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A note on weak factorization of a Meyer-type Hardy space
via a Cauchy integral operator

by
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BreETT D. WICK (St. Louis, MO)

Abstract. This paper provides a weak factorization for the Meyer-type Hardy space
H} (R), and characterizations of its dual BMO,(R) and its predual VMO (R) via bounded-
ness and compactness of a suitable commutator with the Cauchy integral €, respectively.
Here b(z) = 1 +iA’(z) where A’ € L>°(R), and the Cauchy integral €T is associated to
the Lipschitz curve I' = { +iA(x) : € R}.

1. Introduction and statement of main results. Given a bounded
function b : R™ — C such that Reb(x) > 1 for all x € R"™, the Meyer-type
Hardy space Hl} (R™) consists of those functions f : R® — C such that the
product bf belongs to the real Hardy space H!(R"). The Meyer-type space
of bounded mean oscillation, denoted BMOy(R"™), consists of all functions
2 : R™ — C such that the function 2(/b belongs to BMO(R™), and is the dual
of H/}(R™). These spaces were introduced by Yves Meyer [Me, Chapter XI,
Section 10, p. 358] in dimension one in connection with the study of the
Cauchy integral associated with a Lipschitz curve and the 7'(b) theorem.
Observe that both the real Hardy space H!(R") and its dual BMO(R")
consist of real-valued functions.

In this note we study the Meyer-type Hardy space Hl} (R) and its dual
BMO(R) for b(z) = 1+ iA’(x) where A" € L>°(R), via the Cauchy integral
¢ associated to the Lipschitz curve I' = {x + iA(x) : € R}. We present
a weak factorization of H}(R) in terms of the Cauchy integral €. We also
obtain a characterization of BMO,(R) and of VMOy(R), the Meyer-type
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space of vanishing mean oscillation, via boundedness and compactness of a
suitable commutator with the Cauchy integral respectively.

The Cauchy integral associated with the Lipschitz curve I is the integral
operator % given by

Cr(f)(x) = pv. — |

X
R

(1 +4iA'(y))f(y)
y—x+i(A(y) — Az

where f € C°(R). Note that it is not a standard Calderén—Zygmund oper-
ator because it lacks smoothness. The LP-boundedness of ¢ is equivalent
to that of the related operator € defined by

) dy,

> oy fy)

Cr(f)(z) =p.v. — Ié{ A A
Moreover, the kernel of %Np satisfies standard size and smoothness estimates
[LN*] and is therefore bounded on LP(R) for p € (1,00). Note that in
the cited article the operator % was denoted Cgp and vice versa. Hence
while € (f) is initially defined for f € C2°(R), the operator ¢r can be
extended to all f € LP(R), for each p € (1, 00).

The operator %r and its commutator with functions in BMO(R) were
studied by Li, Nguyen, Ward, and Wick |[LN*]. In this setting, one could
appeal to a weak factorization for H!(R") in terms of multilinear Calderén—
Zygmund operators, due to Li and Wick [LW1, Theorem 1.3], to obtain the
desired characterization of BMO(R) via boundedness of the commutator,
and of VMO(R) via compactness of the commutator.

We want to study the Meyer-type Hardy space, bounded mean oscil-
lation space, and vanishing mean oscillation space: H} (R), BMO,(R), and
VMO, (R), via the rougher operator €. As it turns out, we can derive these
results from the results for the related Cauchy integral operator [LNT]. Nev-
ertheless we also present a direct constructive proof of the weak factorization
valid for H} (R) that may be of independent interest.

We now state our main results. For b(z) = 1+ iA’(z), we introduce the
associated bilinear form as follows:

(L1)  II(g,h)(z) = b(lx)(g(fv) @1 (h) (@) — h(z) - Cr(9)(@)),

where €7 is the adjoint operator to 6.

THEOREM 1.1. For any f € H}(R) there exist a sequence {)\?}j,kzl et
and functions g}“,hf € L>®(R) for integers j,k > 1 with compact supports

such that
F=222 Xh(gj. b))
k=1 j=1
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Moreover,

(o clNe o) oo oo
17z ~ it L S D7 IS gl 1M e : £ = 32 D Mermo(gh, )}
k=1 j=1 k=1 j=1

The double index notation, used for both the sequence and the functions
appearing in the theorem, is a reflection of the Uchiyama construction which
is executed in two layers, one indexed by integers 5 > 1 and the other by
integers k > 1. We could have stated the theorem with a single index.

The commutator [g, 7] of a function g and an operator 7' is the new oper-
ator acting on suitable functions f, defined by [g, T|(f) := ¢T(f)—T(gf). It
is well known that a € BMO(R) (respectively a € VMO(R)) if and only if the
commutator [a, H] of a with the Hilbert transform is a bounded operator on
LP(R) [CRW] (respectively is a compact operator [U1]). In [LNT], functions
a in BMOy(R) (respectively in VMO,(R)) were characterized via bounded-
ness (respectively compactness) of [a, €7], the commutator with the related
Cauchy operator. To characterize BMO,(R) and VMO (R) we will consider
the commutator of the Cauchy integral not with functions in BMOy(R) or
VMO,(R) but with those functions divided by the accretive function b. In
other words, we will consider for the next theorems the commutator [/, 7]
where 2( is in BMOy(R) or in VMO,(R).

THEOREM 1.2. Let b(z) =1+ iA'(z) and p € (1,00). If A € BMOy(R),
then the commutator [21/b, €T] is a bounded operator, and

112L/b, ]|l o (m)— 2 (R) S 12 BMO, (R)-
Conversely, for any complex function 2 such that /b is a real-valued func-
tion and A/b € LL (R), if the commutator [2A/b,€r] is a bounded operator

loc

then A € BMOy(R), and

12| Byoy ) S [24/0, €T Lo (R) = Lo (R) -

THEOREM 1.3. Let b(z) =1+ iA'(z) and p € (1,00). If A € VMOy(R),
then [A/b,Cr] is compact on LP(R). Conversely, for any complex function
2 € BMOy(R) such that A/b is real-valued and /b € L (R), if [A/b, 6T]
is compact on LP(R), then A € VMO, (R).

Note that one can deduce these three theorems from the results in [LNT|
and [LW1] directly, as we will show in Section 3.

The paper is organized as follows. In Section 2 we collect the necessary
preliminaries needed to explain the result. In Section 3 we provide a connec-
tion between the classical Hardy and BMO spaces and the spaces introduced
by Meyer. In Section 4 we provide another proof of Theorem 1.1 using a clever
construction due to Uchiyama [U2].

We use the standard notation A < B or B 2 A to mean that there
exists an absolute constant C' such that A < CB. Likewise, A = B if and
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only if A S B and B 5 A. We use (f,g)r2r) to denote the L?-pairing
{g f(2)g(x) dz. We denote by C°(R) the space of compactly supported in-
finitely differentiable functions on R. Finally, x is the characteristic function
of the set I C R, defined by xr(z) =1if z € I and x;(x) = 0 otherwise.

2. Preliminaries. In this section we introduce basic notions of accretive
functions; the classical spaces: the Hardy space H!(R), the space BMO(R)
of bounded mean oscillation functions, and the space VMO(R) of vanishing
mean oscillation as well as their counterparts, the Meyer-type Hardy spaces:
H}(R), BMO,(R), and VMO, (R), for b an accretive function. We also intro-
duce the Cauchy integral operator ¢ associated to a Lipschitz curve I" and
the related Cauchy integral operator 7.

A function b : R — C is accretive if b € L*°(R) and there exists 6 > 0
such that Reb(z) > 0 for all x € R.

A locally integrable function f : R — R is said to be of bounded mean
oscillation, written f € BMO or f € BMO(R), if

Ifl1ni0 = s> 7 1)~ filda < oo,

Here the supremum is taken over all intervals I in R and f; := |Tl\ SI f(y)dy
is the average of the function f over the interval I.

A BMO function f: R — R is said to be of vanishing mean oscillation,
written f € VMO or f € VMO(R), if the following three behaviors occur

for small, large and far-from-the-origin intervals respectively:

. . 1

(i) lim sup — ||f(z) - fildz =0,
&ﬁofﬂn<6‘f\l

ii lim sup f frldx =20

(i) R—o 1. [|>R ’I’S’ (@) = fi

iii lim Sup f frldxz = 0.

(i) R—=00 1. In(~R,R)=0 |I|S’ (@)= fil

The Hardy space H'(R) consists of those integrable functions f : R — R
that admit an atomic decomposition f(z) =372, Aja;(z) where 3772, |\
< oo and the functions a; are L°-atoms (respectively L?-atoms) in the sense
that each a; is supported on an interval I; and satisfies the L°°-size condition
llajllLoor) < 1/]I;] (respectively, L*-size condition ||a;|[z2r) < O|1;|~1/?)
and the cancellation condition {3 a;(x) dz = 0. The H Lnorm can be defined
using either type of atoms, for example

£l 1 (m) == inf{z INj|: f = Z)\jaj, a; are Lz-atoms}.
j=1 j=1
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If instead we use L°°-atoms we will get an equivalent norm |Gra, Section
6.6.4]. It is well known that BMO(R) is the dual of H!(R) [FS].

A function f : R — C is said to be in H}(R), the Meyer-type Hardy space
associated with the accretive function b, if bf € H'(R); moreover

11l zz2 oy = 0111 )

In other words, f € H}(R) admits an atomic decomposition f = Z;’il Ajaj
where Z;}il |Aj| < oo and the functions a; are L°°-atoms (respectively L*-
atoms) in the sense that each a; is supported on an interval I; and satisfies
the L>-size condition |la;||pem) < 1/|I;] (respectively, the L?-size condi-
tion [|ajllr2m) = |Ibajll2m) < C|I;|='/?) and the cancellation condition
(g aj(2)b(x) dz = 0.

A locally integrable function 20 : R — C is said to be in BMOy(R), the
Meyer-type BMO space associated with the accretive function b, if

A/b € BMO(R),

and we define its norm naturally to be ||2||gpo,®) = [2/bllBMO(R)- As a

consequence of the H!-BMO duality, BMOy(R) is the dual of H}(R) [Me].
A locally integrable function 2 : R — C is said to be in VMO,(R), the

Meyer-type VMO space associated with the accretive function b, if

A/b € VMO(R).

Suppose I is a curve in the complex plane C and f is a function defined
on I'. The Cauchy integral of f is the operator Cr defined on the complex
plane for z ¢ I" by

(2.1) Cr(f)(z) =

2

LS&
FZ_C

A curve I is said to be a Lipschitz curve if it can be written in the form I" =
{z +iA(z) : € R} where A : R — R satisfies a Lipschitz condition

(2.2) |A(z1) — A(z2)| < Llzy — x| for all z1,z9 € R.

dc.

The best constant L in (2.2) is referred to as the Lipschitz constant of I’
or of A(z). One can show that A satisfies a Lipschitz condition if and only
if A is differentiable almost everywhere on R and A" € L®(R). The Lipschitz
constant is L = ||A’]|oo-

The Cauchy integral associated with the Lipschitz curve I is the singular
integral operator €1 acting on functions f € C°(R) by

oL (1+3A'(y) f(y)
23 ) =y ) ) - A

™
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for € R. The kernel of € is given by

1 14+ iA'(y)

miy—z+i(Aly) — Alw))’

Note that this is not a standard Calder6n—Zygmund kernel because the func-

tion 14 ¢A’ does not necessarily possess any smoothness. As noted in |Gra,
p. 289], the LP-boundedness of €T is equivalent to that of the related oper-

ator ‘5} defined by

C[‘(l',y) =

N oL f(y)
(2.4) er(f)(z) =p. i ni y—x+i(Aly) — A(x))

Moreover, the kernel of ‘KNF is given by
1
miy —a+i(Aly) — Alw))’

The kernel Cp(z,y) satisfies standard size and smoothness (1) estimates
[LNT, Lemma 3.3| and is therefore bounded on LP(R) for p € (1, 00). There-
fore, while the operator € (f) is initially defined for f € C°(R), it can be
extended to all f € LP(R), for each p € (1,00).

An operator T defined on LP(R) is compact on LP(R) if T' maps bounded
subsets of LP(R) into precompact sets. In other words, for all bounded sets
E c LP(R), T(E) is precompact. A set S is precompact if its closure is
compact.

(2.5) Cr(z,y) =

3. From classical spaces to Meyer Hardy spaces. In this section we
take advantage of the known weak factorization result for H'(R) in terms of
the Calderon—Zygmund singular integral operator Cgp as well as the charac-
terization of BMO(R) via the boundedness of the commutator with €7, and
of VMO(R) via the compactness of the same commutator |[LNT| to deduce
Theorems 1.1, 1.2, and 1.3.

We first consider the adjoint operator €}(g). By a direct calculation, we
can verify that for f,g € L?(R),

1 (1+iA(y)) f(y) o) da

(Er(f) 92w = Hip-V- mﬂi o i(Aly) — Az ))dy g(x)d
o L U,

e\ i) - Ay

" Namely: (size) |Cr(z,y)| < 1/|z—y| for all z,y € R and (smoothness) |Cr(z,y) —
Cr(wo,y)| + |Cr(y,x) = Cr(y.0)| S | — wol/lz — y|* for all @,z0,y € R such that
|z —wo| <y —=[/2.



Weak factorization of a Meyer-type Hardy space 313

1 1

= p.v. mﬂiﬂi T A A Y@ e (LA W) () dy
1 o
Hi p.v 5 T A Ay @ dr L+ iAW) ) dy
= S by W) f(y)dy = (£, €1 (9) r2m)-

In the thlrd equality we used Fubini’s Theorem to interchange integrals,
while in the second and fourth equalities we used the Lebesgue Dominated
Convergence Theorem to interchange the limit introduced by the principal
value and the integration.

We therefore conclude that

(3.1) ¢r(9)(x) = blx) - (¢1)"(9)(x).
Note that (¢7)* = —€.

We now use the weak factorization for H!(RR) (valid for m-linear Calderén—
Zygmund operators [LW1, Theorem 1.3]) for the Calderon—Zygmund operator
Cgp [LN*] to obtain the desired weak factorization for the Meyer-type Hardy
space H(R).

First proof of Theorem 1.1. The function f is in H}(R) if and only if
bf is in H'(R) but by weak factorization of H'(R) there are a sequence
{Ask}sk>1 and compactly supported bounded functions G* and HY such
that bf = > oo, Y00, Ak JI(G%, HF), where the bilinear form I1(G, H) is
defined by

(G, H)(z) = G(x) - 6r(H)(z) — H(x) - (¢7)"(G)(x).

Moreover,
101 1 (w)
~ {3 Nkl IGE ey HHE oy  F = D0 D Aok I(GE, HE)}.
k=1 s=1 k=1 s=1
Therefore

ZZM I(GE HE @) = 3 S AwII(GE HE D)),

k=1 s=1 k=1 s=1
The last identity follows since by definition (1.1) of the bilinear form I1,(g, ),
the fact that €p(f) = €r(bf), and identity (3.1), we have
1
(3.2 LI1(G, H)(@) = (G, H/) @)

Let gf = G’; and h’; = Hf/b; both are compactly supported bounded
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functions and
F@) =" Awlly(gh, hE) ().
k=1 s=1
Moreover HfHHZ:}(R) = ||bf || 1 (w), therefore

1 1y g {30 D7 el g8 g 10l ey = D0 D7 AsaelTo(gh 1) }

k=1 s=1 k=1 s=1
because gF = G¥ and ||hF|| 2y =~ IbhE|L2r) = | HE| 12(r) since b is an
accretive function. This proves Theorem 1.1.

If we know how to construct G¥ and H” then we know how to construct g*
and h’g, and vice versa. In the next section we provide an explicit construction
of gf and h’;, following Uchiyama’s blueprint directly in our setting.

Before proceeding, we provide the proofs of Theorems 1.2 and 1.3 relying
on the corresponding results for the related Cauchy integral operator €T .
Namely, a is in BMO (respectively in VMO) if and only if [a, 7] is bounded
on LP(R) (respectively, is compact on LP(R)) for p € (1,00). Furthermore,

lallento & [|[a, G|l o @) o (@)

Proof of Theorem 1.2. For b(z) = 1+ iA’(x), suppose 2 is in BMO,(R),
that is, /b € BMO(R); a direct calculation, using € (g) = ¢r(bg), shows
that

[A/b,Crl(f)(x) = [A/b,Cr)(0f)(x).
Thus, since by [LN*, Theorem 1.1] the commutator [/b, €7] is bounded on
LP(R), we get
1124/6, CT) ()| Loy = [24/5, €T)(0F) | o)
< [1[24/5, Cr)l| 1o r)— Lo @) 10 f | Lo (R)
S =/ bllsmom) | fl ey = 12UIBMoy )1 f 1| o (r) -
Conversely, for any given complex function 2 such that /b is real-valued,

A/b € Ly, (R) and [[[0/b, €7r]|| r(r)—Lr(r) < 00, We see that

loc
1120/0,Cr) ()l oy = 1112/, €] /0)|| 1o r)
< I1RU/b, 6]l o (m)y— Lo @)1 f /0l Lo (w)
S RYb, Crlll e ®)y— Lo ®) || £l 2o (R) -

Hence, [2/b, %] is bounded on LP(R) and by [LNT, Theorem 1.1] we con-
clude that 2/b is in BMO(R) and

120/bllsmo) S I12L/6, Gl oo @y—o@) S /0, Crl| oo R)— Lo (R)-
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Hence, we conclude that 2 is in BMOy(R) and

120 Broy ) S 2/0, CT]| Lo (r)— Lr (R)-
This finishes the proof of Theorem 1.2. u

Similar considerations yield the proof of Theorem 1.3 from the knowledge
that a € VMO if and only if [a, 4] is a compact operator on LP(R) [LNT,
Theorem 1.2].

Proof Theorem 1.3. For b(x) = 14 iA'(x) € L*(R), suppose 2 is in
VMO, (R), that is, 2/b € VMO(R). Therefore by [LN*, Theorem 1.2 the
commutator [2/b, %] is compact. Let E be a bounded subset of LP(R).
Then bE is a bounded subset of LP(RR) since

sup (|9l zer) = sup [|bf[|Lr ) < [0l 2o sup [|f | zr(r) < o0
gEbE feE ek

Therefore [A/b, €7](bE) is a precompact set. Recall that [2/b, 7] (bf)(z) =
[20/b,6r|(f)(z) for all f € LP(R). Thus

[24/b, 1) (E) = [/b,%r)(bE).

Hence [21/b, 61| (E) is a precompact set for all bounded subsets E of LP(R).
By definition [2(/b, €T] is compact.

Conversely, suppose [2(/b, €T is compact. Then given a bounded subset F’
of LP(R), F'/b is also a bounded subset of LP(R) since ||b||z > 1. Therefore
[2(/b,¢T]|(F/b) is precompact; but as before,

[24/b, 6T)(F/b) = [%/b,€r](F),

so [A/b,€r](F) is a precompact set for all bounded subsets F of LP(R).
By definition [/b, €7] is a compact operator in LP(R) and by [LNT, The-
orem 1.2] we conclude that 2A/b € VMO(R), and therefore 2 € VMO, (R).
This finishes the proof of Theorem 1.3. u

4. Weak factorization of the Meyer Hardy space—Uchiyama’s
construction. In this section we present a constructive proof of the func-
tions g and h¥ for k,s > 1, appearing in the weak factorization of H}(R).
This argument closely follows Uchiyama’s procedure [U2].

4.1. The upper bound in Theorem 1.1. Given f € H}(R), suppose
we have a factorization f = Y32, Y20 A, xITy (g%, h¥) with {\,;} € ¢!
and ¢¥ and h¥ compactly supported and bounded functions, as claimed in

Theorem 1.1. Then Lemma 4.1 below implies that

1l ey < DD Aok

k=1 s=1

98 | 22y B2 N 2y
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LEMMA 4.1. Let g,h € L*®(R) with compact supports. Then IIy(g, h) is
in H}(R) with
1Ly (g: P 1y my S 119l 2wy 1P| 22 () -
Proof. We first point out that for any g,h € L*°(R) with compact sup-
ports, ITy(g, h) is compactly supported in supp(g) Usupp(h). Next, it is easy

to see that IT,(g,h) € L%(R), using the fact that € is a bounded operator
in L?(R). Indeed,

1116 (g, )l L2y S 19l zoe @) 1Al L2®) + (17l oo () 191 2 () -

Moreover, since by definition of adjoint, (h, €7(9))2r) = (61 (h), 9)r2(R),
the following cancellation holds:

| 11,(9, 1) (@)b(2) dw = | (g(x) - G (h) () = h(z) - CF(9)(2)) da = 0,

R R
Hence, it is clear that up to multiplication by a certain constant, the bilinear
form ITy(g, h)(z) is an L*-atom of H}(R), that is, IT;(g,h) € H(R).

Now it suffices to verify that the H}(R) norm of II,(g, h) is controlled
by an absolute multiple of ||g[|z2) |||l z2(r)- A simple duality computation
shows that for A € BMO,(R) and for any g,h € L>*(R") with compact
supports,

<Ql7 Hb(g7 h)>L2(R) = <Ql/bag : Cgf‘(h) —h- (glt(g»LQ(R)
= (g, [&/b,67](h)) 12(R).

Remember that (f,g)r2w) denotes the L? pairing {; f(z)g(z)dz, not the
L? inner product. Thus, from the upper bound as in Theorem 1.2, we get

(&4, 1o (g, 1) 2wyl = (g, [4/6,6T](h)) L2(m)|
S 12 Bymoy )19l L2 ) 121l 2 (m) -
This together with the duality result of [Me|, H} (R)* = BMO,(R), gives

Ty(g, M) pmy = sup [, ITy(g, h)) 2w

12l BMmoy, r) <1
Slallz@llbllzewy — sup 120 Mo, (R)
I2BMo, R) <1
S ol Rl 22 @) =

4.2. The factorization and the lower bound in Theorem 1.1.
The proof of the factorization and of the lower bound in Theorem 1.1
is more algorithmic in nature and follows a proof strategy pioneered by
Uchiyama [U2]. We begin with a fact that will play a prominent role in the
algorithm below. It is a modification of a related fact for the standard Hardy
space H'(R).
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LEMMA 4.2. Let b(z) = 1+ iA'(x) with A" € L*(R). Suppose [ is a
function satisfying Sy f(x)b(z) dz = 0, and |F(2)] < X1ia0my() + X1ty (@),
where |xg — yo| =: M > 100 and I(z0,L) := {z € R : |z — 29| < L}. Then
f € H(R) and

(4.1) 113y S o M.

The lemma when b = 1 is stated in [LW1, Lemma 2.2| without proof, the
authors refer the reader to [DLT, Lemma 3.1] and [LW2, Lemma 4.3| where
the corresponding lemma, in the Bessel and Neumann Laplacian settings
respectively, is stated and proved. We cannot apply [LW1, Lemma 2.2] di-
rectly because although F' = bf will satisfy {, F'(x) dz = 0 by hypothesis, it
will not satisty |F/(x)| < X1(zo,1)(®) + X1(yo,1) (%), instead it satisfies |F(2)| <
10(2)[(X1(20,1) (%) + Xi(yo,1)(®)). But we can apply it to Fo = bf/[|bl| L),
since |Fo(2)| < X1(z0,1) (%) + X1(yo,1)(2), to conclude that Fy € H'(R) and
[ Follgrry S log M. Finally since ||Follg1w) = |0f | a1 my/ |10/ oo (r) We con-
clude that f € H}(R) and

1 ez ey = 10 1y S 110l poe () log M S log M.

Nevertheless, for completeness, we present here a direct construction of
an atomic decomposition in H} (R) for f that yields the estimate claimed in
Lemma 4.2, which could have an interest in itself; it also provides a proof
for [LW1, Lemma 2.2] by setting b = 1. This construction yields an atomic
decomposition for f = ZjeZ Ajaj;. However the Hb1 L*°-atoms a; built in
the proof of Lemma 4.2 for the specific given f are not the H! L*®-atoms
one would get by multiplying by [|b]| /b the H! L>®-atoms A; obtained by

the same procedure applied to Fy when b = 1.

Proof of Lemma 4.2. We will show by construction that f has an atomic
decomposition into H}(R) L*-atoms, using an idea of Coifman [CW]. We
first define

fi(x) = f(@)X1(@eny () and  fao(z) = f(2)X1(y0,1) (2)-
Then f = fi + f2 and

Lf1(2)] S Xi(@o)(x) and [ fa(2)] S Xr(yo,1) ()
Define

gi(z) = =2 fi(y)b(y) dy,

), ai = | filleolI (20, 2)].
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We claim that a} := (af)7!f} is an H}(R) L>®-atom. First, by definition,

a} is supported on I(xg,2). Moreover,

J ai(2)b(x) dz = (o)™ S(fl(ﬂf) — g1(2))b(x) dz

R
b1 X1(z0.,2) (%)
= (al) (Hif Hi e | o)
:(ai)_l(ﬂfl v =\ hwoly dy) =
R R
and
_ 1
latlloo < (1) 1 filloo = Tro2)]

Thus, af is an H}(R) L>®-atom. It also has the following estimate:
o] = I fillooH (0, 2)] < [l f1lloo I (0, 2)| + llgilloc (o, 2)]

perer=l L
I(x0,2

< 4+ 2|0l Lo (r) < 610l oo (ry S 1-

< [I(0,2) +

Here we have used [|b|| o (r) < 00, [f1] < X1(z0,1)> | (20, L)| = 2L, and
‘ S b(z)dz‘ > ’ S Reb(z)dz‘ > |I(z0,2)|.
I(z0,2) I(z0,2)
Moreover, we see that
fi(z) = fi(2) + g1 (2) = ajay(2) + gi(2).
We further write gi(z) as

g1(z) = (9i(2) — g1 (2)) + gi(x) =: fi(2) + g1 (2)

with
XI(z,4) (2)
o) = S LA dy
S1(1150,4) 2)az
Again, we define
af = | flloclI(z0,4)] and af := (af) 7 f7,

and a similar reasoning shows that a% satisfies the compact support condition
and the size condition ||a?|s < 1/]I(x0,4)|. Hence, it suffices to see that it
also satisfies the cancellation condition with respect to b. In fact,
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| af(@)b(z) dx = (a7) 7" \ (g1 (2) — g7 (2))b(x) do

R

=

Xf(xo,4)(33) b
Vo ob(@)dx ) fi(y)b(y) d
nigf(on)b(z)dz ui nomY y>

= (o) (} 1)) dy — § L (w)b(w) dy) = 0.
R R

Thus, af is an H}(R) L*-atom. Moreover, it satisfies the following esti-
mate:

o3| = [ lloo (0, 4)] < llgilloo|I (0, DI + llgtlloc | (0, 4)]

(20, 4)| (20, 4)]
S ewErE Hi!fl(y)!!b(y)\dy+ INEr= é‘fl(yﬂ‘b(y)]dy

< A[1b]| oo (m) + 210l oo (r) = 110l Loo(r) S 1-

Here again we use the fact that for every L > 0,

‘ S b(z)dz}z‘ S Reb(z)dz‘2|l(:n0,L)|.
I(zo,L) I(zo,L)

Thus we have

Zalaq z) + gi ().

Continuing in this fashion we see that for each ¢ > 1,

where for i € {2,...,ip},
X1(20,2) (1’) b d
T BV dzﬂifl(y) () dy,
fil@) =g (@) —gi(@), -
ai = || fillool I(x0,2)],  ai(x) := (1) ™" fi(2).

Here we choose iy to be the smallest positive integer such that I(yp,1) C
I(x0,2%). Then from the condition |zo — yo| = M, we obtain

gi(z) ==

ig ~ logy, M.
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Moreover, for i € {1,...,ip},
o] < 6[lbl| @) S 1.

Following the same steps, we also obtain, for the same i > 1,

falw) =) ajay(@) + g3 (),

i=1
where for i € {2,...,4p},
gh(z) == XI(WZ;)(x)d S fa(y)bly) dy,
Vo, 0(2) d2

fa(x) = g5 '(z) — gy(x),
ay = | fallool (90, 2°)],  ab(z) == (ah) ™" f3(x).
Similarly, for i € {1,...,io}, we can verify that each ab is an H} (R) L>®-atom
and |ab] < 1.
Combining the decompositions above, we obtain

= i(i aéa?(x) + g;-O (m))

j=1 i=1

We now analyse the tail g% (2)+g (). Consider the interval centered at
(2o + y0)/2 with length 2701, Then I(xo,1)UI(yo,1) C I, and I(xo,2") and
I (3o, 2%) are both subsets of I. Thus, since by hypothesis g f()b(y) dy =0,
we get

x7(2) | Ay dy+ | fa(y)bly)dy = 0.

x7(2)
87 b(z)dz Koo} SI b(z)d o)

Hence, we can write

o)+ o) = (o) - E | R )
I(z0,1)

: 7(@)
#(o0 - I5E T R )
2 (70(2) dz I(yso,l)
P @) + [ ().
For j = 1,2, we now define

1 1 i0+1 i0+1\—1 pio+1
™= I ], aP T () = (@) T (@),

Again we can verify that a;-OH for j = 1,2 is an Hl} (R) L°°-atom supported
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on I with the appropriate size and cancellation conditions
la | < 1//T| and | a*!(x)b(z) dz = 0.
R
Moreover, |a§0+1| < 1
Thus, we obtain an atomic decomposition
2 ip+1

F@) =33 aldi(a),

j=1 i=1
which implies that f € H}(R) and
2 ip+1 2 ip+1

ey < DD lafl S>> 1S log M.

j=1 i=1 j=1 i=1
This finishes the proof of Lemma 4.2. u

Repeating the proof we find that if r > 0, { f(2)b(z) dz = 0 and |f(z)| <
X1(zos) (T) + X1(yo,r)(T) Where |z — yo| > 7M, then f € Hbl(]R) and
(4.2) 11|z ) < 7 1og M.
The additional r comes from the estimates of the coefficients \oz;'-\ < r for
i1=1,...,90+ 1 and j = 1,2 where iy ~ log M.

Ideally, given an Hl} (R)-atom a, we would like to find g, h € L2 (R) such

that II,(g, h) = a pointwise. While this cannot be accomplished in general,
the theorem below shows that it is “almost” true.

THEOREM 4.3. For every H}(R) L*®-atom a(x) and for all € > 0 there
exist a large positive number M and g,h € L*(R) with compact supports
such that

la = y(h, 9y <& and  [|gllL2@w)llbllL2@) S M.

Proof. Let a(x) be an H} (R) L>®-atom, supported in (g, ), the interval
centered at xg with radius r. We first consider the construction of the explicit
bilinear form ITj(h,g) and the approximation to a(z). To begin, fix £ > 0.
Choose M € [100, c0) so large that

M tlogM < e.
Now select yp € R such that yo — xg = Mr. For any y € I(yp,r) and any
x € I(xg,7), we have |z —y| > Mr/2. We set
(4.3) g(x) = Xj(yo,r)(:c) and h(zx):=—

We first note that
(4.4) [(Gr)*(9)(x0)] Z M~

(¢T)*(9)(z0)
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In fact, from the expression of (47)*(g)(x0) = —%1(g)(zo) we have

- 1 L
() @)l =\ 5V T A
I(yo,r)

T
From the definitions of g and h, we obtain supp(g) = I(yo,r) and
supp(h) = I(xo,r). Moreover, from (4.4) and the size estimate for the atom,
we obtain

dy| > ML,

1
omy ~ 1 and B poor) = —=————|a||poorm) < Mrt.
lgllz (R) AL (R) (%) (9) (o) lallL (R) ~
We also get
amy ~ Y2 and hl| 2 :% all oy < Mr—V2,
91l L2 (m) 2]l 22 () @) o) lallp2m)
Hence ||g]|z2m) 1Pl L2m) S M. Now write
a(z) — Iy(h, g)(z) = a(z) — b(lx)(g(ﬂ?) - Cr(h)(x) — h(z) - € (9)(x))
~ (ato) + 12 i) ) - 22 -Gy

=: Wl(.%') + WQ(%‘)
By definition and using (3.1), we have

W) =) s (D) 0 ()" (0)@)

M\ (@r) (g)(xa)) i
~ a(a) [1 _ W] _ o(e). @) @0 (@) (9)w)
(T)*(9)(x0) (€r)*(9)(x0)

Thus, since (Cgp)* = —%p, for every z € I(zp,r) we get

1€r(9)(x0) — Cr(g)(=)]
€T (9)(20)]

|z — xo
< CM|lall g (w) S
I(yo,r)
< CMr~trr(Mr)™2 = C(Mr)~h
Here we use the standard smoothness estimate for the Calderén—Zygmund
kernel Cr(z,y) of €r (see [LN', Lemma 3.3] or [Gra, Example 4.1.6]). Since
it is clear that Wi (z) is supported on I(xg, ), we obtain
(Wi(z)] < C(Mr) ™ Xr(agm (2)-

We next estimate Wa(z). By definition, Wa(x) is supported on I(yg,r),
and

(Wi(z)] = a(z)]

2 —y?
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:_Xl(yw)(x) ! 1 Gr(z,y) — Cr(x, 0))b(y)aly) d
b() (c@*(g)(xoml(ﬁ (r(x.y) — Gr(x,20))by)aly) dy.

z0,T)

Here the last equality follows from the cancellation condition for the
H}(R) L*®-atom a(z). Hence, the following estimate holds for Wa(z)
whenever x € I(yp,r) (note that otherwise Wy(z) =0 and any estimate
will hold):

< XI(yo,r) (x) 1

— @I (€r)*(9) (o)

1 ~ ~
x — | [Cr(z,y) = Cr(x,z0)| [b()] la(y)| dy
I(zo,r)

(W ()]

ly — ol
Sxaon @M | el o

I(zo,r)

dy S (Mr)_IXI(yo,r) (:L'),

once again by the smoothness of the kernel Cr (x,y) of Cgp
Combining the estimates of W; and W, we obtain

(45)  la(z) = (g, h)(@)| S (M7) ™ (Xa (o) (@) + Xi(yo.r) (%)) -
Next we point out that
(4.6) Vla(x) — My (g, h) (x)]b(w) dz = 0,

R

since a(x) has cancellation with respect to b(x) and the same holds for

Iy(g, h) ().

Then from the size estimate (4.5) and the cancellation (4.6), together
with the result in Lemma 4.2, more specifically the estimate (4.2), we infer
that a — ITy(g, h) € H}(R) and

la = To(g, 1) 1y gy S M~ log M < Cee.

This proves Theorem 4.3. m
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We deduce from Theorem 4.3 the following corollary concerning H'!(R)
L°-atoms.

COROLLARY 4.4. For every HY(R) L*-atom A and for all ¢ > 0 there
exist M > 0 and compactly supported L™ functions G and H such that
A~ II(H,G)||mw) <€ and |G| 2w | H 2y S M.

Proof. Note that if A is an H'(R) L>-atom then A/b is an H}(R) L>°-
atom, hence by Theorem 4.3 for all ¢ > 0 there are M > 0 and compactly
supported L™ functions g, h such that ||A/b— IT;(g, h)HHg(R) <e. By (3.2),
Hb(.g? h) = bH(Q? bh)v hence HA - be(gah)HHl(R) - ”A - H(g7 bh)” S €.
Let G = g and H = bh; these are compactly supported L*° functions, and
furthermore ||G||r2r) [ H || 22®) = l9llL2®) |17l 2Ry < M- =

With this approximation result, we can now prove the main result.
Constructive proof of Theorem 1.1. By Theorem 4.1 we have
1Ty (g; Pl 1rp oy S 1190l 2wy 1Pl 22 ()
It follows that if f € H}(R) then for any representation

F=>"3 N(g5,nh)

k=1 j=1
we have
1A ey S DD IG5 2wy 125 2 wy-
k=1 j=1
Consequently,
1 gy < 0" S INE o D 106 ey = £ = 0 3 M tTu(af ) b
k=1j=1 k=1 j=1

We turn to showing that the other inequality holds and that it is pos-
sible to obtain such a decomposition for any f € H, l} (R). By the definition
of H}(R), for any f € H}(R) we can find a sequence {)\Jl} € (' and se-
quence of Hb1 (R) L°°-atoms a} such that f = Z;’il )\}ajl- and Z]Oil ])\]1\ <
Coll £l 2 ()-

We explicitly track the implied absolute constant Cjy coming from the
atomic decomposition since it will play a role in the convergence of the
approach. Fix € > 0 such that eCy < 1. Then we also have a large pos-
itive number M with M~'log M < e. We apply Theorem 4.3 to each
atom ajl. So there exist gjl-,h} € L>°(R™) with compact supports and sat-

istying [|g;[| 2w |71l 2y S M and

llaj — ITy(g5, )|y < € for all j > 0.
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Now note that

f= Z)\l 1—ZA1Hb g9}, hd) +Z)\1 al — (g}, h})) =: M + E.
7j=1 7=1
Observe that

1Bz r <Z\/\1|Ha — Iy(g5, ) 11 ) <€Z‘)‘1‘<5COHfHH1(R
J=1

We now iterate the construction on the function Ej. Since Ey € H}(R), we
can apply the atomic decomposition in H} (R) to find a sequence {)\2} et
and a sequence {az} of H}(R) L*-atoms such that By = PO /\? ; and

Z N1 < Coll Brll gy gy < Gl Nl )
J=1
Again, we will apply Theorem 4.3 to each L*°-atom a?. So there exist
g],h2 € L*°(R) with compact supports and satisfying HQJZHH(R)”hJZHL?(R)
S M and
Ha?—ﬂb(g], )||H1 <e forall j>0.

We then have

oo o]
El :Z)\? ?:Z)\?Hb(gja +ZA2 CL —Hb(g‘j’h2)) = M2_|_E2.
Jj=1 7=1 j=1
But, as before,

1Bl ey < D Il = To(g3, W)l zy < € D ING] < (6Co)?l| £l my
j=1 j=1
This implies that

o o0 o0
F=YXNaj=> NIT(gj, hj) + > Aj(aj — IMy(gj, b))
j=1 j=1

j—l

=M +E =M + M+ E; = Zz)\kﬂb%, ) + Eo.
k=1 j=1
Repeating this construction for each 1 < k < K produces functions
gj,hk € L*°(R) with compact supports and with Hg;-“||L2(R)Hh§HL2(R) <M
for all 5 > 0, sequences {)\k}j>0 € ¢t with ||{)\k}j>0\|41 < z—:k_lC(])’“Hf\|H1(R
and a function Ex € H} (R) with ||EKHH1(R (ECO)K||f||H1 (r) Such that

f= ZZA% (gF, hf) + Ex.

k=1 j=1
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Letting K — oo gives the desired decomposition

F=2_ 2 X (gj hf)-

k=1 j=1

We also have

C
K _ 0
ZZ AT < ZE (eCo) ”f”Hl}(IR{) TN ECOHf”H;(R)

k=1 j=1

Therefore {)\j }ikez is in €' as claimed. This finishes the proof of Theo-
rem 1.1. =

The weak factorization given by Theorem 1.1 can be used to prove the
lower bound of Theorem 1.2, the same way as is done for example in [LW1].
However, we used the upper bound of Theorem 1.2 to prove Lemma 4.1
responsible for the upper bound in Theorem 1.1.
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