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A note on weak factorization of a Meyer-type Hardy space

via a Cauchy integral operator

by

Yongsheng Han (Auburn, AL), Ji Li (Sydney),
Cristina Pereyra (Albuquerque, NM) and

Brett D. Wick (St. Louis, MO)

Abstract. This paper provides a weak factorization for the Meyer-type Hardy space
H1

b (R), and characterizations of its dual BMOb(R) and its predual VMOb(R) via bounded-
ness and compactness of a suitable commutator with the Cauchy integral CΓ , respectively.
Here b(x) = 1 + iA′(x) where A′ ∈ L∞(R), and the Cauchy integral CΓ is associated to
the Lipschitz curve Γ = {x+ iA(x) : x ∈ R}.

1. Introduction and statement of main results. Given a bounded
function b : Rn → C such that Re b(x) ≥ 1 for all x ∈ R

n, the Meyer-type
Hardy space H1

b (R
n) consists of those functions f : Rn → C such that the

product bf belongs to the real Hardy space H1(Rn). The Meyer-type space
of bounded mean oscillation, denoted BMOb(R

n), consists of all functions
A : Rn → C such that the function A/b belongs to BMO(Rn), and is the dual
of H1

b (R
n). These spaces were introduced by Yves Meyer [Me, Chapter XI,

Section 10, p. 358] in dimension one in connection with the study of the
Cauchy integral associated with a Lipschitz curve and the T (b) theorem.
Observe that both the real Hardy space H1(Rn) and its dual BMO(Rn)
consist of real-valued functions.

In this note we study the Meyer-type Hardy space H1
b (R) and its dual

BMOb(R) for b(x) = 1 + iA′(x) where A′ ∈ L∞(R), via the Cauchy integral
CΓ associated to the Lipschitz curve Γ = {x + iA(x) : x ∈ R}. We present
a weak factorization of H1

b (R) in terms of the Cauchy integral CΓ . We also
obtain a characterization of BMOb(R) and of VMOb(R), the Meyer-type
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space of vanishing mean oscillation, via boundedness and compactness of a
suitable commutator with the Cauchy integral respectively.

The Cauchy integral associated with the Lipschitz curve Γ is the integral
operator CΓ given by

CΓ (f)(x) := p.v.
1

πi

�

R

(1 + iA′(y))f(y)

y − x+ i(A(y)−A(x))
dy,

where f ∈ C∞
c (R). Note that it is not a standard Calderón–Zygmund oper-

ator because it lacks smoothness. The Lp-boundedness of CΓ is equivalent
to that of the related operator C̃Γ defined by

C̃Γ (f)(x) := p.v.
1

πi

�

R

f(y)

y − x+ i(A(y)−A(x))
dy.

Moreover, the kernel of C̃Γ satisfies standard size and smoothness estimates
[LN+] and is therefore bounded on Lp(R) for p ∈ (1,∞). Note that in

the cited article the operator CΓ was denoted C̃Γ and vice versa. Hence
while CΓ (f) is initially defined for f ∈ C∞

c (R), the operator CΓ can be
extended to all f ∈ Lp(R), for each p ∈ (1,∞).

The operator C̃Γ and its commutator with functions in BMO(R) were
studied by Li, Nguyen, Ward, and Wick [LN+]. In this setting, one could
appeal to a weak factorization for H1(Rn) in terms of multilinear Calderón–
Zygmund operators, due to Li and Wick [LW1, Theorem 1.3], to obtain the
desired characterization of BMO(R) via boundedness of the commutator,
and of VMO(R) via compactness of the commutator.

We want to study the Meyer-type Hardy space, bounded mean oscil-
lation space, and vanishing mean oscillation space: H1

b (R), BMOb(R), and
VMOb(R), via the rougher operator CΓ . As it turns out, we can derive these
results from the results for the related Cauchy integral operator [LN+]. Nev-
ertheless we also present a direct constructive proof of the weak factorization
valid for H1

b (R) that may be of independent interest.

We now state our main results. For b(x) = 1 + iA′(x), we introduce the
associated bilinear form as follows:

(1.1) Πb(g, h)(x) :=
1

b(x)

(
g(x) · CΓ (h)(x)− h(x) · C ∗

Γ (g)(x)
)
,

where C ∗
Γ is the adjoint operator to CΓ .

Theorem 1.1. For any f ∈ H1
b (R) there exist a sequence {λk

j }j,k≥1 ∈ `1

and functions gkj , h
k
j ∈ L∞(R) for integers j, k ≥ 1 with compact supports

such that

f =

∞∑

k=1

∞∑

j=1

λk
jΠb(g

k
j , h

k
j ).
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Moreover,

‖f‖H1
b
(R) ≈ inf

{ ∞∑

k=1

∞∑

j=1

|λk
j | ‖g

k
j ‖L2(R)‖h

k
j ‖L2(R) : f =

∞∑

k=1

∞∑

j=1

λk
jΠb(g

k
j , h

k
j )
}
.

The double index notation, used for both the sequence and the functions
appearing in the theorem, is a reflection of the Uchiyama construction which
is executed in two layers, one indexed by integers j ≥ 1 and the other by
integers k ≥ 1. We could have stated the theorem with a single index.

The commutator [g, T ] of a function g and an operator T is the new oper-
ator acting on suitable functions f , defined by [g, T ](f) := gT (f)−T (gf). It
is well known that a ∈ BMO(R) (respectively a ∈ VMO(R)) if and only if the
commutator [a,H] of a with the Hilbert transform is a bounded operator on
Lp(R) [CRW] (respectively is a compact operator [U1]). In [LN+], functions
a in BMOb(R) (respectively in VMOb(R)) were characterized via bounded-

ness (respectively compactness) of [a, C̃Γ ], the commutator with the related
Cauchy operator. To characterize BMOb(R) and VMOb(R) we will consider
the commutator of the Cauchy integral not with functions in BMOb(R) or
VMOb(R) but with those functions divided by the accretive function b. In
other words, we will consider for the next theorems the commutator [A/b,CΓ ]
where A is in BMOb(R) or in VMOb(R).

Theorem 1.2. Let b(x) = 1 + iA′(x) and p ∈ (1,∞). If A ∈ BMOb(R),
then the commutator [A/b,CΓ ] is a bounded operator, and

‖[A/b,CΓ ]‖Lp(R)→Lp(R) . ‖A‖BMOb(R).

Conversely, for any complex function A such that A/b is a real-valued func-

tion and A/b ∈ L1
loc(R), if the commutator [A/b,CΓ ] is a bounded operator

then A ∈ BMOb(R), and

‖A‖BMOb(R) . ‖[A/b,CΓ ]‖Lp(R)→Lp(R).

Theorem 1.3. Let b(x) = 1 + iA′(x) and p ∈ (1,∞). If A ∈ VMOb(R),
then [A/b, CΓ ] is compact on Lp(R). Conversely, for any complex function

A ∈ BMOb(R) such that A/b is real-valued and A/b ∈ L1
loc(R), if [A/b,CΓ ]

is compact on Lp(R), then A ∈ VMOb(R).

Note that one can deduce these three theorems from the results in [LN+]
and [LW1] directly, as we will show in Section 3.

The paper is organized as follows. In Section 2 we collect the necessary
preliminaries needed to explain the result. In Section 3 we provide a connec-
tion between the classical Hardy and BMO spaces and the spaces introduced
by Meyer. In Section 4 we provide another proof of Theorem 1.1 using a clever
construction due to Uchiyama [U2].

We use the standard notation A . B or B & A to mean that there
exists an absolute constant C such that A ≤ CB. Likewise, A ≈ B if and
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only if A . B and B . A. We use 〈f, g〉L2(R) to denote the L2-pairing	
R
f(x)g(x) dx. We denote by C∞

c (R) the space of compactly supported in-
finitely differentiable functions on R. Finally, χI is the characteristic function
of the set I ⊂ R, defined by χI(x) = 1 if x ∈ I and χI(x) = 0 otherwise.

2. Preliminaries. In this section we introduce basic notions of accretive
functions; the classical spaces: the Hardy space H1(R), the space BMO(R)
of bounded mean oscillation functions, and the space VMO(R) of vanishing
mean oscillation as well as their counterparts, the Meyer-type Hardy spaces:
H1

b (R), BMOb(R), and VMOb(R), for b an accretive function. We also intro-
duce the Cauchy integral operator CΓ associated to a Lipschitz curve Γ and
the related Cauchy integral operator C̃Γ .

A function b : R → C is accretive if b ∈ L∞(R) and there exists δ > 0
such that Re b(x) ≥ δ for all x ∈ R.

A locally integrable function f : R → R is said to be of bounded mean

oscillation, written f ∈ BMO or f ∈ BMO(R), if

‖f‖BMO := sup
I

1

|I|

�

I

|f(x)− fI | dx < ∞.

Here the supremum is taken over all intervals I in R and fI := 1
|I|

	
I f(y) dy

is the average of the function f over the interval I.
A BMO function f : R → R is said to be of vanishing mean oscillation,

written f ∈ VMO or f ∈ VMO(R), if the following three behaviors occur
for small, large and far-from-the-origin intervals respectively:

lim
δ→0

sup
I: |I|<δ

1

|I|

�

I

|f(x)− fI | dx = 0,(i)

lim
R→∞

sup
I: |I|>R

1

|I|

�

I

|f(x)− fI | dx = 0,(ii)

lim
R→∞

sup
I: I∩(−R,R)=∅

1

|I|

�

I

|f(x)− fI | dx = 0.(iii)

The Hardy space H1(R) consists of those integrable functions f : R → R

that admit an atomic decomposition f(x) =
∑∞

j=1 λjaj(x) where
∑∞

j=1 |λj |

< ∞ and the functions aj are L∞-atoms (respectively L2-atoms) in the sense
that each aj is supported on an interval Ij and satisfies the L∞-size condition
‖aj‖L∞(R) ≤ 1/|Ij | (respectively, L2-size condition ‖aj‖L2(R) ≤ C|Ij |

−1/2)

and the cancellation condition
	
R
aj(x) dx = 0. The H1-norm can be defined

using either type of atoms, for example

‖f‖H1(R) := inf
{ ∞∑

j=1

|λj | : f =

∞∑

j=1

λjaj , aj are L2-atoms
}
.
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If instead we use L∞-atoms we will get an equivalent norm [Gra, Section
6.6.4]. It is well known that BMO(R) is the dual of H1(R) [FS].

A function f : R → C is said to be in H1
b (R), the Meyer-type Hardy space

associated with the accretive function b, if bf ∈ H1(R); moreover

‖f‖H1
b
(R) := ‖bf‖H1(R).

In other words, f ∈ H1
b (R) admits an atomic decomposition f =

∑∞
j=1 λjaj

where
∑∞

j=1 |λj | < ∞ and the functions aj are L∞-atoms (respectively L2-
atoms) in the sense that each aj is supported on an interval Ij and satisfies
the L∞-size condition ‖aj‖L∞(R) ≤ 1/|Ij | (respectively, the L2-size condi-

tion ‖aj‖L2(R) ≈ ‖baj‖L2(R) ≤ C|Ij |
−1/2) and the cancellation condition	

R
aj(x)b(x) dx = 0.

A locally integrable function A : R → C is said to be in BMOb(R), the
Meyer-type BMO space associated with the accretive function b, if

A/b ∈ BMO(R),

and we define its norm naturally to be ‖A‖BMOb(R) := ‖A/b‖BMO(R). As a

consequence of the H1-BMO duality, BMOb(R) is the dual of H1
b (R) [Me].

A locally integrable function A : R → C is said to be in VMOb(R), the
Meyer-type VMO space associated with the accretive function b, if

A/b ∈ VMO(R).

Suppose Γ is a curve in the complex plane C and f is a function defined
on Γ . The Cauchy integral of f is the operator CΓ defined on the complex
plane for z /∈ Γ by

(2.1) CΓ (f)(z) :=
1

2πi

�

Γ

f(ζ)

z − ζ
dζ.

A curve Γ is said to be a Lipschitz curve if it can be written in the form Γ =
{x+ iA(x) : x ∈ R} where A : R → R satisfies a Lipschitz condition

(2.2) |A(x1)−A(x2)| ≤ L|x1 − x2| for all x1, x2 ∈ R.

The best constant L in (2.2) is referred to as the Lipschitz constant of Γ
or of A(x). One can show that A satisfies a Lipschitz condition if and only
if A is differentiable almost everywhere on R and A′ ∈ L∞(R). The Lipschitz
constant is L = ‖A′‖∞.

The Cauchy integral associated with the Lipschitz curve Γ is the singular
integral operator CΓ acting on functions f ∈ C∞

c (R) by

(2.3) CΓ (f)(x) := p.v.
1

πi

�

R

(1 + iA′(y))f(y)

y − x+ i(A(y)−A(x))
dy
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for x ∈ R. The kernel of CΓ is given by

CΓ (x, y) =
1

πi

1 + iA′(y)

y − x+ i(A(y)−A(x))
.

Note that this is not a standard Calderón–Zygmund kernel because the func-
tion 1 + iA′ does not necessarily possess any smoothness. As noted in [Gra,
p. 289], the Lp-boundedness of CΓ is equivalent to that of the related oper-

ator C̃Γ defined by

(2.4) C̃Γ (f)(x) := p.v.
1

πi

�

R

f(y)

y − x+ i(A(y)−A(x))
dy.

Moreover, the kernel of C̃Γ is given by

(2.5) C̃Γ (x, y) =
1

πi

1

y − x+ i(A(y)−A(x))
.

The kernel C̃Γ (x, y) satisfies standard size and smoothness (1) estimates
[LN+, Lemma 3.3] and is therefore bounded on Lp(R) for p ∈ (1,∞). There-
fore, while the operator CΓ (f) is initially defined for f ∈ C∞

c (R), it can be
extended to all f ∈ Lp(R), for each p ∈ (1,∞).

An operator T defined on Lp(R) is compact on Lp(R) if T maps bounded
subsets of Lp(R) into precompact sets. In other words, for all bounded sets
E ⊂ Lp(R), T (E) is precompact. A set S is precompact if its closure is
compact.

3. From classical spaces to Meyer Hardy spaces. In this section we
take advantage of the known weak factorization result for H1(R) in terms of

the Calderón–Zygmund singular integral operator C̃Γ as well as the charac-
terization of BMO(R) via the boundedness of the commutator with C̃Γ , and
of VMO(R) via the compactness of the same commutator [LN+] to deduce
Theorems 1.1, 1.2, and 1.3.

We first consider the adjoint operator C ∗
Γ (g). By a direct calculation, we

can verify that for f, g ∈ L2(R),

〈CΓ (f), g〉L2(R) =
�

R

p.v.
1

πi

�

R

(1 + iA′(y))f(y)

y − x+ i(A(y)−A(x))
dy g(x) dx

= p.v.
1

πi

�

R

�

R

(1 + iA′(y))f(y)

y − x+ i(A(y)−A(x))
dy g(x) dx

(1) Namely: (size) |C̃Γ (x, y)| . 1/|x− y| for all x, y ∈ R and (smoothness) |C̃Γ (x, y)−

C̃Γ (x0, y)| + |C̃Γ (y, x) − C̃Γ (y, x0)| . |x − x0|/|x − y|2 for all x, x0, y ∈ R such that
|x− x0| ≤ |y − x|/2.
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= p.v.
1

πi

�

R

�

R

1

y − x+ i(A(y)−A(x))
g(x) dx (1 + iA′(y))f(y) dy

=
�

R

p.v.
1

πi

�

R

1

y − x+ i(A(y)−A(x))
g(x) dx (1 + iA′(y))f(y) dy

=
�

R

b(y)(C̃Γ )
∗(g)(y)f(y) dy = 〈f,C ∗

Γ (g)〉L2(R).

In the third equality we used Fubini’s Theorem to interchange integrals,
while in the second and fourth equalities we used the Lebesgue Dominated
Convergence Theorem to interchange the limit introduced by the principal
value and the integration.

We therefore conclude that

(3.1) C
∗
Γ (g)(x) = b(x) · (C̃Γ )

∗(g)(x).

Note that (C̃Γ )
∗ = −C̃Γ .

We now use the weak factorization forH1(R) (valid form-linear Calderón–
Zygmund operators [LW1, Theorem 1.3]) for the Calderón–Zygmund operator

C̃Γ [LN+] to obtain the desired weak factorization for the Meyer-type Hardy
space H1

b (R).

First proof of Theorem 1.1. The function f is in H1
b (R) if and only if

bf is in H1(R) but by weak factorization of H1(R) there are a sequence
{λs,k}s,k≥1 and compactly supported bounded functions Gk

s and Hk
s such

that bf =
∑∞

k=1

∑∞
s=1 λs,kΠ(Gk

s , H
k
s ), where the bilinear form Π(G,H) is

defined by

Π(G,H)(x) = G(x) · C̃Γ (H)(x)−H(x) · (C̃Γ )
∗(G)(x).

Moreover,

‖bf‖H1(R)

≈ inf
{ ∞∑

k=1

∞∑

s=1

|λs,k|‖G
k
s‖L2(R)‖H

k
s ‖L2(R) : bf =

∞∑

k=1

∞∑

s=1

λs,kΠ(Gk
s , H

k
s )
}
.

Therefore

f(x) =
∞∑

k=1

∞∑

s=1

λs,k
1

b
Π(Gk

s , H
k
s )(x) =

∞∑

k=1

∞∑

s=1

λs,kΠb(G
k
s , H

k
s /b)(x).

The last identity follows since by definition (1.1) of the bilinear form Πb(g, h),

the fact that CΓ (f) = C̃Γ (bf), and identity (3.1), we have

(3.2)
1

b
Π(G,H)(x) = Πb(G,H/b)(x).

Let gks := Gk
s and hks := Hk

s /b; both are compactly supported bounded
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functions and

f(x) =

∞∑

k=1

∞∑

s=1

λs,kΠb

(
gks , h

k
s

)
(x).

Moreover ‖f‖H1
b
(R) = ‖bf‖H1(R), therefore

‖f‖H1
b
(R)≈ inf

{ ∞∑

k=1

∞∑

s=1

|λs,k|‖g
k
s‖L2(R)‖h

k
s‖L2(R) :f=

∞∑

k=1

∞∑

s=1

λs,kΠb(g
k
s , h

k
s)
}

because gks = Gk
s and ‖hks‖L2(R) ≈ ‖bhks‖L2(R) = ‖Hk

s ‖L2(R) since b is an
accretive function. This proves Theorem 1.1.

If we know how to construct Gk
s and Hk

s then we know how to construct gks
and hks , and vice versa. In the next section we provide an explicit construction
of gks and hks , following Uchiyama’s blueprint directly in our setting.

Before proceeding, we provide the proofs of Theorems 1.2 and 1.3 relying
on the corresponding results for the related Cauchy integral operator C̃Γ .
Namely, a is in BMO (respectively in VMO) if and only if [a, C̃Γ ] is bounded
on Lp(R) (respectively, is compact on Lp(R)) for p ∈ (1,∞). Furthermore,

‖a‖BMO ≈ ‖[a, C̃Γ ]‖Lp(R)→Lp(R).

Proof of Theorem 1.2. For b(x) = 1+ iA′(x), suppose A is in BMOb(R),

that is, A/b ∈ BMO(R); a direct calculation, using CΓ (g) = C̃Γ (bg), shows
that

[A/b,CΓ ](f)(x) = [A/b, C̃Γ ](bf)(x).

Thus, since by [LN+, Theorem 1.1] the commutator [A/b, C̃Γ ] is bounded on
Lp(R), we get

‖[A/b,CΓ ](f)‖Lp(R) = ‖[A/b, C̃Γ ](bf)‖Lp(R)

≤ ‖[A/b, C̃Γ ]‖Lp(R)→Lp(R)‖bf‖Lp(R)

. ‖A/b‖BMO(R)‖f‖Lp(R) = ‖A‖BMOb(R)‖f‖Lp(R).

Conversely, for any given complex function A such that A/b is real-valued,
A/b ∈ L1

loc(R) and ‖[A/b,CΓ ]‖Lp(R)→Lp(R) < ∞, we see that

‖[A/b, C̃Γ ](f)‖Lp(R) = ‖[A/b,CΓ ](f/b)‖Lp(R)

≤ ‖[A/b,CΓ ]‖Lp(R)→Lp(R)‖f/b‖Lp(R)

. ‖[A/b,CΓ ]‖Lp(R)→Lp(R)‖f‖Lp(R).

Hence, [A/b, C̃Γ ] is bounded on Lp(R) and by [LN+, Theorem 1.1] we con-
clude that A/b is in BMO(R) and

‖A/b‖BMO(R) . ‖[A/b, C̃Γ ]‖Lp(R)→Lp(R) . ‖[A/b,CΓ ]‖Lp(R)→Lp(R).
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Hence, we conclude that A is in BMOb(R) and

‖A‖BMOb(R) . ‖[A/b,CΓ ]‖Lp(R)→Lp(R).

This finishes the proof of Theorem 1.2.

Similar considerations yield the proof of Theorem 1.3 from the knowledge
that a ∈ VMO if and only if [a, C̃Γ ] is a compact operator on Lp(R) [LN+,
Theorem 1.2].

Proof Theorem 1.3. For b(x) = 1 + iA′(x) ∈ L∞(R), suppose A is in
VMOb(R), that is, A/b ∈ VMO(R). Therefore by [LN+, Theorem 1.2] the

commutator [A/b, C̃Γ ] is compact. Let E be a bounded subset of Lp(R).
Then bE is a bounded subset of Lp(R) since

sup
g∈bE

‖g‖Lp(R) = sup
f∈E

‖bf‖Lp(R) ≤ ‖b‖L∞ sup
f∈E

‖f‖Lp(R) < ∞.

Therefore [A/b, C̃Γ ](bE) is a precompact set. Recall that [A/b, C̃Γ ](bf)(x) =
[A/b,CΓ ](f)(x) for all f ∈ Lp(R). Thus

[A/b,CΓ ](E) = [A/b, C̃Γ ](bE).

Hence [A/b,CΓ ](E) is a precompact set for all bounded subsets E of Lp(R).
By definition [A/b,CΓ ] is compact.

Conversely, suppose [A/b,CΓ ] is compact. Then given a bounded subset F
of Lp(R), F/b is also a bounded subset of Lp(R) since ‖b‖L∞ ≥ 1. Therefore
[A/b,CΓ ](F/b) is precompact; but as before,

[A/b,CΓ ](F/b) = [A/b, C̃Γ ](F ),

so [A/b, C̃Γ ](F ) is a precompact set for all bounded subsets F of Lp(R).

By definition [A/b, C̃Γ ] is a compact operator in Lp(R) and by [LN+, The-
orem 1.2] we conclude that A/b ∈ VMO(R), and therefore A ∈ VMOb(R).
This finishes the proof of Theorem 1.3.

4. Weak factorization of the Meyer Hardy space—Uchiyama’s

construction. In this section we present a constructive proof of the func-
tions gks and hks for k, s ≥ 1, appearing in the weak factorization of H1

b (R).
This argument closely follows Uchiyama’s procedure [U2].

4.1. The upper bound in Theorem 1.1. Given f ∈ H1
b (R), suppose

we have a factorization f =
∑∞

k=1

∑∞
s=1 λs,kΠb

(
gks , h

k
s

)
with {λs,k} ∈ `1

and gks and hks compactly supported and bounded functions, as claimed in
Theorem 1.1. Then Lemma 4.1 below implies that

‖f‖H1
b
(R) ≤

∞∑

k=1

∞∑

s=1

|λs,k| ‖g
k
s‖L2(R)‖h

k
s‖L2(R).
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Lemma 4.1. Let g, h ∈ L∞(R) with compact supports. Then Πb(g, h) is

in H1
b (R) with

‖Πb(g, h)‖H1
b
(R) . ‖g‖L2(R)‖h‖L2(R).

Proof. We first point out that for any g, h ∈ L∞(R) with compact sup-
ports, Πb(g, h) is compactly supported in supp(g)∪ supp(h). Next, it is easy
to see that Πb(g, h) ∈ L2(R), using the fact that CΓ is a bounded operator
in L2(R). Indeed,

‖Πb(g, h)‖L2(R) . ‖g‖L∞(R)‖h‖L2(R) + ‖h‖L∞(R)‖g‖L2(R).

Moreover, since by definition of adjoint, 〈h,C ∗
Γ (g)〉L2(R) = 〈CΓ (h), g〉L2(R),

the following cancellation holds:
�

R

Πb(g, h)(x)b(x) dx =
�

R

(
g(x) · CΓ (h)(x)− h(x) · C ∗

Γ (g)(x)
)
dx = 0.

Hence, it is clear that up to multiplication by a certain constant, the bilinear
form Πb(g, h)(x) is an L2-atom of H1

b (R), that is, Πb(g, h) ∈ H1
b (R).

Now it suffices to verify that the H1
b (R) norm of Πb(g, h) is controlled

by an absolute multiple of ‖g‖L2(R)‖h‖L2(R). A simple duality computation
shows that for A ∈ BMOb(R) and for any g, h ∈ L∞(Rn) with compact
supports,

〈A, Πb(g, h)〉L2(R) = 〈A/b, g · CΓ (h)− h · C ∗
Γ (g)〉L2(R)

= 〈g, [A/b,CΓ ](h)〉L2(R).

Remember that 〈f, g〉L2(R) denotes the L2 pairing
	
R
f(x)g(x) dx, not the

L2 inner product. Thus, from the upper bound as in Theorem 1.2, we get

|〈A, Πb(g, h)〉L2(R)| = |〈g, [A/b,CΓ ](h)〉L2(R)|

. ‖A‖BMOb(R)‖g‖L2(R)‖h‖L2(R).

This together with the duality result of [Me], H1
b (R)

∗ = BMOb(R), gives

‖Πb(g, h)‖H1
b
(R) ≈ sup

‖A‖BMOb(R)
≤1

|〈A, Πb(g, h)〉L2(R)|

. ‖g‖L2(R)‖h‖L2(R) sup
‖A‖BMOb(R)

≤1
‖A‖BMOb(R)

. ‖g‖L2(R)‖h‖L2(R).

4.2. The factorization and the lower bound in Theorem 1.1.

The proof of the factorization and of the lower bound in Theorem 1.1
is more algorithmic in nature and follows a proof strategy pioneered by
Uchiyama [U2]. We begin with a fact that will play a prominent role in the
algorithm below. It is a modification of a related fact for the standard Hardy
space H1(R).
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Lemma 4.2. Let b(x) = 1 + iA′(x) with A′ ∈ L∞(R). Suppose f is a

function satisfying
	
R
f(x)b(x) dx = 0, and |f(x)| ≤ χI(x0,1)(x)+χI(y0,1)(x),

where |x0 − y0| =: M > 100 and I(z0, L) := {z ∈ R : |z − z0| < L}. Then

f ∈ H1
b (R) and

(4.1) ‖f‖H1
b
(R) . logM.

The lemma when b ≡ 1 is stated in [LW1, Lemma 2.2] without proof, the
authors refer the reader to [DL+, Lemma 3.1] and [LW2, Lemma 4.3] where
the corresponding lemma, in the Bessel and Neumann Laplacian settings
respectively, is stated and proved. We cannot apply [LW1, Lemma 2.2] di-
rectly because although F = bf will satisfy

	
R
F (x) dx = 0 by hypothesis, it

will not satisfy |F (x)| ≤ χI(x0,1)(x)+χI(y0,1)(x), instead it satisfies |F (x)| ≤
|b(x)|(χI(x0,1)(x) + χI(y0,1)(x)). But we can apply it to F0 = bf/‖b‖L∞(R),

since |F0(x)| ≤ χI(x0,1)(x) + χI(y0,1)(x), to conclude that F0 ∈ H1(R) and
‖F0‖H1(R) . logM . Finally since ‖F0‖H1(R) = ‖bf‖H1(R)/‖b‖L∞(R) we con-

clude that f ∈ H1
b (R) and

‖f‖H1
b
(R) = ‖bf‖H1(R) . ‖b‖L∞(R) logM . logM.

Nevertheless, for completeness, we present here a direct construction of
an atomic decomposition in H1

b (R) for f that yields the estimate claimed in
Lemma 4.2, which could have an interest in itself; it also provides a proof
for [LW1, Lemma 2.2] by setting b ≡ 1. This construction yields an atomic
decomposition for f =

∑
j∈Z λjaj . However the H1

b L∞-atoms aj built in

the proof of Lemma 4.2 for the specific given f are not the H1 L∞-atoms
one would get by multiplying by ‖b‖∞/b the H1 L∞-atoms Aj obtained by
the same procedure applied to F0 when b ≡ 1.

Proof of Lemma 4.2. We will show by construction that f has an atomic
decomposition into H1

b (R) L∞-atoms, using an idea of Coifman [CW]. We
first define

f1(x) = f(x)χI(x0,1)(x) and f2(x) = f(x)χI(y0,1)(x).

Then f = f1 + f2 and

|f1(x)| . χI(x0,1)(x) and |f2(x)| . χI(y0,1)(x).

Define

g11(x) :=
χI(x0,2)(x)	
I(x0,2)

b(z) dz

�

R

f1(y)b(y) dy,

f1
1 (x) := f1(x)− g11(x), α1

1 := ‖f1
1 ‖∞|I(x0, 2)|.
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We claim that a11 := (α1
1)

−1f1
1 is an H1

b (R) L∞-atom. First, by definition,
a11 is supported on I(x0, 2). Moreover,

�

R

a11(x)b(x) dx = (α1
1)

−1
�

R

(f1(x)− g11(x))b(x) dx

= (α1
1)

−1

(�

R

f1(x)b(x) dx−
�

R

χI(x0,2)(x)	
I(x0,2)

b(z) dz
b(x) dx

�

R

f1(y)b(y) dy

)

= (α1
1)

−1
(�

R

f1(x)b(x) dx−
�

R

f1(y)b(y) dy
)
= 0

and

‖a11‖∞ ≤ |(α1
1)

−1| ‖f1
1 ‖∞ =

1

|I(x0, 2)|
.

Thus, a11 is an H1
b (R) L

∞-atom. It also has the following estimate:

|α1
1| = ‖f1

1 ‖∞|I(x0, 2)| ≤ ‖f1‖∞|I(x0, 2)|+ ‖g11‖∞|I(x0, 2)|

≤ |I(x0, 2)|+
|I(x0, 2)|∣∣ 	

I(x0,2)
b(z) dz

∣∣
�

R

|f1(y)| |b(y)| dy

≤ 4 + 2‖b‖L∞(R) ≤ 6‖b‖L∞(R) . 1.

Here we have used ‖b‖L∞(R) < ∞, |f1| ≤ χI(x0,1), |I(x0, L)| = 2L, and
∣∣∣

�

I(x0,2)

b(z) dz
∣∣∣ ≥

∣∣∣
�

I(x0,2)

Re b(z) dz
∣∣∣ ≥ |I(x0, 2)|.

Moreover, we see that

f1(x) = f1
1 (x) + g11(x) = α1

1a
1
1(x) + g11(x).

We further write g11(x) as

g11(x) = (g11(x)− g21(x)) + g21(x) =: f2
1 (x) + g21(x)

with

g21(x) :=
χI(x0,4)(x)	
I(x0,4)

b(z) dz

�

R

f1(y)b(y) dy.

Again, we define

α2
1 := ‖f2

1 ‖∞|I(x0, 4)| and a21 := (α2
1)

−1f2
1 ,

and a similar reasoning shows that a21 satisfies the compact support condition
and the size condition ‖a21‖∞ ≤ 1/|I(x0, 4)|. Hence, it suffices to see that it
also satisfies the cancellation condition with respect to b. In fact,
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�

R

a21(x)b(x) dx = (α2
1)

−1
�

R

(g11(x)− g21(x))b(x) dx

= (α2
1)

−1

(�

R

χI(x0,2)(x)	
I(x0,2)

b(z) dz
b(x) dx

�

R

f1(y)b(y) dy

−
�

R

χI(x0,4)(x)	
I(x0,4)

b(z) dz
b(x) dx

�

R

f1(y)b(y) dy

)

= (α2
1)

−1
(�

R

f1(y)b(y) dy −
�

R

f1(y)b(y) dy
)
= 0.

Thus, a21 is an H1
b (R) L∞-atom. Moreover, it satisfies the following esti-

mate:

|α2
1| = ‖f2

1 ‖∞|I(x0, 4)| ≤ ‖g11‖∞|I(x0, 4)|+ ‖g21‖∞|I(x0, 4)|

≤
|I(x0, 4)|

|
	
I(x0,2)

b(z) dz|

�

R

|f1(y)| |b(y)| dy +
|I(x0, 4)|

|
	
I(x0,4)

b(z) dz|

�

R

|f1(y)| |b(y)| dy

≤ 4‖b‖L∞(R) + 2‖b‖L∞(R) = ‖b‖L∞(R) . 1.

Here again we use the fact that for every L > 0,
∣∣∣

�

I(x0,L)

b(z) dz
∣∣∣ ≥

∣∣∣
�

I(x0,L)

Re b(z) dz
∣∣∣ ≥ |I(x0, L)|.

Thus we have

f1(x) =

2∑

i=1

αi
1a

i
1(x) + g21(x).

Continuing in this fashion we see that for each i0 ≥ 1,

f1(x) =

i0∑

i=1

αi
1a

i
1(x) + gi01 (x),

where for i ∈ {2, . . . , i0},

gi1(x) :=
χI(x0,2i)(x)	
I(x0,2i)

b(z)dz

�

R

f1(y)b(y) dy,

f i
1(x) := gi−1

1 (x)− gi1(x),

αi
1 := ‖f i

1‖∞|I(x0, 2
i)|, ai1(x) := (αi

1)
−1f i

1(x).

Here we choose i0 to be the smallest positive integer such that I(y0, 1) ⊂
I(x0, 2

i0). Then from the condition |x0 − y0| = M , we obtain

i0 ≈ log2M.
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Moreover, for i ∈ {1, . . . , i0},

|αi
1| ≤ 6‖b‖L∞(R) . 1.

Following the same steps, we also obtain, for the same i0 ≥ 1,

f2(x) =

i0∑

i=1

αi
2a

i
2(x) + gi02 (x),

where for i ∈ {2, . . . , i0},

gi2(x) :=
χI(y0,2i)(x)	
I(y0,2i)

b(z) dz

�

R

f2(y)b(y) dy,

f i
2(x) := gi−1

2 (x)− gi2(x),

αi
2 := ‖f i

2‖∞|I(y0, 2
i)|, ai2(x) := (αi

2)
−1f i

2(x).

Similarly, for i ∈ {1, . . . , i0}, we can verify that each ai2 is an H1
b (R) L

∞-atom
and |αi

2| . 1.

Combining the decompositions above, we obtain

f(x) =

2∑

j=1

( i0∑

i=1

αi
ja

i
j(x) + gi0j (x)

)
.

We now analyse the tail gi01 (x)+gi02 (x). Consider the interval I centered at
(x0 + y0)/2 with length 2i0+1. Then I(x0, 1)∪I(y0, 1) ⊂ I, and I(x0, 2

i0) and
I(y0, 2

i0) are both subsets of I. Thus, since by hypothesis
	
R
f(y)b(y) dy = 0,

we get

χI(x)	
I b(z) dz

�

I(x0,1)

f1(y)b(y) dy +
χI(x)	
I b(z) dz

�

I(y0,1)

f2(y)b(y) dy = 0.

Hence, we can write

gi01 (x) + gi02 (x) =

(
gi01 (x)−

χI(x)	
I b(z) dz

�

I(x0,1)

f1(y)b(y) dy

)

+

(
gi02 (x)−

χI(x)	
I b(z) dz

�

I(y0,1)

f2(y)b(y) dy

)

=: f i0+1
1 (x) + f i0+1

2 (x).

For j = 1, 2, we now define

αi0+1
j := ‖f i0+1

j ‖∞|I|, ai0+1
j (x) := (αi0+1

j )−1f i0+1
j (x).

Again we can verify that ai0+1
j for j = 1, 2 is an H1

b (R) L
∞-atom supported
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on I with the appropriate size and cancellation conditions

‖ai0+1
j ‖∞ ≤ 1/|I| and

�

R

ai0+1
j (x)b(x) dx = 0.

Moreover, |αi0+1
j | . 1.

Thus, we obtain an atomic decomposition

f(x) =
2∑

j=1

i0+1∑

i=1

αi
ja

i
j(x),

which implies that f ∈ H1
b (R) and

‖f‖H1
b
(R) ≤

2∑

j=1

i0+1∑

i=1

|αi
j | .

2∑

j=1

i0+1∑

i=1

1 . logM.

This finishes the proof of Lemma 4.2.

Repeating the proof we find that if r > 0,
	
R
f(x)b(x) dx = 0 and |f(x)| ≤

χI(x0,r)(x) + χI(y0,r)(x) where |x0 − y0| ≥ rM , then f ∈ H1
b (R) and

(4.2) ‖f‖H1
b
(R) . r logM.

The additional r comes from the estimates of the coefficients |αi
j | . r for

i = 1, . . . , i0 + 1 and j = 1, 2 where i0 ∼ logM .
Ideally, given an H1

b (R)-atom a, we would like to find g, h ∈ L2(R) such
that Πb(g, h) = a pointwise. While this cannot be accomplished in general,
the theorem below shows that it is “almost” true.

Theorem 4.3. For every H1
b (R) L∞-atom a(x) and for all ε > 0 there

exist a large positive number M and g, h ∈ L∞(R) with compact supports

such that

‖a−Πb(h, g)‖H1
b
(R) < ε and ‖g‖L2(R)‖h‖L2(R) . M.

Proof. Let a(x) be an H1
b (R) L

∞-atom, supported in I(x0, r), the interval
centered at x0 with radius r. We first consider the construction of the explicit
bilinear form Πb(h, g) and the approximation to a(x). To begin, fix ε > 0.
Choose M ∈ [100,∞) so large that

M−1 logM < ε.

Now select y0 ∈ R such that y0 − x0 = Mr. For any y ∈ I(y0, r) and any
x ∈ I(x0, r), we have |x− y| > Mr/2. We set

g(x) := χI(y0,r)(x) and h(x) := −
a(x)

(C̃Γ )∗(g)(x0)
.(4.3)

We first note that

|(C̃Γ )
∗(g)(x0)| & M−1.(4.4)
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In fact, from the expression of (C̃Γ )
∗(g)(x0) = −C̃Γ (g)(x0) we have

|(C̃Γ )
∗(g)(x0)| =

∣∣∣∣
1

πi

�

I(y0,r)

1

y − x0 + i(A(y)−A(x0))
dy

∣∣∣∣ & M−1.

From the definitions of g and h, we obtain supp(g) = I(y0, r) and
supp(h) = I(x0, r). Moreover, from (4.4) and the size estimate for the atom,
we obtain

‖g‖L∞(R) ≈ 1 and ‖h‖L∞(R) =
1

|(C̃Γ )∗(g)(x0)|
‖a‖L∞(R) . Mr−1.

We also get

‖g‖L2(R) ≈ r1/2 and ‖h‖L2(R) =
1

|(C̃Γ )∗(g)(x0)|
‖a‖L2(R) . Mr−1/2.

Hence ‖g‖L2(R)‖h‖L2(R) . M . Now write

a(x)−Πb(h, g)(x) = a(x)−
1

b(x)

(
g(x) · CΓ (h)(x)− h(x) · C ∗

Γ (g)(x)
)

=

(
a(x) +

h(x)

b(x)
· C ∗

Γ (g)(x)

)
−

g(x)

b(x)
· CΓ (h)(x)

=: W1(x) +W2(x).

By definition and using (3.1), we have

W1(x) = a(x) +
1

b(x)

(
−

a(x)

(C̃Γ )∗(g)(x0)

)
·
(
b(x) · (C̃Γ )

∗(g)(x)
)

= a(x)

[
1−

(C̃Γ )
∗(g)(x)

(C̃Γ )∗(g)(x0)

]
= a(x) ·

(C̃Γ )
∗(g)(x0)− (C̃Γ )

∗(g)(x)

(C̃Γ )∗(g)(x0)
.

Thus, since (C̃Γ )
∗ = −C̃Γ , for every x ∈ I(x0, r) we get

|W1(x)| = |a(x)| ·
|C̃Γ (g)(x0)− C̃Γ (g)(x)|

|C̃Γ (g)(x0)|

≤ CM‖a‖L∞(R)

�

I(y0,r)

|x− x0|

|x− y|2
dy

≤ CMr−1rr(Mr)−2 = C(Mr)−1.

Here we use the standard smoothness estimate for the Calderón–Zygmund
kernel C̃Γ (x, y) of C̃Γ (see [LN+, Lemma 3.3] or [Gra, Example 4.1.6]). Since
it is clear that W1(x) is supported on I(x0, r), we obtain

|W1(x)| ≤ C(Mr)−1χI(x0,r)(x).

We next estimate W2(x). By definition, W2(x) is supported on I(y0, r),
and
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W2(x) =
χI(y0,r)(x)

b(x)
· CΓ

(
−

a(·)

(C̃Γ )∗(g)(x0)

)
(x)

= −
χI(y0,r)(x)

b(x)

1

(C̃Γ )∗(g)(x0)
· CΓ (a(·))(x)

= −
χI(y0,r)(x)

b(x)

1

(C̃Γ )∗(g)(x0)

1

πi

�

I(x0,r)

(1 + iA′(y))a(y)

y − x+ i(A(y)−A(x))
dy

= −
1

b(x)

1

(C̃Γ )∗(g)(x0)

1

πi

�

I(x0,r)

C̃Γ (x, y)b(y)a(y) dy

= −
χI(y0,r)(x)

b(x)

1

(C̃Γ )∗(g)(x0)

1

πi

�

I(x0,r)

(
C̃Γ (x, y)− C̃Γ (x, x0)

)
b(y)a(y) dy.

Here the last equality follows from the cancellation condition for the
H1

b (R) L∞-atom a(x). Hence, the following estimate holds for W2(x)
whenever x ∈ I(y0, r) (note that otherwise W2(x) = 0 and any estimate
will hold):

|W2(x)| ≤
χI(y0,r)(x)

|b(x)|

1

|(C̃Γ )∗(g)(x0)|

×
1

π

�

I(x0,r)

|C̃Γ (x, y)− C̃Γ (x, x0)| |b(y)| |a(y)| dy

. χI(y0,r)(x)M
�

I(x0,r)

‖a‖L∞(R)
|y − x0|

|x− x0|2
dy . (Mr)−1χI(y0,r)(x),

once again by the smoothness of the kernel C̃Γ (x, y) of C̃Γ .

Combining the estimates of W1 and W2, we obtain

|a(x)−Πb(g, h)(x)| . (Mr)−1
(
χI(x0,r)(x) + χI(y0,r)(x)

)
.(4.5)

Next we point out that
�

R

[a(x)−Πb(g, h)(x)]b(x) dx = 0,(4.6)

since a(x) has cancellation with respect to b(x) and the same holds for
Πb(g, h)(x).

Then from the size estimate (4.5) and the cancellation (4.6), together
with the result in Lemma 4.2, more specifically the estimate (4.2), we infer
that a−Πb(g, h) ∈ H1

b (R) and
∥∥a−Πb(g, h)

∥∥
H1

b
(R)

. M−1 logM < Cε.

This proves Theorem 4.3.
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We deduce from Theorem 4.3 the following corollary concerning H1(R)
L∞-atoms.

Corollary 4.4. For every H1(R) L∞-atom A and for all ε > 0 there

exist M > 0 and compactly supported L∞ functions G and H such that

‖A−Π(H,G)‖H1(R) < ε and ‖G‖L2(R)‖H‖L2(R) . M .

Proof. Note that if A is an H1(R) L∞-atom then A/b is an H1
b (R) L

∞-
atom, hence by Theorem 4.3 for all ε > 0 there are M > 0 and compactly
supported L∞ functions g, h such that ‖A/b−Πb(g, h)‖H1

b
(R) . ε. By (3.2),

Πb(g, h) = bΠ(g, bh); hence ‖A − bΠb(g, h)‖H1(R) = ‖A − Π(g, bh)‖ . ε.
Let G = g and H = bh; these are compactly supported L∞ functions, and
furthermore ‖G‖L2(R)‖H‖L2(R) ≈ ‖g‖L2(R)‖h‖L2(R) . M .

With this approximation result, we can now prove the main result.

Constructive proof of Theorem 1.1. By Theorem 4.1 we have

‖Πb(g, h)‖H1
b
(R) . ‖g‖L2(R)‖h‖L2(R).

It follows that if f ∈ H1
b (R) then for any representation

f =
∞∑

k=1

∞∑

j=1

λk
jΠb(g

k
j , h

k
j )

we have

‖f‖H1
b
(R) .

∞∑

k=1

∞∑

j=1

|λk
j | ‖g

k
j ‖L2(R)‖h

k
j ‖L2(R).

Consequently,

‖f‖H1
b
(R) . inf

{ ∞∑

k=1

∞∑

j=1

|λk
j | ‖g

k
j ‖L2(R)‖h

k
j ‖L2(R) : f =

∞∑

k=1

∞∑

j=1

λk
jΠb(g

k
j , h

k
j )
}
.

We turn to showing that the other inequality holds and that it is pos-
sible to obtain such a decomposition for any f ∈ H1

b (R). By the definition
of H1

b (R), for any f ∈ H1
b (R) we can find a sequence {λ1

j} ∈ `1 and se-

quence of H1
b (R) L∞-atoms a1j such that f =

∑∞
j=1 λ

1
ja

1
j and

∑∞
j=1 |λ

1
j | ≤

C0‖f‖H1
b
(R).

We explicitly track the implied absolute constant C0 coming from the
atomic decomposition since it will play a role in the convergence of the
approach. Fix ε > 0 such that εC0 < 1. Then we also have a large pos-
itive number M with M−1 logM < ε. We apply Theorem 4.3 to each
atom a1j . So there exist g1j , h

1
j ∈ L∞(Rn) with compact supports and sat-

isfying ‖g1j ‖L2(R)‖h
1
j‖L2(R) . M and

‖a1j −Πb(g
1
j , h

1
j )‖H1

b
(R) < ε for all j > 0.
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Now note that

f =
∞∑

j=1

λ1
ja

1
j =

∞∑

j=1

λ1
jΠb(g

1
j , h

1
j ) +

∞∑

j=1

λ1
j

(
a1j −Πb(g

1
j , h

1
j )
)
=: M1 + E1.

Observe that

‖E1‖H1
b
(R) ≤

∞∑

j=1

|λ1
j | ‖a

1
j −Πb(g

1
j , h

1
j )‖H1

b
(R) ≤ ε

∞∑

j=1

|λ1
j | ≤ εC0‖f‖H1

b
(R).

We now iterate the construction on the function E1. Since E1 ∈ H1
b (R), we

can apply the atomic decomposition in H1
b (R) to find a sequence {λ2

j} ∈ `1

and a sequence {a2j} of H1
b (R) L

∞-atoms such that E1 =
∑∞

j=1 λ
2
ja

2
j and

∞∑

j=1

|λ2
j | ≤ C0‖E1‖H1

b
(R) ≤ εC2

0‖f‖H1
b
(R).

Again, we will apply Theorem 4.3 to each L∞-atom a2j . So there exist

g2j , h
2
j ∈ L∞(R) with compact supports and satisfying ‖g2j ‖L2(R)‖h

2
j‖L2(R)

. M and
‖a2j −Πb(g

2
j , h

2
j )‖H1

b
(R) < ε for all j > 0.

We then have

E1 =

∞∑

j=1

λ2
ja

2
j =

∞∑

j=1

λ2
jΠb(g

2
j , h

2
j ) +

∞∑

j=1

λ2
j (a

2
j −Πb(g

2
j , h

2
j )) =: M2 + E2.

But, as before,

‖E2‖H1
b
(R) ≤

∞∑

j=1

|λ2
j | ‖a

2
j −Πb(g

2
j , h

2
j )‖H1

b
(R) ≤ ε

∞∑

j=1

|λ2
j | ≤ (εC0)

2‖f‖H1
b
(R).

This implies that

f =

∞∑

j=1

λ1
ja

1
j =

∞∑

j=1

λ1
jΠb(g

1
j , h

1
j ) +

∞∑

j=1

λ1
j (a

1
j −Πb(g

1
j , h

1
j ))

= M1 + E1 = M1 +M2 + E2 =

2∑

k=1

∞∑

j=1

λk
jΠb(g

k
j , h

k
j ) + E2.

Repeating this construction for each 1 ≤ k ≤ K produces functions
gkj , h

k
j ∈ L∞(R) with compact supports and with ‖gkj ‖L2(R)‖h

k
j ‖L2(R) . M

for all j > 0, sequences {λk
j }j>0 ∈ `1 with ‖{λk

j }j>0‖`1 ≤ εk−1Ck
0 ‖f‖H1

b
(R),

and a function EK ∈ H1
b (R) with ‖EK‖H1

b
(R) ≤ (εC0)

K‖f‖H1
b
(R) such that

f =
K∑

k=1

∞∑

j=1

λk
jΠb(g

k
j , h

k
j ) + EK .
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Letting K → ∞ gives the desired decomposition

f =

∞∑

k=1

∞∑

j=1

λk
jΠb(g

k
j , h

k
j ).

We also have
∞∑

k=1

∞∑

j=1

|λk
j | ≤

∞∑

k=1

ε−1(εC0)
k‖f‖H1

b
(R) =

C0

1− εC0
‖f‖H1

b
(R).

Therefore {λk
j }j,k∈Z is in `1 as claimed. This finishes the proof of Theo-

rem 1.1.

The weak factorization given by Theorem 1.1 can be used to prove the
lower bound of Theorem 1.2, the same way as is done for example in [LW1].
However, we used the upper bound of Theorem 1.2 to prove Lemma 4.1
responsible for the upper bound in Theorem 1.1.
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