Phase field approach for nanoscale interaction between crack
propagation and phase transformation
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Phase field approach (PFA) to the interaction of fracture and
martensitic phase transformation (PT) is developed, which includes
change in surface energy during PT and the effect of unexplored
scale parameter proportional to the ratio of the widths of the crack
surface and the phase interface, both at nanometer scale. Variation
of these two parameters causes unexpected qualitative and
quantitative effects: shift of PT away from the crack tip, “wetting”
of the crack surface by martensite, change in the structure and
geometry of the transformed region, crack trajectory, and process
of interfacial damage evolution, as well as transformation
toughening. The results suggest additional parameters controlling
coupled fracture and PTs.

Interaction between fracture and martensitic PTs is an
extremely important problem in the physics and mechanics of
strength, deformational, and transformational properties of
materials. In particular, high stress concentration at the crack
tip may cause PTs'>. PT absorbs energy and also produces
transformation strain, which serves as a mechanism of plastic
deformation and stress relaxation. Both increase resistance to
the crack growth and ductility, which is called transformation
toughening. Also, stresses generated during PTs may cause
fracture. PFA has been widely used for modeling the complex
microstructure evolution such as fracture®19, PTs11-15 and their
interactions® 1620_ However, only few works82° consider both
fracture and PT with the PFA. In the current letter, we
significantly advance the PFA to coupled fracture and PT by
integrating it with PFA to surface-induced pre-transformations
and transformations and including a new nanoscale effect (see
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ESI). PT*3 and fracture® are described with advanced models® 13,
which in contrast to previous models!® °, satisfy some
additional conditions to reproduce conceptually important
features of stress-strain curves. Theory includes various
coupling effects between fracture and PT. Thus, the suggested
PFA is much more realistic than previous models!® °. The key
point is that the theory possesses two characteristic nanoscale
parameters: widths of the crack surface 6. and the A-M
interface width 6,. We consider parameter & proportional to
their ratio as the main dimensionless scale parameter in our
formulation, and its effect is studied.

We found through the simulations that the reduction in the
surface energy during PTs promotes nucleation of M at the
crack tip, its stabilization as a nanolayer at the crack surface, or
nucleation of the pre-martensite or M at the crack surfaces.
Increase in surface energy during PT suppresses the PT near the
crack tip and at the surfaces, and stress-induced PT occurs
slightly away from the crack tip. In turn, change in surface
energy of a solid during PT affects crack behavior in terms of
change in cohesion and gradient energy, which changes crack
nucleation location and trajectory. All these changes are
essentially affected by the dimensionless width §.

The subscripts 0, d, A, and M are for the undamaged solid, fully-
damaged solid, austenite, and martensite, respectively. The PT
and damage are described by the order parameters n and ¢,
respectively; both vary between zero and unity. The austenite
(A) corresponds to n=0 and martensite (M) to n=1; the
undamaged state is described by ¢=0 and fully damaged by
d=1.

We consider PT between cubic austenite and tetragonal
martensite in NiAl with transformation strain £=(0.215,-0.078,
-0.078)* and isotropic elasticity; other material parameters are
given in the ESI. For these parameters, the width and energy of
the phase interface are &, = 5.54\/,80/(2A0(0€ —6°9))
=1.5065nm and E =\/,80A0(09—6C)/18=0.2245 N/m 2L
Isotropic surface energies y, and y vary in the range of 0.5-5
N/m and are presented below as ¥ = yy/ya. Flow chart of the
methodology is given in Figure S1 (see ESI).
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For the chosen cohesion energy ¢, the width of the crack
surface 6.=1.14/ 8, where [ is the initial distance between two
planes forming crack surfaces. Thus, there are two
characteristic widths, both at nanometer scale: width of the
crack surface é. (or /) and the A-M interface width §,. We
introduce & :=1.5(//5,) as the main dimensionless scale
parameter in our theory. It was recently revealed that, for a free
surface, such a ratio strongly affects the surface-induced
martensitic PT?* and melting?? and is suggested as the new
dimension in the phase diagram?2. Generally, if any PFA includes
two order parameters, their length scale ratio plays an essential
role in the occurring different processes?3, e.g. for interaction
between PT and dislocations'> and solid-solid PT via
intermediate melt?2. This parameter was never discussed for
the fracture and, as is shown below, significantly affects PT and
fracture processes. The plane stress problem is considered.
Length, time, and stress dimensions were normalized by 1 nm,
1 ps, and 1 GPa, respectively.

Pseudoelastic behavior. Processes in a center cracked

tension sample shown in Figure 1 are simulated at 6/6°=4.65,
i.e. deeply in the austenitic region in the pseudoelastic regime.
An initial crack (bold line at the center) is introduced via an
analytical solution® for the damage parameter ¢. An initial value
of n=0.001 is assumed everywhere. Homogeneous
displacements u on the lateral edges are linearly increased to
1.125 nm in 0.075 ps and then remain constant. Due to the
symmetry, only one-quarter of the sample is considered.
Coupled PT and fracture are studied as function of ¥ keeping 8=
const and as a function of § keeping ¥= const.
Figure 2 shows the distribution of n ahead of the moving crack
tip. Traditionally, PT starts around the crack tip, where stress
concentration is the highest!® 1°, Here, the martensitic region is
determined not only by the stress concentration but also by ¥
and 8. For ¥ < 1 M exists at the crack tip. However, fory = 10
there is a residual A region around the crack tip with width =
S., because of its much lower surface energy. This is a new
regime for the coupled crack and transforming zone
propagation. Larger § = 10 increases the width of the A layer
and suppresses martensitic PT, making M incomplete
(premartensite) in the entire transforming zone, which is
smaller than for § = 1.

—u(l) ¢ u(r)

120 nm

50 nm

Figure 1. Schematics of the center cracked tension sample with the boundary
conditions.
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Figure 2. PT region described by the distribution of the order parameter n ahead of
the moving crack tip at time t=2, shown in the region [x,y]=[(0, 10), (25, 45)] for
different ¥ and 5 (shown in figures) for the pseudoelastic regime. The region with
$20.99 is eliminated from the figures and is shown as the crack.

For ¥y = 1, the martensitic region is larger and transformation is
more complete than for ¥ = 10. For both cases, the martensitic
structure moves together with the crack tip, and the material
undergoes direct and reverse PTs due to pseudoelastic
behavior. Such a behavior is typically observed in an experiment
for a pseudoelastic material which has a crack®. For y = 1/3,
the martensitic region grows further and resides at the crack
surface, promoted by reduction of the surface energy during PT.
For the thicker crack surface, M cannot propagate far away from
the stress concentrator, but for the thinner crack surface, M
propagates along the entire crack surface, i.e. “wets” it. This
thin M layer is induced and stabilized by the surface after
unloading deep in the region of stability of A. Such a residual M
at crack and notch surfaces were observed experimentally for
NiTi single crystal?. Thus, the traditionally-neglected scale
parameter § essentially affects martensitic PT at the crack tip
and crack propagation.

Pseudoplastic behavior. Similar problems are solved to study
pseudoplastic behavior at 8 = 0¢ for which residual M exists
after local unloading. We changed the barrier parameter A to
keep the same barrier height A and, consequently, the
magnitude of the stress for the direct PT (see ESI for definitions
of the material parameters).

In Figure 3 for ¥ = 1, when the surface energy does not have
any contribution to the driving force for PT, the PT starts at the
crack tip and the transformed region grows with the crack
propagation, i.e. reverse PT does not occur behind the crack tip.
This corresponds to known experiments®. For ¥ = 10, smaller
surface energy of A drives the reverse PT near the crack tip. This
is a new effect for stress-induced PT during crack growth for the

This journal is © The Royal Society of Chemistry 20xx



Figure 3. PT region (distribution of ) ahead of the moving crack tip for different y and 5

for the pseudoplastic regime. Red and blue lines show contour lines ¢=0.5 and n=0.5,
respectively, for t=2, 3, and 4 (shown near curves).

pseudoplastic regime. For ¥ < 1, the reverse PT does not occur;
in addition, reduction of the surface energy leads to a surface-
induced martensitic PT along the entire crack surface. Our
results also show significant effects of the scale parameter §.
Fory = 10, there is a residual austenite region around the crack
tip, and smaller § results in the larger transformed region.
However, in contrast to the pseudoelastic regime, martensitic
PT is completed in the entire transformed region. Fory < 1, the
morphology of the transformed regions is entirely different for
different &. For larger &, there is more M near the crack tip and
along the crack surface and less in the growing-in-bulk-M plate.
Promotion of the M by thicker crack surface relaxes stresses,
suppressing martensite growth
branching is observed for larger §.
Interfacial fracture. Here we solve the problem for the same
geometry and boundary conditions, shown in Figure 4, but the
right side of the sample is initially martensite, i.e. interfacial
crack is considered at 8 = 6¢. The M was introduced by means
of the analytical solution for the equilibrium interface's. A
tensile misfit strain of 0.215 in M produces significant vertical
compressive stress in M and tensile stress in A. To avoid the
A<>M PT and focus on the interfacial crack propagation, we
used L,<<Ly, where Ly and L, are the kinetic coefficients for
damage and PT, respectively. Results will be also interpreted in
terms of Griffith theory for crack propagation,

in the plate. Also, crack

This journal is © The Royal Society of Chemistry 20xx

Figure 4. Damage distribution ¢ within and outside the phase interface shown in the
region [x,y]=[(-10 10),(25 50)] for 6=1 and different conditions shown in figures.

J > Ay with Ay =2ypyor2yporAy =y +ya—E, (1)
where J is elastic energy release, and three options for the
change in surface energy of a crack Ay are for crack propagating
through M, A, or A-M interface, respectively.

Despite the symmetry in the loading and geometry, the crack
path is not straight. For ¥ = 1/4, the crack deviates to the
martensitic region due to much smaller Ay. For ¥ = 1/2, the
crack is initially directed to the A driven by tensile stresses due
to misfit strain, i.e. by larger J despite the larger Ay. Relaxation
of internal stresses due to misfit and generation of tensile
stresses near the crack tip leads to significant damage in the
weaker M. Next, crack turns and propagates in the M, governed
by smaller Ay. For ¥ = 4/4, when y = ya > E, termination of
the lattice misfit at the crack surfaces produces a stress field and
J, which lead to a deviation of the crack into M. For ¥ = 8/4,
larger y suppresses this deviation, leading to the interfacial
crack propagation. Thus, interplay between initial stresses due
to a lattice misfit at the A-M interface and different surface
energies of A and M result in different crack propagation
scenarios.

Crack nucleation. To study crack nucleation in Figure 5, the finite-
width A-M interface was introduced using the analytical solution, but
transformation strain was neglected. An initial value of ¢=0.01 is
applied. The upper edge of a sample and the notch surface are
stress-free; the right side is moved with u(nm)=2t(ps), the left side is
fixed in the horizontal direction, and the lower left corner point is
fixed. Vertical displacement at the lower horizontal plane is zero
(v=0). Eq. (1) will be utilzed for the interpretation of the results.

For cases (a) and (b), the lowest Ay in equation J > Ay leads to
barrierless crack nucleation and propagation in A and along the
interface, respectively. For case (a), the lower surface energy of A
leads to crack nucleation and propagation in A, even though
disappearance of interface energy increases the driving force for
crack growth within the interface. For cases (b)-(d), energies of A and
M are equal. For case (b), the stress concentrator due to notch and
the disappearance of the interface energy both lead to crack
nucleation along the interface. In case (c), the effect of interface
energy on the crack driving force is neglected, leading to larger Ay;
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Figure 5. Damage distribution ¢ within/near the phase interface for:a)y = 5/0.5, t=2.8;
b) y = 0.5/0.5, t=2.5; c) y = 0.5/0.5, t=2.5, without interface energy (4o = B = 0 in
Eq. (12) in ESI), and d) y = 0.5/0.5, t=2.8. The interface (n=0.5) is shown by a solid black
line in each figure.

thus, for the same loading as in case (b), the crack does not nucleate.
For case (d), while the stress concentration due to notch and J are
larger in the middle of the sample than at the interface, the
disappearance of interface energy is dominant, and the crack
propagates through the interface due to smaller Ay. Again, interplay
between stress concentration, different surface energies of A and
M, and disappearance of the energy of the pre-existing A-M
interface produce variety of crack nucleation and evolution
developments.

Transformation toughening. The easiest way to evaluate the
transformation toughening is by comparing crack tip velocity for
the cases without PT and different PT scenarios. This is collected
in Table 1 for simulations in Figure 2 in pseudoelastic regime.
Due to the complex and nonlinear interplay of all parameters
involved in the Ginzburg-Landau equations, there is no
straightforward relationship between the extension of PT in
Figure 2 and the results in Table 1. For all cases, PT significantly
reduces crack speed. The largest transformation toughening is
for ¥ = 10, when A is located at the crack tip and surfaces; the
second largest crack velocity reduction is for ¥ = 1/3, when M
“wets” part of the entire crack surface; and the smallest
influence of PT is for ¥ = 1. The largest effect of the parameter
& is within 9% for ¥ = 10; this effect is nonmonotonous.

}7:i 77:% 77:% no PT,

0.5 0.5 15 y4=0.5N/m
5=10 1.13 1.33 1.19 1.82
5=5 1.03 1.26 1.20 1.82
s =1 1.05 1.29 1.22 1.82

Table 1. Crack tip velocity for different cases (nm/ps)

4| J. Name., 2012, 00, 1-3

Conclusions

An advanced PFA to the interaction between fracture and
martensitic PT is developed with nontrivial couplings, explicitly
incorporating surface-induced PT and pretransformation as well
as the scale effect related to the ratio of the width of the crack
surface to the width of the phase interface. It was
demonstrated that the effect of these parameters on the PT and
fracture is quite strong and multifaceted. In particular, lower
surface energy of M than of A can cause surface-induced PT and
pretransformation at the (“wetting” by
martensite) even in the pseudoelastic regime, when unloading

crack surface

near the crack surface should cause the reverse PT. In contrast,
lower surface energy of A than of M suppresses the PT at the
crack tip and shifts M away from the region of the highest stress
concentration in the pseudoelastic regime, and causes reverse
PT to A at the crack tip in the pseudoplastic regime. The
geometry and internal structure of the transformed region
strongly depend on the parameter & in both regimes.
Parameters ¥ and & essentially affect crack trajectory
(branching) and the process of interfacial damage evolution, as
well these are new
parameters controlling coupled fracture and PTs, and probably
twinning 2 25,

Two different interpretations of the widths of interfaces and
surfaces are used in the phase-field approach. In one of them,
they are just regularization parameters without physical
meaning. Our results show that the regularization lengths
cannot be chosen arbitrarily because their ratio significantly
affects the results of simulations. Alternatively!4 2123, 26, 27,
these are actual nanometer-size widths of interfaces, surfaces,
intermediate phases within interfaces, dislocation bands, and
pretransformed layers, which are determined using atomistic
simulations and experiments. For example, for surface melting
of Al nanoparticles, § was determined by fitting phase-field
approach results to the size-dependent melting temperature
22 Widths of surface disordered/molten layer and of
intermediate phases are determined as well?® 28 2%, For this
case, the obtained results represent real physical effects. For
surface-induced martensitic transformations, widths of surface
layer and surface energies of A and M are unknown®. These
parameters, as well as width and energy of A-M interface, depend
on composition, point defect segregation, dislocation structure at
external surfaces and interfaces, and can be partly controlled.

Note that phase interface width in Si can be changed from a
nanometer to infinity (i.e., leading to a homogeneous interface-free
transformation) by applying special triaxial stresses®. We hope that
our theoretical predictions will attract experimental efforts to
determine material parameters and study predicted phenomena.
Review article?? is devoted solely to the effect of & in various
material processes. Note that the results of phase-field
approach to surface-induced martensitic phase
transformations?! and obtained surface structures may be
observed at the crack surfaces as well.

as transformation toughening, i.e.
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1. The total system of equations for interaction between crack propagation and phase
transformation

We denote contractions between tensors A={A4;;} and B={B;;} as A-B={A4;Bji}, A:B=A4,;Bji, and
AQB=A;iBu. The subscripts 0, d, A, and M are for the undamaged solid, fully-damaged solid,
austenite, and martensite, respectively. The PT and damage are described by the order parameters
n and ¢, respectively; both vary between zero and unity. # is the order parameter which describes
phase transformation; The austenite (A) corresponds to #=0 and martensite M to #=1. ¢ is the
order parameter which describes damage; the undamaged state is described by ¢=0 and fully
damaged by ¢=1. The crack surface with a narrow width in which the material is partially broken
is described by 0<¢ <1. Equations related to PTs, fracture, and surface-induced PTs alone are most
close to those presented in the previous models', respectively.

The relationship between strain &, displacement u#, and decomposition of the strain into elastic

. and transformational g, f(7) parts are
£=05(Vu+Vu')=g,+£f(n); (S1)

S =an®+(4—-2a)n +(a@—-3)n". (S2)

* # To whom correspondence should be addressed.
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The interpolation function £ is justified' and satisfies £(0)=0, f(1)=1,and £'(0)= f'(1)=0 and
will be used for any material property. This allows one to ensure that #=0 and =1 are the
thermodynamic equilibrium values of # for any temperature and stresses. The Helmholtz free
energy is

w=y+y +y oy =iyl v =gty ty), (S3)

where v/ and " are the fracture and PT energy.

Elastic energy has the form

w =051-¢) e :C,:e,; C,=C,+(Cy—C,)f(n), (S4)

where Cp is the tensor of elastic moduli. Isotropic elasticity is used for simplicity, for which
tensors C (Ca and Cwm) have the following structure

C=(X, —§G0)1®1+2G014, (S5)

where Go and Ko are shear and bulk moduli, 7 is the second-order identity tensor, and /s is the

symmetric fourth-order identity tensor.

Cohesion energy is

e _2y() : _ — :
v =T F@; D) =ya+rm =201 (S6)

) =1+ Uy = LD SOD; by =1, =n-& -nl,,

where y(n) is the specific isotropic surface energy, / is the initial distance between two planes
forming crack surfaces, and n=V¢/ |V ¢| is normal to this plane. Change in surface energy during
the PT from its value for A y, to that for M y,, is explicitly included in the formulation. This

integrates our PFA to fracture and PTs with PFA to surface-induced PTs and pretransformations®

3, which was not previously applied to fracture. We use the advanced expression for y(77)°, which,

in contrast to the other models* >, allows for the non-contradictory description of the equilibrium

states at the surface.

Gradient energies for crack v and PT l//,7V are

2
)

wy =0.58,(n)|Vé

B, (1) =0.612y (m)!(1) ; (S7)



B, ()= By + (B, = B)f(9),

where the expression for S,(n7) is taken from 2,

The double-well barrier function for PT is
7 =An*(1-n); A= A0-0°);
’ ’ . . (S8)
A=A, + (A, —A) f(P); 0° =65 +(6; —6,) [ (),
where 6 is the critical temperature at which stress-free A loses its thermodynamic stability, 4

is the barrier for transformation between A and M and A4 is material parameter.

Chemical part of the free energy v 1s
7 =AG f(), AG" =-As'(6-6);
(89)

As® = Asy +(As; —Asg) f(P); 0° =67 +(6; —6) f(9),

where 6°¢ is the thermodynamic equilibrium temperature for stress-free A and M and As® is the
jump in specific entropy at 6°. Analyzing analytical solutions for the A-M interface’ and the crack
surface 2, we accept for a specific model:

A4,=0; 0°=6;=05; B,=0; As"=As;=As),

(S10)

and 0°=6;=0); l(n)=1, =1

These assumptions, in particular, imply that the A-M interface energy vanishes during damage.
We also assume a=0 for interpolation of 7 ! and a=3 for ¢ % and all other parameters.

Stress tensor is defined by the Hooke’s law:

o=V _(1-gyC, ¢, (S11)
o

Ginzburg-Landau equations are

1on_ __|

L o avn

on(l-mo:& -3n(-n1-¢)e, :(C,—C,):¢, - (S12)

1202 (1= )AG” = 2(1=3¢% + 26 (L= ) (1 2) 4, (0 — 0°) -
3n(1—n>[w(3¢2 26+ (B~ BOWV |+ V [ 5,0-3¢7 + 26V 7]



199 _ a‘/f |
L, o av¢

(-, : C, ige+3¢(1—¢)[2A0(9—96)772(1—77)2 AZHE (S13)

Zg1-A) s+ O =7 )GT =2 [+ [ B+ (B~ BT ~207) ]V}

where Ly and L, are the kinetic coefficients; Ls=0 when the crack is under closing compressive
stresses’. In such a way we exclude crack propagation under closing stresses. This is a stricter
approach? than to exclude some parts of elastic energy, which are related to the compressive
stresses/strains, from the driving force for crack propagation®.

Coupled system of Egs. (1)-(13) (some of them are included in the extended version of Egs.
(12)-(13)) along with equilibrium equations V-0 =0 and boundary conditions for the order
parameters, n-oy /dVn=0 and n-0y / V¢4 =0, are solved using the finite-element method and

COMSOL code. A flow chart for the problem formulation and solution is presented in Fig. S1.

PFA to interaction of PT and
fracture

) ) PFA for phase
PFA for fracture e  Material parameters in PFA transformations

-. for fracture depend on the _
A4 : A4

order parameters for PT;

Options for initial ¢ Material parameters in PFA Options for initial
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growth) Main variable parameters phase interface)
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crack nucleation) e Ratio of the surface energy of M and A, M nucleation)

¥ = Yu/Va-

o Ratio of the width of the cra_ck surface
and the A-M interface width, § :=1.5[/9,.

Boundary conditions

n-ow/ovg=0
n-oy/évVn=0

T

FEM subroutines, meshing

L2

FEM solutions and analysis of results

Figure S1. Flow chart of the methodology



2. Material Parameters

We consider phase transformation between cubic austenite and tetragonal martensite in NiAl

associated with the transformation strain &. All material parameters are collected in Table S1.

Table S1. Material parameters and their physical meaning
Definition/physical meaning

Isotropic bulk modulus (the same for austenite and martensite)

Isotropic shear modulus (the same for austenite and martensite)
Transformation strain from cubic austenite to tetragonal martensite
Double well barrier parameter between the austenite and martensite
Gradient energy coefficient for the phase transformation

Phase equilibrium temperature for the stress-free austenite and martensite
Critical temperature at which stress-free A loses its thermodynamic
stability

Energy of phase interphase

Kinetic coefficients for phase transformation

Kinetic coefficients for fracture (assumed from the accepted range?)

Value from the literature ’
unless otherwise stated
Ko=112.62 GPa

Go=71.5 GPa
£=(0.215,-0.078,—0.078)
Ao=4.40 MPa/K
Bo=5.18x10""N
°=215K

0=—183 K

E£=0.2245 N/m
1,=2596.5 (P a's)”
Ly=1000(Pa-s)!

3. Propagation of the interfacial crack

Here, the same problem is solved as in Figure 4 of the main text (i.e. evolution of the initial
interfacial crack at §=6°), with all the same material parameters, including 7 =y,, / 7, , but both
v and y,, are decreased by a factor of two. Results are generally close to those in Figure 4, but

nonzero damage spreads over a large region around a secondary crack outside the interface, which
is unexpected. However, this is not contradictory, because as our analysis® shows, most phase field
models for fracture, including the current one, allow stable damage below the ultimate strength,
which causes deviation of the stress-strain curve from the straight line. In our case, large stresses

at the crack tip and due to termination of the lattice misfit at the crack’s free surfaces became close

to the ultimate strength of martensite due to the small chosen y,,=0.5 N/m. This does not happen

at 7,,=1 N/m due to the larger ultimate strength of martensite. Due to the smaller ultimate strength

of martensite, the crack moves faster in Figure S2 than in Figure 4. Also, crack propagation is not



continuous. In Figure S2 (b), maximum damage in martensite is shifted from the crack tip in
austenite due to smaller strength. After stress exceeds the ultimate strength of the martensite at this
location, material instability starts and a new crack nucleates in Figure S2 (c). Next, both cracks
coalesce and the resultant crack continues propagation in the martensite (Figure S2 (d)). Figure S2
(a) also shows the deviation of crack to martensite due to its smaller ultimate strength without new

crack nucleation.

Figure S2. Damage distribution ¢ within and outside the phase interface shown in the region [x,y]=[(-10 10),(25
50)] for /=1 and different conditions. (a) Damage at time t=2 for ¥ = 0.5/ 2; (b) — (d) Damage evolution for times

1.5,2.0,and 2.5 for y =0.5/1.
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