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Phase field approach (PFA) to the interaction of fracture and 
martensitic phase transformation (PT) is developed, which includes 
change in surface energy during PT and the effect of unexplored 
scale parameter proportional to the ratio of the widths of the crack 
surface and the phase interface, both at nanometer scale. Variation 
of these two parameters causes unexpected qualitative and 
quantitative effects: shift of PT away from the crack tip, “wetting” 
of the crack surface by martensite, change in the structure and 
geometry of the transformed region, crack trajectory, and process 
of interfacial damage evolution, as well as transformation 
toughening. The results suggest additional parameters controlling 
coupled fracture and PTs. 

Interaction between fracture and martensitic PTs is an 
extremely important problem in the physics and mechanics of 
strength, deformational, and transformational properties of 
materials. In particular, high stress concentration at the crack 
tip may cause PTs1-5. PT absorbs energy and also produces 
transformation strain, which serves as a mechanism of plastic 
deformation and stress relaxation. Both increase resistance to 
the crack growth and ductility, which is called transformation 
toughening. Also, stresses generated during PTs may cause 
fracture. PFA has been widely used for modeling the complex 
microstructure evolution such as fracture6-10, PTs11-15, and their 
interactions4, 16-20. However, only few works18-20 consider both 
fracture and PT with the PFA. In the current letter, we 
significantly advance the PFA to coupled fracture and PT by 
integrating it with PFA to surface-induced pre-transformations 
and transformations and including a new nanoscale effect (see 

ESI). PT13 and fracture8 are described with advanced models8, 13, 
which in contrast to previous models18, 19, satisfy some 
additional conditions to reproduce conceptually important 
features of stress-strain curves. Theory includes various 
coupling effects between fracture and PT. Thus, the suggested 
PFA is much more realistic than previous models18, 19. The key 
point is that the theory possesses two characteristic nanoscale 
parameters: widths of the crack surface δc and the A-M 
interface width δp. We consider parameter 𝛿̅𝛿 proportional to 
their ratio as the main dimensionless scale parameter in our 
formulation, and its effect is studied. 
We found through the simulations that the reduction in the 
surface energy during PTs promotes nucleation of M at the 
crack tip, its stabilization as a nanolayer at the crack surface, or 
nucleation of the pre-martensite or M at the crack surfaces. 
Increase in surface energy during PT suppresses the PT near the 
crack tip and at the surfaces, and stress-induced PT occurs 
slightly away from the crack tip. In turn, change in surface 
energy of a solid during PT affects crack behavior in terms of 
change in cohesion and gradient energy, which changes crack 
nucleation location and trajectory. All these changes are 
essentially affected by the dimensionless width 𝛿̅𝛿.  
The subscripts 0, d, A, and M are for the undamaged solid, fully-
damaged solid, austenite, and martensite, respectively. The PT 
and damage are described by the order parameters η and ϕ, 
respectively; both vary between zero and unity. The austenite 
(A) corresponds to η=0 and martensite (M) to η=1; the 
undamaged state is described by ϕ=0 and fully damaged by 
ϕ=1. 
We consider PT between cubic austenite and tetragonal 
martensite in NiAl with transformation strain εt=(0.215,−0.078, 
−0.078)14 and isotropic elasticity; other material parameters are 
given in the ESI. For these parameters, the width and energy of 
the phase interface are 𝛿𝛿𝑝𝑝 = 5.54�𝛽𝛽0/(2𝐴𝐴0(𝜃𝜃𝑒𝑒 − 𝜃𝜃𝑐𝑐)) 
=1.5065nm and 𝐸𝐸 = �𝛽𝛽0𝐴𝐴0(𝜃𝜃𝑒𝑒 − 𝜃𝜃𝑐𝑐)/18=0.2245 N/m  21. 
Isotropic surface energies  𝛾𝛾A and 𝛾𝛾M  vary in the range of 0.5-5 
N/m and are presented below as 𝛾𝛾� = 𝛾𝛾M/𝛾𝛾A. Flow chart of the 
methodology is given in Figure S1 (see ESI). 
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For the chosen cohesion energy ψc, the width of the crack 
surface δc =1.14l 8, where l is the initial distance between two 
planes forming crack surfaces. Thus, there are two 
characteristic widths, both at nanometer scale: width of the 
crack surface δc (or l) and the A-M interface width δp. We 
introduce 𝛿̅𝛿 ≔1.5(l/δp) as the main dimensionless scale 
parameter in our theory. It was recently revealed that, for a free 
surface, such a ratio strongly affects the surface-induced 
martensitic PT21 and melting22 and is suggested as the new 
dimension in the phase diagram22. Generally, if any PFA includes 
two order parameters, their length scale ratio plays an essential 
role in the occurring different processes23, e.g. for interaction 
between PT and dislocations15 and solid-solid PT via 
intermediate melt22. This parameter was never discussed for 
the fracture and, as is shown below, significantly affects PT and 
fracture processes. The plane stress problem is considered. 
Length, time, and stress dimensions were normalized by 1 nm, 
1 ps, and 1 GPa, respectively. 
 Pseudoelastic behavior. Processes in a center cracked 
tension sample shown in Figure 1 are simulated at 𝜃𝜃/𝜃𝜃𝑒𝑒=4.65, 
i.e. deeply in the austenitic region in the pseudoelastic regime. 
An initial crack (bold line at the center) is introduced via an 
analytical solution8 for the damage parameter ϕ. An initial value 
of η=0.001 is assumed everywhere. Homogeneous 
displacements u on the lateral edges are linearly increased to 
1.125 nm in 0.075 ps and then remain constant. Due to the 
symmetry, only one-quarter of the sample is considered. 
Coupled PT and fracture are studied as function of 𝛾𝛾� keeping 𝛿̅𝛿= 
const and as a function of 𝛿̅𝛿 keeping 𝛾𝛾�= const.  
Figure 2 shows the distribution of η ahead of the moving crack 
tip. Traditionally, PT starts around the crack tip, where stress 
concentration is the highest18, 19. Here, the martensitic region is 
determined not only by the stress concentration but also by 𝛾𝛾� 
and 𝛿̅𝛿. For 𝛾𝛾� ≤ 1 M exists at the crack tip. However, for 𝛾𝛾� = 10 
there is a residual A region around the crack tip with width ≃
𝛿𝛿𝑐𝑐, because of its much lower surface energy. This is a new 
regime for the coupled crack and transforming zone 
propagation. Larger 𝛿̅𝛿 = 10 increases the width of the A layer 
and suppresses martensitic PT, making M incomplete 
(premartensite) in the entire transforming zone, which is 
smaller than for 𝛿̅𝛿 = 1.  

For 𝛾𝛾� = 1, the martensitic region is larger and transformation is 
more complete than for 𝛾𝛾� = 10. For both cases, the martensitic 
structure moves together with the crack tip, and the material 
undergoes direct and reverse PTs due to pseudoelastic 
behavior. Such a behavior is typically observed in an experiment 
for a pseudoelastic material which has a crack5. For 𝛾𝛾� = 1/3, 
the martensitic region grows further and resides at the crack 
surface, promoted by reduction of the surface energy during PT. 
For the thicker crack surface, M cannot propagate far away from 
the stress concentrator, but for the thinner crack surface, M 
propagates along the entire crack surface, i.e. “wets” it. This 
thin M layer is induced and stabilized by the surface after 
unloading deep in the region of stability of A. Such a residual M 
at crack and notch surfaces were observed experimentally for 
NiTi single crystal2. Thus, the traditionally-neglected scale 
parameter 𝛿̅𝛿 essentially affects martensitic PT at the crack tip 
and crack propagation. 
Pseudoplastic behavior. Similar problems are solved to study 
pseudoplastic behavior at 𝜃𝜃 = 𝜃𝜃𝑒𝑒  for which residual M exists 
after local unloading. We changed the barrier parameter A0 to 
keep the same barrier height 𝐴𝐴� and, consequently, the 
magnitude of the stress for the direct PT (see ESI for definitions 
of the material parameters).  
In Figure 3 for 𝛾𝛾� = 1, when the surface energy does not have 
any contribution to the driving force for PT,  the PT starts at the 
crack tip and the transformed region grows with the crack 
propagation, i.e. reverse PT does not occur behind the crack tip. 
This corresponds to known experiments1. For 𝛾𝛾� = 10, smaller 
surface energy of A drives the reverse PT near the crack tip. This 
is a new effect for stress-induced PT during crack growth for the 

Figure 2. PT region described by the distribution of the order parameter η ahead of 
the moving crack tip at time t=2, shown in the region [x,y]=[(0, 10), (25, 45)] for 
different 𝛾𝛾 and 𝛿𝛿 (shown in figures) for the pseudoelastic regime. The region with 
ϕ≥0.99 is eliminated from the figures and is shown as the crack.

Figure 1. Schematics of the center cracked tension sample with the boundary 
conditions.
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pseudoplastic regime. For 𝛾𝛾� ≤ 1, the reverse PT does not occur; 
in addition, reduction of the surface energy leads to a surface-
induced martensitic PT along the entire crack surface. Our 
results also show significant effects of the scale parameter 𝛿̅𝛿. 
For 𝛾𝛾� = 10, there is a residual austenite region around the crack 
tip, and smaller 𝛿̅𝛿 results in the larger transformed region. 
However, in contrast to the pseudoelastic regime, martensitic 
PT is completed in the entire transformed region. For 𝛾𝛾� ≤ 1, the 
morphology of the transformed regions is entirely different for 
different 𝛿̅𝛿. For larger 𝛿̅𝛿, there is more M near the crack tip and 
along the crack surface and less in the growing-in-bulk-M plate. 
Promotion of the M by thicker crack surface relaxes stresses, 
suppressing martensite growth in the plate. Also, crack 
branching is observed for larger 𝛿̅𝛿. 
Interfacial fracture. Here we solve the problem for the same 
geometry and boundary conditions, shown in Figure 4, but the 
right side of the sample is initially martensite, i.e. interfacial 
crack is considered at 𝜃𝜃 = 𝜃𝜃𝑒𝑒. The M was introduced by means 
of the analytical solution for the equilibrium interface14. A 
tensile misfit strain of 0.215 in M produces significant vertical 
compressive stress in M and tensile stress in A. To avoid the 
A↔M PT and focus on the interfacial crack propagation, we 
used Lη<<L𝜙𝜙, where Lϕ and Lη are the kinetic coefficients for 
damage and PT, respectively. Results will be also interpreted in 
terms of Griffith theory for crack propagation, 

𝐽𝐽 > ∆𝛾𝛾  with  ∆𝛾𝛾 = 2𝛾𝛾M or 2𝛾𝛾A or ∆𝛾𝛾 = 𝛾𝛾M + 𝛾𝛾A − 𝐸𝐸 ,           (1) 
where J is elastic energy release, and three options for the 
change in surface energy of a crack ∆𝛾𝛾 are for crack propagating 
through M, A, or A-M interface, respectively. 
Despite the symmetry in the loading and geometry, the crack 
path is not straight. For 𝛾𝛾� = 1/4, the crack deviates to the 
martensitic region due to much smaller ∆𝛾𝛾. For 𝛾𝛾� = 1/2, the 
crack is initially directed to the A driven by tensile stresses due 
to misfit strain, i.e. by larger J despite the larger ∆𝛾𝛾. Relaxation 
of internal stresses due to misfit and generation of tensile 
stresses near the crack tip leads to significant damage in the 
weaker M. Next, crack turns and propagates in the M, governed 
by smaller ∆𝛾𝛾. For 𝛾𝛾� = 4/4, when 𝛾𝛾M = 𝛾𝛾A ≫ 𝐸𝐸, termination of 
the lattice misfit at the crack surfaces produces a stress field and 
J, which lead to a deviation of the crack into M. For 𝛾𝛾� = 8/4, 
larger 𝛾𝛾M suppresses this deviation, leading to the interfacial 
crack propagation. Thus, interplay between initial stresses due 
to a lattice misfit at the A-M interface and different surface 
energies of A and M result in different crack propagation 
scenarios.  
Crack nucleation. To study crack nucleation in Figure 5, the finite-
width A-M interface was introduced using the analytical solution, but 
transformation strain was neglected. An initial value of ϕ=0.01 is 
applied. The upper edge of a sample and the notch surface are 
stress-free; the right side is moved with u(nm)=2t(ps), the left side is 
fixed in the horizontal direction, and the lower left corner point is 
fixed. Vertical displacement at the lower horizontal plane is zero 
(v=0).  Eq. (1) will be utilzed for the interpretation of the results. 
For cases (a) and (b), the lowest ∆𝛾𝛾 in equation 𝐽𝐽 > ∆𝛾𝛾  leads to 
barrierless crack nucleation and propagation in A and along the 
interface, respectively. For case (a), the lower surface energy of A 
leads to crack nucleation and propagation in A, even though 
disappearance of interface energy increases the driving force for 
crack growth within the interface. For cases (b)-(d), energies of A and 
M are equal. For case (b), the stress concentrator due to notch and 
the disappearance of the interface energy both lead to crack 
nucleation along the interface. In case (c), the effect of interface 
energy on the crack driving force is neglected, leading to larger ∆𝛾𝛾; 

Figure 3. PT region (distribution of η) ahead of the moving crack tip for different 𝛾𝛾 and 𝛿𝛿 
for the pseudoplastic regime. Red and blue lines show contour lines ϕ=0.5 and η=0.5, 
respectively, for t=2, 3, and 4 (shown near curves).

Figure 4. Damage distribution ϕ within and outside the phase interface shown in the 
region [x,y]=[(-10 10),(25 50)] for 𝛿𝛿̅=1 and different conditions shown in figures.  



COMMUNICATION Journal Name 

4 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

thus, for the same loading as in case (b), the crack does not nucleate. 
For case (d), while the stress concentration due to notch and J are 
larger in the middle of the sample than at the interface, the 
disappearance of interface energy is dominant, and the crack 
propagates through the interface due to smaller ∆𝛾𝛾. Again, interplay 
between stress concentration, different surface energies of A and 
M, and disappearance of the energy of the pre-existing A-M 
interface produce variety of crack nucleation and evolution 
developments. 
Transformation toughening. The easiest way to evaluate the 
transformation toughening is by comparing crack tip velocity for 
the cases without PT and different PT scenarios. This is collected 
in Table 1 for simulations in Figure 2 in pseudoelastic regime.  
Due to the complex and nonlinear interplay of all parameters 
involved in the Ginzburg-Landau equations, there is no 
straightforward relationship between the extension of PT in 
Figure 2 and the results in Table 1. For all cases, PT significantly 
reduces crack speed. The largest transformation toughening is 
for 𝛾𝛾� = 10, when A is located at the crack tip and surfaces; the 
second largest crack velocity reduction is for 𝛾𝛾� = 1/3, when M 
“wets” part of the entire crack surface; and the smallest 
influence of PT is for 𝛾𝛾� = 1. The largest effect of the parameter 
𝛿̅𝛿 is within 9% for 𝛾𝛾� = 10; this effect is nonmonotonous. 

Table 1. Crack tip velocity for different cases (nm/ps) 

Conclusions 
An advanced PFA to the interaction between fracture and 
martensitic PT is developed with nontrivial couplings, explicitly 
incorporating surface-induced PT and pretransformation as well 
as the scale effect related to the ratio of the width of the crack 
surface to the width of the phase interface. It was 
demonstrated that the effect of these parameters on the PT and 
fracture is quite strong and multifaceted. In particular, lower 
surface energy of M than of A can cause surface-induced PT and 
pretransformation at the crack surface (“wetting” by 
martensite) even in the pseudoelastic regime, when unloading 
near the crack surface should cause the reverse PT. In contrast, 
lower surface energy of A than of M suppresses the PT at the 
crack tip and shifts M away from the region of the highest stress 
concentration in the pseudoelastic regime, and causes reverse 
PT to A at the crack tip in the pseudoplastic regime. The 
geometry and internal structure of the transformed region 
strongly depend on the parameter 𝛿̅𝛿 in both regimes. 
Parameters 𝛾𝛾� and 𝛿̅𝛿 essentially affect crack trajectory 
(branching) and the process of interfacial damage evolution, as 
well as transformation toughening, i.e. these are new 
parameters controlling coupled fracture and PTs, and probably 
twinning 24, 25.  
Two different interpretations of the widths of interfaces and 
surfaces are used in the phase-field approach. In one of them, 
they are just regularization parameters without physical 
meaning. Our results show that the regularization lengths 
cannot be chosen arbitrarily because their ratio significantly 
affects the results of simulations. Alternatively14, 21-23, 26, 27, 
these are actual nanometer-size widths of interfaces, surfaces, 
intermediate phases within interfaces, dislocation bands, and 
pretransformed layers, which are determined using atomistic 
simulations and experiments. For example, for surface melting 
of Al nanoparticles, 𝛿̅𝛿 was determined by fitting phase-field 
approach results to the size-dependent melting temperature 
22. Widths of surface disordered/molten layer and of 
intermediate phases are determined as well26, 28, 29. For this 
case, the obtained results represent real physical effects. For 
surface-induced martensitic transformations, widths of surface 
layer and surface energies of A and M are unknown4. These 
parameters, as well as width and energy of A-M interface, depend 
on composition, point defect segregation, dislocation structure at 
external surfaces and interfaces, and can be partly controlled. 
Note that phase interface width in Si can be changed from a 
nanometer to infinity (i.e., leading to a homogeneous interface-free 
transformation) by applying special triaxial stresses5. We hope that 
our theoretical predictions will attract experimental efforts to 
determine material parameters and study predicted phenomena. 

Review article23 is devoted solely to the effect of 𝛿̅𝛿 in various 
material processes. Note that the results of phase-field 
approach to surface-induced martensitic phase 
transformations21 and obtained surface structures may be 
observed at the crack surfaces as well. 
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Figure 5. Damage distribution ϕ within/near the phase interface for: a) 𝛾𝛾 = 5/0.5, t=2.8;  
b) 𝛾𝛾 = 0.5/0.5, t=2.5; c) 𝛾𝛾 = 0.5/0.5, t=2.5, without interface energy (𝐴𝐴0 = 𝛽𝛽0 = 0 in 
Eq. (12) in ESI), and d) 𝛾𝛾 = 0.5/0.5, t=2.8. The interface (η=0.5) is shown by a solid black 
line in each figure.  
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1. The total system of equations for interaction between crack propagation and phase 
transformation 

We denote contractions between tensors A={Aij} and B={Bij} as A∙B={AijBjk}, A:B=AijBji, and 

A⨂B=AijBkl. The subscripts 0, d, A, and M are for the undamaged solid, fully-damaged solid, 

austenite, and martensite, respectively. The PT and damage are described by the order parameters 

η and ϕ, respectively; both vary between zero and unity. η is the order parameter which describes 

phase transformation; The austenite (A) corresponds to η=0 and martensite M to η=1. ϕ is the 

order parameter which describes damage; the undamaged state is described by ϕ=0 and fully 

damaged by ϕ=1. The crack surface with a narrow width in which the material is partially broken 

is described by 0<ϕ <1. Equations related to PTs, fracture, and surface-induced PTs alone are most 

close to those presented in the previous models1-3, respectively. 

The relationship between strain ε, displacement u, and decomposition of the strain into elastic 

εe and transformational ( )t f ηε  parts are 

( ) ( )T
e t+ f η0.5 = += ∇ ∇ε ε εu u ; (S1) 

2 3 4( ) (4 2 ) ( 3)f a a aη η η η= + − + − . (S2) 

                                                           
1 *, # To whom correspondence should be addressed. 

mailto:*vlevitas@iastate.edu


The interpolation function f  is justified1 and satisfies (0) 0f = , (1) 1f = , and (0) (1) 0f f′ ′= =  and 

will be used for any material property. This allows one to ensure that η=0 and η=1 are the 

thermodynamic equilibrium values of η for any temperature and stresses. The Helmholtz free 

energy is 

; ; ,e f PT f c PT
φ ηψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ= + + = + = + +



∇ ∇  (S3) 

where fψ and PTψ are the fracture and PT energy. 

Elastic energy has the form  
2

00.5(1 ) : :e
e eψ − φ= ε εC ;   0 A M A( ) ( )f η= + −C C C C , (S4) 

where C0 is the tensor of elastic moduli. Isotropic elasticity is used for simplicity, for which 

tensors C (CA and CM) have the following structure 

0 0 0 4
2( ) 2
3

K G G= − ⊗ +C I I I , (S5) 

where G0 and K0 are shear and bulk moduli, I is the second-order identity tensor, and I4 is the 

symmetric fourth-order identity tensor.  

Cohesion energy is 

2 ( ) ( )
( )

c f
l
γ ηψ φ
η

= ;  A M A( ) ( ) ( )fγ η γ γ γ η= + − ; 

A M A( ) ( ) ( )l l l l fη η= + − ; M A Atl l l= ⋅− ⋅n nε ,  

(S6) 

where ( )γ η  is the specific isotropic surface energy, l is the initial distance between two planes 

forming crack surfaces, and /= ∇ ∇φ φn  is normal to this plane. Change in surface energy during 

the PT from its value for A Aγ  to that for M Mγ  is explicitly included in the formulation. This 

integrates our PFA to fracture and PTs with PFA to surface-induced PTs and pretransformations4, 

5, which was not previously applied to fracture. We use the advanced expression for ( )γ η 6, which, 

in contrast to the other models4, 5, allows for the non-contradictory description of the equilibrium 

states at the surface. 

Gradient energies for crack φψ ∇  and PT ηψ
∇  are 

20.5 ( )φ φψ β η φ=∇ ∇ ;     ( ) 0.612 ( ) ( )lφβ η γ η η= ; (S7) 



20.5 ( )η ηψ β φ η=∇ ∇ ;    0 0( ) ( ) ( )d fηβ φ β β β φ= + − , 

where the expression for ( )φβ η  is taken from 2. 

The double-well barrier function for PT is  
2 2(1 ) ;Aψ η η= −   ( )cA A θ θ= − ; 

0 0( ) ( )dA A A A f φ= + − ; 0 0( ) ( )c c c c
d fθ θ θ θ φ= + − , 

(S8) 

where cθ  is the critical temperature at which stress-free A loses its thermodynamic stability, A   

is the barrier for transformation between A and M and A is material parameter. 

Chemical part of the free energy ψ  is  

( )G fθψ η= ∆ , ( )e eG sθ θ θ∆ = −∆ − ;  

0 0( ) ( )e e e e
ds s s s f φ∆ = ∆ + ∆ − ∆ ; 0 0( ) ( )e e e e

d fθ θ θ θ φ= + − , 
   (S9) 

where eθ  is the thermodynamic equilibrium temperature for stress-free A and M and es∆  is the 

jump in specific entropy at eθ . Analyzing analytical solutions for the A-M interface7 and the crack 

surface 2, we accept for a specific model: 

0dA = ;  0
c c c

dθ θ θ= = ;  0dβ = ;  0
e e e

ds s s∆ = ∆ = ∆ , 

and 0
0

e e
dθ θ θ= = ; A( ) :l l lη = = . 

(S10) 

These assumptions, in particular, imply that the A-M interface energy vanishes during damage. 

We also assume a=0 for interpolation of ψ 1 and a=3 for ψc 2 and all other parameters.  

Stress tensor is defined by the Hooke’s law: 

2
0(1 ) : e

ψ φ∂
= = −
∂

σ ε
ε

C . (S11) 

Ginzburg-Landau equations are 

2
M A

2 2 3
0

22 3 2 3M A
M A 0

1

6 (1 ) : 3 (1 )(1 ) : ( ) :
12 (1 ) 2(1 3 2 ) (1 ) (1 2 ) ( )

4( )3 (1 ) (3 2 ) ( ) (1 3 2 ) ;

|

t e e
c

L t

G A

l

η

θ

η ψ ψ
η η

η η η η φ

η η φ φ η η η θ θ
γ γη η φ φ β β φ β φ φ η

∂ ∂ ∂
= − + ⋅ =

∂ ∂ ∂

− − − − − −

− ∆ − − + − × − − −

−   − − + − + ⋅ − +  

ε

σ ε ε ε

∇
∇

∇ ∇ ∇

C C  (S12) 
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|

c
e e

L t

A

l

φ

φ ψ ψ
φ φ

φ φ φ θ θ η η β η

φ φ γ γ γ η η β β β η η φ

∂ ∂ ∂
= − + ⋅ =

∂ ∂ ∂

 − + − − − + − 

   − + − − + ⋅ + − −   

ε

ε ε

∇
∇

∇

∇ ∇

C  (S13) 

where Lϕ and Lη are the kinetic coefficients; Lϕ=0 when the crack is under closing compressive 

stresses2. In such a way we exclude crack propagation under closing stresses. This is a stricter 

approach2 than to exclude some parts of elastic energy, which are related to the compressive 

stresses/strains, from the driving force for crack propagation8. 

Coupled system of Eqs. (1)-(13) (some of them are included in the extended version of Eqs. 

(12)-(13)) along with equilibrium equations ⋅ =∇ σ 0  and boundary conditions for the order 

parameters, / 0ψ η⋅∂ ∂ =∇n  and / 0ψ φ⋅∂ ∂ =∇n , are solved using the finite-element method and 

COMSOL code. A flow chart for the problem formulation and solution is presented in Fig. S1. 

 
Figure S1. Flow chart of the methodology 



2. Material Parameters 

We consider phase transformation between cubic austenite and tetragonal martensite in NiAl 

associated with the transformation strain εt. All material parameters are collected in Table S1.  

Table S1. Material parameters and their physical meaning 

Definition/physical meaning 
Value from the literature 7 

unless otherwise stated 

Isotropic bulk modulus (the same for austenite and martensite) K0=112.62 GPa 

Isotropic shear modulus (the same for austenite and martensite) G0=71.5 GPa 

Transformation strain from cubic austenite to tetragonal martensite εt=(0.215,−0.078,−0.078) 

Double well barrier parameter between the austenite and martensite A0=4.40 MPa/K 

Gradient energy coefficient for the phase transformation β0=5.18×10-10 N 

Phase equilibrium temperature for the stress-free austenite and martensite θe=215 K 

Critical temperature at which stress-free A loses its thermodynamic 

stability 
θc=−183 K 

Energy of phase interphase E=0.2245 N/m 

Kinetic coefficients for phase transformation Lη=2596.5 (P a∙s)-1 

Kinetic coefficients for fracture (assumed from the accepted range2) Lϕ=1000(Pa∙s)-1 

3. Propagation of the interfacial crack 

Here, the same problem is solved as in Figure 4 of the main text (i.e. evolution of the initial 

interfacial crack at θ=θe), with all the same material parameters, including M A/γ γ γ= , but both 

Aγ  and Mγ  are decreased by a factor of two. Results are generally close to those in Figure 4, but 

nonzero damage spreads over a large region around a secondary crack outside the interface, which 

is unexpected. However, this is not contradictory, because as our analysis2 shows, most phase field 

models for fracture, including the current one, allow stable damage below the ultimate strength, 

which causes deviation of the stress-strain curve from the straight line. In our case, large stresses 

at the crack tip and due to termination of the lattice misfit at the crack’s free surfaces became close 

to the ultimate strength of martensite due to the small chosen Mγ =0.5 N/m. This does not happen 

at Mγ =1 N/m  due to the larger ultimate strength of martensite. Due to the smaller ultimate strength 

of martensite, the crack moves faster in Figure S2 than in Figure 4. Also, crack propagation is not 



continuous. In Figure S2 (b), maximum damage in martensite is shifted from the crack tip in 

austenite due to smaller strength. After stress exceeds the ultimate strength of the martensite at this 

location, material instability starts and a new crack nucleates in Figure S2 (c). Next, both cracks 

coalesce and the resultant crack continues propagation in the martensite (Figure S2 (d)). Figure S2 

(a) also shows the deviation of crack to martensite due to its smaller ultimate strength without new 

crack nucleation. 

 

Figure S2. Damage distribution ϕ within and outside the phase interface shown in the region [x,y]=[(-10 10),(25 
50)] for l=1 and different conditions. (a) Damage at time t=2 for 0.5 / 2γ = ; (b) – (d) Damage evolution for times 

1.5, 2.0, and 2.5 for 0.5 /1γ = . 

REFRENCES 

1. V. I. Levitas and D. L. Preston, Physical Review B, 2002, 66, 134206. 
2. V. I. Levitas, H. Jafarzadeh, G. H. Farrahi and M. Javanbakht, International Journal of Plasticity, 

2018, 111, 1-35. 
3. V. I. Levitas and M. Javanbakht, Physical Review Letters, 2011, 107, 175701. 
4. R. Lipowsky, Physical Review Letters, 1982, 49, 1575-1578. 
5. B. Pluis, D. Frenkel and J. F. van der Veen, Surface Science, 1990, 239, 282-300. 
6. V. I. Levitas and M. Javanbakht, Physical Review Letters, 2010, 105, 165701. 
7. V. I. Levitas, D. L. Preston and D.-W. Lee, Physical Review B, 2003, 68, 134201. 
8. R. Schmitt, C. Kuhn, R. Skorupski, M. Smaga, D. Eifler and R. Müller, Archive of Applied 

Mechanics, 2015, 85, 1459-1468. 

 


