e.g. [3,7,47], where this approach was used), as FEM can
efficiently handle any arbitrary domain shape, whereas the other method cannot. Pioneering work in the simulations
of PF equations for MTs was done by Khachaturyan and coworkers [32,33], who used the Fourier Transform method
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Fig. 1. Schematic of an arbitrary finite-width interface subjected to biaxial interfacial structural stresses, where γ is the magnitude of the stress
acting in the tangent plane of the interface. The elastic interfacial stresses are not shown here.

to numerically solve the coupled PDEs. Other groups of researchers used similar approaches; see e.g. Roytburd and
coworkers [18], Chen and coworkers [12,34], Lei et al. [22], Vidyasagar et al. [48], Kundin et al. [37] etc. The spectral
methods are much faster, but they can only handle problems with periodic boundary conditions. Hence, the Fourier
method cannot be used for models which consider the surface effects; see e.g. [44], where FEM was used.

In solving the PF equations for MTs, FEM has been used by a limited number of groups, e.g. Levitas and coworkers
[20,21,44,49–51], Clayton and Knap [27,28], Stupkiewicz and coworkers [25,26], Hildebrand and Miehe [24], She
at al. [52], Paranjape et al. [35]. Finite strain theories were considered in [24–28,50,51], but the rest of the works
dealt with small strain theories. A detailed FE formalism for stress- and temperature-induced MTs at finite strains and
with interfacial stresses is still missing. Even a coherent FE procedure for the models considering small strain and/or
neglecting the interfacial stresses is not yet available, to the best of our knowledge.

Our goal in this paper is to present a rigorous FE formalism for the coupled PF equations and the mechanics
equations related to the model developed in [45] for multivariant MTs induced by stresses and temperature at
finite strains and with interfacial stresses. To illustrate the formalism, we solve some problems showing complex
microstructure evolutions and compare the numerical results for two problems with the known analytical solutions.
Formulations for a system with A and N martensitic variants have been presented. The weak forms for the equilibrium
equation and the Ginzburg–Landau equations, where a non-monolithic approach is used, are established using the
variational method. The time derivative in the PF equations is discretized mainly by using a backward difference
scheme of order two (BDF2). The mechanics problem and the PF equations have been solved using the Newton’s
iterative methods, for which the weak forms are linearized and the corresponding tangent moduli for the mechanics
and PF problems are obtained. The tangent modulus related to the mechanics problem is a fourth order tensor that
is decomposed into two parts, which are related to the elastic and structural stresses, respectively. An adaptive time
stepping has been used to integrate the PF equations. Based on the FE formulation, we have developed an FE code
in an open source deal.II and solved the following three problems: (i) Evolution of microstructure in a system with
A and single M variant in a rectangular parallelepiped. (ii) Twinning in a system with A and two variants M1 and M2
under the generalized plane strain condition. The effect of sample size on the twinned microstructure is also studied.
(iii) Nanoindentation of a rectangular sample under plane stress condition. Two different kinematic models (KMs) for
the transformation deformation gradient tensor Ft are considered: in KM-I, Ft is taken as a linear combination of the
Bain strains, which are multiplied by the interpolations functions [29,31], and in KM-II, we take Ft as the exponential
of a linear combination of the natural logarithm of the Bain tensors multiplied by the interpolation functions [25,26].
For each problem, the results for both KM-I and KM-II are presented and compared. We have also compared the
elastic stresses within the twin boundaries for these two KMs. We report that the elastic stress component in the
longitudinal direction of the twin boundaries is much larger for KM-II than KM-I, which is in agreement with our
recent analytical and numerical study on interfacial stresses in [53]. The performance of our adaptive time stepping
scheme is also analyzed.

The content of the paper is as follows: the system of governing equations is listed in Section 2; the weak forms of
the governing PDEs and their linearizations are presented in Section 3; FE discretization details and the computational
algorithm are given in Section 4; various material parameters are derived and listed in Section 5; Section 6 presents
the numerical examples; finally, the conclusions of the study are drawn in Section 7.

Notation. We denote the inner product and multiplication between two second order tensors as A : B = Aab Bba
and (A · B)ab = Aac Bcb, respectively, where the repeated indices denote Einstein’s summation, and Aab and Bab are
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the components of the tensors in a right-handed orthonormal Cartesian basis {e1, e2, e3}. The Euclidean norm of A
is denoted as |A| =

√
A : AT ; I denotes the second order identity tensor; δab denotes the Kronecker delta; A−1, AT ,

det A, tr A, sym(A), and skew(A) denote the inversion, transposition, determinant, trace, symmetric part, and skew
part of A, respectively. The symbols ∇0 and ∇ represent the gradient operators in the reference (undeformed) Ω0 and
current (deformed) Ω configurations, respectively; ∇

2
0 := ∇0 · ∇0 and ∇

2
:= ∇ · ∇ are the Laplacian operators in Ω0

and Ω , respectively. The symbol := stands for equality by definition.

2. System of coupled mechanics and phase field equations

Recently, Basak and Levitas [45] developed a novel multiphase phase field model for studying stress and
temperature-induced MTs for a system with austenite and N martensitic variants considering N + 1 order parameters
η0, η1, . . . , ηi , η j , . . . , ηN . The order parameter η0 describes A ↔ M transformations such that η0 = 0 in A and
η0 = 1 in M. The order parameter ηi (for i = 1, . . . , N ) describes the variant Mi such that ηi = 1 in Mi and ηi = 0 in
M j for all j ̸= i . Also, η1, . . . , ηN satisfy the constraint (see [45] for details)

N∑
i=1

ηi = 1. (2.1)

In this section we enlist the system of coupled elasticity and phase field equations for an N -variant system; see [45]
for their derivation. The reference, stress-relaxed intermediate, and current configurations are denoted by Ω0, Ωt , and
Ω , respectively. The external boundaries in Ω0 and Ω are denoted by S0 and S, respectively. We designate the traction
boundary (Neumann boundary) in Ω0 by S0T and the displacement boundary (Dirichlet boundary) by S0u , such that
S0 = S0u ∪ S0T . Similarly, for the PF equations S0 = S0ηk ∪ S0Tk for all k = 0, 1, . . . , N , where S0ηk is the Dirichlet
boundary where ηk is specified, and S0Tk is the Neumann boundary corresponding to the order parameter ηk .

2.1. Kinematics

We denote the position vector of a particle in Ω by r(r0, t), where r = r0 +u(r0, t), r0 is the position vector in Ω0, u
is the displacement vector, and t denotes time. We assume that both u, and hence, r are sufficiently smooth functions
of r0 and t . The total deformation gradient F is decomposed into [29]

F := ∇0r = Fe · Ft = Ve · R · Ut , (2.2)

where the subscripts e and t denote elastic and transformational parts, respectively; Fe = Ve · Re and Ft = Rt · Ut are,
respectively, the elastic and transformational parts of F; Ut is the right transformation stretch tensor (symmetric); Ve
is the left elastic stretch tensor (symmetric); Rt and Re are the rotation tensors; and R = Re · Rt is the lattice rotation
tensor. We also define J = det F := dV/dV0, Jt = det Ft := dVt/dV0, and Je = det Fe := dV/dVt , where dV0,
dVt , and dV are infinitesimal volume elements in Ω0, Ωt , and Ω , respectively. Hence by Eq. (2.2), J = Jt Je. The
Lagrangian total and elastic strains are defined as

E := 0.5(C − I), and Ee := 0.5(Ce − I), (2.3)

respectively, where C = FT
· F and Ce = FT

e · Fe are the right Cauchy–Green total strain and elastic strain tensors,
respectively. Also, the Eulerian total and elastic strain tensors are b = 0.5(B − I) and be = 0.5(Be − I), respectively,
where B = F · FT

= V2 and Be = Fe · FT
e = V2

e are the left Cauchy–Green total strain and elastic strain tensors,
respectively. Note that V =

√
B is the left total stretch tensor.

Kinematic models for Ft . Two KMs for the transformation deformation gradient tensor Ft have been assumed. In
KM-I we express Ft as (see [45] for details)

for KM-I: Ft = Ut = I +

N∑
i=1

εtiϕ(aε, η0)φi (ηi ); (2.4)

where εti = Uti − I and Uti are the Bain strain tensor and Bain stretch tensor, respectively, for Mi . The interpolation
functions ϕ(aε, η0) and φi (ηi ) are taken as [45]

ϕ(aε, η0) = aεη2
0 + (4 − 2aε)η3

0 + (aε − 3)η4
0, and φi (ηi ) = η2

i (3 − 2ηi ), (2.5)
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respectively, and 0 ≤ aε ≤ 6 is a constant parameter. The interpolation function ϕ(aε, η0) satisfies the conditions
ϕ(aε, 0) = 0, ϕ(aε, 1) = 1, and ∂ϕ(aε,0)

∂η0
=

∂ϕ(aε,1)
∂η0

= 0; and φi satisfies φi (0) = 0, φi (1) = 1, and ∂φi (ηi =0)
∂ηi

=

∂φi (ηi =1)
∂ηi

= 0 for all i = 1, 2, . . . , N . This KM (Eq. (2.4)) was introduced and used in [20,21,29,31,45,50,51]. It

should be noted that although the specific volumes of the variants are the same, each variant ↔ variant transformation
path, i.e. Mi ↔ M j for all i ̸= j , is not isochoric in KM-I [45].

In the other model KM-II, we take Ft as (see [45] for details)

for KM-II: Ft = Ut = exp

[
ϕ(aε, η0)

N∑
i=1

φi (ηi ) ln Uti

]
. (2.6)

The definitions and properties of the exponential and logarithm of a second order tensor can be found in, e.g., [54,55].
It was proved in [45] that each Mi ↔ M j transformation (for all i ̸= j) given by Eq. (2.6) is isochoric for the entire
transformation path.

Note that in KM-I and KM-II, Ft are symmetric and taken to be identical to the symmetric tensor Ut and Rt is
assumed to be Rt = I. There are cases where the transformation deformation gradient can be nonsymmetric, such
as the simple shear-based kinematic model considered in [45,53]. Thus to derive a general FE formulation which is
applicable for both symmetric and nonsymmetric Ft , we would continue to designate the transformation rules (2.4)
and (2.6) for KM-I and KM-II as Ft .

2.2. Free energy

We consider the Helmholtz free energy per unit mass of the body in the following form [29,45]:

ψ(F, θ, η0, ηi ,∇η0,∇ηi ) =
Jt

ρ0
ψe(Fe, θ, η0, ηi ) + J ψ̆θ (θ, η0, ηi ) + ψ̃θ (θ, η0, ηi )

+ψp(η0, ηi ) + Jψ∇(η0,∇η0,∇ηi ) (2.7)

for all i = 1, 2, . . . , N , where ψe is the elastic strain energy per unit volume of Ωt , ψ̆θ is the barrier energy related
to A ↔ M and all the Mi ↔ M j transformations, ψ̃θ is the thermal energy, ψ∇ is the interfacial energy, and ψ p

penalizes various junctions between A and the variants. It should be noted that in Eq. (2.7) the barrier energy and
the gradient energy are multiplied by J and the gradients of η0 and ηi are expressed in the deformed configuration.
This yields the desired form of the structural stresses (here given by Eqs. (2.17) and (2.18)) as discussed in Section 1;
see [29] for further details. The material properties at each material point are determined using [45]

M(η0, ηi , θ,F) = M0(1 − ϕ(a, η0)) + ϕ(a, η0)
N∑

i=1

Miφi (ηi ), (2.8)

where M0 and Mi are the properties of the phases A and Mi , respectively, ϕ(a, η0) is an interpolation function and
has the same functional form of ϕ(aε, η0) given by Eq. (2.5)1 when aε is replaced by the constant parameter a. Note
that ϕ(a, η0) also satisfies the conditions similar to those of ϕ(aε, η0) discussed above. Evidently, the interpolation
Eq. (2.8) yields the property of the corresponding phase (A or Mi ) when the appropriate values of the order parameters
are assigned.

The explicit form of all of the energies is [45]

ψe =
1
2

Ee : Ĉe(η0, ηi ) : Ee, where Ĉe(η0, ηi ) = (1 − ϕ(a, η0))Ĉ(e)0 + ϕ(a, η0)
N∑

i=1

φi (ηi )Ĉ(e)i ; (2.9)

ψ̆θ
= [A0M (θ ) + (aθ − 3)∆ψθ (θ )] η2

0(1 − η0)2
+ Ãϕ(ab, η0)

N−1∑
i=1

N∑
j=i+1

η2
i η

2
j ; (2.10)

ψ̃θ
= ψθ

0 (θ ) + η2
0(3 − 2η0)∆ψθ (θ ) where ∆ψθ

= −∆s0M (θ − θe); (2.11)

ψp =

N−1∑
i=1

N∑
j=i+1

Ki j (ηi + η j − 1)2η2
i η

2
j + [1 − ϕ(aK , η0)]

N−1∑
i=1

N∑
j=i+1

K0i jη
2
0η

2
i η

2
j
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+

N−2∑
i=1

N−1∑
j=i+1

N∑
k= j+1

Ki jkη
2
i η

2
jη

2
k +

[1 − ϕ(aK , η0)]
N−2∑
i=1

N−1∑
j=i+1

N∑
k= j+1

K0i jkη
2
0η

2
i η

2
jη

2
k +

N−3∑
i=1

N−2∑
j=i+1

N−1∑
k= j+1

N∑
l=k+1

Ki jklη
2
i η

2
jη

2
kη

2
l , where

Ki i = K0i i = Ki j i = Ki ik = K0i j i = K0i ik = Ki j il = Ki ikl = Ki j jl = Ki jki = Ki jkk = 0; (2.12)

ψ∇
=
β0M

2ρ0
|∇η0|

2
+

1
8ρ0

ϕ̃(η0, aβ, ac)
N−1∑
i=1

N∑
j=i+1

βi j
(
|∇ηi |

2
− 2∇ηi · ∇η j + |∇η j |

2) ,
where βi i = 0, (2.13)

ϕ̃(aβ, ac, η0) = ac + aβη2
0 − 2[aβ − 2(1 − ac)]η3

0 + [aβ − 3(1 − ac)]η4
0. (2.14)

All of the symbols used in Eqs. (2.9) to (2.14) are now defined. Ĉe(η0, ηi ) is the fourth-order elastic modulus tensor
for a material point; Ĉ(e)0 and Ĉ(e)i are the elastic modulus tensors of A0M and Mi , respectively; A0M > 0 is the barrier
height between A and M; Ã > 0 is the barrier height between Mi and M j for all i ̸= j ; ψθ

0 is the thermal energy of A;
∆ψθ

= ψθ
M −ψθ

0 is the thermal energy difference between M and A; ∆s0M = sM − s0 is the change in entropy due to
A to M transformation (s0 and sM denoting the entropy of A and M, respectively); θ > 0 is the absolute temperature;
θe is the thermodynamic equilibrium temperature between A and M; Ki j ≥ 0 is a controlling parameter for penalizing
the deviation of the transformation path (i.e. M j ↔ Mi path) from the straight line η j + ηi = 1 for all ηk = 0 and
k ̸= j, i ; K0i j ≥ 0, Ki jk ≥ 0, K0i jk ≥ 0, and Ki jkl ≥ 0 are the constant coefficients for penalizing the junctions
between A-Mi -M j , Mi -M j -Mk , A-Mi -M j -Mk , and Mi -M j -Mk-Ml , respectively; β0M > 0 and βi j > 0 are the energy
coefficients for A-M and Mi -M j interfaces, respectively; ρ0 is the density of the solid in Ω0; and ab, aK , aβ , ac are the
material parameters.

2.3. Mechanical equilibrium equations and stresses

Neglecting the body forces and inertia we write the mechanical equilibrium equations as [29,45]

∇0 · P = 0 in Ω0, or ∇ · σ = 0 in Ω , (2.15)

where P is the total first Piola–Kirchhoff stress tensor and σ is the total Cauchy stress tensor. These tensors are
decomposed into their elastic and structural parts [45] P = Pe + Pst and σ = σ e + σ st . Here, the subscripts e and st
denote elastic and structural parts, respectively. In general, the elastic first Piola–Kirchhoff and Cauchy stresses are
given by [29,45]

Pe = Jt Fe · Ŝe · F−T
t ; σ e = J−1

e Fe · Ŝe · FT
e , where Ŝe =

∂ψe(Ee)
∂Ee

. (2.16)

For isotropic elastic response, Pe and σ e can alternatively be expressed as Pe = Jt V2
e ·

∂ψe(be)
∂be

· F−T and σ e =

J−1
e V2

e ·
∂ψe(be)
∂be

, respectively. The first Piola–Kirchhoff structural stress tensor is [45]

Pst = Jρ0(ψ̆θ
+ ψ∇)F−T

− Jβ0M∇η0 ⊗ ∇η0 · F−T
− J ϕ̃

N∑
i=1

N∑
j=1

βi j

4
∇ηi ⊗ (∇ηi − ∇η j ) · F−T . (2.17)

Noticing that [45] βi j = β j i and βi i = 0 (for all i ̸= j), the structural part of σ is expressed as

σ st = ρ0(ψ̆θ
+ ψ∇)I − β0M∇η0 ⊗ ∇η0 − ϕ̃

N−1∑
i=1

N∑
j=i+1

βi j

4
[∇ηi ⊗ ∇ηi + ∇η j ⊗ ∇η j

− 2sym(∇ηi ⊗ ∇η j )]. (2.18)

When A-M and Mi -M j interfaces are considered, Eq. (2.18) simplifies as

σ st = σ(st)0M (I − k0M ⊗ k0M ), and σ st = σ(st)i j (I − ki j ⊗ ki j ), respectively, where
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σ(st)0M = β0M |∇η0|
2

= 2ρ0ψ̆
θ , σ(st)i j = βi j |∇ηi |

2
= 2ρ0ψ̆

θ , k0M =
∇η0

|∇η0|
, and ki j =

∇ηi

|∇ηi |
, (2.19)

i.e. for each interface, Eq. (2.18) yields biaxial tension where the resultant force is equal to the interface energy γ
(see [29] for the proof), similar to that in the sharp interface theory [41].

2.4. Ginzburg–Landau equations

The Ginzburg–Landau equations for all N + 1 order parameters are (see [45] for the derivation)

η̇0 = L0M X0, and η̇i =

N∑
j=1,̸=i

L i j (X i − X j ) for i = 1, 2, . . . , N , (2.20)

where L0M and L i j are the kinetic coefficients for A-M and Mi -M j interfaces, respectively, and X0 and X i are the
conjugate forces for the evolution of the order parameters η0 and ηi , respectively:

X0 =
(
PT

e · F − JtψeI
)

: F−1
t ·

∂Ft

∂η0
− Jt

∂ψe

∂η0

⏐⏐⏐⏐
Fe

− ρ0(6η0 − 6η2
0)∆ψθ

− Jρ0 Ã
N−1∑
i=1

N∑
j=i+1

η2
i η

2
j
∂ϕ(ab, η0)
∂η0

−

Jρ0[A0M (θ ) + (aθ − 3)∆ψθ (θ )](2η0 − 6η2
0 + 4η3

0) −
J
8
∂ϕ̃(aβ, ac, η0)

∂η0

N−1∑
i=1

N∑
j=i+1

βi j |∇ηi − ∇η j |
2
−

ρ0

⎛⎝N−1∑
i=1

N∑
j=i+1

K0i jη
2
i η

2
j +

N−2∑
i=1

N−1∑
j=i+1

N∑
k= j+1

K0i jkη
2
i η

2
jη

2
k

⎞⎠
×

[
2(1 − ϕ(aK , η0))η0 −

∂ϕ(aK , η0)
∂η0

η2
0

]
+

∇0 ·
(
Jβ0M F−1

· ∇η0
)
; (2.21)

X i =
(
PT

e · F − JtψeI
)

: F−1
t ·

∂Ft

∂ηi
− Jt

∂ψe

∂ηi

⏐⏐⏐⏐
Fe

− 2Jρ0 Ã
N∑

j=1,̸=i

ηiη
2
jϕ(ab, η0) − 2ρ0

N∑
j=1

Ki j (ηi + η j − 1) ×

(2ηi + η j − 1)η2
jηi − 2ρ0

⎛⎝ N∑
j=1

K0i jη
2
j +

N−1∑
j=1

N∑
k= j+1

K0i jkη
2
jη

2
k

⎞⎠
× η2

0ηi (1 − ϕ(aK , η0)) − 2ρ0

N−1∑
j=1

N∑
k= j+1

Ki jk ×

ηiη
2
jη

2
k − 2ρ0

N−2∑
j=1

N−1∑
k= j+1

N∑
l=k+1

Ki jklηiη
2
jη

2
kη

2
l + ∇0 ·

⎛⎝ϕ̃(aβ, ac, η0)J
N∑

j=1

βi j

4
F−1

· (∇ηi − ∇η j )

⎞⎠
for all i = 1, 2, 3, . . . , N . (2.22)

Note that X0 and X i , which are given by Eqs. (2.21) and (2.22), respectively, are the functions of all of the N + 1
order parameters η0, η1, η2, . . . , ηN . Because the N order parameters η1, . . . , ηN are related through the constraint
(2.1), out of the N Ginzburg–Landau equations in Eq. (2.20)2, only N − 1 are independent. This can be verified
simply by taking the time derivative in Eq. (2.1). Thus, it is sufficient to solve N − 1 Ginzburg–Landau equations for
the order parameters related to the variants, and the other order parameter can be determined by using Eq. (2.1). The
modified N independent Ginzburg–Landau equations are listed in Appendix A.
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2.5. Boundary conditions

Mechanics problem. On the traction boundary S0T , the traction is specified (denoted by psp), and on the
displacement boundary S0u , the displacements are specified (denoted by usp): P · n0 = psp on S0T , and u = usp

on S0u . The mixed boundary conditions where, on a single surface, some components of displacements are specified
and some components of the traction are specified, are used in some cases.

Phase field problem. For the order parameters, we consider the homogeneous Neumann boundary conditions on
S0Tk and specify the order parameter ηk on the respective Dirichlet boundary S0ηk [29,45]: ∇ηk · n = 0 on S0Tk , and
ηk = η

sp
k on S0ηk for all k = 0, 1, 2, . . . , N . The homogeneous Neumann boundary conditions in a sample are the

consequence of the assumption that the external surface energy does not change during phase transformation [29].
The exact boundary conditions for each problem at hand will be specified in Section 6, where they will be discussed
in detail.

3. Weak forms of the governing equations and their linearizations

Assuming the total Lagrangian approach (see e.g. Chapter 8 of [56]), we now derive the weak forms for the
equilibrium equation given by Eq. (2.15)1 or (2.15)2 and N independent Ginzburg–Landau equations listed in
Appendix A. A non-monolithic strategy has been considered, and the equilibrium equations and all of the phase field
equations are solved in a decoupled manner. While solving for the displacements, the order parameters are assumed
to remain constant, and while solving for the order parameters during a time step, the total deformation gradient
tensor is kept constant. We denote the weighting function (also called the test function or virtual displacements)
for the displacements by δu, which is sufficiently smooth and satisfies δu = 0 on the displacement boundary S0u .
The sufficiently smooth test function for each of the order parameters is denoted by δηk such that δηk = 0 on the
corresponding order parameter boundary S0ηk for all k = 0, 1, 2, . . . , N . Only the main results are discussed in this
section. The detailed derivation is shown in Appendix B.

3.1. Equilibrium equations: weak form and linearization

The weak form of the mechanical equilibrium equation Eq. (2.15) is (see for example, [57,58])

R(u, δu) = −

∫
Ω0

(∇0 · P) · δu dV0 = 0, (3.1)

which is also known as the principle of virtual work (see e.g. Chapter 3 of [57]). For a given material and the
displacement and traction boundary conditions, our objective is to solve for the displacements satisfying the weak
form given by Eq. (3.1), which can be rewritten as (see Appendix B for derivation)

R(u, δu) =

∫
Ω0

S : δE dV0 −

∫
S0T

psp
· δu d A0 =

∫
Ω0

τ : δε dV0 −

∫
S0T

psp
· δu d A0 = 0, (3.2)

where S is the second Piola–Kirchhoff stress, τ = Jσ is the Kirchhoff stress, psp is the specified traction on S0T , and
δE and δε are the variations of E and ε given by δE = FT

·δε ·F and δε := 0.5(∇δu+∇δuT ); see Chapter 10 of [58].
We will use the Newton’s iteration method to find the solution, and thus must linearize Eq. (3.2) in the direction of

an increment of the displacement vector denoted by ∆u. Two approaches are generally used in this process [57,59]:
(i) in one approach, the weak form, i.e. Eq. (3.2), is discretized and then linearized with respect to the nodal
displacements; (ii) in the other approach, at first the weak form is linearized and the resulting equation is then
discretized. We will adopt the latter approach here. Note that this latter approach may not work in some cases where
nonstandard discretizations are used; see e.g. [59]. Assuming that the external loads are ‘dead’, i.e. psp is independent
of u, we linearize R (assumed to be a differentiable functional of u) in Eq. (3.1) to obtain (see Appendix B for the
derivation)

∆R · ∆u =

∫
Ω0

JC : ∆ε : δε dV0 +

∫
Ω0

∇∆u · τ : ∇δuT dV0, where (3.3)

C = Ce + Cst (3.4)
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is the fourth order total modulus tensor in the deformed configuration composed of the elastic part Ce and the structural
part Cst which are given by

Ce =
1
J

(F ⊠ F) : Ce : (F ⊠ F)T
=

1
Je

(Fe ⊠ Fe) : Ĉe : (Fe ⊠ Fe)T , and

Cst =
1
J

[τ st ⊗ I + I ⊗ τ st − 2(τ st ⊠ I + I ⊠ τ st ) : S + ρ0 J (ψ̆θ
+ ψ∇)(2S − I ⊗ I)], (3.5)

respectively. In Eq. (3.3), ∆(·) denotes the increment of the function within the argument. Note that in Eq. (3.5)1, Ĉe
is the fourth order elastic modulus tensor with respect to Ωt :

Ĉe :=
∂Ŝe

∂Ee
=

∂2ψe

∂Ee∂Ee
. (3.6)

In Eq. (3.5)2, τ st denotes the structural part of τ ; see Appendix B for the definitions of the products between the
second order tensors denoted by ⊗ and ⊠, fourth order symmetrizer S, and transpose of a fourth order tensor. The
fourth order elasticity and structural tensors can be expressed in the indicial notations as

C(e)abcd =
1
J

Fa A FbB FcC Fd DC(e)ABC D =
1
Je

F(e) a Â F(e) bB̂ F(e) cĈ F(e) d D̂ Ĉ(e) Â B̂Ĉ D̂, and

JC(st)abcd = τ(st)abδcd + δabτ(st)cd − (τ(st)acδbd + τ(st)adδbc + δacτ(st)bd + δadτ(st)bc) +

ρ0 J (ψ̆θ
+ ψ∇)(δacδbd + δadδbc − δabδcd ), (3.7)

respectively, where, following Zienkiewicz and Taylor [58], we use the indices in capital letters (i.e. A, B,C, D etc.)
for Ω0, and the indices in lower case (i.e. a, b, c, d etc.) for Ω . The indices with ‘hat’ (i.e. Â, B̂, Ĉ , D̂ etc.) are used
for Ωt .

Notably, all of the elasticity tensors Ce, Ĉe, and Ce and the structural tensor Cst possess both minor and major
symmetries: e.g. C(e)ABC D = C(e)B AC D = C(e)AB DC (minor symmetry), and C(e)ABC D = C(e)C D AB (major symmetry);
see e.g. Chapter 6 of [56] for the definitions. Consequently, C also possess those symmetries. For solids, Ĉe is known
either from experiments or from atomistic calculations, and hence it is considered as a material property (see Eq. (2.9)).
Obviously, for any material point, Ce and Ce depend not only on Ĉe, but also on the present state of deformation. The
relation between Ce and Ce in Eq. (3.5)1 is well-known in nonlinear elasticity (see e.g. Chapter 6 of [56]), but to
the best of our knowledge, the relations between these tensors and Ĉe in Eq. (3.5)1 appear here for the first time.
Obviously, if the interfacial stresses are neglected, i.e. the barrier and gradient energies in the Helmholtz free energy
given by Eq. (2.7) are not multiplied by J and the gradient of the order parameters are taken in Ω0, σ st identically
vanishes and so does Cst .

The last integral in Eq. (3.3) contributes to the total tangent stiffness matrix, which is also called the geometric
stiffness (see Section 4, as well as e.g. [57,58]). Note that the contribution of this integral has arisen due to the
geometric nonlinearity, and it is thus neglected in the small strain FE formulations [60].

Note that the integrands of the weak form R (given by Eq. (3.2)2) and its linearization ∆R ·∆u (given by Eq. (3.3))
are all expressed in terms of the stresses, strains, and tangent modulus in the deformed configuration Ω , whereas the
integrations are performed in the reference body Ω0. This approach has an advantage over the one in which the
integrands are expressed in Ω in that the computation of the standard B f e matrix (in FEM) is much simpler. In fact,
the B f e matrix in this case turns out to be identical to the matrix used in the small strain calculations (see [57] and
Chapter 10 of [58] for details).

3.2. Ginzburg–Landau equations: time discretization, weak form, and linearization

We now derive the weak forms of N independent Ginzburg–Landau equations listed in Eq. (A.1), which were
obtained using the original N + 1 equations given by Eq. (2.20). We discretize the time derivative of the order
parameters using a backward difference scheme over a time period t ∈ [t0, t f ] and then write the weak forms, where
t0 and t f denote the initial and final time instances, respectively.

An A-stable backward difference scheme of order two (BDF2) is used to discretize the time derivatives (see [61]
for details of the scheme). Such a scheme requires solutions from the two consecutive previous time steps. Thus, for
the first time step, we use BDF1 scheme (first order backward difference scheme), which requires the solution from
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the previous time step only (which will be provided by the initial conditions). Then, from the second step onwards,
the BDF2 scheme is used. For the BDF1 or BDF2 scheme, η̇k is discretized as [61]

η̇k =
c1η

n
k + c2η

n−1
k + c3η

n−2
k

∆tn
for k = 0, 1, . . . , N , (3.8)

where for BDF1, c1 = 1, c2 = −1, and c3 = 0, and for BDF2, c1 = 1.5, c2 = −2, and c3 = 0.5. In Eq. (3.8),
the superscript n = 0, 1, 2, . . . denotes the index for time such that the time instance after nth time iteration is
tn+1

= tn
+ ∆tn , and ∆tn denotes the accepted time step size leading to the converged solutions for the order

parameters in our adaptive time stepping scheme. Discretizing the N independent equations from Eq. (A.1) by using
Eq. (3.8), the finite difference forms of the kinetic equations are obtained and are then multiplied by the weighted
function δηn

k , integrated over the entire domain to obtain the weak forms corresponding to N independent Ginzburg–
Landau equations, which can be expressed in the following general form (see Appendix B.2 for derivation)

Rk = c1

∫
Ω0

ηn
k δη

n
k dV0 + ∆tn

∫
Ω0

Lβk J nχn
k (Fn−1

· Fn−T
· ∇0η

n
k ) · ∇0δη

n
k dV0 + ∆tn

∫
Ω0

f n
k δη

n
k dV0 +

c2

∫
Ω0

ηn−1
k δηn

k dV0 + c3

∫
Ω0

ηn−2
k δηn

k dV0 = 0 for k = 0, 1, . . . , N − 1. (3.9)

To obtain Eq. (3.9), we have used the Gauss divergence theorem and the Nanson’s formula n d S = JF−T
·n0 d S0 [56],

applied the homogeneous Neumann boundary condition on the entire boundary (see Section 2.5), and assumed that
all of the kinetic coefficients are spatially constants. In Eq. (3.9), Lβ0 = L0Mβ0M , χn

0 = 1, Lβk =
∑N

m=1,̸=k Lkm β̄km/4,
and χn

k = ϕ̃(aβ, ac, η0) for all k = 1, 2, . . . , N − 1. The expressions for f n
0 and f n

i (for all i = 1, . . . , N − 1) are
listed in Appendix B.2 and given by Eqs. (B.28) and (B.40), respectively.

We use the Taylor expansion of the weak forms about ηn
k , i.e.

Rk(ηn
k + ∆kη

n
k , δη

n
k ) = Rk(ηn

k , δη
n
k ) + ∆kRk + o(∆kη

n
k ) = 0 for k = 0, 1, . . . , N − 1, (3.10)

to obtain the tangent matrix, where the increment of a function (or functional) with respect to ηk is denoted by ∆k ,
and

∆kRk =
∂Rk

∂ηn
k

⏐⏐⏐⏐
F
∆kη

n
k = c1

∫
Ω0

∆kη
n
k δη

n
k dV0

+∆tn
∫
Ω0

Lβk χ
n
k J n(Fn−1

· Fn−T
· ∇0∆kη

n
k ) · ∇0δη

n
k dV0 +

∆tn
∫
Ω0

∂ f n
k

∂ηn
k

⏐⏐⏐⏐
F
∆kη

n
k δη

n
k dV0 for k = 0, 1, . . . , N − 1. (3.11)

The complete expressions for
(
∂ f n

0 /∂η
n
0

)
F and

(
∂ f n

k /∂η
n
k

)
F are given by Eqs. (B.41) and (B.42), respectively. Note that

the derivatives of the weak forms have been calculated while keeping F fixed within our non-monolithic formulation,
as we assume that the state of deformation within the body remains fixed while the order parameters are evolving.

4. Finite element implementation

We discretize the reference configuration Ω0 (i.e. the initial body) into nel number of isoparametric elements,
i.e. Ω0 ≈ ∪

nel
el=1Ω

el
0 , and consider the following interpolations in element Ω el

0 (also see [57]):

rel
0 =

ng∑
ι=1

Nι(ξ )r̃0ι, rel
=

ng∑
ι=1

Nι(ξ )r̃ι, uel
=

ng∑
ι=1

Nι(u)ũι, δuel
=

ng∑
ι=1

Nι(ξ )δũι,

∆uel
=

ng∑
ι=1

Nι(ξ )∆ũι, ηel
k =

ng∑
ι=1

Nι(ξ )η̃k ι, δηel
k =

ng∑
ι=1

Nι(ξ )δη̃k ι, ∆kη
el
k =

ng∑
ι=1

Nι(ξ )∆k η̃k ι,

for all k = 0, 1, . . . , N − 1, (4.1)

where Nι (ι = 1, 2, . . . , ng) are the shape functions corresponding to the element Ω el
0 ; ng is the number of grid points

in each element; the quantities with tilde correspond to the nodal values, i.e., for example, ũι denotes the displacement
vector at ιth node; ξ denotes the coordinates of the isoparametric reference element (see e.g. Chapter 4 of [57]); and
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the superscript el denotes the index for the finite elements. The deformation gradient tensor in Ω el
0 can hence be

expressed as (see e.g. Chapter 4 of [57])

Fel
= jel

· Jel−1
, where Jel

=
∂r0

el

∂ξ
=

ng∑
ι=1

˜r0ι ⊗ ∇ξ Nι, jel
=
∂rel

∂ξ
=

ng∑
ι=1

r̃ι ⊗ ∇ξ Nι, (4.2)

and ∇ξ denotes the gradient operator in the coordinate of the isoparametric element. Denoting the local coordinate
system of the reference element in our isoparametric mapping by ξ = {ξ1, ξ2, ξ3}

T , we can write ∇ξ Nι =

[Nι,ξ1 , Nι,ξ2 , Nι,ξ3 ]T , where the subscripts followed by a comma designate the derivative with respect to the
corresponding isoparametric coordinate. The spatial gradients of the displacement and the order parameters, as well
as the gradients of their weighting functions and increments take the form (see e.g. Chapter 4 of [57]):

∇uel
=

ng∑
ι=1

ũι ⊗ jel−T
· ∇ξ Nι, ∇δuel

=

ng∑
ι=1

δũι ⊗ jel−T
· ∇ξ Nι, ∇∆uel

=

ng∑
ι=1

∆ũι ⊗ jel−T
· ∇ξ Nι;

∇ηel
k =

ng∑
ι=1

η̃k ι jel−T
· ∇ξ Nι, ∇δηel

k =

ng∑
ι=1

δη̃k ι jel−T
· ∇ξ Nι, ∇∆kη

el
k =

ng∑
ι=1

∆k η̃k ι jel−T
· ∇ξ Nι. (4.3)

4.1. Discretization of the equilibrium equation

We now use Eq. (3.2) in Eq. (B.3), discretize the resulting equations using Eqs. (4.1)–(4.3) while neglecting the
higher order terms in ∆u from Eq. (B.3), apply the standard assembly operation, and then use the arbitrariness of the
global weighting vector (nodal) to finally obtain the system of algebraic equations given by Eq. (4.4) in Box-I (also
see [57,59]). Note that ∆up is the nu ×1 incremental displacement matrix at the pth iteration; K and ru are the nu ×nu

symmetric global tangent matrix and nu × 1 residual vector defined by Eqs. (4.5)1 and Eq. (4.5)2, respectively, (also
see [57,58]), where G ικI = (∇Nι · τ

el
· ∇Nκ ) I is the geometric stiffness part of the total tangent matrix, and nu is the

total number of displacement degrees of freedom. In Eqs. (4.5)1,2, ∇Nι and B f e
ι are the standard matrices given by

Eqs. (4.5)5 and (4.5)6, respectively, where the subscripts followed by a comma designate the derivative with respect
to the corresponding spatial coordinate in the deformed configuration. In Eq. (4.4) , the dot implies the multiplication
between the square matrix K and the column matrix ∆up. The geometric stiffness term does not appear in a small
strain formulation; see e.g. [60]. Cel

e and Cel
st are the 6 × 6 elemental stiffness matrices whose elements are obtained

using Eqs. (3.7)1 and (3.7)2, respectively, and {τ el
} = {τ11, τ22, τ33, τ12, τ23, τ13}

T is a 6 × 1 elemental stress matrix
whose elements are obtained using the standard τ tensor; see e.g. Chapter 4 of [57]. The displacements after the pth

iteration are determined by using Eq. (4.6) (see Section 4.3 for a complete iterative procedure). We will solve Eq. (4.4)
iteratively to update the displacements at every time step while keeping the order parameters constant. A step-by-step
procedure to solve the mechanics problem is outlined in Section 4.3. The symbol ∪ designates the standard assembly
operation in FE.

4.2. Discretization of the phase field equations

Similarly, we use Eq. (3.9) in Eq. (3.10), discretize the resulting equation by using Eqs. (4.1)6,7,8, and perform the
standard assembly operation to obtain the linear system of equations given by Eq. (4.7) in Box-I corresponding to
each of the N independent phase field equations (see Eq. (A.1)). Note that η

n,q
i is the ni ×1 global matrix for the order

parameter ηn
i after the q th Newton’s iteration, the global matrix ∆η

n,q
i of size ni × 1 corresponds to the increment

∆η
n,q
i of the order parameters, Qi is a ni × ni symmetric global matrix given by Eq. (4.8)1, and ni is the total number

of degrees of freedom for the order parameter ηi . All of the order parameters are then updated using Eq. (4.9) . In
Eq. (4.8) , Mi , Hi , and Gi are ni × ni symmetric global matrices, and fi and ri are ni × 1 global column matrices. The
matrix Hi is also known as the Laplace matrix. We will solve Eq. (4.7) iteratively and update the order parameters
at every time step using Eq. (4.9) while keeping the state of deformation of the body fixed. A step-by-step procedure
to solve the phase field problem is given in Section 4.3. The order parameter ηN at each node is determined using
Eq. (2.1).
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Box-I. List of finite element equations

• System of algebraic equations for obtaining the nodal displacements

K · ∆up
= −ru, where (4.4)

K (up−1) =

nel⋃
el=1

n∑
ι=1

n∑
κ=1

∫
Ωel

(G ικ I + B f e
ι

T
· Cel

· B f e
κ ) dV0;

ru(up−1) =

nel⋃
el=1

n∑
ι=1

∫
Ωel

B f e
ι

T
· {τ el

} dV0;

Cel
= Cel

e + Cel
st ;

G ικ I = (∇Nι · τ el
· ∇Nκ ) I;

∇Nι =

⎡⎣Nι,1
Nι,2
Nι,3

⎤⎦ ; and B f e
ι =

⎡⎢⎢⎢⎢⎢⎢⎣
Nι,1 0 0
0 Nι,2 0
0 0 Nι,3

Nι,2 Nι,1 0
0 Nι,3 Nι,2

Nι,3 0 Nι,1

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.5)

The displacements after the pth iteration are updated using

up
= up−1

+ ∆up. (4.6)

• System of algebraic equations for obtaining the nodal order parameters

Qi · ∆iη
n,q
i = −r i for i = 0, 1, . . . , N − 1, where (4.7)

Qi (η
n,p−1
k ) = c1 M i + ∆tn H i + ∆tn Gi ;

M i =

nel⋃
el=1

ng∑
ι=1

ng∑
κ=1

∫
Ωel

0

NιNκdV0;

H i (η
n,p−1
k ) =

nel⋃
el=1

ng∑
ι=1

ng∑
κ=1

∫
Ωel

0

χ
n,p−1
i Lβi J n

∇Nι · ∇NκdV0;

Gi (η
n,p−1
k ) =

nel⋃
el=1

ng∑
ι=1

ng∑
κ=1

∫
Ωel

0

∂ f n
i (ηn,p−1

i )
∂ηn

i

⏐⏐⏐⏐⏐
F

NιNκdV0;

r i (η
n,p−1
k ) = (c1 M i + ∆tn H i ) · η

n,p−1
i + c2 M i · ηn−1

i + c3 M i · ηn−2
i + ∆tn f i ;

f i (η
n,p−1
k ) =

nel⋃
el=1

ng∑
ι=1

∫
Ωel

0

f n
i (ηn,p−1

k )NιdV0; (4.8)

for all k = 0, 1, . . . , N − 1. The order parameters are updated using

η
n,q
i = η

n,q−1
i + ∆η

n,q
i . (4.9)
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4.3. Computational algorithm

We now present the overall computational algorithm for solving the coupled mechanics and phase field equations
(the line followed by # indicates comments). We define the symbols used in the algorithm below: tn—time instance
after the (n − 1)th iteration (note that t0

= 0); t f —final time; ϵu− tolerance for the convergence of equilibrium
equation; ϵη—tolerance for the convergence of all of the Ginzburg–Landau equations; Nstepsmax

η —maximum number
of iterations for the phase field equations; ϵtime—tolerance for the adaptive time stepping; ∆tmax —maximum time
step allowed; ∆tmin—minimum time step allowed.

1. Input: initialize n = 0 with F0
= I in the given reference configuration, and initial distributions of ηi for

i = 0, 1, . . . , N ; material properties and other parameters listed in the beginning of this Section 4.3.

2. WHILE (tn
≤ t f ) {

(a) #(Newton’s iteration for displacements; p being the index for iteration)
Take p = 0 and un,0

= un

DO{

• Set p → p + 1
• Update F(un,p−1) = I + ∇0un,p−1 (see Eq. (2.2)1) and Ft (ηn

j ) (where j = 0, 1, . . . , N − 1) using
Eq. (2.4) or (2.6) based on KM at hand

• Compute Fe using Eq. (2.2)2 and σ using σ = σ e + σ st , (2.16)2, and (2.18)
• Compute K (un,p−1) and ru(un,p−1) using Eqs. (4.5)1 and (4.5)2

• Solve the linear system of Eq (4.4), i.e. K (un,p−1) · ∆un,p
= −ru(un,p−1) to obtain ∆un,p

• Update displacement field using Eq. (4.6), i.e. un,p
= un,p−1

+ ∆un,p

• Calculate the Euclidean norms |ru(un,p)| and |ru(un,1)|
}WHILE (|ru(un,p)| ≤ ϵu × |ru(un,1)|)
Set n → n + 1

(b) #(Newton’s iteration for ηi for all i = 0, 1, . . . , N − 1; q being the index for iteration)
Take q = 0, and η

n,0
i = ηn−1

i
Compute Fn using Eq. (2.2)1, i.e. Fn

= I + ∇0un−1

DO {

i. Set q → q + 1
ii. IF (q = Nstepsmax

η ) {

Reject solutions of step vi;
EXIT this DO loop (i.e. step (b)) and GOTO step (c) }

iii. Compute Ft (η
n,q−1
i ) using Eq. (2.4) or (2.6), Fe using Eq. (2.2)2, and σ using σ = σ e + σ st , (2.16)2

and (2.18)
iv. Compute the vectors and matrices Qn

i (ηn,q−1
k ), M i (η

n,q−1
k ), H i (η

n,q−1
k ), Gi (η

n,q−1
k ), r i (η

n,q−1
k ), and

f i (η
n,q−1
k ) for k = 0, 1, . . . , N − 1

v. Solve Eq. (4.7) to obtain ∆iη
n,q
i

vi. Update η
n,q
i = η

n,q−1
i + ∆iη

n,q
i

vii. Calculate the Euclidean norms |r i (η
n,q
k )| for all k = 0, 1, . . . , N − 1

}WHILE (|r0(ηn,q
k )| ≤ ϵη × |r0(ηn,1

k )| && . . . && |r N−1(ηn,q
k )| ≤ ϵη × |r N−1(ηn,1

k )|)
(c) # time step selection

IF (q = Nstepmax
η ) {

Reject solutions ηn
i for all i = 0, 1, . . . , N − 1 of step (b)

Reduce time step to ∆tn
= 0.5∆tn and repeat step (b)

}

ELSE {
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• Compute the quantity Xmax
= max(L0M X0M ,

∑N
m=1 Lkm X km) for all k = 1, . . . , N − 1 among all

grid points; see Eqs. (A.2) and (B.29)
• Compute the next time step as ∆tn

=
ϵtime

Xmax

• IF (∆tn > ∆tmax ){
∆tn

= ∆tmax
}

IF (∆tn < ∆tmin) {

∆tn
= ∆tmin

}

}

(d) Set tn
= tn−1

+ ∆tn and continue the loop in step (2)

}

5. Material parameters identification

When we assume that the material is stress-free, the interfaces are planar, the order parameters spatially vary only
with r01, and the material parameters A0M , β0M , Ã and β12 are constants, the Ginzburg–Landau equations in (A.1) for
A-M (with η1 = 1) and M1-M2 (with η0 = 1) are simplified and yield the following solutions [45]:

η0 = [1 + exp(−ζ0M )]−1, where ζ0M =
6
δ0M

(r01 − rc − c0M t), and

η1 = [1 + exp(−ζ12)]−1, where ζ12 =
6
δ12

(r01 − rc − c12t), (5.1)

respectively. In the respective cases of Eq. (5.1)1,2, δ designates the width of the interface which is defined as the
distance between the points with η = 0.05 and η = 0.95 [4], c denotes the interface propagation speed, and γ denotes
the interfacial energy:

δ0M =

√
18β0M

ρ0[(aθ − 3)∆ψθ (θ ) + A0M (θ )]
, c0M = L0Mδ0M∆ψθ (θ ), γ0M =

β0M

δ0M
,

δ12 =

√
18β12

ρ0 Ã
, c12 = 0, γ12 =

β12

δ12
, (5.2)

where rc is the coordinate of the point where η0 = 0.5 and η1 = 0.5 for the respective interfaces. The subscripts ‘0M’
and ‘12’are used to indicate the A-M and M1-M2 interfaces, respectively.

We assume the isotropic St. Venant–Kirchhoff elastic response of the solid, and hence [56] Ĉ(e) Â B̂Ĉ D̂ = λ δ Â B̂δĈ D̂ +

µ (δ ÂĈδB̂ D̂ + δ ÂD̂δB̂Ĉ ), where λ and µ are the Lamé constants. Notably, the St. Venant–Kirchhoff energy is non-
quasiconvex [62,63] (not even being rank-one convex), and spurious microstructures might appear as a consequence.
However, the elastic strains are small in the problems considered here; hence, the quadratic energy given by Eq. (2.9)1
is a convex function of Ee in the neighborhood of Ee = 0. The microstructures in our problems have appeared due to
the material instability related to the order parameters, and not due to the elastic instability. We would like to mention
that, to avoid this problem for large elastic strains, several other isotropic elastic energies have been used to study
microstructure evolutions in [64,65].

The material properties for NiAl alloy based on the atomistic simulations are taken (see [66,67] and the references
therein). The alloy has a cubic lattice in A phase and a tetragonal lattice for all Mi phases. The energies and
widths of the A-M and M1-M2 interfaces are taken to be γ0M = 0.2 N/m, γ12 = 0.1 N/m, δ0M = 2 nm, and
δ12 = 0.75 nm, respectively (see e.g. [26] for their typical values). The following material parameters for NiAl are
used [45,66,67]: λ = 74.62 GPa, µ = 72 GPa, L0M = L12 = 2600 (Pa-s)−1, ∆s0M = −1.47 MPa/K, θe = 215 K,
aθ = ab = aβ = aK = 3, ac = 0.001. The barrier heights and the interface energy coefficients are determined by
using Eq. (5.2) for given widths and energies of the interfaces: A0M = 3.6 GPa, β0M = 2 × 10−10 N, Ã = 2.4 GPa,
β12 = 7.5 × 10−11 N. In all of the examples we have taken K012 = 0, i.e. the energies of the triple junctions are not
penalized here. The appropriate values of this coefficient should be calibrated by using the energy balance relation
at the junction within the sharp interface model (e.g. see [68]), which is not perused in this paper. However, the
consequence of penalizing the junctions can be seen in [45].
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6. Numerical examples

We will now show the simulation results obtained through the formulation and algorithm presented above. The
nonlinear FE codes have been developed and executed in an open source deal.II [69]. Three different problems have
been solved:

(i) simple shear deformation of a 3D parallelepiped with evolution of austenite and single M variant (Section 6.1);
(ii) twinning in martensite, and the effect of sample size on the twinned microstructure in 2D samples using the

generalized plane strain approach (Section 6.2);
(iii) microstructure evolution in a 2D block under nanoindentation using the plane stress condition (Section 6.3).
The list of simplified equations for a system with austenite and two variants M1 and M2 is presented in the

supplementary material [70]. The performance of the adaptive time stepping is also analyzed. The following parameter
values ϵu = 5 × 10−6, ϵη = 10−3, Nstepsmax

η = 10 are used in all problems (see Section 4.3 for their definitions).
However, the other parameters ϵtime, ∆tmax , and ∆tmin are chosen differently in each problem and are reported while
discussing the respective problems.

6.1. Simple shear in a rectangular parallelepiped with A and single variant M1

We consider a rectangular parallelepiped as shown schematically in Fig. 3(a) for studying the simple shear problem.
Our aim is to study the case which yields a homogeneous stress-free analytical stationary solution, and we will also
determine if our heterogeneous non-stationary solution, which involves significant internal stresses and finite strains,
converges to such a stress-free homogeneous solution.

6.1.1. Analytical solutions for simple shear in a rectangular parallelepiped
We assume a simple shear-based stress-free analytical homogeneous stationary solution with an invariant A-M

interface:

F = Q · Ut1 = I + γt e2 ⊗ e1 (6.1)

(see Eq. (6.5) for a general form), where Ut1 is the transformation stretch (or Bain stretch) tensor, Q is the rigid-body
rotation, γt is the transformation shear strain, e1 is the unit normal to the invariant plane interface (fixed left end ABCD
of the sample shown in Fig. 3(a)), and e2 is the direction of shear (see Fig. 3(a)). The transformation stretch tensor and
the rotation tensor are calculated using Ut1 =

√
FT · F and Q = (I + γt e2 ⊗ e1) · U−1

t1 (see Eq. (6.1)), respectively:

Ut1 =

⎡⎣α1 α2 0
α2 α3 0
0 0 1

⎤⎦ , Q =

⎡⎣cosϑ − sinϑ 0
sinϑ cosϑ 0

0 0 1

⎤⎦ , where (6.2)

α1 =
q2q4 + q3q5

2
√

2q1
, α2 =

q5 − q4
√

2q1
, α3 =

q3q4 + q2q5

2
√

2q1
, q1 =

√
4 + γ 2

t , q2 = q1 − γt ,

q3 = q1 + γt , q4 =
√

2 − q2γt , q5 =
√

2 + q3γt , and tanϑ = γt/2. (6.3)

We assume the austenite A is of a cubic lattice with the unit cell as shown in Fig. 2(a). From the Bain stretch tensor
Ut1 given by Eq. (6.2)1, it is obvious that the martensitic variant M1 is of monoclinic-II type (see Chapter 4 of [38]
for details). The unit cells of A and M1 are shown in Fig. 2(a) in an orthonormal basis {c1, c2, c3}, where the axes
are parallel to three perpendicular sides of the A unit cell. The lattice parameters are also shown therein. Because the
α2 and α3 given in Eq. (6.3) satisfy the condition α2

2 + α2
3 = 1, one of the sides of the unit cells of M1 remains a0

only as shown in Fig. 2(a). The cross-sections of the respective unit cells in the c3 direction are identical and their
lengths in that direction are equal to a0 (lattice parameter for cubic A). Fig. 2(b) shows the unit cells with respect to
the basis {e1, e2, e3}, which is chosen for the sample shown in Fig. 3(a). The unit cells for this sample are obtained
simply by rotating those of Fig. 2(a) counterclockwise about the c3-axis (or, equivalently, about the e3-axis) by an
angle ϑ = tan−1(0.5γt ); see Eq. (6.3)9.
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Fig. 2. Orientations of one of the faces of the unit cells of A and M1 for the simple shear problem in Section 6.1 within a plane orthogonal to axes
c3 or e3. Various lattice parameters are also shown as functions of the shear strain γt . (a) Cubic austenite and monoclinic-II martensite (M1) unit
cells with respect to an orthonormal basis {c1, c2, c3} whose axes are parallel to three perpendicular sides of the A unit cell; (b) Orientations of the
same unit cells in the basis {e1, e2, e3} used in the computational domain, where both of the unit cells are obtained simply by rotating the unit cells
of Fig. (a) counterclockwise by angle ϑ about c3, which is parallel to e3. The 3D unit cells in figures (a) and (b) both have similar cross-sections
along the entire lengths in the out-of-plane direction (c3 or e3), and their lengths in that direction are equal to a0.

Fig. 3. Simple shear in a rectangular parallelepiped: (a) Schematic of the parallelepiped; (b) The undeformed 3D parallelepiped (Ω0) showing the
mesh density and the initial random distribution of η0; (c) Front view (face ADEG) of the parallelepiped shown in (a) at t = 0; (d) Face ADEG in
the deformed configuration Ω with a non-stationary intermediate solution of η0 at an intermediate time step; (e) Face ADEG in Ω with a stationary
distribution of η0 = 1. The result is for Ut given by KM-I in Eq. (2.4).
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6.1.2. Numerical results for simple shear in a parallelepiped
We now take a 10 nm ×10 nm ×1 nm parallelepiped as shown in 3(b) and use the Bain tensor given by Eq. (6.2)1

in our phase field model to verify if this model can indeed yield a stress-free homogeneous fully martensitic sample
within which F is given by Eq. (6.1). The transformations can obviously be described by a single order parameter η0

in our phase field model. The Bain tensor given by Eq. (6.2)1 is used in Ft corresponding to the respective kinematic
models given by (derived from Eq. (2.4) and using η1 = 1 therein), which are given as an input to the problem. The
microstructure evolution can be determined by solving the Ginzburg–Landau equation (2.20)1 and the equilibrium
equations in (2.15) simultaneously. Note that the driving force X0 (Eq. (2.21)) in the Ginzburg–Landau equation
(2.20)1 can be obtained in this case by substituting η1 = 1 (since here M1 is considered) in Eq. (2.21): Within the 3D
parallelepiped, we take η0 to be randomly distributed between 0 and 1 at t = 0; see Fig. 3(b) and (c), where the latter
is the view of face ADEG at t = 0. The left end ABCD of the parallelepiped is fixed and all other faces are traction
free, i.e. u1 = u2 = u3 = 0 on ABCD; P11 = P21 = P31 = 0 on EFHG; P13 = P23 = P33 = 0 on ADEG and CFHB;
P12 = P22 = P32 = 0 on CFED and ABHG. For η0, the homogeneous Neumann boundary condition as discussed in
Section 2.5 is used on the entire external boundary. The sample has been discretized uniformly with 400 quadratic 3D
hexahedral elements (27-noded), which yield 15129 degrees of freedom (DOFs) for all of the displacements and 5043
DOFs for η0, i.e. 20172 DOFs in total. We have taken ∆t0

= 5 fs, ∆tmax = 1 µs, and ∆tmin = 5 fs. The transformation
stretch tensor Eq. (6.2)1 is prescribed in the problem formulation considering γt = 0.25, while the rotation tensor Q
is determined as a result of the solution. We take θ = 100 K, which is constant in space and time. The adaptive time
stepping described in Section 4.3 has been applied with the initial time step ∆t0

= 5 fs and the tolerance ϵtime = 0.09
(see Section 4.3).

We have shown the FE results in Fig. 3, where Ut is taken for the KM-I given by Eq. (2.4). Fig. 3(c) shows the front
view (face ADEG) of the 3D parallelepiped with randomly distributed 0 ≤ η0 ≤ 1 at t = 0. Fig. 3(d) shows the same
face of the sample in Ω at an intermediate time step depicting the inhomogeneous distribution of η0. Fig. 3(e) shows
the same face in Ω when η0 has reached the stationary solution η0 = 1 everywhere, yielding a fully martensite sample.
A significant undercooling θ − θe = −115 K and the initial distribution of the elastic stresses promote martensite
formation within the entire sample. The numerically-obtained components of the total deformation gradient F coincide
with the analytical result discussed in Section 6.1.1, i.e.

F11 = F22 = F33 = 1, F12 = F13 = F31 = F23 = F32 = 0, and
F21 = 0.25 = γt for all r0 ∈ Ω0.

(6.4)

All of the stresses are vanishing, as expected within the crystallographic theory. While the stationary solution is trivial,
the intermediate stages involve nontrivial microstructures, finite elastic strains, finite rotations, and large stresses;
hence, the entire test is nontrivial. The simulation reached the stationary solution after 33 time stepping, where the
final ∆t33

= 0.28 ps and final time t f
= 1.13 ps. When the transformation rule given by KM-II is used, the same

stationary solution is obtained, and the performance of the time stepping scheme is also approximately the same.
To analyze the performance of the adaptive time stepping scheme, we have solved this problem considering KM-I

for three different values of the tolerance related to the adaptive time stepping: ϵtime = 0.09, 0.06, 0.03, where the
same initial time step ∆t0

= 5 fs is used in all cases. We have also performed a simulation with constant time step
∆t = 5 fs, which is obviously equal to ∆t0 taken for the simulations with variable ∆t . In Fig. 4, the size of the
time steps selected by the algorithm during the iterations is plotted against the time index n, which was introduced
in Section 4.3. The number of iterations is the lowest when ϵtime = 0.09, increases as ϵtime decreases, and is at its
maximum when ∆t is constant. From Fig. 4, it is clear that the maximum ∆tn attained in all of the variable time
stepping chosen here are two orders of magnitude larger than the initial step size.

6.2. Twinning in martensite

We will now study twinning in a system with A and two martensitic variants M1 and M2. A brief review of the
crystallographic equations will be presented in Section 6.2.1. The analytical solutions for these equations are listed in
Section 3 of the supplementary material [70]; also see [38,71]. In Section 6.2.2, we will present the phase field results
and compare them with the analytical solutions.
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Fig. 4. A comparison of the time steps selected for different values of the tolerance for adaptive time stepping ϵtime for the simple shear problem
in Section 6.1. The time step index n was defined in Section 3.2, and the final value of the index represents the total number of iterations needed to
obtain the stationary solutions.

Fig. 5. A schematic of (a) austenite and single variant interface, where m is the unit normal to the A-M interface; (b) austenite–twinned martensite,
where the shaded region is the A-M interface with unit normal m, and nt is the unit normal to the twin boundaries.

6.2.1. Crystallographic theory for twinning
According to the crystallographic theory, a sharp coherent interface between A and M (see Fig. 5(a) for a schematic)

must satisfy the Hadamard’s compatibility relation [38,71]

Q · Ut − I = c ⊗ m, (6.5)

where Ut is the transformation stretch tensor, Q is a rotation tensor, c is an arbitrary vector, and m is the unit normal
to the A-M interface pointing into A. In Eq. (6.5), A is obviously assumed to be the reference stress-free crystal. The
compatibility condition Eq. (6.5) requires one of the eigenvalues of Ut to be unity, which is too restrictive and is not
satisfied in almost all materials [38]. Hence, we usually do not see an interface between A and a single M variant
in experimental microstructures. Instead, the materials tend to form an austenite–twinned martensite interface; this
is shown schematically in Fig. 5(b), which is the total elastic energy minimizer of the system [71]. Such an A-M
interface has finite width and satisfies the Hadamard’s compatibility condition in an average sense. The compatibility
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Fig. 6. Orientations of the unit cells of cubic A and tetragonal variants M1 and M2 for the twinning problem presented in Section 6.2. (a) The A,
M1, and M2 unit cells in an orthonormal basis {c1, c2, c3} with the axes parallel to three perpendicular sides of the A unit cell; (b) Orientations of
the same unit cells in the orthonormal basis {e1, e2, e3} (see Fig. 7).

equations for the twin boundaries and the A-twinned martensite interface shown in Fig. 5(b) are [38]

Q1 · Ut2 − Ut1 = a ⊗ nt , and Q2 · [ζQ1 · Ut2 + (1 − ζ )Ut1] = I + bt ⊗ m, (6.6)

respectively, where Eqs. (6.6)1 and (6.6)2 are also known as the twinning equation and the habit plane equation,
respectively. In Eq. (6.6), Q1 and Q2 are two rotation tensors, a and bt are two arbitrary vectors, 0 ≤ ζ ≤ 1 is the
volume fraction of M2 within the twins, and nt and m are the unit normal vectors to the twin boundaries and A-M
interface, respectively. Note that Eq. (6.6)2 coincides with Eq. (6.5) when the variant M2 is absent (i.e. ζ = 0, Q2 = Q,
and c = bt ) or, alternatively, when M1 is absent, i.e. ζ = 1, Q2 · Q1 = Q, and c = bt .

In Eq. (6.6), the Bain tensors Ut1 and Ut2 for any pairs of variants are known for a given material. Given these
parameters, the other unknowns a, bt , nt , m, and ζ in Eq. (6.6) can be solved (see [38,71] for the derivation).
For completeness, a list of the solutions is provided in Section 3 of the supplementary material [70]. The rotation
tensors Q1 and Q2 can be determined by substituting the solutions from Section 3 of the supplementary material into
Eqs. (6.6)1,2. Obviously, all of the analytical solutions depend on the components of the Bain tensors which are the
material parameters [38]. Noticing that the deformation gradients within the stress-free A, M1, and M2 are F0 = I,
F1 = Q2 · Ut1, and F2 = Q2 · Q1 · Ut2, respectively, we write the average deformation gradient within a sample
consisting of A and a mixture of M1 and M2 as [25]

Fav = ζ0F0 + (1 − ζ0)[ζF2 + (1 − ζ )F1] = I + (1 − ζ0)bt ⊗ m, (6.7)

where ζ0 is the volume fraction of A within the sample and Eq. (6.7)2 is obtained by applying Eq. (6.6)2 in Eq. (6.7)1.
Note that Eq. (6.7) will be used in our numerical calculations in Section 6.2.2 to determine the boundary displacements
that will be applied on a sample to obtain the desired twinned microstructures.

6.2.2. Computational details and results for twinning
We will now present the phase field simulation results and compare them with the analytical solutions. Material

properties for NiAl, which has cubic austenite and tetragonal martensitic variants, will be used. The samples are at a
constant temperature θ = θe = 215 K. Because we consider a two-variant system, the twinning phenomenon in our
phase field approach can obviously be described using two independent order parameters η0 and η1. The governing
coupled phase field and elasticity equations, which are listed in Section 2, simplify to those listed in Section 2 of
the supplementary material [70]. Of the three Bain tensors for NiAl, we choose the following two without loss of
generality (see Chapter 4 of [38]):

Ut1 = diag(β, α, α), and Ut2 = diag(α, β, α), (6.8)
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where α = 0.922 and β = 1.215, as taken from the atomistic simulation results; see [67] and the references therein.
The other material parameters are listed in Section 5. The unit cells of the cubic A and the two variants used here are
shown in Fig. 6(a) in the basis {c1, c2, c3}, where the axes are parallel to three perpendicular sides of the A unit cell.
The lattice parameters and their relations to the material constants α and β are also given therein (also see Chapter 4
of [38]). The solutions of a, bt , m, nt , and ζ for the Bain stretches given by Eq. (6.8) are listed in Section 3 of the
supplementary material [70].

If the twinned microstructure is viewed within the plane made by the vectors m and nt (see Section 3 of [70] their
expressions), one can show that the microstructure is independent of the coordinate along the direction perpendicular
to this plane. To verify this, let us consider another orthonormal basis {e1, e2, e3} where the basis vectors e1 and e2 lie
in the plane made by m and nt and the twin boundary normal is parallel to e1, i.e. n′

t = R′
· nt = e1 (see Fig. 7), where

the rotation

R′
=

⎡⎣−0.7071 0.7071 0
−0.5105 −0.5105 −0.6920
−0.4893 −0.4893 0.7219

⎤⎦ in {c1, c2, c3} basis. (6.9)

Using the vectors bt and m from Table 1 and rotating them by R′ we calculate the average distortion within the mixture
by using Eq. (6.7) for a NiAl sample shown schematically in Fig. 7:

(∇u)′av = F′

av − I = (1 − ζ0) R′
· bt ⊗ R′

· m

= (1 − ζ0)

⎡⎣ 0.0414 0.0765 0
−0.0046 −0.0086 0
0.0847 0.1564 0

⎤⎦ in {c1, c2, c3} basis, (6.10)

where we recall that ζ0 is the volume fraction of A. If we now consider the position vector of a particle lying in the
m-nt plane with respect to the basis {e1, e2, e3}, its average deformation would be independent of the coordinate along
the e3-direction, although the displacement in that direction is non-trivial. The orientations of all of the unit cells with
respect to the basis {e1, e2, e3} are shown in Fig. 6(b). The orientations are obtained by rotating the unit cells from
Fig. 6(a) by using the rotation matrix R′ given by Eq. (6.9).

Based on this observation, we performed our numerical calculations in the domain designated by ABCD as shown
in Fig. 7 with the basis {e1, e2, e3}. The microstructure is obviously expected to be independent on r03, i.e. all of the
displacement components are functions of r01 and r02 only: u = ua(r01, r02)ea . The generalized plane strain approach
has been used here for solving the system of equations (also see e.g. [26]). Such a 2D computational domain allows
us to consider a larger sample without sacrificing the accuracy of the solutions. The stress and strain tensors are
obviously full 3 × 3 matrices. The Bain tensors of Eq. (6.8) transformed by the tensor R′ are used in FE calculations
U′

ti = R′
· Uti · R′T :

U′

t1 =

⎡⎣1.0685 0.1058 0.1014
0.1058 0.9983 0.0732
0.1014 0.0732 0.9922

⎤⎦ , and U′

t2 =

⎡⎣ 1.0685 −0.1058 −0.1014
−0.1058 0.9983 0.0732
−0.1014 0.0732 0.9922

⎤⎦ . (6.11)

Recall that KM-II involves the exp-ln transformation stretch tensor. Thus the Ginzburg–Landau equations and the
linearizations listed in Section 3 and Appendix B involve the derivatives of the logarithm and exponential of the
nondiagonal tensors. The explicit forms of the first and second derivatives of Ft with respect to the order parameters
for KM-II are listed in the supplementary material [70]. The derivation of the same for KM-I is straightforward and
hence not shown.

We have controlled the microstructures in our numerical calculations by applying the displacements at all external
boundaries corresponding to the average ∇u′

av

u|S0 = uav = (∇u)′av · r0 for all r0 ∈ S0, (6.12)

where (∇u)′av is taken from Eq. (6.10). Simulations have been performed for both KM-I and KM-II, where the Bain
tensors are given by Eq. (6.11). Because AB and CD are the invariant planes, the twin plates are expected to occupy
the entire slab, i.e. there would be almost no residual austenite. Thus we take ζ0 = 0 in Eqs. (6.10) and (6.12) and
obtain the boundary displacements accordingly. There is obviously no traction boundary condition for this problem.
The homogeneous Neumann boundary conditions for the order parameters as discussed in Section 2.5 are used on the
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Table 1
Crystallographic solutions for NiAl in cubic lattice coordinate with basis
{c1, c2, c3}.

nt −0.7071 c1 + 0.7071 c2
a 0.4625 c1 + 0.3510 c2
ξ 0.3046
bt −0.1436 c1 − 0.0205 c2 + 0.1351 c3
m −0.7855 c1 − 0.1122 c2 − 0.6085 c3

Fig. 7. Schematic of the sample in Ω0 considered for the twinning problem.

surfaces AB, BC, CD, and AD. In all samples η0 and η1 are assumed to initially be distributed randomly between 0
and 1.

An effective order parameter ηeq = 2η0(η1 − 0.5) is defined, which obviously satisfies ηeq = 0 in A, ηeq = 1 in
M1, and ηeq = −1 in M2. The initial samples have been discretized using 9-noded 2D quadratic elements in a manner
such that at least four grid points are present within the A-M interfaces and twin interfaces (see Section 5 for their
widths). We have used ϵtime = 0.07 for all of the simulations with samples in (i)–(iv) of Figs. 8 and 9 and ϵtime = 0.04
was used for samples in (v). In all simulations we have chosen ∆t0

= 2 fs, ∆tmax = 1 µs, and ∆tmin = 2 fs.
In Figs. 8 and 9 the color plots of stationary ηeq in different size samples are shown in the deformed configuration

Ω . The color dark red (ηeq = 1) indicates M1 plates and dark blue (ηeq = −1) indicates M2 plates. The color green
with ηeq = 0 may indicate either a point on the M1-M2 interface (i.e. η1 = 0.5) or within A (i.e. η0 = 0). The laminated
twin plates are formed between the invariant planes. The austenite phase is absent from the stationary microstructures
except in very small regions between the martensitic plates and the invariant planes (shown in green in Figs. 8 and 9).

We now present a comparison between the analytical and numerical results. The volume fraction of the variants has
been calculated along a line which passes through the middle of the sample and is parallel to the side AB, where the
particles are martensite. We have measured the total length ℓ1 of the segments within which 0.95 ≤ η1 ≤ 1, i.e. the
phase is M1, and have also measured the total length ℓ2 of the segments within which 0 ≤ η1 ≤ 0.05, i.e. the phase
is M2. The volume fraction of M2 in the mixture of M1 and M2 is then calculated using ℓ2/(ℓ1 + ℓ2). The volume
fraction of M2 within the twinned samples shown in both Fig. 8(V) and 9(V) is calculated to be approximately 0.27,
which is close to the crystallographic solution for sharp interfaces 0.3 (see Table 1). Consideration of the larger sample
with a smaller area of the interfaces should reduce the deviation. We have also determined the normal vectors to the
twin boundaries in the middle of the samples, and the maximum deviation of alignment of these normals from the
e1-direction is less than 1◦ . The twin boundary widths are also close to the analytical value δ12 = 0.75 nm. For both
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Fig. 8. Twining in martensite solution (plots for ηeq ) for KM-I in samples of size (i) w0 = 5 mm, l0 = 10 mm, (ii) w0 = 10 mm, l0 = 15 mm,
(iii) w0 = 15 mm, l0 = 25 mm, (iv) w0 = 20 mm, l0 = 35 mm, and (v) w0 = 30 mm, l0 = 50 mm. The results are plotted in the deformed
configuration Ω . ηeq = 1 and ηeq = −1 signify M1 and M2, respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

KM-I and KM-II, we see from Figs. 8 and 9 that the number of martensitic plates generally increases as the sample
size increases. The number of martensitic plates (Nplate) and the average width of these plates (wp) are proportional to
the square root of the sample size w0, i.e. Nplate ∼

√
w0 and wp ∼

√
w0; see Stupkiewicz and coworkers [25,26]. As

the sample size increases, there is a rising tendency to form twin branches within the A-M interfaces, which is clearly
observed in cases (v) of Figs. 8 and 9 (also see [25,26]). Such twin branching reduces the effective twin plate size and
increases the total twin interface area. This results in a decrease of the elastic energy and an increase of the total twin
boundary energy. Obviously, in the process of branching, the reduction of the elastic energy is more prominent and
the overall energy of the system thus reduces. The maximum time step sizes attained in all cases lie between 10 ns to
100 ns, i.e. the step size increases up to eight orders of magnitude from the initial value.

In Figs. 10(a) and 10(b), we show the variation of normal elastic σ(e)22 and structural stresses σ(st)22 along a line
which is parallel to the side AB (see Fig. 7) and passing through the middle of the sample, both for KM-I and II
(samples (v) from Figs. 8 and 9 are taken). These stresses obviously act along the twin boundaries, i.e. parallel to the
e2-direction. Notably, the elastic stress is much larger than the structural stress in both cases, and the magnitude of
σ(e)22 is also much larger for KM-II than for KM-I. The origin of the elastic stress σ(e)22 within the twin boundaries
and the reason for larger elastic stress for KM-II than KM-I have been already studied by the authors in [53], both
analytically and numerically. Note that the elastic stress within the twin boundaries is vanishing according to the
crystallographic theory which is a purely geometrical theory and considers twin boundaries to be sharp interfaces.
However, in the phase field approach such interfaces have finite width and the transformation strains within them are
inhomogeneous. In Figs. 10(a) and 10(b), note that σ(e)22 is in fact much smaller within the variants. Furthermore, it
was shown in [53] that, although the elastic stress obtained by using our two kinematic models is large within the twin
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Fig. 9. Twinning in martensite (plots for ηeq ) for KM-II in samples of size (i) w0 = 5 mm, l0 = 10 mm, (ii) w0 = 10 mm, l0 = 15 mm,
(iii) w0 = 15 mm, l0 = 25 mm, (iv) w0 = 20 mm, l0 = 35 mm, and (v) w0 = 30 mm, l0 = 50 mm. The results are plotted in the deformed
configuration Ω . ηeq = 1 and ηeq = −1 signify M1 and M2, respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 10. Elastic and structural stress components σ(e)22 and σ(st)22 along a line, which is parallel to the invariant planes AB and CD passing through
the middle of the reference sample, both for KM-I and KM-II.
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Fig. 11. Sample under indentation by a flat and rigid indenter: (a) Schematic of the sample; (b) The A, M1, M2 unit cell orientations in an
orthonormal basis {c1, c2} with the axes parallel to the sides of the A unit cell. The basis {e1, e2} taken within the reference sample Ω0 coincides
with {c1, c2}.

boundaries, the net interfacial tension vanishes in the sharp interface limit. The nature of elastic stresses within the
realistic twin interfaces is yet to be verified, either experimentally or by using the atomistic simulations.

In physical and material literature, the spectral methods are usually used to study martensitic microstructure
evolution [18,32,34,48]. The problem formulation naturally includes periodic boundary conditions, and applying
other types of boundary conditions is problematic. Because any boundary conditions can be applied in the finite
element method, we choose a non-periodic condition for the displacements given by Eq. (6.12) for an isolated sample
and the homogeneous Neumann boundary conditions for the order parameters. However, if one considers a periodic
cell, the condition given by [26] u|S0 = (Fav − I) · r0 + û for all r0 on S0 and the periodic boundary condition for
the order parameters should be used, where û is the fluctuation of the displacement vector on corresponding periodic
boundaries. Both the cases yield laminated microstructures, but the solutions would obviously be different. Examples
of microstructures with the boundary condition given by Eq. (6.12) can also be found in [26], and the microstructures
using the periodic boundary condition can be seen in [25].

6.3. Indentation problem

We will now study the microstructure evolution in a 40 nm×40 nm 2D rectangular block ABCD subjected to
nanoindentation by a flat and rigid indenter as shown in Fig. 11(a). Evolution of austenite and two martensitic
variants is studied. The governing equations for a two-variant system listed in [70] are used, assuming the plane stress
condition. The specialized elasticity equations under the plane stress condition can be found in a recent paper by the
authors [45]. The bottom surface of the sample AB is held fixed (u1 = u2 = 0), and a downward uniform vertical
indentation displacement of magnitude û2 = 1.5 nm is applied at the middle of the top surface (at region EF) over a
span of l1 = 8 nm. Within this indenting region, the tangential component of the traction vector is zero (i.e. P12 = 0).
The rest of this boundary (regions DE and FC) is traction-free, i.e. P12 = P22 = 0 therein. The vertical surfaces AD
and BC are both traction free, i.e. P11 = P21 = 0. The homogeneous Neumann boundary conditions for η0 and η1 on
all external surfaces are applied (see Section 2.5). The Bain tensors for the variants M1 and M2 in NiAl are taken to
be Ut1 = diag(α, β, α) and Ut2 = diag(β, α, α), where α = 0.922 and β = 1.215 [53]; and the material properties
in Section 5 are used. The temperature is taken to be θ = 0. The orientations of the unit cells of A, M1, and M2
with respect to the basis {c1, c2} (the axes coincide with the perpendicular sides of the cubic A) and the basis {e1, e2}

(taken for the 2D sample and coincident with the basis {c1, c2}) are shown in Fig. 11(b). We consider a semi-circular
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Fig. 12. The plot of ηeq for the indentation problem for KM-I (first row) and KM-II (second row) in the deformed configuration Ω .

M nucleus (i.e. η0 = 1) in the middle of the top surface at t = 0, and A (i.e. η0 = 0) in the rest of the sample; see
the first column in Fig. 12, where ηeq color plots are shown. The initial value of η1 is taken to be 0.1 everywhere,
∆t0

= 10 fs, ∆tmax = 1 µs, and ∆tmin = 10 fs. The microstructure evolution for KM-I and for KM-II are shown in
Fig. 12. The color scheme is the same as that considered for the twinning problem in Section 6.2. The second column
shows the microstructure in an intermediate time instance, and the last column shows the stationary microstructures.
Although the intermediate microstructures for KM-I and for KM-II differ, the stationary solutions for both models are
almost identical. Because the applied displacement yields a compressive load in the sample and the direction of the
compressive load coincides with the compression axis of the variant M2 (see Fig. 11(b)), the variant M2 is promoted
and it spreads over a broad region, as reflected in the figures of column 2. As it approaches the bottom surface, which
is fixed, the other variant M1 also appears. In the stationary microstructures, plates of alternating variants are formed
in the lower halves of the samples, whereas the upper halves are fully M2.

7. Concluding remarks

A rigorous and detailed FE procedure for solving a new coupled system of mechanical equilibrium equations and
Ginzburg–Landau equations has been derived for studying the multivariant MTs induced by stresses and temperature
at finite strains and with interfacial stresses. The formulation considers austenite and N martensitic variants. A non-
monolithic strategy has been used for solving the mechanical equilibrium equations and N independent Ginzburg–
Landau equations using the implicit methods. To this end, the weak forms for the equilibrium equations and each of
the Ginzburg–Landau equations are derived, and they are linearized to obtain the tangent matrices. The correct tangent
modulus tensor for the mechanical equilibrium equation has been obtained and consists of the parts due to the elastic
stresses and the structural stresses. An adaptive time stepping, for which the time step sizes can increase by several
orders of magnitude, is implemented. Using the present algorithm, a nonlinear FE code has been developed and used
to study (i) the simple shear deformation in a 3D parallelepiped with austenite and a single variant, (ii) the twinning
in martensite and sample size dependency of the twinned microstructure, and (iii) the microstructure evolution under
nanoindentation. The numerical results for the first two problems are in agreement with the analytical solutions, which
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are well known. Two different kinematic models for the transformation deformation gradient tensor are used to study
the microstructure evolutions. The elastic and structural parts of the interfacial stresses within the twin boundaries
are also analyzed. The advantage of the present non-monolithic scheme is that a large number of M variants can be
handled easily; however, with a monolithic scheme, the complexity in the algorithm and procedure would increase
significantly with an increasing number of variants.

It should be mentioned that the detailed computational procedures for some of our other phase field models
[21,29,31,50] were not provided. The present study can be easily used to develop the detailed FE algorithms for
those models. Furthermore, our FE procedure to PF can be extended for studies of grain growth, solidification, crack
propagation, diffusive PTs, interaction between MTs, plasticity, and/or fracture etc. Also note that a more detailed
model for single-variant martensitic PTs has recently been developed [73] with a focus on the lattice instability
conditions [30,31]. These conditions, under a general loading with all six components of the stress tensor, are found
using the molecular dynamics simulations (see [73] and the references therein). That model must be generalized for
multivariant martensitic PTs, and the corresponding finite element algorithm should be developed by a method similar
to the approach used here.
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Appendix A. N independent Ginzburg–Landau equations

Because we use a fully implicit non-monolithic scheme to solve the coupled Ginzburg–Landau equations in
Eq. (2.20), it is necessary to differentiate the right-hand side (which may be a function of all N order parameters
related to the variants) of the corresponding equation, say, the equation for η̇i with respect to ηi , to determine the
tangent matrix for Newton’s iteration. Thus, it is necessary to express all of the conjugate forces X i (i = 0, 1, . . . , N )
as functions of N − 1 independent order parameters related to the variants. Without loss of generality, we eliminate
ηN from those expressions by using ηN = 1 −

∑N−1
j=1 η j and express (2.20)1 and the first N − 1 Ginzburg–Landau

equations from (2.20)2 in their equivalent forms:

η̇0 = L0M X0, η̇i =

N∑
j=1,̸=i

L i j (X i − X j ) for i = 1, 2, . . . , N − 1, (A.1)

where all of the functions (scalar, vector, and tensor) with over-bar are expressed in terms of the N − 1
independent order parameters η0, η1, . . . , ηN−1, i.e. g(η0, η1, . . . , ηN−1) = g

(
η0, η1, . . . , 1 −

∑N−1
j=1 η j

)
for any

function g(η0, η1, . . . , ηN ). The explicit expressions for X0 and X i (for all i = 1, 2, . . . , N ) are

X0 =
(
PT

e · F − J̄tψeI
)

: Ft
−1

·
∂Ft

∂η0
− J t

∂ψe

∂η0

⏐⏐⏐⏐⏐
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0)∆ψθ

− Jρ0 Ã
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0) −
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×

[
2(1 − ϕ(aK , η0))η0 −

∂ϕ(aK , η0)
∂η0

η2
0

]
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∇0 ·
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Jβ0M F−1

· ∇η0
)
, and (A.2)

X i =
(
PT

e · F − J̄tψeI
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respectively, and in Eqs. (A.2) and (A.3), ηN = 1−
∑N−1

m=1ηm ; see Eq. (2.1). The derivatives with overbar, for example,
∂Ft
∂ηk

in Eqs. (A.2) and (A.3) should be interpreted as follows: at first Ft (η0, . . . , ηk−1, ηk, ηk+1, . . . , ηN ) is differentiated
with respect to ηk considering all the N order parameters η1, . . . , ηk−1, ηk, ηk+1, . . . , ηN to be mutually independent
(see [45] for detailed derivation), and then ηN is substituted by 1 −

∑N−1
j=1 η j (see Eq. (2.1)). When i = N , Eq. (A.3)

simplifies to
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+ ∇0 ·

⎛⎝ϕ̃ J
N−1∑
j=1

βN j

4
F−1

· (∇ηN − ∇η j )

⎞⎠ , (A.4)

where we have used Eq. (2.12) and βN N = 0.

Appendix B. Derivation of the weak forms of the governing equations and their linearizations

In Section 3 we have given an outline of the weak formulations for the equilibrium equations and the Ginzburg–
Landau equations. In this appendix we provide the details of the derivations.

B.1. Derivation of the weak form of equilibrium equations and linearization

The weak form of the mechanical equilibrium equation (2.15) is given by Eq. (3.1). Considering the identity
∇0 · (PT

· δu) = (∇0 · P) · δu + PT
: ∇0δu and applying the Gauss divergence theorem, we rewrite Eq. (3.1) as

R(u, δu) =

∫
Ω0

PT
: ∇0δu dV0 −

∫
S0T

psp
· δu d A0 =

∫
Ω0

S : FT
· ∇δu · F dV0 −

∫
S0T

psp
· δu d A0, (B.1)

where the relation between the stresses P = F·S and the relation ∇0δu = ∇δu·F have been used in the first integrand.
Note that p := P · n0 is the traction in Ω0, psp is the applied traction on the external boundary S0T , and d A0 is an area
element on a surface in Ω0. By using the relation between S and σ given by F · S · FT

= Jσ [57] we show that

S : FT
· ∇δu · F = F · S · FT

: sym(∇δu) = S : δE = τ : δε. (B.2)

Using Eq. (B.2) in Eq. (B.1), the final expression for the weak form Eq. (3.2) is obtained.
We now linearize the weak form R(u, δu), given by Eq. (3.2), which we assume to be a differentiable functional

of u. Denoting the increment of the displacement field by ∆u, we express the weak form in Taylor’s series about u
(see e.g. Chapter 8 of [59])

R(u + ∆u, δu) = R(u, δu) + ∆R(u,∆u, δu) + o(∆u) = 0, (B.3)

where δu has been kept fixed, o(∆u) is such that lim∆u→0o(∆u)/|∆u| = 0, and ∆R(u,∆u, δu) is the Gâteaux
derivative (directional derivative) of R, which is defined as (see e.g. [72])

∆F (u,∆u, δu) = DF (u, δu) · ∆u =
d
dϵ

F (u + ϵ∆u, δu)
⏐⏐⏐⏐
ϵ=0

(B.4)

for any differentiable function or functional F (can be a scalar, vector, or a tensor). Assuming that the external loads
are ‘dead’, i.e. psp is independent of u, we linearize R in Eq. (3.2)1 to obtain

DR · ∆u =

∫
Ω0

∆Se : δE dV0 +

∫
Ω0

∆Sst : δE dV0 +

∫
Ω0

S : ∆(δE) dV0, (B.5)

where we have used the following decomposition of the second Piola–Kirchhoff stress S = Se + Sst , with
Se = Jt F−1

t · Ŝe · F−T
t , and

Sst = Jρ0(ψ̆θ
+ ψ∇)C−1
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· ∇η j )
]
, (B.6)

which were obtained using Eq. (2.16) and the relations between P, σ , and S [56]: P = F · S and P = Jσ · F−T .
When the external load is a function of u, its contribution on the right-hand side of Eq. (B.5) can be seen from

e.g. [57]. We now derive an amenable form of Eq. (B.5) so that Newton’s iterative method can be applied to obtain
the increment of displacement ∆u. The derivations for all three integrands are shown in the following.
(i) First integral in Eq. (B.5)

Taking the increment of Se = Jt F−1
t · Ŝe · F−T

t (can be obtained using Jσ e = F · Se · FT and Eq. (2.16)2) and
recalling that Ft is independent of u (see Eqs. (2.4) and (2.6)), we obtain

∆Se = Jt F−1
t · ∆Ŝe · F−T

t = Jt F−1
t · (Ĉe : ∆Ee) · F−T

t , (B.7)
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where Ĉe is the fourth order elastic modulus tensor with respect to Ωt given by Eq. (3.6). By using Eqs. (2.2) and
(2.3)1,2 one can easily show that ∆E and ∆Ee are related by

∆Ee = 0.5∆(FT
e · Fe − I) = 0.5 F−T

t · [∆FT
· F + FT

· ∆F] · F−1
t = F−T

t · ∆E · F−1
t , (B.8)

which we use to rewrite Eq. (B.7) as

∆Se = Jt F−1
t · (Ĉe : F−T

t · ∆E · F−1
t ) · F−T

t . (B.9)

We can express Eq. (B.9) in the form

∆Se = Ce : ∆E, (B.10)

where Ce is the fourth order elasticity tensor defined in Ω0, and it can be expressed in the indicial notations as

C(e)ABC D = Jt F−1
(t) AÂ

F−1
(t) B B̂

F−1
(t) CĈ

F−1
(t) DD̂

Ĉ(e) Â B̂Ĉ D̂, (B.11)

where Ĉe was defined in Section 2; see Eq. (2.9); see Section 3.1 for the meaning of the indices. Note that we
can express the incremental Lagrangian strains as (see Chapter 10 of [58]) ∆E = FT

· ∆ε · F, where ∆ε :=

0.5(∇∆u +∇∆uT ). Using Eq. (B.10) and the expressions for ∆E and δE (see above and Section 3.1), we express the
first integrand of Eq. (B.5) as

∆Se : δE = δE : Ce : ∆E = FT
· δε · F : (Ce : FT

· ∆ε · F) = δε : JCe : ∆ε, (B.12)

where Ce is the elasticity tensor defined in the current configuration, which is related with Ce and Ĉe by Eq. (3.7)1. For
obtaining Eq. (3.7)1, we have used the following ‘square tensor product’ between two arbitrary second-order tensors
A and D and its transpose given by (see e.g. Chapter 1 of [55]):

(A ⊠ D)abcd = Aac Dbd and (A ⊠ D)T
abcd = (AT ⊠ DT )abcd = Aca Ddb. (B.13)

We have also used

[(A ⊠ D) : B]abcd = Aa f DbgB f gcd and [B : (A ⊠ D)T ]abcd = Bab f g Ac f Ddg, (B.14)

which were obtained using Eq. (B.13) and the following product between two arbitrary fourth order tensors A and B
given by [A : B]abcd = Aab f gB f gcd [55].
(ii) Second integral in Eq. (B.5)

We now concentrate on the second integrand in Eq. (B.5). Our goal is to obtain the fourth-order tangent modulus
tensor Cst due to structural stresses and express ∆Sst : δE in a form similar to Eq. (B.12). Analogous to the elasticity
theory, we call the tensor Cst the fourth-order spatial structural tensor. The following linearizations will be used (see
Chapter 8 of [56]):

∆J = J∇ · ∆u = J tr (∆ε); ∆F−1
= −F−1

· ∇∆u. (B.15)

Using Eq. (B.15)2, one can easily prove the following identities

∆(∇ηk) = ∆(F−T
· ∇0ηk) = ∆F−T

· ∇0ηk = −(∇∆u)T
· F−T

· ∇0ηk = −(∇∆u)T
· ∇ηk, and (B.16)

∆(|∇ηk |
2) = ∆(|F−T

· ∇0ηk |
2) = −2∇ηk · ((∇∆u)T

· F−T
· ∇0ηk) = −2∇ηk · ((∇∆u)T

· ∇ηk), (B.17)

where we have used the fact that ∇0ηk is independent of u, i.e. ∆(∇0ηk) = 0. Taking an incremental derivative of
Sst = JF−1

· σ st · F−T and using Eqs. (B.15) to (B.17) we derive

∆Sst = (∆J )F−1
· σ st · F−T

+ J∆F−1
· σ st · F−T

+ JF−1
· σ st · ∆F−T

+ JF−1
· ∆σ st · F−T

= JF−1
·
[
tr (∆ε) σ st − (∇∆u) · σ st − σ st · (∇∆u)T

+ ∆σ st
]
· F−T . (B.18)

The inner product between the expressions for ∆Sst given by Eqs. (B.18)2 and δE (see Section 3.1) yields

∆Sst : δE = ∆Sst : FT
· δε · F = F · ∆Sst · FT

: δε = J [tr (∆ε)σ st − 2∇∆u · σ st + ∆σ st ] : δε, (B.19)
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where an amenable form of ∆σ st is yet to be determined. To this end, we take the increment of Eq. (2.18) to obtain

∆σ st = ρ0∆ψ
∇I − ∆

[
β0M∇η0 ⊗ ∇η0

+ ϕ̃

N−1∑
i=1

N∑
j=i+1

βi j

4

{
∇ηi ⊗ ∇ηi + ∇η j ⊗ ∇η j − 2 sym(∇ηi ⊗ ∇η j )

}⎤⎦ , (B.20)

where it should be noted that ∆ψ̆θ
= 0, as it is independent of u (see Eq. (2.10)). Note that ρ0∆ψ

∇ appearing
in Eq. (B.20) is expressed using Eqs. (2.13), (B.15)2 to (B.17), and the expression for ∆ε (see the paragraph after
Eq. (B.11)) as

ρ0∆ψ
∇

= −β0M (∇∆u)T
: ∇η0 ⊗ ∇η0 −

ϕ̃

4

N−1∑
i=1

N∑
j=i+1

βi j [∇ηi · ((∇∆u)T
· ∇ηi ) + ∇η j · ((∇∆u)T

· ∇η j ) −

∇ηi · (∇∆u + (∇∆u)T ) · ∇η j ]

= −β0M∆ε : ∇η0 ⊗ ∇η0 −
ϕ̃

4

N−1∑
i=1

N∑
j=i+1

βi j∆ε :[
∇ηi ⊗ ∇ηi + ∇η j ⊗ ∇η j − 2sym(∇η j ⊗ ∇ηi )

]
, (B.21)

where we have used the following identity between an arbitrary second-order tensor A and a second-order symmetric
tensor D [55], A : D = sym(A) : D. The other terms on the right-hand side of Eq. (B.20) can be rewritten using
Eqs. (B.15)2 as

−∆

⎡⎣β0M∇η0 ⊗ ∇η0 +
ϕ̃

4

N−1∑
i=1

N∑
j=i+1

βi j
(
∇ηi ⊗ ∇ηi + ∇η j ⊗ ∇η j − ∇ηi ⊗ ∇η j − ∇η j ⊗ ∇ηi

)⎤⎦
= β0M [∇η0 ⊗ (∇∆u)T

· ∇η0 + (∇∆u)T
· ∇η0 ⊗ ∇η0] +

ϕ̃

4

N−1∑
i=1

N∑
j=i+1

βi j [(∇∆u)T
· ∇ηi ⊗ ∇ηi +

∇ηi ⊗ (∇∆u)T
· ∇ηi + (∇∆u)T

· ∇η j ⊗ ∇η j + ∇η j ⊗ (∇∆u)T
· ∇η j − (∇∆u)T

· ∇ηi ⊗ ∇η j −

∇ηi ⊗ (∇∆u)T
· ∇η j − (∇∆u)T

· ∇η j ⊗ ∇ηi − ∇η j ⊗ (∇∆u)T
· ∇ηi ]. (B.22)

Using Eqs. (B.21) and (B.22) in Eq. (B.20), we calculate the following inner product, which is the last term in
Eq. (B.19)

∆σ st : δε = −∆ε :

[
β0M∇η0 ⊗ ∇η0

+
ϕ̃

4

N−1∑
i=1

N∑
j=i+1

βi j {∇ηi ⊗ ∇ηi + ∇η j ⊗ ∇η j − 2sym(∇ηi ⊗ ∇η j )}

⎤⎦×

tr (δε) + 2(∇∆u)T
·

[
β0M∇η0 ⊗ ∇η0

+
ϕ̃

4

N−1∑
i=1

N∑
j=i+1

βi j {∇ηi ⊗ ∇ηi + ∇η j ⊗ ∇η j − 2sym(∇ηi ⊗ ∇η j )}

⎤⎦ : δε

=

[
σ st : ∆ε − ρ0(ψ̆θ

+ ψ∇) tr (∆ε)
]

tr (δε) − 2(∇∆u)T
·

[
σ st − ρ0(ψ̆θ

+ ψ∇)I
]

: δε, (B.23)

where Eq. (B.23)2 has been obtained from Eq. (B.23)1 by eliminating the gradient of the order parameters using
Eq. (2.18). Using Eq. (B.23) in Eq. (B.19) and then rearranging the terms we have the following expression for the
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integrand

∆Sst : δE = J [tr (∆ε)σ st − 4∆ε · σ st + Jρ0(ψ̆θ
+ ψ∇)(2∆ε − tr (∆ε)I) + (∆ε : σ st )I] : δε, (B.24)

where we have used the relation between ∆E and ∆ε (see the text after Eq. (B.11)). We will use the ‘square
product’ between two arbitrary second-order tensors A and D given by Eq. (B.13) and the following dyadic product
given by (see e.g. Chapter 1 of [55]): (A ⊗ D)abcd = Aab Dcd . We will also use the fourth-order symmetrizer
(see e.g. Chapter 1 of [55]) Sabcd = 0.5(δacδbd + δadδbc), and the following identities [(A ⊠ D) : S]abcd =

0.5(Aac Dbd + Aad Dbc), and (A ⊗ D) : G = (D : GT )A, where G is an arbitrary second order tensor (see Chapter
1 of [55]). Considering the definition of the tensor dyadic product and the symmetrizer in Eq. (B.24) and rearranging
the terms, we finally express Eq. (B.24) as

∆Sst : δE = J [tr (∆ε)σ st − 4∆ε · σ st + Jρ0(ψ̆θ
+ ψ∇)(2∆ε − tr (∆ε)I) + (∆ε : σ st )I] : δε

= tr (∆ε)τ st : δε − 2δε : [(τ st ⊠ I + I ⊠ τ st ) : S] : ∆ε

+ ρ0 J (ψ̆θ
+ ψ∇) δε : (2S − I ⊗ I) : ∆ε + tr (δε)τ st : ∆ε

= δε : JCst : ∆ε, (B.25)

where τ st = Jσ st is the Kirchhoff structural stress tensor, and the structural tensor JCst has the form given by
Eq. (3.5)2.
(iii) Third integrand in Eq. (B.5)

The third integrand of Eq. (B.5) can be expressed as (see [57] for the proof)

S : ∆(δE) = ∇∆u · τ : ∇δuT , (B.26)

which contributes to the total tangent stiffness matrix, called the geometric stiffness [57,58].
Substituting Eqs. (B.12), (B.25)3, and (B.26) into the respective three integrands of Eq. (B.5), we obtain the final

expression for the linearization of the weak form given by Eq. (3.3).

B.2. Weak form and its linearization for Ginzburg–Landau equations

In Section 3.2 we have given the final expressions for the weak forms for N independent Ginzburg–Landau
equations given by Eq. (A.1). The derivation yields nontrivial expressions; hence, the details are discussed in this
appendix.

Discretizing Eq. (A.1)1 by using Eq. (3.8), the finite difference form of the equation is obtained as

c1η
n
0 − ∆tn L0M∇0 · (JβM0Fn−1

· ∇ηn
0 ) + ∆tn f n

0 + c2η
n−1
0 + c3η

n−2
0 = 0, where (B.27)

f n
0 = L0M

[
−

(
Pn

e
T

· Fn
− J̄ n

t ψ
n
e I
)

: W0 + J̄ n
t
∂ψe

∂η0

⏐⏐⏐⏐
Fe

+ ρ0(6ηn
0 − 6ηn

0
2)∆ψθ

+ J nρ0 Ã

⎛⎝N−2∑
i=1

N−1∑
j=i+1

ηn
i

2
ηn

j
2
+

ηn
N

2
N−1∑
i=1

ηn
i

2

)
∂ϕ(ab, η

n
0 )

∂η0
+ J nρ0[A0M (θ ) + (aθ − 3)∆ψθ (θ )](2ηn

0 − 6ηn
0

2
+ 4ηn

0
3)

+
J n

8
∂ϕ̃(aβ, ac, η

n
0 )

∂η0
×⎛⎝N−2∑

i=1

N−1∑
j=i+1

βi j |∇η
n
i − ∇ηn

j |
2
+

N−1∑
i=1

βi N
⏐⏐∇ηn

i − ∇ηn
N

⏐⏐2⎞⎠
+ ρ0

⎛⎝N−2∑
i=1

N−1∑
j=i+1

K0i jη
n
i

2
ηn

j
2
+

N−1∑
i=1

K0i Nη
n
i

2
ηn

N
2
+
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N−3∑
i=1

N−2∑
j=i+1

N−1∑
k= j+1

K0i jkη
n
i

2
ηn

j
2
ηn

k
2
+

N−2∑
i=1

N−1∑
j=i+1

K0i j Nη
n
i

2
ηn

j
2
ηn

N
2

⎞⎠
×

(
2(1 − ϕ(aK , η

n
0 ))ηn

0 −
∂ϕ(aK , η

n
0 )

∂η0
ηn

0
2
)]

, (B.28)

and Wn
k = Fn

t
−1

·
∂Fn

t
∂ηn

k
for all k = 0, 1, . . . , N .

We will now discretize the other N − 1 independent Ginzburg–Landau equations related to the variants from
Eq. (A.1)2. To this end, we define

X im := X i − Xm = X
loc
im + X

∇

im for i,m = 1, 2, . . . , N , (B.29)

where X i was defined in Eqs. (A.3) when i ̸= N and in Eq. (A.4) when i = N . X
loc
im consists of the local terms

(independent of the gradient/Laplacian terms) which do not contribute to the Laplace matrix of the final algebraic FE
equation, and X

∇

im is the nonlocal term (depending on the gradient/Laplacian terms) which contributes to the Laplace
matrix (see Appendix B.2). The explicit forms of X

loc
im and X

∇

im are obtained by using Eq. (A.3) in Eq. (B.29) as

X
loc
im = (Pn

e
T

· Fn
− J̄ n

t ψ
n
e I) : (Wn

i − Wn
m) − J̄ n

t

(
∂ψe

∂ηi

⏐⏐⏐⏐
Fe

−
∂ψn

e

∂ηm

⏐⏐⏐⏐
Fe

)
− 2J nρ0 Ã

⎛⎝ N−1∑
j=1,̸=i

ηn
j
2
ηn

i + ηn
N

2
ηn

i −

N−1∑
j=1,̸=m,i

ηn
j
2
ηn

m − ηn
i

2
ηn

m − ηn
N

2
ηn

m

⎞⎠ϕ(ab, η
n
0 ) − 2ρ0

⎡⎣ N−1∑
j=1,̸=i

Ki j (ηn
i + ηn

j − 1)(2ηn
i + ηn

j − 1)ηn
i η

n
j
2
−

N−1∑
j=1,̸=m,i

Kmj (ηn
m + ηn

j − 1)(2ηn
m + ηn

j − 1)ηn
mη

n
j
2

− Kmi (ηn
m + ηn

i − 1)(2ηn
m + ηn

i − 1)ηn
mη

n
i

2

⎤⎦− 2ρ0[Ki N ×

(ηn
i + ηn

N − 1)(2ηn
i + ηn

N − 1)ηn
i − Km N (ηn

m + ηn
N − 1)(2ηn

m + ηn
N − 1)ηn

m]ηn
N

2

− 2ρ0

⎡⎣ N−1∑
j=1,̸=i

K0i jη
n
i η

n
j
2
−

N−1∑
j=1,̸=i

K0mjη
n
mη

n
j
2
− K0miη

n
mη

n
i

2
+ (K0i Nη

n
i − K0m Nη

n
m)ηn

N
2

+

N−2∑
j=1,̸=i

N−1∑
k= j+1,̸=i

(K0i jkη
n
i − K0mjkη

n
m)ηn

j
2
×

ηn
k

2
−

N−1∑
j=1

K0mi jη
n
mη

n
j
2
ηn

i
2
+

N−1∑
j=1,̸=i

(K0i j Nη
n
i − K0mj Nη

n
m)ηn

j
2
ηn

N
2
− K0mi Nη

n
mη

n
i

2
ηn

N
2

⎤⎦ ηn
0

2
×

(1 − ϕ(aK , η
n
0 )) − 2ρ0

⎡⎣ N−2∑
j=1,̸=i

N−1∑
k= j+1,̸=i

(Ki jkη
n
i − Kmjkη

n
m)ηn

j
2
ηn

k
2
−

N−1∑
j=1

Kmi jη
n
mη

n
i

2
ηn

j
2

+

N−1∑
j=1,̸=i

(Ki j Nη
n
i −

Kmj Nη
n
m)ηn

N
2
ηn

j
2
− Kmi Nη

n
mη

n
N

2
ηn

i
2

⎤⎦− 2ρ0

⎡⎣ N−3∑
j=1,̸=i

N−2∑
k= j+1,̸=i

N−1∑
l=k+1,̸=i

(Ki jklη
n
i − Kmjklη

n
m)ηn

j
2
ηn

k
2
ηn

l
2
−
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N−2∑
k=1

N−1∑
l=k+1

Kmiklη
n
mη

n
i

2
ηn

k
2
ηn

l
2
+

N−2∑
j=1,̸=i

N−1∑
k= j+1,̸=i

(Ki jk Nη
n
i − Kmjk Nη

n
m)ηn

j
2
ηn

k
2
ηn

N
2
−

N−1∑
k=1

Kmik Nη
n
mη

n
i

2
×

ηn
k

2
ηn

N
2

⎤⎦ for all i,m = 1, 2, . . . , N ; (B.30)

X̄∇

im = ∇0 ·

⎡⎣ ϕ̃
4

J nFn−1
·

⎧⎨⎩
N−1∑

j=1,̸=i

βi j (∇ηn
i − ∇ηn

j ) −

N−1∑
j=1,̸=m

βmj (∇ηn
m − ∇ηn

j )

+βi N

⎛⎝2∇ηn
i +

N−1∑
j=1,̸=i

∇ηn
j

⎞⎠−

βm N

⎛⎝∇ηn
m + ∇ηn

i +

N−1∑
j=1,̸=i

∇ηn
j

⎞⎠⎫⎬⎭
⎤⎦ for all i,m = 1, 2, . . . , N . (B.31)

Furthermore, because we consider a non-monolithic scheme to solve all the Ginzburg–Landau equations, the
Laplacian of ηi should eventually be the only contributor to the Laplace matrix corresponding to the algebraic FE
equation for ηi . Thus, we further decouple the nonlocal term X̄∇

im(∇ηn
k ,∇

2ηn
k ) (for all k = 0, 1, . . . , i − 1, i, i +

1, . . . , N − 1) into X̄∇(2)
im (∇ηn

i ,∇
2ηn

i ) and X̄∇(1)
im (∇ηn

k ,∇
2ηn

k ) (for all k = 0, 1, . . . , i − 1, i + 1, . . . , N − 1):

X̄∇

im = X̄∇(1)
im + X̄∇(2)

im for all i,m = 1, 2, . . . , N , where (B.32)

X̄∇(1)
im = ∇0 ·

⎡⎣ ϕ̃
4

J nFn−1
·

⎛⎝βi N

N−1∑
j=1,̸=i

∇ηn
j −

N−1∑
j=1,̸=i

βi j∇η
n
j −

N−1∑
j=1,̸=m

βmj∇η
n
m +

N−1∑
j=1,̸=m,i

βmj∇η
n
j −

βm N ∇ηn
m − βm N

N−1∑
j=1,̸=i

∇ηn
j

⎞⎠⎤⎦ , when i,m = 1, . . . , N − 1 and (B.33)

X̄∇(2)
im = ∇0 ·

[
ϕ̃

4
J nβ̄imFn−1

· ∇ηn
i

]
with β̄im =

N−1∑
j=1,̸=i

βi j + βmi + 2βi N − βm N

when i,m = 1, . . . , N − 1. (B.34)

The decoupling in Eq. (B.32) allows us to express the weak form in a convenient form (see Appendix B.2). Obviously,
when m = N , Eqs. (B.30) and (B.31) reduce to

X̄ loc
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· Fn
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⎤⎦ for all i = 1, 2, . . . , N , and (B.35)
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respectively, and Eqs. (B.33) and (B.34) reduce to
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X̄∇(2)
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]
, where β̄i N =
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(βi j + βN j ) + 4βi N . (B.38)

By using Eqs. (B.29) through (B.38) in the Ginzburg–Landau equation (A.1)2 and discretizing it by using Eq. (3.8),
we rewrite it as

c1η
n
i − ∆tn
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f n
i (ηn
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k ,∇

2ηn
k ) = −
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L im

(
X̄ loc

im + X̄∇(1)
im

)
for all j = 0, 1, . . . , N − 1;

k = 0, 1, . . . , i − 1, i + 1, . . . , N − 1. (B.40)

By multiplying Eqs. (B.27) and (B.39) by the weighted function for the order parameter δηn
k and then integrating

them over the entire domain and applying the Gauss divergence theorem, we have the weak forms corresponding to
N independent Ginzburg–Landau equations given by Eq. (3.9) in Section 3.2. The linearization of the weak form is
obtained in Eq. (3.11), where the derivatives ∂ f n

k /∂η
n
k

⏐⏐
F for k = 0, 1, . . . , N are calculated using Eqs. (B.28) and

(B.40):
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The expressions for ∂X loc
i N

∂ηi
can be obtained in a similar manner using Eq. (B.35). The meaning of the overline is

described in Section 2. The explicit forms of some of the terms in Eq. (B.43) are
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∂Ĉ
n
e

∂ηn
i

⏐⏐⏐⏐⏐⏐
F

: En
e + En

e : Ĉ
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e

∂ηn
i

⏐⏐⏐⏐⏐
Fe

⎞⎠
F

: En
e + En

e :
∂Ĉn
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While deriving Eq. (B.44), we have differentiated Pn
e = Jt

nFn
· Ft

n−1
· Ŝn

e · Ft
n−T

(obtained using P = F · S and
P = Jσ · F−T [57]) with respect to ηn

k , and for Eq. (B.46)1 we have differentiated Eq. (2.3)2 and used Eq. (2.2).
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Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cma.2018.08.006.
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[26] K. Tůma, S. Stupkiewicz, H. Petryk, Size effects in martensitic microstructures: Finite-strain phase field model versus sharp-interface

approach, J. Mech. Phys. Solids 95 (2016) 284–307.
[27] J.D. Clayton, J. Knap, A phase field model of deformation twinning: Nonlinear theory and numerical simulations, Physica D 240 (2011)

841–858.
[28] J.D. Clayton, J. Knap, Phase field modeling of twinning in indentation of transparent crystals, Model. Simul. Mater. Sci. Eng. 19 (2011)

085005.
[29] V.I. Levitas, Phase field approach to martensitic phase transformations with large strains and interface stresses, J. Mech. Phys. Solids 70

(2014) 154–189.
[30] V.I. Levitas, D.L. Preston, Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. Austenite

↔ Martensite, Phys. Rev. B 66 (2002) 134206.

https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
https://doi.org/10.1016/j.cma.2018.08.006
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb1
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb2
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb2
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb2
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb3
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb4
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb5
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb5
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb5
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb6
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb7
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb7
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb7
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb8
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb8
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb8
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb9
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb9
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb9
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb10
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb10
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb10
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb11
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb11
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb11
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb12
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb13
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb14
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb14
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb14
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb15
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb15
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb15
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb16
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb16
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb16
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb17
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb17
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb17
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb18
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb18
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb18
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb19
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb19
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb19
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb20
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb20
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb20
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb21
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb21
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb21
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb22
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb23
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb23
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb23
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb24
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb24
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb24
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb25
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb25
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb25
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb26
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb26
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb26
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb27
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb27
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb27
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb28
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb28
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb28
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb29
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb29
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb29
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb30
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb30
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb30


A. Basak, V.I. Levitas / Comput. Methods Appl. Mech. Engrg. 343 (2019) 368–406 405

[31] V.I. Levitas, Phase-field theory for martensitic phase transformations at large strains, Int. J. Plast. 49 (2013) 85–118.
[32] A. Artemev, Y. Wang, A.G. Khachaturyan, Three-dimensional phase field model and simulation of martensitic transformation in multilayer

systems under applied stresses, Acta Mater. 48 (2000) 2503–2518.
[33] A. Artemev, Y. Jin, A.G. Khachaturyan, Three-dimensional phase field model of proper martensitic transformation, Acta Mater. 49 (2001)

1165–1177.
[34] D.J. Seol, S.Y. Hu, Y.L. Li, L.Q. Chen, K.H. Oh, Computer simulation of martensitic transformation in constrained films, Mater. Sci. Forum

408–412 (2002) 1645–1650.
[35] H.M. Paranjape, S. Manchiraju, P.M. Anderson, A phase field-Finite element approach to model the interaction between phase transformations

and plasticity in shape memory alloys, Int. J. Plast. 80 (2016) 1–18.
[36] V.I. Levitas, M. Javanbakht, Interaction between phase transformations and dislocations at the nanoscale.Part 1. General phase field approach,

J. Mech. Phys. Solids 82 (2015) 287–319.
[37] J. Kundin, D. Raabe, H. Emmerich, A phase-field model for incoherent martensitic transformations including plastic accommodation

processes in the austenite, J. Mech. Phys. Solids 59 (2011) 2082–2102.
[38] K. Bhattacharya, Microstructure of Martensite: Why It Forms and how It Gives Rise To the Shape-Memory Effect, Oxford University Press,

Oxford, 2004.
[39] M. Pitteri, G. Zanzotto, Continuum Models for Phase Transitions and Twinning in Crystals, Chapman & Hall/CRC, Boca Raton, 2003.
[40] T. Waitz, K. Tsuchiya, T. Antretter, F.D. Fischer, Phase transformations of nanocrystalline martensitic materials, MRS Bull. 34 (2009) 814–

821.
[41] M.E. Gurtin, A. Murdoch, A continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal. 57 (1975) 291–323.
[42] J. Diao, K. Gall, M.L. Dunn, Surface-stress-induced phase transformation in metal nanowires, Nature Mater. 2 (2003) 656–660.
[43] S. Li, X. Ding, J. Li, X. Ren, J. Sun, E. Ma, T. Lookman, Inverse martensitic transformation in Zr nanowires, Phys. Rev. B 81 (2010) 245433.
[44] V.I. Levitas, M. Javanbakht, Surface tension and energy in multivariant martensitic transformations: Phase-field theory,simulations, and model

of coherent interface, Phys. Rev. Lett. 105 (2010) 165701.
[45] A. Basak, V.I. Levitas, Nanoscale multiphase phase field approach for stress- and temperature-induced martensitic phase transformations with

interfacial stresses at finite strains, J. Mech. Phys. Solids 113 (2018) 162–196.
[46] A.V. Idesman, V.I. Levitas, D.L. Preston, J.Y. Cho, Finite element simulations of martensitic phase transitions and microstructure based on

strain softening model, J. Mech. Phys. Solids 53 (2005) 495–523.
[47] N. Moelans, F. Wendler, B. Nestler, Comparative study of two phase-field models for grain growth, Comput. Mater. Sci. 46 (2009) 479–490.
[48] A. Vidyasagar, W.L. Tan, D.M. Kochmann, Predicting the effective response of bulk polycrystalline ferroelectric ceramics via improved

spectral phase field methods, J. Mech. Phys. Solids 106 (2017) 133–151.
[49] J.Y. Cho, A.V. Idesman, V.I. Levitas, T. Park, Finite element simulations of dynamics of multivariant martensitic phase transitions based on

Ginzburg-Landau theory, Int. J. Solids Struct. 49 (2012) 1973–1992.
[50] V.A. Levin, V.I. Levitas, K.M. Zingerman, E.I. Freiman, Phase-field simulation of stress-induced martensitic phase transformations at large

strains, Int. J. Solids Struct. 50 (2013) 2914–2928.
[51] V.I. Levitas, V.A. Levin, K.M. Zingerman, E.I. Freiman, Displacive phase transitions at large strains: Phase-field theory and simulations, Phys.

Rev. Lett. 103 (2009) 025702.
[52] H. She, Y. Liu, B. Wang, D. Ma, Finite element simulation of phase field model for nanoscale martensitic transformation, Comput. Mech. 52

(2013) 949–958.
[53] A. Basak, V.I. Levitas, Interfacial stresses within boundary between martensitic variants: analytical and numerical finite strain solutions for

three phase field models, Acta Mater. 139 (2017) 174–187.
[54] C.S. Jog, The explicit determination of the logarithm of a tensor and its derivatives, J. Elasticity 93 (2008) 141–148.
[55] C.S. Jog, Foundations and Applications of Mechanics. Volume I: Continuum Mechanics, Narosa, New Delhi, 2007.
[56] G.A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering, John Wiley & Sons Ltd, Sussex, 2000.
[57] P. Wriggers, Nonlinear Finite Element Methods, Springer-Verlag, Heidelberg, 2008.
[58] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method: Volume 2- Solid Mechanics, Butterworth-Heinemann, Woburn, 2000.
[59] J. Bonet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press, Cambridge, 2008.
[60] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method: Volume 1- the Basis, Butterworth-Heinemann, Woburn, 2000.
[61] W. Hundsdorfer, J. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer, Heidelberg, 2003.
[62] P. Neff, Local existence and uniqueness for quasistatic finite plasticity with grain boundary relaxation, Quart. Appl. Math. LXIII (2005)

88–116.
[63] A. Raoult, Non-polyconvexity of the stored energy function of a Saint Venant-Kirchhoff material, Apl. Mat. 31 (1986) 417–419.
[64] D.M. Kochmann, K. Hackl, The evolution of laminates in finite crystal plasticity: a variational approach, Contin. Mech. Thermodyn. 23 (2011)

63–85.
[65] A. Vidyasagar, A.D. Tutcuoglu, D.M. Kochmann, The evolution of laminates in finite crystal plasticity: a variational approach, Comput.

Methods Appl. Mech. Engrg. 335 (2018) 584–609.
[66] P.C. Clapp, C.S. Besquart, Y. Shao, Y. Zhao, J.A. Rifkin, Transformation toughening explored via molecular dynamics and Monte Carlo

simulations, Modell. Simul. Mater. Sci. Eng. 2 (1994) 551.
[67] V.I. Levitas, D.L. Preston, Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. II. Multivariant

phase transformations and stress-space analysis, Phys. Rev. B 66 (2002) 134207.
[68] F.D. Fischer, J. Svoboda, K. Hackl, Modelling the kinetics of a triple junction, Acta Mater. 60 (2012) 4704–4711.

http://refhub.elsevier.com/S0045-7825(18)30392-X/sb31
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb32
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb32
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb32
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb33
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb33
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb33
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb34
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb34
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb34
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb35
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb35
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb35
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb36
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb36
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb36
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb37
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb37
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb37
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb38
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb38
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb38
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb39
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb40
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb40
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb40
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb41
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb42
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb43
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb44
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb44
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb44
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb45
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb45
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb45
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb46
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb46
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb46
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb47
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb48
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb48
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb48
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb49
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb49
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb49
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb50
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb50
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb50
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb51
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb51
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb51
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb52
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb52
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb52
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb53
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb53
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb53
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb54
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb55
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb56
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb57
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb58
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb59
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb60
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb61
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb62
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb62
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb62
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb63
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb64
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb64
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb64
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb65
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb65
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb65
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb66
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb66
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb66
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb67
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb67
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb67
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb68


406 A. Basak, V.I. Levitas / Comput. Methods Appl. Mech. Engrg. 343 (2019) 368–406

[69] W. Bangerth, D. Davydov, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, D. Wells, The deal.II library, version
8.4, J. Numer. Math. 24 (2016).

[70] A. Basak, V.I. Levitas, Supplementary material for Finite element procedure and simulations for a multiphase phase field approach to
martensitic phase transformations at large strains and with interfacial stresses.

[71] J.M. Ball, R.D. James, Fine phase mixtures as minimizers of energy, Arch. Ration. Mech. Anal. 100 (1987) 13–52.
[72] M. Giaquinta, S. Hildebrandt, Calculus of Variations I, Springer, Heidelberg, 2004.
[73] V.I. Levitas, Phase field approach for stress- and temperature-induced phase transformations that satisfies lattice instability conditions. Part 1.

General theory, Int. J. Plast. 106 (2018) 164–185.

http://refhub.elsevier.com/S0045-7825(18)30392-X/sb69
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb69
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb69
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb71
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb72
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb73
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb73
http://refhub.elsevier.com/S0045-7825(18)30392-X/sb73

	Finite element procedure and simulations for a multiphase phase field approach to martensitic phase transformations at large strains and with interfacial stresses
	Introduction
	System of coupled mechanics and phase field equations
	Kinematics
	Free energy
	Mechanical equilibrium equations and stresses
	Ginzburg–Landau equations
	Boundary conditions

	Weak forms of the governing equations and their linearizations 
	Equilibrium equations: weak form and linearization
	Ginzburg–Landau equations: time discretization, weak form, and linearization 

	Finite element implementation
	Discretization of the equilibrium equation
	Discretization of the phase field equations
	Computational algorithm

	Material parameters identification
	Numerical examples
	Simple shear in a rectangular parallelepiped with A and single variant M1
	Analytical solutions for simple shear in a rectangular parallelepiped
	Numerical results for simple shear in a parallelepiped

	Twinning in martensite
	Crystallographic theory for twinning
	Computational details and results for twinning

	Indentation problem

	Concluding remarks
	Acknowledgments
	N independent Ginzburg–Landau equations
	Derivation of the weak forms of the governing equations and their linearizations
	Derivation of the weak form of equilibrium equations and linearization 
	Weak form and its linearization for Ginzburg–Landau equations

	Supplementary data
	References


