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Pressure alters the physical, chemical, and electronic properties of matter. The diamond anvil cell
enables tabletop experiments to investigate a diverse landscape of high-pressure phenomena. Here, we
introduce and use a nanoscale sensing platform that integrates nitrogen-vacancy (NV) color centers
directly into the culet of diamond anvils. We demonstrate the versatility of this platform by performing
diffraction-limited imaging of both stress fields and magnetism as a function of pressure and
temperature. We quantify all normal and shear stress components and demonstrate vector magnetic
field imaging, enabling measurement of the pressure-driven a↔ D phase transition in iron and the
complex pressure-temperature phase diagram of gadolinium. A complementary NV-sensing modality
using noise spectroscopy enables the characterization of phase transitions even in the absence of static
magnetic signatures.

I
nhybrid quantum-sensing devices, sensors
are directly integrated into existing tool-
sets ranging from biological imaging to
materials spectroscopy (1–4). Here, we
demonstrate the versatility of a platform

based on quantum spin defects combinedwith
static high-pressure technologies (5, 6). In par-
ticular, we instrument diamond anvil cells
(DACs) with a layer of nitrogen-vacancy (NV)
centers directly at the culet, enabling the pur-
suit of two complementary objectives in high-
pressure science: understanding the strength
and failure of materials under pressure (e.g.,
the brittle-ductile transition) and discovering
and characterizing exotic phases of matter
(e.g., pressure-stabilized high-temperature
superconductors) (7–11). Achieving these goals
hinges upon the sensitive in situ imaging of
signals within the high-pressure chamber.
For the first goal, measuring the local stress
environment permits the direct observation
of inhomogeneities in plastic flow and the
formation of line defects. For the second goal,
the ability to spatially resolve field distribu-
tions can provide a direct image of complex
order parameters and textured phenomena
such asmagnetic domains. However, the enor-
mous stress gradients generated near the
sample limit the utility of most conventional
tabletop spectroscopy techniques; as a result,

one is often restricted tomeasuring bulk prop-
erties averaged over the entire DAC geometry.
Our approach to these challenges is to use

an ensemble of NV centers [∼1 part per million
(ppm) density] implanted ∼50 nm from the
surface of the diamond anvil culet (Fig. 1, A
and B). Each NV center represents an atomic-
scale defect (i.e., a substitutional nitrogen
impurity adjacent to a vacancy) inside the
diamond lattice and exhibits an S ¼ 1 elec-
tronic spin ground state (12). In the absence
of external fields, the jms ¼ T1i spin sublevels
are degenerate and separated byDgs ¼ ð2pÞ�
2:87 GHz from the jms ¼ 0i state. Crucially,
both the nature and energy of these spin
states are sensitive to local changes in stress,
temperature, and magnetic and electric fields
(Fig. 1C) (13–19). These spin states can be
optically initialized and read out, as well as
coherently manipulated through microwave
fields. Their energy levels can be probed by
performing optically detected magnetic reso-
nance (ODMR) spectroscopy, which measures
a change in the NV’s fluorescence intensity
when an applied microwave field is on reso-
nance between twoNV spin sublevels (Fig. 1D),
thus enabling a variety of external signals to be
sensed over a wide range of environmental
conditions (1, 20, 21).
Here, we focus on the sensing of stress and

magnetic fields,wherein theNVisgovernedby the
Hamiltonian (18, 22),H ¼ H0 þHB þHS, with
H0 ¼ DgsS2z (zero-field splitting), HB ¼ gBB

→ � S→
(Zeeman splitting), andHS ¼ ½a1ðsxx þ syyÞþ
b1szz�S2z þ½a2ðsyy �sxxÞ þ b2ð2sxzÞ�ðS2y � S2xÞþ
½a2ð2sxyÞ þ b2ð2syzÞ�ðSxSy þ SySxÞ capturing
the NV’s response to the local diamond stress
tensor, s↔ (Fig. 1C). In the above, gB≈ð2pÞ�
2:8 MHz/G is the gyromagnetic ratio, fa1;2;
b1;2g are the stress susceptibility coefficients
(17–19, 23), ẑ is the NV orientation axis, and x̂ is
defined such that the xz plane contains one of

the carbon-vacancy bonds (Fig. 1E). In general,
the resultingODMR spectra exhibit eight reso-
nances arising from the four possible crystal-
lographic orientations of the NV (Fig. 1D). By
extracting the energy shifting and splitting of
the spin sublevels for eachNVorientationgroup,
one obtains an overconstrained set of equations
enabling the reconstruction of either the (six
component) local stress tensor or the (three
component) vector magnetic field (23).
In our experiments, we use aminiatureDAC

(Fig. 1, A and B) consisting of two opposing
anvils compressing either a beryllium copper
or rhenium gasket (24). The sample chamber
defined by the gasket anddiamond-anvil culets
is filled with a pressure-transmitting medium
(either a 16:3:1methanol/ethanol/water solution
or cesium iodide) to provide a quasi-hydrostatic
environment. Microwave excitation is applied
with a 4-mm-thick platinum foil compressed be-
tween the gasket and anvil pavilion facets (fig.
S1); scanning confocal microscopy (with a trans-
verse diffraction-limited spot size of ∼600 nm,
containing ∼103 NVs) allows us to obtain two-
dimensional ODMR maps across the culet.
We begin by probing the stress tensor across

the culet surface (up to P ¼ 48 GPa as shown
in fig. S7) using two different cuts of diamond
[i.e., (111)-cut and (110)-cut culet]. For a generic
stress environment, the intrinsic degeneracy
associated with the four NV orientations is not
sufficiently lifted, implying that individual reso-
nances cannot be resolved. To resolve these
resonances while preserving the stress contrib-
ution,we sequentially tuneaprecisely controlled
external magnetic field to be perpendicular to
each of the different NV orientations (23). For
each perpendicular field choice, three of the
four NV orientations exhibit a strong Zeeman
splitting proportional to the projection of the
external magnetic field along their symmetry
axes. Notably, this enables one to resolve the
stress information encoded in the remaining
NVorientation,whereas the other three groups
of NVs are spectroscopically split away. Using
this method, we obtain sufficient information
to extract the full stress tensor, as depicted in
Fig. 2. A number of intriguing features are
observed at the interface between the culet
and the sample chamber, which provide in-
sight into both elastic (reversible) and plastic
(irreversible) deformations.
At low pressures (P ¼ 4:9GPa), the normal

stress along the loading axis, sZZ , is spatially
uniform (Fig. 2A), whereas all shear stresses,
fsXY , sXZ , sYZg, are minimal (Fig. 2B). The
axes fX̂ ; Ŷ ; Ẑg correspond to the lab frame,
whereas fx̂; ŷ; ẑg correspond to the NV frame
(Fig. 1, A and E). These observations are in
agreement with conventional stress continuity
predictions for the interface between a solid and
an ideal fluid (25). Moreover, sZZ is consistent
with the independently measured pressure in-
side the sample chamber (by ruby fluorescence),
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demonstrating the NV’s potential as a built-in
pressure scale (26). In contrast to the uniform-
ity of sZZ , the field profile for the mean lateral
stress, s⊥≡ 1

2 ðsXX þ sYY Þ, exhibits a concentra-
tion of forces toward the center of the culet
(Fig. 2A). Using the measured sZZ as a bound-
ary condition, we perform finite-element sim-
ulations to reproduce this spatial pattern (23).
Upon increasing pressure (P ¼ 13:6 GPa),

a spatial gradient in sZZ emerges (Fig. 2B,
inset). This qualitatively distinct feature is con-
sistent with the solidification of the pressure-
transmitting medium into its glassy phase
above Pg ≈ 10:5 GPa (27). Crucially, this dem-
onstrates our ability to characterize the ef-
fective viscosity of solids and liquids under
pressure. To characterize the sensitivity of
our system, we perform ODMR spectroscopy
with a static applied magnetic field and pres-
sure under varying integration times and
extract the frequency uncertainty from a
Gaussian fit. We observe a stress sensitivity
of f0:023; 0:030; 0:027gGPa/ ffiffiffiffiffiffi

Hz
p

for hydro-
static, average normal, and average shear

stresses, respectively. This is consistent with
the theoretically derived stress sensitivity, hS ∼
Dn

xC
ffiffiffiffi

Nt
p ¼ f0:017; 0:022; 0:020gGPa/ ffiffiffiffiffiffi

Hz
p

, where

N is the number of NV centers, Dn is the line-
width, x is the relevant stress susceptibility, t is
the integration time, andC is an overall factor
accounting for measurement infidelity (23).
In combination with diffraction-limited imag-
ing resolution, this sensitivity makes it possi-
ble to measure and ultimately control the full
stress tensor distribution across a sample.
Having characterized the stress environment,

we use the NV centers as an in situ magneto-
meter to detect phase transitions inside the high-
pressure chamber. Analogous to the case of
stress, we observe a magnetic sensitivity of
12 mT/

ffiffiffiffiffiffi

Hz
p

, in agreementwith the theoretically

estimated value, hB ∼ dn
CgBB

ffiffiffiffi

Nt
p ¼ 8:8 mT/

ffiffiffiffiffiffi

Hz
p

.

Assuming a point dipole located a distance
d ∼ 5 mm from the NV layer, this corresponds
to an experimentally measured magnetic mo-
ment sensitivity: 7.5 × 10−12 emu/

ffiffiffiffiffiffi

Hz
p

(Fig. 1F).

After determining the sensitivity, we begin
by directly measuring the magnetization of
iron as it undergoes the pressure-driven a↔ D
phase transition from body-centered cubic
(bcc) to hexagonal close-packed (hcp) crystal
structures (28); crucially, this structural phase
transition is accompanied by the depletion of
the magnetic moment, and it is this change
in the iron’s magnetic behavior that we image.
The sample chamber is loaded with a ∼10-mm
polycrystalline iron pellet as well as a ruby
microsphere (pressure scale), and we apply
an external magnetic field Bext∼180 G. As be-
fore, by performing a confocal scan across the
culet, we acquire a two-dimensional magnetic
resonancemap (Fig. 3). At lowpressures (Fig. 3A),
near the iron pellet, we observe substantial
shifts in the eight NV resonances, owing to
the presence of a ferromagnetic field from
the iron pellet. As one increases pressure
(Fig. 3B), these shifts begin to diminish, sig-
naling a reduction in the magnetic suscepti-
bility. Finally, at the highest pressures (P ∼
22 GPa, Fig. 3C), the magnetic field from the
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Fig. 1. NV centers integrated into a diamond anvil cell. (A) Schematic of the
DAC geometry. Two opposing anvils are compressed by a nonmagnetic steel
cell and cubic boron nitride backing plates (gray). NV centers are initialized and
read out using a 532-nm laser focused to a diffraction-limited spot (∼600 nm),
which is scanned across the culet surface. (B) The DAC sample chamber is
defined by the gasket-anvil assembly (diagram not to scale); it is loaded with
the sample of interest, a pressure-transmitting medium, and a single ruby
microsphere (pressure calibration). A ~50-nm layer of NV centers is embedded
into the diamond anvil directly below the sample chamber. (C) Top: Stress
both shifts and splits the ms ¼ T1 sublevels at first order; in particular, the
shifting is characterized by Pz ¼ a1ðsxx þ syyÞ þ b1szz, and the splitting
is characterized by P2

⊥ ¼ ½a2ðsyy � sxxÞ þ b2ð2sxzÞ�2 þ ½a2ð2sxyÞ þ b2ð2syzÞ�2.
Bottom: An axial magnetic field splits the ms ¼ T1 sublevels at first order,
but a transverse magnetic field leads to shifts only at second order. (D) A
representative ODMR spectrum from an NV center ensemble under an applied
magnetic field. (E) Each pair of resonances in (D) corresponds to one of the

four NV crystallographic orientations. (F) Comparison of high-pressure
magnetometry techniques. We define the spatial resolution as a characteristic
sensor length scale over which the sample magnetism is integrated. Estimates
for our current work are shown assuming a sample suspended in a pressure
medium 5 mm away from the culet (black open circle). We project that by
exfoliating a sample directly onto the culet surface and using 5-nm implanted
NV centers, the distance from the sample can be substantially reduced, thus
improving both dipole precision and spatial resolution (open red circles). Inductive
methods [pickup coils (green diamonds) and superconducting quantum interfer-
ence devices (SQUIDs) (blue squares)] integrate the magnetization of a sample
over the coil’s area (23); to this end, the diameter associated with the coil is taken
as the “spatial resolution” although in principle, the sample inside the chamber can
be substantially smaller. By contrast, high-energy photon scattering techniques
[x-ray magnetic circular dichroism (orange hexagons), and Mössbauer spectros-
copy (pink triangles)] probe atomic-scale magnetism (23); the length scale for
these methods is shown here as the spot size of the excitation beam.
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pellet has decreased by more than two orders
of magnitude.
To quantify this phase transition, we recon-

struct the full vector magnetic field produced
by the iron sample from the aforementioned
two-dimensional NVmagnetic resonancemaps
(Fig. 3, D to F). We then compare this informa-
tion with the expected field distribution at the
NV layer inside the culet, assuming the iron
pellet generates a dipole field (23). This en-
ables us to extract an effective dipole moment
as a function of applied pressure (Fig. 3G). To
identify the critical pressure, we fit the transi-
tion using a logistic function (23). This proce-
dure yields the transition atP ¼ 16:7 T 0:7 GPa
(Fig. 3J).
In addition to changes in the magnetic

behavior, another key signature of this first-
order transition is the presence of hysteresis.
We investigate this by slowly decompressing
the diamond anvil cell and monitoring the
dipole moment; the decompression transition
occurs at P ¼ 10:5 T 0:7 GPa (Fig. 3J), suggest-
ing a hysteresis width of ∼6 GPa, consistent
with a combination of intrinsic hysteresis and
finite shear stresses in the methanol/ethanol/
water pressure-transmitting medium (28).
Taking the average of the forward and back-
ward hysteresis pressures, we find a critical
pressure of Pc ¼ 13:6 T 3:6 GPa, in excellent
agreement with independent measurements
byMössbauer spectroscopy, wherePc ≈ 12 GPa
(Fig. 3J) (28).
Next, we demonstrate the integration of our

platform into a cryogenic system, enabling us

to make spatially resolved in situ measure-
ments across the pressure-temperature (P-T )
phase diagram of materials. Specifically, we
investigate the magnetic P-T phase diagram
of the rare-earth element gadolinium (Gd)
up to pressures P ≈ 8GPa and between tem-
peratures T = 25 to 340 K. Owing to an in-
terplay between localized 4f electrons and
mobile conduction electrons, Gd represents
an interesting playground for studying me-
tallic magnetism; in particular, the itinerant
electrons mediate RKKY-type interactions
between the local moments, which in turn
induce spin-polarization of the itinerant
electrons (29). Moreover, much like its rare-
earth cousins, Gd exhibits a series of pressure-
driven structural phase transitions from
hcp to samarium-type (Sm-type) to dou-
ble hcp (dhcp) (Fig. 4) (30). The interplay
between these different structural phases,
various types of magnetic ordering, and
metastable transition dynamics leads to a
complex magnetic P-T phase diagram that
remains the object of study to this day (29–31).
In analogy to our measurements of iron,

we monitor the magnetic ordering of a Gd
flake by using the NV’s ODMR spectra at
two different locations inside the culet:
close to and far away from the sample (the
latter to be used as a control) (fig. S15). Be-
cause of thermal contraction of the DAC
(which induces a change in pressure), each
experimental run traces a distinct non-
isobaric path through the P-T phase diagram
(Fig. 4C, blue curves). In addition to these

DC magnetometry measurements, we also
operate the NV sensors in a complementary
mode, i.e., as a noise spectrometer.
We begin by characterizing Gd’s well-

known ferromagnetic Curie transition at
ambient pressure, which induces a sharp
jump in the splitting of the NV resonances
at TC ¼ 292:2 T 0:1 K (Fig. 4D). As depicted
in Fig. 4A, upon increasing pressure, this
transition shifts to lower temperatures, and
consonant with its second-order nature (32),
we observe no hysteresis (Fig. 4A, inset); this
motivates us to fit the data and extract TC

by solving a regularized Landau free-energy
equation (23). Combining all of the low-
pressure data (Fig. 4C, red squares), we
find a linear decrease in the Curie temper-
ature at a rate dTC=dP ¼ �18:7 T 0:2 K/GPa,
consistent with prior studies using both DC
conductivity and AC-magnetic susceptibil-
ity (30). Unexpectedly, this linear decrease
extends well into the Sm-type phase. Upon
increasing pressure above ∼6 GPa (path [b]
in Fig. 4C), we observe the loss of ferro-
magnetic (FM) signal (Fig. 4B), indicating
a first-order structural transition into the
paramagnetic (PM) dhcp phase (30). In stark
contrast to the previous Curie transition,
there is no revival of a ferromagnetic signal
even after heating up (∼315 K) and substan-
tially reducing the pressure (to < 0:1 GPa).
A few remarks are in order. The linear

decrease of TC well beyond the ∼2-GPa struc-
tural transition between hcp- and Sm-type is
consistent with the “sluggish” equilibration
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Fig. 2. Full tensorial reconstruction of the stresses in a (111)-cut diamond
anvil. (A) Spatially resolved maps of the loading stress (left) and mean lateral
stress (right),s⊥ ¼ 1

2 ðsXX þ sYYÞ, across the culet surface. In the inner region, where
the culet surface contacts the pressure-transmitting medium (16:3:1 methanol/
ethanol/water), the loading stress is spatially uniform, whereas the lateral stress is
concentrated toward the center; this qualitative difference is highlighted by a linecut

(taken along the white-dashed line) of the two stresses (below), and reconstructed by
finite-element analysis (orange and purple dashed lines). The black pixels indicate
where the NV spectrum was obfuscated by the ruby microsphere. (B) Comparison
of all stress tensor components in the fluid-contact region at P ¼ 4:9 GPa and
P ¼ 13:6 GPa. At P ¼ 13:6 GPa, the pressure-transmitting medium has entered its
glassy phase, and we observe a spatial gradient in the loading stress sZZ (inset).
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between these two phases at low temperatures
(30). The metastable dynamics of this transi-
tion are strongly pressure and temperature
dependent, suggesting that different starting
points (in the P-T phase diagram) can exhibit
markedly different behaviors (30). To high-
light this, we probe two different transitions
out of the paramagnetic Sm-type phase by
tailoring specific paths in the P-T phase diag-
ram. By taking a shallow path in P-T space,
we observe a small change in the local mag-
netic field across the structural transition into
the PM dhcp phase at ∼6 GPa (Fig. 4C, path
[c], orange diamonds). By taking a steeper
path in P-T space, one can also investigate
the magnetic transition into the antiferromag-
netic (AFM) Sm-type phase at ∼150 K (Fig. 4C,
path [d], green triangle). In general, these two
transitions are extremely challenging to probe

via DC magnetometry because their signals
arise only from small differences in the suscep-
tibilities between the various phases (fig. S18).
To this end, we demonstrate a comple-

mentary NV sensing modality based on noise
spectroscopy, which can probe phase transi-
tions even in the absence of a direct magnetic
signal (33). Specifically, returning to Gd’s fer-
romagnetic Curie transition, we monitor the
NV’s depolarization time, T1 , as the phase
transition is crossed (Fig. 4D). Normally, the
NV’s T1 time is limited by spin-phonon inter-
actions and increases sharply as the tempera-
ture is decreased. Here, we observe amarkedly
disparate behavior. In particular, using nano-
diamonds drop-cast on a Gd foil at ambient
pressure, we find that the NV T1 is nearly tem-
perature independent in the paramagnetic
phase, before exhibiting a kink and subse-

quent decrease upon entering the ferromag-
netic phase (Fig. 4D). We note two intriguing
observations: first, one possible microscopic
explanation for this behavior is that T1 is
dominated by Johnson-Nyquist noise from
the thermal fluctuations of charge carriers
inside Gd (34, 35). Gapless critical spin fluc-
tuations or magnons in the ordered phase,
although expected, are less likely to cause this
signal (23). Second, we observe that the Curie
temperature, as identified by T1 -noise spec-
troscopy, is ∼10 K higher than that observed
via DC magnetometry (Fig. 4D). Similar be-
havior has previously been reported for the
surface of Gd (29, 36), suggesting that our
noise spectroscopy could be more sensitive to
surface physics.
Further stress characterization of other

fluids and solids may provide insights into
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Fig. 3. Imaging iron’s a↔ D phase
transition. Applying an external magnetic
field (Bext ∼ 180 G) induces a dipole
moment in the polycrystalline iron pellet
that generates a spatially varying magnetic
field across the culet of the diamond
anvil. By mapping the ODMR spectra across
the culet surface, we reconstruct the local
magnetic field that characterizes the iron
pellet’s magnetization. (A to C) Comparison
between the measured ODMR spectra
(dark regions correspond to resonances)
and the theoretical resonance positions
(different colors correspond to different NV
crystallographic orientations) across
vertical spatial cuts (i.e., Y position indicates
location along the black-dashed line
shown in the two-dimensional scans below)
at pressures of 9.6, 17.2, and 20.2 GPa,
respectively (16:3:1 methanol/ethanol/water
solution). (D to F) Map of the measured
energy difference of a particular NV
crystallographic orientation [blue lines
in (A) to (C)]. Black pixels correspond to
ODMR spectra where the splitting could
not be accurately extracted owing to
large magnetic field gradients (fig. S12).
(G to I) Theoretical reconstruction of the
energy differences shown in (D) to (F) (23).
Data depicted in (A) to (C) are taken along
the thin black dashed lines. (J) Measured
dipole moment of the iron pellet as a
function of applied pressure at room
temperature, for both compression (red)
and decompression (blue). Based on the
hysteresis observed (∼6 GPa), we find
the critical pressure Pc ¼ 13:6 T 3:6 GPa,
in excellent agreement with previous
studies (28).
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mechanical phenomena such as viscous flow,
plastic deformation, and pressure-dependent
yield strength. Such information is challeng-
ing to obtain by either numerical finite-
element simulations or more conventional
experimental methods and may ultimately
allow control of the deviatoric- as well as
normal-stress conditions in high-pressure
experiments (37).
The high sensitivity and close proximity of

our sensor enables the measurement of signals
in settings that are beyond the capabilities of
existing techniques (Fig. 1F). Such settings in-
clude, for example, nuclearmagnetic resonance
(NMR) at picoliter volumes (38) and single-
grain remnant magnetism (39), as well as phe-
nomena that exhibit spatial textures such as
magnetic skyrmions (4) and superconducting
vortices (40).
Although our work uses NV centers, the

techniques developed here can be readily
extended to other atomic defects. For instance,
recent developments on all-optical control of
silicon-vacancy centers in diamond may allow
for microwave-free stress imaging with im-
proved sensitivities (41). In addition, one can
consider defects in other anvil substrates be-

yond diamond; indeed, recent studies have
shown that moissanite (6H silicon carbide)
hosts optically active defects that show promise
as local sensors (41). In contrast to millimeter-
scale diamond anvils, moissanite anvils can be
manufactured at centimeter or larger scales,
and therefore support larger sample volumes
that ameliorate the technical requirements of
many experiments. Finally, the suite of sensing
capabilities previously demonstrated for NV
centers (i.e., electric, thermal, gryroscopic pre-
cession, etc.) can now straightforwardly be
extended to high-pressure environments, open-
ing up a large range of experiments for quan-
titatively characterizing materials at such
extreme conditions.
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Fig. 4. Magnetic P-T phase diagram of
gadolinium. A ∼ 30 mm by 30 mm by 25 mm
polycrystalline Gd foil is loaded into a beryllium
copper gasket with a cesium iodide pressure
medium. An external magnetic field, Bext ∼ 120 G,
induces a dipole field, BGd, detected by the
splitting of the NVs [right inset, (B)]. (A) The FM
Curie temperature TC decreases with increasing
pressure up to ∼4 GPa. NV splittings for three P-T
paths, labeled by their initial pressure P0, are
shown. The P-T path for run [a] (P0 ¼ 0:5 GPa) is
shown in (C). The cool-down (blue) and heat-up
(red) of a single P-T cycle shows negligible
hysteresis (inset). (B) If a P-T path starting in hcp is
taken into the dhcp phase (at pressures ≳6 GPa)
(30), the FM signal is lost and not reversible, as
shown in (C) (path [b]). Upon cool-down (dark
blue), we observe the aforementioned Curie
transition, followed by the loss of FM signal at 6:3 GPa,
130 K. But upon heat-up (red) and second cool-
down (light blue), the FM signal is not recovered.
When the pressure does not go beyond∼6 GPa, the
FM signal is recoverable (left inset) (23).
(C) Magnetic P-T phase diagram of Gd. At low
pressures, we observe the linear decrease of TC
(black line) with slope �18:7 T 0:2 K/GPa, in
agreement with previous measurements (30). This
linear regime extends into the Sm-type phase
(black dashed line) owing to the slow dynamics of
the hcp → Sm-type transition (30). When starting in the Sm-type phase, we no longer observe a FM signal, but rather a small change in the magnetic field at
either the transition from Sm-type to dhcp (orange diamonds) or from PM to AFM (green triangle), depending on the P-T path. The bottom two phase
boundaries (black lines) are taken from (31). (D) At ambient pressure, we observe a Curie temperature, TC ¼ 292:2 T 0:1 K, by using DC magnetometry
(blue data). Using nanodiamonds drop-cast onto a Gd foil (and no applied external magnetic field), we find that the depolarization time (T1) of the NVs is
qualitatively different in the two phases (red data). T1 is measured using the pulse sequence shown in the top right inset. The T1 measurement on another
nanodiamond exhibits nearly identical behavior (bottom inset).
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1 Nitrogen-vacancy center in diamond

The nitrogen-vacancy (NV) center is an atomic defect in diamond in which two adjacent carbon
atoms are replaced by a nitrogen atom and a lattice vacancy. When negatively charged (by
accepting a electron), the ground state of the NV center consists of two unpaired electrons in
a spin triplet configuration, resulting in a room temperature zero-field splitting Dgs = (2⇡) ⇥

2.87 GHz between |ms = 0i and |ms = ±1i sublevels. The NV can be optically initialized into
its |ms = 0i sublevel using a laser excitation at wavelength � = 532 nm. After initialization,
a resonant microwave field is delivered to coherently address the transitions between |ms = 0i

and |ms = ±1i. At the end, the spin state can be optically read-out via the same laser excitation
due to spin-dependent fluorescence (12).

The presence of externals signals affects the energy levels of the NV, and, in general, lifts
the degeneracy of the |ms = ±1i states. Using optically detected magnetic resonance (ODMR)
to characterize the change in the energy levels, one can directly measure such external signals.
More specifically, combining the information from the four possible crystallographic orientation
of the NV centers enables the reconstruction of a signal’s vector (e.g. magnetic field) or tensorial
(e.g. stress) information.

2 Experimental details

2.1 Diamond anvil cell and sample preparation

All diamond anvils used in this work are synthetic type-Ib ([N] . 200 ppm) single crystal di-
amonds cut into a 16-sided standard design with dimensions 0.2 mm diameter culet, 2.75 mm
diameter girdle, and 2 mm height (Almax-easyLab and Syntek Co., Ltd.). For stress mea-
surement, both anvils with (111)-cut-culet and (110)-cut-culet are used, while for magnetic
measurements on iron and gadolinium, (110)-cut-culet anvil is used. We perform 12C+ ion
implantation (CuttingEdge Ions, 30 keV energy, 5 ⇥ 10

12 cm�2) to generate a ⇠50 nm layer
of vacancies near the culet surface. After implantation, the diamonds are annealed in vacuum
(< 10

�6 Torr) using a home-built furnace with the following recipe: 12 hours ramp to 400�C,
dwell for 8 hours, 12 hours ramp to 800�C, dwell for 8 hours, 12 hours ramp to 1200�C, dwell
for 2 hours. During annealing, the vacancies become mobile, and probabilistically form NV
centers with intrinsic nitrogen defects. After annealing, the NV concentration is estimated to be
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around 1 ppm as measured by fluorescence intensity. The NV centers remain photostable after
several iterations of compression and decompression up to 48 GPa, with spin-echo coherence
time T2 ⇡ 1 µs, mainly limited by the nitrogen electronic spin bath.

The miniature diamond anvil cell body is made of nonmagnetic steel with cubic boron ni-
tride backing plates (Technodiamant). Nonmagnetic gaskets (rhenium or beryllium copper) and
pressure media (cesium iodide, methanol/ethanol/water) are used for all experiments.

2.2 Experimental setup

In all measurements except those shown in Fig. S7, we address NV ensembles integrated in-
side the DAC using a home-built confocal microscope. A 100 mW 532 nm diode-pumped
solid-state laser (Coherent Compass), controlled by an acousto-optic modulator (AOM, Gooch
& Housego AOMO 3110-120) in a double-pass configuration, is used for both NV spin initial-
ization and detection. The laser beam is focused through the light port of the DAC to the NV
layer using a long working distance objective lens (Mitutoyo 378-804-3, NA 0.42, for stress and
iron measurements; Olympus LCPLFLN-LCD 20X, NA 0.45, for gadolinium measurement in
cryogenic environment), with a diffraction-limit spot size ⇡ 600 nm. The NV fluorescence is
collected using the same objective lens, spectrally separated from the laser using a dichroic mir-
ror, further filtered using a 633 nm long-pass filter, and then detected by a fiber coupled single
photon counting module (Excelitas SPCM-AQRH-64FC). A data acquisition card (National In-
struments USB-6343) is used for fluorescence counting and subsequent data processing. The
lateral scanning of the laser beam is performed using a two-dimensional galvanometer (Thor-
labs GVS212), while the vertical focal spot position is controlled by a piezo-driven positioner
(Edmund Optics at room temperature; attocube at cryogenic temperature).

For the measurements in Fig. S7, we utilize a home-built widefield imaging microscope in
lieu of the confocal microscope. A 2W 532 nm laser (Coherent Verdi V-2) is passed through
a speckle reducer (Optotune LSR-3005-6D-VIS) and onto an objective lens (Mitutoyo 378-
804-3). The fluorescence is spectrally separated from the laser using a dichroic mirror, further
filtered using a 633 nm long-pass filter, and imaged onto an EMCCD camera (Princeton Instru-
ments ProEM-HS 512BX3).

For gadolinium measurements, we put the DAC into a closed-cycle cryostat (attocube at-
toDRY800) for temperature control from 35� 320 K. The AOM and the SPCM are gated by a
programmable multi-channel pulse generator (SpinCore PulseBlasterESR-PRO 500) with 2 ns
temporal resolution. A microwave source (Stanford Research Systems SG384) in combination
with a 16W amplifier (Mini-Circuits ZHL-16W-43+) serves to generate signals for NV spin
state manipulation. The microwave field is delivered to DAC through a 4 µm thick platinum
foil compressed between the gasket and anvil pavilion facets (Fig. S1), followed by a 40 dB at-
tenuator and a 50 ⌦ termination. Electrical contact between the conducting gasket and platinum
foil reduces the microwave transmission efficiency and was chosen out of technical simplicity.
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2.3 Optically detected magnetic resonance (ODMR)

In this work, we use continous-wave optically detected magnetic resonance (ODMR) spec-
troscopy to probe the NV spin resonances. The laser and microwave field are both on for
the entire measurement, while the frequency of the microwave field is swept. When the mi-
crowave field is resonant with one of the NV spin transitions, it drives the spin from |ms = 0i

to |ms = ±1i, resulting in a decrease in NV fluorescence.

3 Sensitivity, precision, and pressure range

3.1 Theoretical sensitivity

The magnetic field sensitivity for continuous-wave ODMR (43) is given by:

⌘B = PG
1

�B

�⌫

C
p
R
, (S1)

where �B is the gyromagnetic ratio, PG ⇡ 0.7 is a unitless numerical factor for a Gaussian
lineshape, �⌫ = 10 MHz is the resonance linewidth, C ⇡ 1.8% is the resonance contrast, and
R ⇡ 2.5 ⇥ 10

6 s�1 is the photon collection rate. One can relate this to magnetic moment
sensitivity by assuming that the field is generated by a point dipole located a distance d from
the NV center (pointing along the NV axis). Then the dipole moment sensitivity is given by

⌘m = PG
1

�B

�⌫

C
p
R

2⇡d
3

µ0
, (S2)

where µ0 is the vacuum permeability.
Analogous to Eq. S1, the stress sensitivity for continuous-wave ODMR is given by

⌘S = PG
1

⇠

�⌫

C
p
R
, (S3)

where ⇠ is the susceptibility for the relevant stress quantity. More specifically, ⇠ is a tensor
defined by:

⇠↵� =

����
�f↵

���

����
�(0)

(S4)

where f↵, ↵ 2 [1, 8] are the resonance frequencies associated with the 4 NV crystallographic
orientations; �

(0) is an initial stress state; and ��� is a small perturbation to a given stress
component, e.g. � 2 {XX, Y Y, ZZ,XY,XZ, Y Z}. For optimal sensitivity, we consider
perturbations about an unstressed state (i.e. �(0)

= 0) 1. The resulting susceptibilities for stress
components in a (111)-cut diamond frame2 are

1Equivalently, one can begin from any hydrostatic stress, i.e. �(0)
⇠ I. Non-hydrostatic stress, however, will

generally reduce the stress susceptibilities, as will the presence of electric or magnetic fields.
2The Z axis is normal to the diamond surface, and the XZ plane contains two of the NV axes (the vertical axis

and one of the three non-vertical axes).

3



⇠↵� = (2⇡)⇥

2
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1.4 3.7 2.8 13.5 6.4 11.1

3

77777777775

[MHz/GPa].

In the main text and in Table S1, we compute the sensitivity using the maximum susceptibility
for each stress component:

⇠
(max)
� = max

↵
⇠↵� (S5)

3.2 Experimental sensitivity and precision

In order to characterize the sensitivity of our system, we perform ODMR spectroscopy on a
single resonance. We fit a Gaussian lineshape to this resonance and observe the fitting error on
the center frequency as a function of the total integration time, T (Fig. S2). In particular, we fit
the time scaling behavior of the fitting error to AT

�1/2, where A, divided by the susceptibility
of interest, characterizes the experimental sensitivity for a given signal. For T & 100 s, the ex-
perimental precision saturates due to systematic noise, which we define here as the “systematic
precision” for each type of signal.

For scalar signals (e.g. axial magnetic fields, temperature, etc.), the precision is directly
proportional to the minimum fitting error. For stress components, however, determining the
precision is more complicated as the relation between resonance frequencies and the full stress
tensor is a multi-dimensional, nonlinear function (Section 4.1). To this end, we quantify the
precision of each stress component using a Monte Carlo procedure. We begin with an unstressed
state, which corresponds to the initial set of frequencies f (0)

↵ = Dgs. We then apply noise to each
of the frequencies based on the minimum fitting error determined above—i.e. f (0)

↵ + �f↵, where
�f↵ are sampled from a Gaussian distribution with a width of the fitting error—and calculate
the corresponding stress tensor using a least-squared fit (Sec. 4.1). Repeating this procedure
over many noise realizations, we compute the standard deviation of each stress component. The
results of this procedure are shown in Table S1.

3.3 Comparison to other magnetometry techniques

In this section, we discuss the comparison of magnetometry techniques presented in Fig. 1F of
the main text. For each sensor, the corresponding dipole precision (as defined in Section 3.2)
is plotted against its relevant “spatial resolution,” roughly defined as the length scale within
which one can localize the source of a magnetic signal. In the following discussion, we specify
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the length scale plotted for each method in Fig. 1F of the main text. We consider two broad
categories of high pressure magnetometers.

The first category encompasses inductive methods such as pickup coils (44–46) and super-
conducting quantum interference devices (SQUIDs) (47–51)3. Magnetic dipole measurement
precision is readily reported in various studies employing inductive methods. We estimate the
relevant length scale of each implementation as the pickup coil or sample bore diameter.

The second class of magnetometers comprises high energy methods including Mössbauer
spectroscopy (52–54) and x-ray magnetic circular dichroism (XMCD) (55–58), which probe
atomic scale magnetic environments. For the Mössbauer studies considered in our analysis, we
calculate magnetic dipole moment precision by converting B-field uncertainties into magnetic
moments, assuming a distance to the dipole on order of the lattice spacing of the sample. We
assess the length scale as either the size of the absorbing sample or the length scale associated
with the sample chamber/culet area. For XMCD studies, we accept the moment precision re-
ported in the text. Length scales are reported as the square root of the spot size area. Notably,
we emphasize that both methods provide information about atomic scale dipole moments rather
than a sample-integrated magnetic moment; these methods are thus not directly comparable to
inductive methods.

We compare these methods alongside the NV center, whose precision is defined in Sec-
tion 3.2 and shown in Table S1. For the current work, we estimate a length scale ⇠ 5 µm, corre-
sponding to the approximate distance between a sample (suspended in a pressure-transmitting
medium) and the anvil culet. By exfoliating a sample onto the diamond surface, the diffraction-
limit ⇠ 600 nm bounds the transverse imaging resolution for ensemble NV centers; this limit
can be further improved for single NV centers via super-resolution techniques (59).

We finally comment briefly on possible pressure limits for NV sensing. Ref. (17) has pre-
viously demonstrated technical challenges that manifest at gigapascal pressure. Firstly, they
show that the zero phonon line is blue shifted to their excitation laser wavelength (532 nm) near
60 GPa, suggesting that this wavelength is insufficient to excite NV centers at higher pressures.
Secondly, they show that the ODMR contrast decreases significantly with pressure. These tech-
nical challenges may potentially be overcome using, e.g., a higher energy excitation laser or by
modifying the phonon occupation through temperature control.

4 Stress tensor

4.1 Overview

In this section, we describe our procedure for reconstructing the full stress tensor using NV
spectroscopy. This technique relies on the fact that the four NV crystallographic orientations
experience different projections of the stress tensor within their local reference frames. In par-

3Under the category of inductive methods, we also include the “designer anvil” which embeds a pickup coil
directly into the diamond anvil.
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ticular, the full Hamiltonian describing the stress interaction is given by:

HS =

X

i

⇧z,iS
2
z,i + ⇧x,i

�
S
2
y,i � S

2
x,i

�
+ ⇧y,i (Sx,iSy,i + Sy,iSx,i) (S6)

where

⇧z,i = ↵1

�
�
(i)
xx + �

(i)
yy

�
+ �1�

(i)
zz (S7)

⇧x,i = ↵2

�
�
(i)
yy � �

(i)
xx

�
+ �2

�
2�

(i)
xz

�
(S8)

⇧y,i = ↵2

�
2�

(i)
xy

�
+ �2

�
2�

(i)
yz

�
(S9)

�
(i) is the stress tensor in the local frame of each of NV orientations labeled by {i = 1, 2, 3, 4},

and {↵1,2, �1,2} are stress susceptibility parameters (Section 4.3.3). Diagonalizing this Hamil-
tonian, one finds that the energy levels of each NV orientation exhibit two distinct effects: the
|ms = ±1i states are shifted in energy by ⇧z,i and split by 2⇧?,i = 2

q
⇧

2
x,i + ⇧

2
y,i. Thus, the

Hamiltonian can be thought of as a function that maps the stress tensor in the lab frame to eight
observables: HS(�

(lab)
) = {⇧z,1,⇧?,1,⇧z,2,⇧?,2, ...}. Obtaining these observables through

spectroscopy, one can numerically invert this function and solve for all six components of the
corresponding stress tensor.

In practice, resolving the resonances of the four NV orientation groups is not straightforward
because the ensemble spectra can exhibit near degeneracies. When performing ensemble NV
magnetometry, a common approach is to spectroscopically separate the resonances using an
external bias magnetic field. However, unlike magnetic contributions to the Hamiltonian, stress
that couples via ⇧? is suppressed by an axial magnetic field. Therefore, a generic magnetic
field provides only stress information via the shifting parameters, ⇧z,i, which is insufficient for
reconstructing the full tensor.

To address this issue, we demonstrate a novel technique that consists of applying a well-
controlled external magnetic field perpendicular to each of the NV orientations. This technique
leverages the symmetry of the NV center, which suppresses its sensitivity to transverse magnetic
fields. In particular, for each perpendicular field choice, three of the four NV orientations exhibit
a strong Zeeman splitting proportional to the projection of the external magnetic field along
their symmetry axes, while the fourth (perpendicular) orientation is essentially unperturbed 4.
This enables one to resolve ⇧z,i for all four orientations and ⇧?,i for the orientation that is
perpendicular to the field. Repeating this procedure for each NV orientation, one can obtain the
remaining splitting parameters and thus reconstruct the full stress tensor.

In the following sections, we provide additional details regarding our experimental proce-
dure and analysis. In Section 4.2, we describe how to use the four NV orientations to calibrate

4A transverse magnetic field leads to shifting and splitting at second order in field strength. We account for the
former through a correction described in Section 4.3, while the latter effect is small enough to be neglected. More
specifically, the effective splitting caused by magnetic fields is (�BB?)2/Dgs ⇡ 5 � 10 MHz, which is smaller
than the typical splitting observed at zero field.
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three-dimensional magnetic coils and to determine the crystal frame relative to the lab frame.
In Section 4.3, we discuss our fitting procedure, the role of the NV’s local charge environment,
and the origin of the stress susceptibility parameters. In Section 4.4, we present the results of
our stress reconstruction procedure for both (111)- and (110)-cut diamond. In Section 4.5, we
compare our experimental results to finite element simulations.

4.2 Experimental details

4.2.1 Electromagnet calibration procedure

To apply carefully aligned magnetic fields, we utilize a set of three electromagnets (GMW
Associates 3470 Electromagnet) that are approximately spatially orthogonal with one another
and can be controlled independently via the application of current. Each coil is placed >10 cm
away from the sample to reduce the magnetic gradient across the (200 µm)

2 culet area 5.
To calibrate the magnetic field at the location of the sample, we assume that the field pro-

duced by each coil is linearly proportional to the applied current, I . Our goal is then to find the
set of coefficients, amn such that

Bm =

X

n

amnIn, (S10)

where Bm = {BX , BY , BZ} is the magnetic field in the crystal frame and n = {1, 2, 3} indexes
the three electromagnets. We note that this construction does not require the electromagnets to
be spatially orthogonal.

To determine the nine coefficients, we apply arbitrary currents and measure the Zeeman
splitting of the four NV orientations via ODMR spectroscopy. Notably, this requires the abil-
ity to accurately assign each pair of resonances to their NV crystallographic orientation. We
achieve this by considering the amplitudes of the four pairs of resonances, which are pro-
portional to the relative angles between the polarization of the excitation laser and the four
crystallographic orientations. In particular, the |ms = 0i $ |ms = ±1i transition is driven by
the perpendicular component of the laser field polarization with respect to the NV’s symmetry
axis. Therefore, tuning the laser polarization allows us to assign each pair of resonances to a
particular NV orientation.

In order to minimize the number of fitting variables, we choose magnetic fields whose pro-
jection along each NV orientation is sufficient to suppress their transverse stress-induced energy
splitting, i.e. �BB � ⇧?. As a result, the spectrum measured at each magnetic field is deter-
mined by (a) the stress-induced shift ⇧z,i for each NV orientation, which is constant for all
applied fields, and (b) the applied vector magnetic field {BX , BY , BZ}. Sequentially applying
different currents to the electromagnet coils and determining the subsequent vector magnetic
field at the sample three times, we obtain sufficient information to determine the matrix amn as
well as the shift ⇧z for all NV orientations. We find that the calibration technique is precise to
within 2%.

5We note that the pressure cell, pressure medium and gasket are nonmagnetic.
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4.2.2 Calibration of crystal and laboratory frames

To determine the orientation of the crystal frame (i.e. the [100] diamond axis) with respect to
the lab frame, we apply an arbitrary magnetic field and measure its angle (a) in the lab frame
via a hand held magnetometer, and (b) in the crystal frame via the Zeeman splittings (see 4.2).
Together with the known diamond cut, this provides a system of equations for the rotation
matrix, Rc, that relates the lab frame and the crystal frame:

RcB̂
(lab)

= B̂
(crystal)

, RcẐ = ê
(crystal) (S11)

where Ẑ = (0, 0, 1)
> is the longitudinal axis in the lab frame, and ê

(crystal) is the unit vector
perpendicular to the diamond cut surface in crystal frame, e.g. ê

(crystal)
/ (1, 1, 1)

> for the
(111)-cut diamond. We solve for Rc by numerically minimizing the least-squared residue of
these two equations.

However, we note that the magnetic field determined by the Zeeman splittings contains an
overall sign ambiguity. To account for this, we numerically solve Eq. (S11) using both signs
for B̂(crystal) and select the solution for Rc with the smaller residue. Based on this residue, we
estimate that our calibration is precise to within a few degrees.

4.3 Analysis

4.3.1 Extracting splitting and shifting information

Having developed a technique to spectrally resolve the resonances, we fit the resulting spectra
to four pairs of Lorentzian lineshapes. Each pair of Lorentzians is defined by a center frequency,
a splitting, and a common amplitude and width. To sweep across the two-dimensional layer of
implanted NV centers, we sequentially fit the spectrum at each point by seeding with the best-fit
parameters of nearby points. We ensure the accuracy of the fits by inspecting the frequencies of
each resonance across linecuts of the 2D data (Fig. S3B).

Converting the fitted energies to shifting (⇧z,i) and splitting parameters (⇧?,i) requires us to
take into account two additional effects. First, in the case of the shifting parameter, we subtract
off the second-order shifting induced by transverse magnetic fields. In particular, the effective
shifting is given by ⇧z,B ⇡ (�BB?)

2
/Dgs, which, under our experimental conditions, corre-

sponds to ⇧z,B ⇡ 5 � 10 MHz. To characterize this shift, one can measure each of the NV
orientations with a magnetic field aligned parallel to its principal axis, such that the transverse
magnetic shift vanishes. In practice, we obtain the zero-field shifting for each of the NV orien-
tations without the need for additional measurements, as part of our electromagnet calibration
scheme (Section 4.2). We perform this calibration at a single point in the two-dimensional map
and use this point to characterize and subtract off the magnetic-induced shift in subsequent mea-
surements with arbitrary applied field. Second, in the case of the splitting parameter, we correct
for an effect arising from the NV’s charge environment. We discuss this effect in the following
section. The final results for the shifting (⇧z,i) and splitting (⇧?,i) parameters for the (111)-cut
diamond at 4.9 GPa are shown in Fig. S3C.
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4.3.2 Effect of local charge environment

It is routinely observed that ensemble spectra of high-density samples (i.e. Type Ib) exhibit a
large (5 � 10 MHz) splitting even under ambient conditions. While commonly attributed to
instrinsic stresses in the diamond, it has since been suggested that the splitting is, in fact, due to
electric fields originating from nearby charges (21). This effect should be subtracted from the
total splitting to determine the stress-induced splitting.

To this end, let us first recall the NV interaction with transverse electric fields:

HE = d?
⇥
Ex(S

2
y � S

2
x) + Ex(SxSy + SySx)

⇤
(S12)

where d? = 17 Hz cm/V. Observing the similarity with Eq. (S6), we can define

⇧̃x = ⇧s,x + ⇧E,x (S13)

⇧̃y = ⇧s,y + ⇧E,y (S14)

where ⇧S,{x,y} are defined in Eq. (S7) and ⇧E,{x,y} = d?E{x,y}. The combined splitting for
electric fields and stress is then given by

2⇧̃? = 2
�
(⇧s,x + ⇧E,x)

2
+ (⇧s,y + ⇧E,y)

2�1/2
. (S15)

We note that the NV center also couples to longitudinal fields, but its susceptibility is ⇠ 50

times weaker and is thus negligible in the present context.
To model the charge environment, we consider a distribution of transverse electric fields.

For simplicity, we assume that the electric field strength is given by a single value E0, and its
angle is randomly sampled in the perpendicular plane. Adding the contributions from stress and
electric fields and averaging over angles, the total splitting becomes

⇧̃?,avg =

Z
d✓(⇧

2
S,? + ⇧

2
E,? + 2⇧S,?⇧E,? cos ✓)

1/2

=
1

⇡

2

4
q
⇧

2
s,? � ⇧

2
E,?EllipticE

0

@�
4⇧S,?⇧E,?q
⇧

2
S,? � ⇧

2
E,?

1

A

+

q
⇧

2
S,? + ⇧

2
E,?EllipticE

0

@�
4⇧s,?⇧E,?q
⇧

2
S,? + ⇧

2
E,?

1

A

3

5 (S16)

where EllipticE(z) is the elliptic integral of the second kind. This function is plotted in Fig. S4A,
and we note its qualitative similarity to a quadrature sum.

To characterize the intrinsic charge splitting (⇧E,?), we first acquire an ODMR spectrum for
each diamond sample under ambient conditions. For example, for the (111)-cut diamond, we
measured ⇧E,? ⇡ 4.5 MHz. For subsequent measures under pressure, we then subtract off the
charge contribution from the observed splitting by numerically from inverting Eq. (S16) and
solving for ⇧s,?.
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4.3.3 Susceptibility parameters

An elegant recent experiment established the four stress susceptibilities relevant to this work
(18). In this section, we discuss the conversion of their susceptibilities to our choice of basis
(the local NV frame), and we reinterpret their results for the splitting parameters taking into
account the effect of charge (21).

In their paper, Barson et. al. define the stress susceptilities with respect diamond crystal
frame:

⇧z = a1(�XX + �YY + �ZZ) + 2a2(�YZ + �ZX + �XY) (S17)
⇧x = b(2�ZZ � �XX � �YY) + c(2�XY � �YZ � �ZX ) (S18)

⇧y =
p
3 [b(�XX � �YY) + c(�YZ � �ZX )] (S19)

where XYZ are the principal axes of the crystal frame. Their reported results are {a1, a2, b, c} =

(2⇡) ⇥ {4.86(2),�3.7(2),�2.3(3), 3.5(3)} MHz/GPa. To convert these susceptibilities to our
notation (Eq. S6), one must rotate the stress tensor from the crystal frame to the NV frame, i.e.
�xyz = R�XYZR

>. The rotation matrix that accomplishes this is:

R =

0

B@
�

1p
6

�
1p
6

q
2
3

1p
2

�
1p
2

0

1p
3

1p
3

1p
3

1

CA . (S20)

Applying this rotation, one finds that the above equations become (in the NV frame)

⇧z = (a1 � a2)(�xx + �yy) + (a1 + 2a2)�zz (S21)

⇧x = (�b� c)(�yy � �xx) + (

p
2b�

p
2

2
c)(2�xz) (S22)

⇧x = (�b� c)(2�xy) + (

p
2b�

p
2

2
c)(2�yz) (S23)

Thus, the conversion between the two notations is
✓
↵1

�1

◆
=

✓
1 �1

1 2

◆✓
a1

a2

◆

✓
↵2

�2

◆
=

✓
�1 �1
p
2 �

p
2
2

◆✓
b

c

◆ (S24)

In characterizing the splitting parameters (b and c), Barson et. al. assumed a linear depen-
dence between the observed splitting and ⇧S,?. However, our charge model suggests that for
⇧S,? . ⇧E,? the dependence should be nonlinear. To account for this, we re-analyze their data
using Eq. S16 as our fitting form, rather than a linear function as in the original work. The re-
sults are shown in Fig. S4 for two NV orientation groups measured in the experiment: (110)36

10



and (100)54, where (· · · ) denotes the crystal cut and the subscript is the angle of the NV group
with respect to the crystal surface. From the fits, we extract the linear response, ⇧s,?/P , for the
two groups. These are related to the stress parameters by b� c and 2b, respectively. Using these
relations and the results of the fits, one finds {b, c} = (2⇡)⇥ {�1.47(2), 3.42(7)} MHz/GPa 6.
Finally, we convert these and the original reported for {a1, a2} to the NV frame using Eq. S24.
This leads to the susceptibilites that we use for our analysis:

{↵1, �1,↵2, �2} = (2⇡)⇥ {8.6(2),�2.5(4),�1.95(9),�4.50(8)} MHz/GPa. (S25)

4.4 Results

In this section, we discuss our stress reconstruction results for (a) the (111)-cut diamond at
4.9 GPa and 13.6 GPa with methanol/ethanol/water solution (Fig. S5 and Fig. 2 of the main
text), (b) the (110)-cut diamond at 4.8 GPa with methanol/ethanol/water solution (Fig. S6), and
(c) the (111)-cut diamond at 40 GPa and 48 GPa with sodium chloride (Fig. S7). In the first two
cases, the full stress tensors were obtained by numerically minimizing the least-squared residue
with respect to the measured shifting and splitting parameters (i.e. ⇧z,i,⇧?,i); in particular, we
measure a total of six observables — all four shifting parameters and two splitting parameters
— which is the minimum information required for the full tensorial reconstruction.

In the last case, we perform a simplified analysis that allows for a partial reconstruction of
the stress tensor. Based on the symmetry of the (111)-cut diamond, there is a linear transforma-
tion that relates the two azimuthally symmetric normal stresses, �ZZ and �? =

1
2(�XX + �Y Y ),

to two observables: the shifting parameter of the NV crystallographic orientation normal to the
surface, D111, and the average shifting parameter of the three other crystallographic orienta-
tions, D̄: ✓

D111

D̄

◆
=

✓
2↵1 �1

10
9 ↵1 +

8
9�1

8
9↵1 +

1
9�1

◆✓
�?
�ZZ

◆
(S26)

Thus, by measuring only the shifting parameters, we are able to characterize two components of
the stress tensor (Fig. S7). We further note that at 48 GPa (Fig. S7(D)-(E)), some of the ODMR
resonances have very low contrast, rendering the determination of some shifting parameters
ambiguous (see Section 3.3). To perform stress reconstruction without these resonances, we
measure multiple ODMR spectra under magnetic fields of fixed direction and varying ampli-
tude; the measured change of the resonance positions, together with the known relative change
of the magnetic field amplitude, allows us to extrapolate the values of the remaining shifting
parameters.

A few additional remarks are in order. First, we estimate the precision of the full tensor
reconstructions from the spatial variations of �ZZ at 4.9 GPa. Assuming the medium is an ideal
fluid, one would expect that �ZZ to be flat in the region above the gasket hole. In practice, we

6Note that the overall sign of these parameters cannot be determined through these methods, as the energy
splitting is related to the quadrature sum of ⇧x and ⇧y . To determine the sign, one would need to measure the
phase of the perturbed states (21).
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observe spatial fluctuations characterized by a standard deviation ⇡ 0.01 GPa; this is consistent
with the expected precision based on frequency noise (Table S1). The error bars in the recon-
structed stress tensor are estimated using this experimental precision. Each pixel of the stress
tensor image is integrated for ⇠7 min.

Second, the measured values for �ZZ differs from the ruby pressure scale by ⇠ 10%. This
discrepancy is likely explained by inaccuracies in the susceptibility parameters; in particular,
the reported susceptibility to axial strain (i.e. �1) contains an error bound that is also ⇠ 10%.
Other potential sources of systematic error include inaccuracies in our calibration scheme or the
presence of plastic deformation.

Finally, we note that, in some cases, our full reconstruction procedure yields two degenerate
solutions for the non-symmetric stress components; that is, while �ZZ and �? have a unique
solution, we find two different distributions for �XX , �XY , etc. This degeneracy arises from the
squared term in the splitting parameter, ⇧?,i = 2

q
⇧

2
x,i + ⇧

2
y,i, and the fact we measure only

six of the eight observables. In Fig. S5 and Fig. S6 (and Fig. 2B of the main text), we show
the solution for the stress tensor that is more azimuthally symmetric, as physically motivated by
our geometry.

4.5 Finite element simulations of the stress tensor

Using equations from elasticity theory under the finite element approach, a numerical simula-
tion was coded in ABAQUS for the stress and strain tensor fields in the diamond anvil cell. The
diamond anvil cell is approximately axially symmetric about the diamond loading axis, in this
case the crystallographic (111) axis (i.e. the Z axis). This permits us to improve simulation
efficiency by reducing the initially 3D tensor of elastic moduli to the 2D axisymmetric cylin-
drical frame of the diamond as follows. Initially, the tensor can be written in 3D with cubic
axes c11 = 1076 GPa, c12 = 125 GPa, c44 = 577 GPa. Next, we rotate cubic axes such that the
(111) direction is along the Z axis of the cylindrical coordinate system. Finally, the coordinate
system is rotated by angle ✓ around the Z axis and the elastic constants are averaged over 360�
rotation. The resulting elasticity tensor in the cylindrical coordinate system is

2

664

1177.5 57.4 91 0

57.4 1211.6 57.4 0

91 57.4 1177.5 0

0 0 0 509.2

3

775 [GPa].

The geometry of the anvil and boundary conditions (Fig. S8) are as follows:

1. The top surface of the anvil is assumed to be fixed. The distribution of stresses or dis-
placements along this surface does not affect our solution close to the diamond culet line
AB.
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2. The normal stress �ZZ along the line AB is taken from the experimental measurements
(main text Fig. 2A and S9). The pressure-transmitting medium/gasket boundary runs
along the innermost 47 µm of this radius.

3. Along the pressure-transmitting medium/anvil boundary (r  47 µm) and also at the
symmetry axis r = 0 (line AE) shear stress �RZ is zero. Horizontal displacements at the
symmetry axis are also zero.

4. Normal and shear contact stresses along all other contact surfaces are determined from
the best fit to the mean in-plane stress distribution �? = 0.5(�RR + �⇥⇥) measured in
the experiment (main text Fig. 2A and Fig. S9 ). We chose to fit to �? rather than to
other measured stresses is because it has the smallest noise in experiment. With this, the
normal stress on the line BD with the origin at point B is found to be

�c = 3.3⇥ 10
5
x
4
� 7.5⇥ 10

4
x
3
+ 4.5⇥ 10

3
x
2
� 10

2
x+ 4.1, (S27)

where �c is in units of GPa, and the position x along the lateral side is in units of mm.
The distribution of the normal stresses is shown in Fig. S8B and Fig. S10.

5. At the contact surface between the gasket and the anvil, a Coulomb friction model is
applied. The friction coefficient on the culet is found to be 0.02 and along the inclined
surface of the anvil (line BD) is found to vary from 0.15 at point B to 0.3 at 80 µm from
the culet. The distribution of shear stresses is shown in Fig. S8C and Fig. S10.

6. Other surfaces not mentioned above are stress-free.

The calculated distributions of the stress tensor components near the tip of the anvil are
shown in Fig. S11.

5 Iron dipole reconstruction

In this section, we discuss the study of the pressure-induced ↵ $ ✏ transition in iron. In
particular, we provide the experimental details, describe the model used for fitting the data, and
outline the procedure to ascertain the transition pressure.

For this experiment, the DAC is prepared with a rhenium gasket preindented to 60 µm
thickness and laser drilled with a 100 µm diameter hole. We load a ⇠ 10 µm iron pellet,
extracted from a powder (Alfa Aesar Stock No. 00737-30), and a ruby microsphere for pres-
sure calibration. A solution of methanol, ethanol and water (16:3:1 by volume) is used as the
pressure-transmitting medium.

The focused laser is sequentially scanned across a 10⇥10 grid corresponding to a ⇠ 30 ⇥

30 µm area of the NV layer in the vicinity of the iron pellet, taking an ODMR spectrum at
each point. Each pixel in the grid is integrated for ⇠3 minutes. As discussed in the main text,
the energy levels of the NV are determined by both the magnetic field and the stress in the
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diamond. Owing to their different crystallographic orientations, the four NV orientations in
general respond differently to these two local parameters. As a result, for each location in the
scan, eight resonances are observed.

A large bias magnetic field (⇠ 180 G), not perpendicular to any of the axes, is used to
suppress the effect of the transverse stress in the splitting for each NV orientation. However,
the longitudinal stress still induces an orientation-dependent shift of the resonances which is
nearly constant across the imaging area, as measured independently (Fig S3C).

By analyzing the splittings of the NV resonances across the culet, we can determine the
local magnetic field and thereby reconstruct the dipole moment of the iron pellet.

To estimate the error in pressure, a ruby fluorescence spectrum was measured before and
after the ODMR mapping, from which the pressure could be obtained (26). The pressure was
taken to be the mean value, while the error was estimated using both the pressure range and the
uncertainty associated with each pressure point.

5.1 Extracting Splitting Information

The eight resonances in a typical ODMR spectrum are fit to Gaussian lineshapes to extract
the resonance frequency (Fig S12A). Resonances are paired as in Fig. 1D of the main text:
from outermost resonances to innermost, corresponding to NV orientations with the strongest
magnetic field projection to the weakest, respectively. Once identified, we calculate the splitting
and magnetic field projection for each NV orientation.

We note that there are two regimes where our spectra cannot confidently resolve and identify
all the eight resonances. First, at high pressure, the resonance contrast for some NV orienta-
tions is diminished, possibly due to a modification of the frequency response of the microwave
delivery system. Second, close to or on top of the iron pellet, the resonances are broadened;
we attribute this to the large magnetic field gradients (relative to the imaging resolution) caused
by the sample. The resulting overlap in spectral features obfuscates the identity of each reso-
nance (Fig. S12B). In both cases, we fit and extract splittings only for the orientations we could
identify with certainty.

5.2 Point Dipole Model

We model the magnetization of our pellet sample as a point dipole at some location within the
sample chamber. The total magnetic field is then characterized by the external applied field,
B0, the dipole of the sample, d, and the position of the dipole, r. Because of the presence of a
large applied field, we observe that the magnetization of the sample aligns with B0, and thus,
we require only the strength of the dipole to characterize its moment, d = DB̂0. We expect
the external magnetic field and the depth of the particle to remain nearly constant at different
pressures. This is indeed borne out by the data, see Sec. 5.4. As a result, we consider the external
magnetic field B0 = (�23(7),�160(1), 92(2)) G and depth of the iron pellet rZ = �5(1) µm

to be fixed.
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Due to the dipole of the iron pellet, the magnetic field across the NV layer at position x is
given by:

B(x) = B0 +
µ0

4⇡

1

|x|3
(3x̂(d · x̂)� d) , (S28)

where hats represent unit vectors. At each point, the local field induces a different splitting,
�

(i), to the 4 NV crystallographic orientations i 2 {1, 2, 3, 4}, measured by diagonalizing the
Hamiltonian H = DgsS

2
z + B

(i)
z Sz + B

(i)
? Sx, where Bz = |B · ẑ

(i)
| is the projection of B onto

the axis of the NV, and B
(i)
? =

q
|B|2 � (B

(i)
z )2, its transverse component. Dgs is the zero

field splitting of the NV. For each choice of D, rX and rY , we obtain a two dimensional map of
{�

(i)
}. Performing a least squares fit of this map against the experimental splittings determines

the best parameters for each pressure point. The error in the fitting procedure is taken as the
error in the dipole strength D.

5.3 Determining Transition Pressure

Although the ↵ $ ✏ structural phase transition in iron is a first order phase transition, we do
not observe a sharp change in the dipole moment of the sample, observing instead a cross-over
between the two magnetic behaviors. We attribute this to the non-hydrostatic behavior of the
sample chamber at high pressures. As a result, different parts of the iron pellet can experience
different amounts of pressure and, thus, undergo a phase transition at different applied pressures.
The measured dipole moment should scale with the proportion of the sample that has undergone
the phase transition. This proportion, p(P ), should plateau at either 0 or 1 on different sides
of the phase transition, and vary smoothly across it. To model this behavior we use a logistic
function:

p(P ) =
1

eB(P�Pc) + 1
. (S29)

The dipole strength is then given by:

D = p(P )D↵ + [1� p(P )]D✏ , (S30)

where D↵ (D✏) is the dipole moment of the sample in the ↵ (✏) structural phase and 1/B

corresponds to the width of the transition, thus its uncertainty.

5.3.1 Large error bar in the 11 GPa decompression point

During the decompression, around 11 GPa, we observed a significant drift of the pressure dur-
ing measurement of the ODMR spectra. Unfortunately, the starting pressure was close to the
transition pressure, and the drift in pressure led to a very large change in the pellet’s dipole mo-
ment throughout the scanning measurement. This is clear in the measured data, Fig. S13, with
the top-half of the map displaying a significantly larger shift with respect to the bottom-half.

To extract the drift in the dipole moment, we divide the two-dimensional map into three
different regions, each assumed to arise from a constant value of the dipole moment of the
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pellet. By fitting to three different dipole moments (given a fixed position, rX and rY ) we
obtain an estimate of the drift of the dipole moment that allows us to compute an errorbar of that
measurement. The estimated dipole moment at this pressure point is taken as the midpoint of the

three extracted values,
Dmax +Dmin

2
, while the error is estimated by the range,

Dmax �Dmin

2
.

5.4 Fitting to external magnetic field and depth

In this section we present additional data where we have allowed both the external magnetic
field and the depth of the iron pellet to vary in the fitting procedure. The result of the fitting
procedure is summarized in Fig. S14.

In particular, we expect the external magnetic field and the depth of the pellet to remain
constant at different pressures. Indeed, we observe this trend in the extracted parameters,
Fig. S14(A,B). Using the mean and standard deviation, we estimate these values and their er-
rors, quoted in Sec. 5.2. The final fitting procedure with these values fixed is presented in the
main text.

6 Gadolinium

6.1 Experimental details

We use a closed cycle cryostat (attocube attoDRY800) to study the P -T phase diagram of Gd.
The DAC is placed on the sample mount of the cryostat, which is incorporated with a heater
and a temperature sensor for temperature control and readout.

For this experiment, we use beryllium copper gaskets. The Gd sample is cut from a 25 µm
thick Gd foil (Alfa Aesar Stock No. 12397-FF) to a size of ⇠ 30µm ⇥ 30µm and loaded with
cesium iodide (CsI) as the pressure-transmitting medium. A single ruby microsphere loaded
into the chamber is used as a pressure scale.

For each experimental run, we start with an initial pressure (applied at room temperature
300 K) and cool the cell in the cryostat. Due to contraction of the DAC components with
decreasing temperature, each run of the experiment traverses a non-isobaric path in P -T phase
space, Fig. S16A. Using fiducial markers in the confocal scans of the sample chamber, we track
points near and far from the Gd sample throughout the measurement. By performing ODMR
spectroscopy at these points for each temperature, we monitor the magnetic behavior of the
sample. More specifically, comparing the spectra between the close point (probe) against the
far away one (control), Fig. S15, enables us to isolate the induced field from the Gd sample.

6.2 Fitting the phase transition

There are three different transitions we attempt to identify in Gd’s P -T phase diagram: a mag-
netic transition from PM dhcp to FM dchp; structural phase transitions, either hcp ! dhcp or
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Sm-type $ dhcp; and a magnetic phase transition from PM Sm-type to AFM Sm-type.
In order to extract the transition temperature of the paramagnet to ferromagnet transition

from our data, we model the magnetization of our sample near the magnetic phase transition
using a regularized mean field theory.

The magnetism of gadolinium is well-described by a three dimensional Heisenberg magnet
of core electrons (29). In the presence of an external magnetic field, the free energy near the
critical point is expanded in even powers of the magnetization with a linear term that couples to
the external magnetic field:

f = �Bm+
↵

2
(T � TC)m

2
+

�

4
m

4
, (S31)

where m is the magnetization, B is the external magnetic field, ↵ and � the expansion coef-
ficients, T the temperature, and TC the transition temperature. In this treatment, we implicitly
assume that ↵ and � do not vary significantly with pressure and thus can be taken to be constant
across paths in P -T phase space. The magnetization mmin is then obtained by minimizing the
free energy.

Because our observation region extends far away from the transition, we observe a plateau-
ing of the splittings that emerges from the microscopics of Gd. Using R as the regularization
scale and Ã as the maximum magnetization of the sample we propose the simple regularization
scheme:

m(T, P ) = Ã
mmin

mmin +R
. (S32)

The splitting of the NV group, up to some offset, is proportional to the magnetization of
the sample. This proportionality constant, A, captures he relation between magnetization and
induced magnetic field, the geometry of sample relative to the measurement spot, as well as the
susceptibility of the NV to the magnetic field. The splitting of the NV is then given by:

� = A
mmin

mmin +R
+ c (S33)

where we incorporated Ã into A as well. Normalizing ↵ and � with respect to B, we obtain six
parameters that describe the magnetization profile, directly extracting TC.

In the case of the first order structural phase transitions, similar to that of iron, we take the
susceptibility to follow a logistic distribution. We model the observed splitting as:

� =
A

eB(T�TC) + 1
+ c (S34)

Fitting to the functional form provides the transition temperature TC. Error bar is taken as largest
between 1/B and the fitting error.

In the case of the paramagnetic to antiferromagnetic transition, we use the mean field sus-
ceptibility across the phase transition of the system. The susceptibility across such transition is

17



peaked at the transition temperature:

�(T ) /

8
>>>><

>>>>:

1

T � ✓p
T > Tc

C
3L

0
(H/T )

T � ✓p3L
0(H/T )

T < Tc

(S35)

where C is chosen to ensure continuity of �, L0
(x) is the derivative of the Langevin function

L(x), H is a measure of the applied field, and ✓p is the asymptotic Curie point. Finally, we fit
the observed splitting to:

� = A�(T ;Tc, H, ✓p) + c (S36)

where, as before, A captures both the geometric effects, as well as the response of the chosen
NV group to the magnetic field.

6.3 Additional data

In this section we present the data for the different paths taken in P -T phase and the resulting
fits. Table S2 summarizes the observations for all experimental runs. Fig. S16 contains the data
used in determining the linear pressure dependence of the hcp phase. Fig. S17 comprises the
data used in determining the transition to the dhcp phase, either via the FM hcp to PM dhcp
transition, Fig. S17B, or via the difference in susceptibilities between PM Sm-type and PM
dhcp of Gd, Fig. S17C and D. We emphasize that in the blue path, we begin the experiment
below 2 GPa and thus in the hcp structure, while for the orange and green, we begin above
2 GPa, so we expect the system to be in Sm-type. Finally, Fig. S18 contains the data where we
observe a change in the susceptibility of Gd that occurs at the purported Sm-type PM to AFM
transition.

6.4 Recreating the P -T phase diagram of Gd

The rich magnetic behavior of Gd is partially dependent on its structural phases, captured in
the sequence: hexagonal closed packed (hcp) to Samarium (Sm) type at ⇠ 2 GPa, and then to
double hexagonal closed packed (dhcp) at ⇠ 6 GPa. In particular, while the paramagnetic (PM)
phase of hcp orders to a ferromagnet (FM), the PM phase of Sm-type orders to an antiferromag-
net (AFM) (30). Similarly, dhcp undergoes a PM to magnetically ordered phase transition.

For experimental runs with initial pressures < 2 GPa (runs 1-3, 5-9, 11-13, 17-19), we
observe a PM $ FM phase transition in hcp Gd. In agreement with previous studies, we
see a linear decrease of the Curie temperature with increasing pressure up to ⇠ 4 GPa (60–

62). Notably, prior studies have shown a structural transition from hcp to Sm-type at 2 GPa
(31, 61, 63), which is believed to be “sluggish” (30, 61). This is indeed consistent with our
observation that the linear dependence of the Curie temperature persists well into the Sm-type
region, suggesting the existence of both structural phases over our experimental timescales.
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Furthermore, in run 9 (Table S2 and Fig. S18A,B), we observe a complete loss of FM signal
when pressures exceed ⇠ 6 GPa at ⇠ 150 K, in good agreement with the previously reported
phase transition from hcp (FM) to dhcp (PM) structure (31,61). Upon performing a similar path
in P -T space (run 19), we observe the same behavior. In contrast to the previous slow hcp to
Sm-type transition, we believe that the equilibrium timescale for the hcp (FM) to dhcp (PM)
transition is much faster at this temperature.

After entering the dhcp structure (run 9), we no longer observe a clear FM signal from the
sample even after heating to 315 K and depressurizing < 0.1 GPa. This can be explained by
the retention of dhcp or Sm-type structure in the sample. Previous studies, suggesting that the
Sm-type phase in Gd is metastable up to ambient pressure and temperature (30), corroborate
that our sample is likely still in the Sm-type structural phase. It is not too surprising, that by
continuing to cool down and walking along a slightly different P -T path, we observe only a
small change in the NV splitting at ⇠ 150 K and ⇠ 5 GPa as we cross the purported Sm-type
PM to AFM phase boundary (run 10 in Table S2) (30, 31, 61).

Moreover, the metastable dynamics of hcp to Sm-type transitions are strongly pressure and
temperature dependent, suggesting that different starting points (in the P -T phase diagram) can
lead to dramatically different behaviors. Indeed, by preparing the sample above 2 GPa at room
temperature (run 4), we no longer detect evidence for a ferromagnetic Curie transition, hinting
the transition to the Sm-type structure. Instead, we only observe a small change in the NV split-
ting at ⇠ 6 GPa and ⇠ 170 K, which could be related to the presence of different paramagnetic
susceptibilities of the Sm-type and dhcp structural phases. Interestingly, by cycling temperature
across the transition (run 14-16 in Table S2), we observe negligible hysteresis, suggesting fast
equilibration of this structural transition.

6.5 Noise spectroscopy

In order to perform magnetic noise spectroscopy of Gd at temperatures ranging from 273 K to
340 K, we attach a small chunk of Gd foil (100 µm ⇥ 100 µm ⇥ 25 µm) close to a microwave
wire on a Peltier element with which we tune the temperature. Instead of millimeter-scale
diamonds as before, we use nano-diamonds (Adámas Nanotechnologies, ⇠ 140 nm average
diameter). The nano-diamonds are prepared in solution and allowed to evaporate onto the Gd
foil to minimize the distance to the surface of our sample.

With no external field applied, all eight resonances of the NVs inside the nano-diamonds are
found within our resolution to be at the zero-field splitting Dgs for either para- and ferromag-
netic phase of Gd, leading to a larger resonance contrast since we can drive all NVs with the
same microwave frequency. Measuring the NV’s spin relaxation time T1 under these circum-
stances is equivalent to ascertaining the AC magnetic noise at ⇠ 2.87 GHz.

For this purpose, we utilize the following pulse sequence to measure T1. First, we apply
a 10 µs laser pulse to intialize the spin into the |ms = 0i state. After laser pumping, we let
the spin state relax for a variable time ⌧ , before turning on a second laser pulse to detect the
spin state (signal bright). We repeat the exact same sequence once more, but right before spin
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detection, an additional NV ⇡-pulse is applied to swap the |ms = 0i and |ms = ±1i populations
(signal dark). The difference between signal bright and dark gives us a reliable measurement of
the NV polarization (Fig. 4D top inset in main text) after time ⌧ . The resulting T1 curve exhibits
a stretched exponential decay / e

�(⌧/T1)
↵
, with ↵ ⇠ 0.65 (Fig. S19).

By sweeping the Peltier current over a range of ⇠ 3.5 A, we adjust the temperature of the
sample from 273 K to 340 K, therefore determining the temperature dependence of T1.

This procedure is performed on two different nano-diamonds on top of the Gd flake to
confirm that the signal is not an artifact. Furthermore, this is contrasted with an additional mea-
surement at a nano-diamond far away from the Gd foil, exhibiting no temperature dependence
of T1.

6.6 Theoretical analysis of T1

The depolarization time T1 of NV centers shows a distinct drop when we decrease the temper-
ature T to across the ferromagnetic phase transition of Gd, Fig. 4D of the main text. Assuming
that Johnson noise is the main contribution, because we are working at a fixed small transition
frequency (! ⇠ 2.87 GHz) and in the thermal limit (~! ⌧ kBT ), we can consider the DC
limit. In this case, we have T1 / ⇢(T )/T , where ⇢(T ) = 1/�(T ) is the DC resistivity (64).
Importantly, previously measurements of the resistivity curve for Gd show a kink at TC, with
a sharper temperature dependence below TC (65, 66). However, this sudden change in slope is
insufficient to explain our observations of T1; in particular, given the magnitude of the resistiv-
ity, the change in temperature dominates the T1 behavior. This implies that T1 should increase
in the ferromagnetic phase if the sole contribution is bulk Johnson noise, whereas observations
indicate otherwise.

A hint to the resolution of this puzzle comes from two observations. First, NV centers drop-
cast onto Gd samples are very close to the sample, and hence far more sensitive to the surface
than the bulk. Second, the surface of Gd is well known to show a higher ferromagnetic transition
temperature than the bulk; the drop in T1 starts at a larger temperature (⇡ 300 K) compared to
the bulk TC ⇡ 292 K. These observations strongly suggest that the NV is detecting a large drop
of surface resisitivity as we lower T across the surface critical temperature, and this dominates
over the small drop of bulk resistivity in the observed behavior.

In order to quantitatively estimate the relative contribution of the surface to the bulk, we
write down, following Ref. (64), the contribution to the noise for a single two-dimensional
layer at a distance z from the probe for a sample with conductivity �(T )

1

T1
/ N(!) =

kBTµ
2
0�(T )

16⇡z2
. (S37)

Here we have assumed that the optical conductivity has a smooth DC limit (true for typical
metals) and taken the extreme thermal limit to neglect the small frequency dependence of �. Gd
has a hcp structure with c ⇡ 2a, so we approximate the sample as being composed of decoupled
two-dimensional layers and add their individual contributions to the noise. If the distance from
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the surface to the probe is d, the surface thickness is D (infinite bulk thickness), and the surface
and bulk conductivity are denoted by �s and �b respectively, then we have:

1

T1
/ T

Z d+D

d

dz
�s(T )

z2
+

Z 1

d+D

dz
�b(T )

z2

�
= T�s(T )

✓
1

d
�

1

d+D

◆
+

T�b(T )

d+D
. (S38)

Eq. (S38) makes it explicit that when D/d is an O(1) number (i.e. the surface thickness is of
the order of sample-probe distance) the surface and bulk contributions are comparable. On the
other hand, if D/d ⌧ 1, the bulk noise dominates. For our drop-cast nano-diamonds on the
surface of Gd, we can estimate D ⇡ 10 nm, given the distinct surface signatures in the density
of states even 6 layers deep (29). We also estimate the average distance as approximately half
the radius of a nano-diamond, d ⇡ 50 nm. Therefore, we see that, for our samples, a large
rise in surface conductivity can cause a significant increase in magnetic noise, even if the bulk
conductivity remains roughly constant across the transition to the ferromagnetic phase. Hence,
we conjecture that an enhanced surface conductivity below the surface critical temperature Tc,s

is responsible for the observed drop in T1.
From Ref. (65–67) we know that both the bulk residual resistivity and the phonon con-

tribution to the resistivity is quite small, and electron scattering below the bulk TC is domi-
nated by magnetic excitations. Since TC = 292 K is much larger than the Debye temperature
⇥D ⇡ 170 K (66, 68), the phonon contribution to scattering is expected to be linear in T

near TC. Above TC, the slope d⇢/dT for Gd is very small. Hence the majority of scattering
below TC takes place due to magnetic correlations, which, below TC, changes resistivity by
d⇢/dT / t

2��1 where t = |TC � T |/TC (69). � can be significantly different from 1, leading to
a cusp in ⇢(T ) at TC. For the bulk, we can write:

⇢b(T ) = ⇢b(TC)� ↵ph

✓
TC � T

TC

◆
� ↵mag

✓
TC � T

TC

◆2�

⇥(TC � T ) (S39)

Above TC, the singularity in d⇢/dT is of the form t
�↵. However, for both Heisenberg and Ising

universality classes of ferromagnetic transitions, ↵ is close to zero (↵ ⇡ �0.1), and the surface
enhancement of the surface density of states is negligible. Therefore, for T > TC we assume
that the surface conductivity is identical to the bulk conductivity. Moreover, the scattering from
uncorrelated core-spins should be constant at high temperatures away from TC, so the slope
d⇢/dT is entirely from phonons for T � TC. With this, we can estimate ↵ph ⇡ 27 µ⌦cm using
the data for T between 350 and 400 K (66). Using the data for ⇢ at T = 280 K in Ref. (65) to
extract ↵mag and � ⇡ 0.35 for the three dimensional Heisenberg model, which is believed to
describe the ordering of local moments in Gd (29), we obtain ↵mag:

⇢b(T )� ⇢b(TC) = �4 µ⌦cm = �↵ph

✓
12

292

◆
� ↵mag

✓
12

292

◆0.7

=) ↵mag ⇡ 27 µ⌦cm

(S40)
This gives the bulk resistivity as a function of temperature, but it does not replicate the experi-
mental observations (purple line, Fig. S21). To this end, we postulate a similar critical behavior
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at the surface but with surface critical exponent �s for the magnetization. Given the easy axis
anisotropy in Gd (29,65), the surface magnetic phase transition is plausibly in the Ising univer-
sality class, with �s = 0.125 (70). Therefore, on the surface, we have:

⇢s(T ) = ⇢s(TC,s)� ↵ph,s

✓
TC,s � T

TC,s

◆
� ↵mag,s

✓
TC,s � T

TC,s

◆0.25

⇥(TC,s � T ) (S41)

In absence of evidence otherwise, we take ↵ph,s = ↵ph (same value as in the bulk). How-
ever, ↵mag,s can be significantly enhanced relative to the bulk value. Since this factor depends
sensitively on surface details, we treat it as a free parameter in the fit. Fig. S21 shows a good
fit to our data with the estimates ↵mag,s = 7↵mag ⇡ 189 µ⌦cm, surface thickness D = 10 nm
⇡ 17c, and sample-probe distance d = 50 nm (we have used an overall proportionality factor
for the fit).

We note that spin-fluctuations in Gd can also cause cause the NV polarization to relax. Al-
though such fluctuations are negligible in the paramagnetic phase as our sample-probe distance
is much larger than the lattice spacing (64), gapless critical fluctuations and spin-wave modes
can indeed have a larger contribution to magnetic noise. However, the magnon contribution is
related to magnon occupancies and decreases with decreasing temperature (33), implying that
T1 should increase as one lowers temperature in the ferromagnetic phase. This is inconsistent
with the behavior we observe. Bulk critical spin-fluctuations should make the largest contribu-
tion at TC, which is also not observed. An even more involved theoretical analysis is required
to rule out critical surface spin-fluctuations. This analysis is left for future work.
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Fig. S1. (A) Schematic of the setup explicitly depicting the platinum foil used for microwave excitation.

The gasket has been cross sectioned for visual clarity. (B) Schematic from the perspective of the objective

lens. The anvil has been omitted for visual clarity. Diagrams are not to scale.
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Fig. S2. Scaling of magnetic field precision as a function of total integration time on a single resonance.
Right axis corresponds to standard deviation of center frequency fitting. Solid line corresponds to a fit to
AT�1/2 where A is the sensitivity reported in the main text and T is the total integration time. Dashed
line corresponds to the scaling predicted by Eq. S1. The experimental precision saturates for T & 100 s
due to systematic noise.
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Fig. S3. Stress reconstruction procedure applied to the (111)-cut diamond at 4.9 GPa. (A) A typical

ODMR spectrum under an applied magnetic field. The resonances correspond to each NV crystallo-

graphic orientation fit to a pair of Lorentzian lineshapes. (B) A linecut indicating the fitted resonance

energies (colored points) superimposed on the measured spectra (grey colormap). (C) 2D maps of the

shifting (Πz,i) and splitting parameters (Π⊥,i) for each NV orientation across the entire culet.
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A B C

Fig. S4. Interplay between stress and random electric fields. (A) Theoretical curve (blue) for the total

splitting in the presence of stress and electric fields, Eq. (S16). We compare this to a quadratic sum

(red). (B-C) Measured splitting parameter (blue) for uniaxial pressure applied to a (110)-cut and (100)-

cut diamond, reprinted with permission from (18). We fit the data using (a) a linear function (orange),

Π̃⊥ = ΠE,⊥ + ΠS,⊥, and (b) the aforementioned theoretical curve, Eq. (S16) (green). Both fits include

two free parameters: ΠE,⊥ and a = ΠS,⊥/P . We report the best-fit value for the latter parameter in the

inset.
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Fig. S5. Stress tensor reconstruction of (111)-cut diamond at (A) 4.9 GPa and (B) 13.6 GPa. In the

former case, we reconstruct both the inner region in contact with the fluid-transmitting medium, and the

outer region in contact with the gasket. In the latter case, we reconstruct only the inner region owing to

the large stress gradients at the contact with the gasket; note that the black pixels in the center indicates

where the spectra is obscured by the ruby fluorescence. As described in the main text, both pressures

exhibit inward concentration of the normal lateral stress (σXX and σY Y ). In contrast, the normal loading

stress is uniform for the lower pressure and spatially varying at the higher pressure, indicating that the

pressure medium has solidified.
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Fig. S6. Stress tensor reconstruction of (110)-cut diamond at 4.8 GPa pressure. Analogous to the (111)-

cut at low pressure, we observe an inward concentration of lateral stress and a uniform loading stress in

the fluid-contact region.
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Fig. S7. Stress reconstruction of (111)-cut diamond at 40 and 48 GPa, as measured by ruby, using

widefield fluorescence imaging. (A) Fluorescence image of culet at 40 GPa. The small bright circle

corresponds to the ruby microsphere. (B)-(C) ODMR spectra and corresponding stress reconstruction of

the horizontal and vertical linecuts indicated by white dashed lines in (A). The stress components were

obtained by applying Eq. (S26) to the measured shifting parameters. (D) Fluorescence image of culet at

48 GPa. (E) ODMR spectra and stress reconstruction at the linecut indicated by the white dashed line in

(D). The spectra are taken under an applied magnetic field with fixed direction and varying amplitude.

This provides sufficient information to reconstruct the shifting parameters of all NV crystallographic

orientations.
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Fig. S8. (A) Diamond geometry, (B) anvil tip with distribution of the applied normal stress, (C) dis-
tribution of the applied shear stress. Normal stress �ZZ at the culet and zero shear stress �RZ along
the pressure-transmitting medium/anvil boundary (r  47 µm) are taken from experiment. Normal
and shear contact stresses along all other contact surfaces are determined from the best fit of the mean
in-plane stress distribution �? = 0.5(�RR + �⇥⇥) to experiment (main text Fig. 2A and Fig. S9)
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Fig. S9. (A) Distribution of applied normal stress �ZZ and the mean in-plane stress �? along the culet
surface of the diamond from the experiment and FEM simulations. (B) Distribution of the mean in-plane
stress �? (experimental and simulated) as well as the simulated radial �RR and circumferential �⇥⇥

stresses along the culet surface of the diamond.
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Fig. S10. Distribution of applied normal and shear stress along the lateral surface of the diamond deter-
mined from the best fit of the mean in-plane stress distribution �? to experiment (main text Fig. 2A and
Fig. S9).
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Fig. S11. Calculated distributions of the components of stress tensor in the anvil for r < 150 and z < 475
µm.
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Fig. S12. (A) Example of a typical spectrum with a fit to eight free Gaussians. Resonance pairs are

identified as in Fig. 1D of the main text: NV4 has the strongest magnetic field projection and NV1 has

the weakest. (B) Example spectrum for which resonances are broadened and shifted. In this case we

cannot correlate any resonances in the spectrum to specific NV orientations.
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Fig. S13. Measured map of the splittings of one of the NV orientations (left). Near the top of the plot we
observe a much stronger splitting compared to the bottom of the plot. Throughout the measurement, the
shift in the pressure induced a shift in the dipole moment of the sample. We consider 3 different regions
(seperated by horizontal lines) corresponding to 3 different dipole strengths. The reconstructed map of
the splittings is shown on the right in agreement with the data. From the center and the spread of dipole
strengths, we extract the dipole moment and its error. Black bar corresponds to 10 µm.
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Fig. S14. Result of fitting procedure when the external magnetic field and the depth of the iron pellet is

allowed to vary at each pressure. (A)[(B)] External magnetic field [position of the pellet] extracted as a

function of pressure (circles correspond to compression while diamonds correspond to decompression).

Across the entire range of pressures, the extracted external magnetic field and the depth of the iron pellet

is approximately constant. In the final fitting procedure, these values are fixed to their extracted mean

(dashed lines). Shaded regions correspond to a standard deviation above and below the mean value. (C)

Dipole strength of the iron pellet, extracted when all seven parameters (BX , BY , BZ , D, rX , rY , rZ) are

fitted. The resulting transitions occur at 17.2 GPa and 10.8 GPa for compression and decompression, re-

spectively. Comparing with the width of the transition (1.3 GPa), these values are in excellent agreement

with those presented in the main text.
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Fig. S15. (A) The protocol for obtaining the P -T phase map of Gd relies on monitoring the ODMR

spectrum versus temperature and pressure at a point of interest (probe) near the sample. To verify that

the observed signal is from the Gd flake, one can perform the same measurement on a control point

further away from the sample. (B) The difference in the splitting between the probe and control points

isolates the magnetic field generated by the Gd sample, allowing us to monitor the magnetic behavior of

the sample.
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Fig. S16. (A) Paths in the P -T phase space that inform about the hcp PM phase to the hcp FM phase. (B-
O) Measured NV splitting and corresponding fit. The resulting transition temperatures are highlighted

in (A) with squares. Shaded region corresponds to the part of the spectrum fitted.
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Fig. S17. (A) Paths in the P -T phase space that inform about the transition to the PM dhcp phase. (B-D)
Measured NV splitting and corresponding fit. The resulting transition temperatures are highlighted in

(A) with squares. We interpret (B) as a transition from FM hcp to PM dhcp, while (C),(D) as a transition

from PM Sm-type to PM dhcp. Shaded region corresponds to the part of the spectrum fitted.
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Fig. S18. (A) Path in the P -T phase space where a signal consistent with the purported AFM transition

in Sm-type Gd is seen (B). Shaded region corresponds to the part of the spectrum fitted.
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Fig. S19. Plots of T1 measurements below and above the magnetic phase transition in Gd. The green
(orange) curve was measured at 320 K (276 K) and yields T1 = 91±4 µs (66±3 µs), indicating a clear
reduction of the spin polarization lifetime in the ferromagnetic phase. A stretched exponential function
with exponent ↵ = 0.6 (0.65) was used for fitting.
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Fig. S20. Plots of T1 measurements away from the Gd flake at 315 K (grey curve) and 286 K (red
curve). The resulting spin polarization lifetimes T1 = 243±14 µs (315 K) and 247±20 µs (286 K) are
the identical within the errorbar.
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Fig. S21. The purple curve shows T1 taking only the bulk contribution to Johnson noise into account.
The red curve shows T1 taking both surface and bulks contribution into account, with TC = 292 K and
TC,s = 302 K. The blue dots are experimental data.
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Signal (unit) Theo Sensitivity Exp Sensitivity precision
(unit/

p
Hz) (unit/

p
Hz) (unit)

Hydrostatic stress (GPa) 0.017 0.023 0.0012

Average normal stress (GPa) 0.022 0.03 0.0032

Average shear stress (GPa) 0.020 0.027 0.0031

Magnetic field (µT) 8.8 12 2.2

Magnetic dipole (emu), 5.5⇥ 10
�12

7.5⇥ 10
�12

1.4⇥ 10
�12

floating sample (d = 5 µm)
Magnetic dipole (emu), 1.7⇥ 10

�20
2.3⇥ 10

�20
4.3⇥ 10

�21

exfoliated sample (d = 5 nm)(⇤)

Magnetic dipole (emu), 1.6⇥ 10
�21

2.2⇥ 10
�21

4.0⇥ 10
�22

exfoliated sample,
single NV (d = 5 nm)(†)

Electric field (kV/cm), 1.8 2.5 0.45

single NV(†)

Temperature (K), 0.4 0.55 0.10

single NV(†)

Table S1. NV sensitivity and precision for various signals. Sensitivity is calculated using Eqs. S2-S3.
We also report the typical fitting error of the center frequency for the relevant experiments in the main
text. Gray rows correspond to projected sensitivity given an exfoliated sample atop (⇤) an ensemble of
5 nm depth NV centers or (†) a single 5 nm depth NV center with �⌫ = 1 MHz, C = 0.1,R = 104 s�1.
Magnetic dipoles are reported in units of emu, where 1 emu = 10�3 A·m2.
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Run Direction Phase transition Remarks, visible in Fig.
1 Heat-up hcp (FM) �! hcp (PM) New sample, Fig. S16B
2 Cool-down hcp (PM) �! hcp (FM) Fig. S16C
3 Cool-down hcp (PM) �! hcp (FM) Fig. S16D
4 Cool-down No observation Probably starting in Sm due

to large initial pressure
5 Cool-down hcp (PM) �! hcp (FM) New sample, Fig. S16E
6 Heat-up hcp (FM) �! hcp (PM) Fig. S16F
7 Cool-down hcp (PM) �! hcp (FM) Fig. S16G
8 Heat-up hcp (FM) �! hcp (PM) Fig. S16H
9 Cool-down hcp (PM) �! hcp (FM) Fig. S16I, S17B

�! dhcp (PM)
10 Cool-down Weak evidence for Probably starting in Sm due

Sm (PM) �! Sm (AFM) to metastability, Fig. S18B
11 Cool-down hcp (PM) �! hcp (FM) New sample, Fig. S16J
12 Heat-up hcp (FM) �! hcp (PM) Fig. S16K
13 Cool-down hcp (PM) �! hcp (FM) Fig. S16L
14 Cool-down Weak evidence for Probably starting in Sm due

Sm (PM) �! dhcp (PM) to large initial pressure
15 Cool-down Weak evidence for Probably starting in Sm due

Sm (PM) �! dhcp (PM) to metastability, Fig. S17C
16 Heat-up Weak evidence for Fig. S17D

dhcp (PM) �! Sm (PM)
17 Cool-down hcp (PM) �! hcp (FM) New sample, Fig. S16M
18 Heat-up hcp (FM) �! hcp (PM) Fig. S16N
19 Cool-down hcp (PM) �! hcp (FM) Fig. S16O

and start of transition to dhcp (PM)

Table S2. Summary of all experimental runs in the P -T phase diagram, indexing either a decrease or
increase in temperature during this path, and the observed phase transitions. Each group of runs, between
double lines in the table, corresponds to a different sample.
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