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Abstract—In this paper, the simulated annealing (SA) and
genetic algorithm (GA) are explored for automating the
design of an analog circuit. �e transistor sizing methodology
performs optimization with simulation-based feedback. �e
sizes of the transistors of an analog circuit are determined
by the optimization algorithm and are applied to a schematic
representation of the circuit for characterization through
SPICE simulation. �e characterized response of the circuit
is then provided as input to the optimization algorithm for
further tuning. �e proposed transistor sizing methodology
is applied to an active inductor based voltage controlled
oscillator (VCO) for multiple target frequencies and ampli-
tudes. �e SA algorithm produced no more than a 6% error
in frequency from target values, while the GA produced
transistor sizes that resulted in no more than 6% error in
frequency and 13% error in amplitude. In addition, the GA
provided superior results in determining transistor sizes for
higher target frequencies, as determined through calculation
of the cost function. However, the improved results came
at a considerably greater computational cost. A hybrid opti-
mization technique is proposed, where GA performs coarse
search space exploration to determine the initial conditions
for the SA, and SA is then executed for �ne optimization of
the transistor sizes. �e hybrid optimization technique not
only resulted in 2.6x faster computational time as compared
to GA but also resulted in a signi�cantly lower cost function
as compared to both the GA and SA optimization techniques.
�e results indicate that the proposed methodology provides
a quick and accurate means of determining transistor sizes
for target analog circuit speci�cations, which signi�cantly
reduces the cost and the design time of analog circuits.
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I. Introduction
�e need for robust analog design methodologies is driven

by circuit complexity along with lengthy and costly design
cycles. According to a study by the IBS group [1], 20% of the
circuit area is occupied by analog components, while 40% of
the total e�ort is dedicated to analog design. Also, 50% of the
overall costly design re-cycles are due to the analog compo-
nents. �e complexity in the synthesis of analog circuits is
due to not only topology and layout synthesis but also in
determining the transistor sizes of the circuit.

Although electronic design automation (EDA) tools are
widely used in the design and veri�cation of digital circuits,
the use of EDA tools is not widespread in the analog domain.
�e lack of EDA tools for analog circuits is primarily due to
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the high non-linearity and extreme sensitivity to noise and
temperature of analog blocks. In addition, analog circuits are
mostly custom designed for a target application and lack the
modularity of digital circuits. �erefore, most analog blocks
are manually designed and integrated to form a complex
system. Designing the entire analog system typically requires
many iterations of running lengthy simulations to explore
the complex multi-dimensional design space to generate a
solution that meets the system speci�cations.
Optimization methods have been proposed for the automa-

tion of transistor sizing of analog circuit blocks. Classical
optimization methods include both deterministic-based and
statistical-based techniques, such as Simplex [2], Dynamic
Programming [3], Branch and Bound [4], and Goal Pro-
gramming [5]. �e deterministic and statistical optimization
techniques are e�cient for small size problems with less
than 10 variables [6]. Due to the inherent solution mech-
anism and the dependence on the algorithm parameters, the
classical optimization techniques provide limited use when
pursuing multi-criteria constrained problems. �e statistical
optimization techniques require accurate circuit modelling
and a strong initial starting point in the search space to pro-
duce accurate results. In addition, the statistical optimization
techniques are computationally costly and do not guarantee
convergence to a global optimal solution.
Heuristic-based optimization algorithms including simu-

lated annealing [7, 8], Tabu search [9, 10], evolutionary al-
gorithms [11], and genetic algorithms have gained impor-
tance due to the ability to explore large multi-dimensional
search spaces that include a signi�cant number of criteria
and constraints while providing means to escape local min-
ima/maxima within bounded computational costs. Heuristic-
based optimization algorithms have been used for analog
transistor sizing as well, where the optimization methods are
applied to complex analog models and equations. In order to
achieve higher accuracy of results, models that account for
circuit non-linearity and non-idealities are required, which
results in increased computational complexity. In addition,
modeling analog systems consisting of non-identical analog
sub-blocks is highly complex and time consuming.
�e primary contribution of this paper is the development

of an optimization methodology to determine transistor sizes
and biasing conditions for a wide range of analog circuits,
where the core optimization algorithm is fast and circuit and
technology independent. In the proposed design methodol-



ogy,simulationbasedperformanceevaluationofananalog
circuitisperformed withinaniterativeoptimizationloop.

roughsimulationbasedheuristicoptimization,accurate
transistorsizesaredeterminedforthetargetperformance
constraintsatafractionofthecomputationaltimeandre-
sourcesofatraditionalandmostlymanualdesignapproach.
Analogcircuitspeci cationsareusedtoformulateasetof
constraintsandperformance metricsthatprovidethebasis
foradevelopedcostfunction. edeveloped methodology
isappliedtothedesignofanactiveinductorbasedVCO
wheresimulatedannealing,ageneticalgorithm,andahybrid
geneticalgorithm-simulatedannealing(GA-SA)optimization
approachisusedtodeterminetransistorsizesandbiasing
valuesfordierentoperatingconditions while minimizing
theoverallcircuitarea.

II.S A O A
T S

Simulatedannealing(SA)isastochasticbasedglobal
optimizationalgorithmthatperformsrandomsamplingof
thesearchspacetomaximizeorminimizethevalueofacost
functionwithoutbecomingtrappedinlocalmaximaormin-
ima[7]. esimulatedannealingoptimization methodology
isinspiredbytheprocessofannealinginmetallurgy,where
ametalisheatedandthencooledslowlytoincreasethesize
ofcrystalsandreducedefectsinthe metal.Forsimulated
annealing,heatingthesystemreferstotherelaxationofthe
acceptancecriteriaofthesamplesolutionwithinthesearch
space, whilecoolingthesystemreferstothenarrowing
oftheacceptancecriteriaofthesamplesolutionto more
nelyoptimizetheresultaroundthetargetcriteria. e

SAalgorithmrandomlysamplesthesearchspace, wherea
probabilisticfunctionconstrainstheacceptanceofasub-
optimalsolutionasthetemperaturecools. etransition
fromacurrentpointpinthesearchspacetoanewpointpn

iscontrolledbyarandomperturbationδ(p)atpointp. e
acceptanceprobabilityofthetransitionisdenedas

F=
1

e
f(pn) f(p)

T

, (1)

wheref(pn)andf(p)arethecalculatedcostfunctionatthe
nextandcurrentpoint,respectively. ecurrenttemperature
Tcontrolstheprobabilityofacceptingthetransitionfromp
topn. Whentheexplorationofthesearchspacerstbegins,
thetemperatureTissettoahighvalue,whichresultsina
highprobabilityofacceptingasub-optimalsolution.During
theoptimizationprocess,Tisreducedbasedonthespecied
coolingschedule,whichreducestheprobabilityofaccepting
asub-optimaltransitiontoanewpointpn.

A. ProblemFormulation

eproposedSAoptimizationalgorithmworksinconjunc-
tion withSPICEsimulationofthecircuit, wheretransistor
sizesS={s1,s2,s3....sk}aredeterminedthroughexecu-
tionoftheoptimizationalgorithmandthecostfunction
Φ isevaluatedthroughsimulation. Asimulationisexe-
cutedonanextracted netlistoftheanalogcircuitthat

includestransistorsizesdeterminedbytheoptimizational-
gorithm. esimulationreturnstheperformanceparameters
P={p1,p2,p3...pl}(suchasgain,bandwidth,operating
frequency,etc)andthecircuitarea, whichareincludedin
thecalculationofthecostfunctionΦ whenexecutingthe
optimizationalgorithm. epseudo-codeofthetransistor
sizingmethodologyisprovidedasAlgorithm1.

For multi-objectivetransistorsizingofananalogcircuit,
simultaneousoptimizationofallobjectivefunctionsiscom-
pletedtoobtainanapproximatePareto-optimalfront.Inthe
caseofmulti-objectiveconstraintoptimization,performances
aresetaseitherobjectivefunctionsorasconstraintsinvolv-
ingsensitivityanalysisbetweendierentobjectivefunctions.

emulti-objectiveoptimizationproblemisformulatedsuch
thattheperformanceoftheVCOis maximizedwhile mini-
mizingthearea.

Algorithm 1: Evaluation of objective function
throughsimulation

Input:S={s1,s2,s3....sk}
Output:Φ={P={p1,p2,p3...pl}∩Area}
analog circuit(S)

GeneratenetlistbasedontransistorsizesS
Basedonextractednetlistrunsimulations
CaptureperformancevaluesP
EvaluatecostfunctionΦ;

returnP,area

B.OptimizationAlgorithm

epseudo-codeofthealgorithmtooptimizethetransistor
sizingofaVCOusingSAisprovidedasAlgorithm2.Based
onrandominitialvaluesofSandT,aninitialsolutionis
determined.Fromtheinitialsolution,acertainnumberof
randompointsninthesearchspaceareexploredbyslightly
modifyingtheinitial S.Iftheexploredsolutionresultsina
lowercostfunctionthanthecurrentsolution(minimization
problem)orif,oncalculationof(1),theacceptanceprobabil-
ityFisgreaterthanthatofarandomlyselectedpoint,thena
decisiontoconsidertheselectedsolutionismade.Inaddition,
thetemperatureisdecreasedbythespeciedcoolingratek
foreachiterationofexecutionofAlgorithm2form number
ofiterations. etotalnumberofiterationsisgivenbym
xn. ealgorithmreturnsthebestsolutionproducingthe
lowestcostfunctionΦ.

III. G A A T S

e Genetic Algorithm(GA)isasearchbased meta-
heuristicbasedontheprinciplesofgeneticsandnatural
selection. eGAbelongstoalargerclassofevolutionary
algorithms(EA),whereGAmimicstheprocessofbiological
evolutionbychoosingthegenomesthatarebestsuitedto
surviveinanenvironmentoversuccessivegenerations. e
GAusesapopulationofindividuals(solutions)insteadof
asinglesolutiontosearchtheproblemspaceinparallel,
whereforeverygeneration,anewsetofcandidatesolutions
aregeneratedbythebio-inspiredprocessesofselection,



Algorithm 2: Simulated annealing algorithm to min-
imize area and maximize performance parameters
Input: Φ, number of iterations, T , k
Output: Sbest, Areabest
Sbest = Scurrent

for i to m do
Si ← CreateNeighborSolution(Scurrent)
Tcurrent ← CalculateT (i, Tmax)
if Φ(Si) ≤ Φ(Scurrent) then

Scurrent ← Si

if Φ(Si) ≤ Φ(Sbest) then
Sbest ← Si

else if Formula > Rand() then
Scurrent ← Si

T = T − T · k
return Sbest

cross-over, and mutation. �e GA generates a viable solution
through the successive evolution of substandard solutions.

�e GA optimization technique evaluates the �tness value
Φ (cost function) of a given solution for the sizing of an ana-
log circuit. �e transistor sizes S = {s1, s2, s3....sk} are de-
termined through the optimization algorithm and the �tness
value Φ is evaluated through SPICE simulation of the circuit.
For each execution of the simulation loop, an analog circuit
netlist is generated based on the transistor sizes determined
by the optimization algorithm. Each iteration of simulation
returns the performance parameters P = {p1, p2, p3...pl} and
the circuit area, which are used to calculate the Φ by the
optimization algorithm.

Algorithm 3: Genetic algorithm to optimize analog
transistor sizes for target performance speci�cation.
Input: M , N , pc, pm, and k
Output: Sbest, Areabest
Create N population randomly of string size l
for m in range 1:M do

for n in range 1:N2 do
Select 2 parents through tournament selection
Crossover parents’ genes to get children at pc
Mutate children at pm

Get new generation of mutated children
Keep track of the best chromosome in each
generation
m = m+ 1

Sbest = �e chromosome with the best �tness value
from all the generations
return Sbest

�e genetic algorithm implemented in this paper applies
binary encoding to the chromosomes and tournament selec-
tion for choosing parents. �e �owchart and the pseudo-
code of the GA for analog transistor sizing is shown in the
Fig. 1 and Algorithm. 3, respectively. �e GA begins with

an encoding of analog circuit design parameters (transistor
sizing for this work). �e transistor sizes for the analog
circuit are binary encoded to represent a chromosome of a
particular length l. Based on the range of transistor sizes
and the computational complexity as given by the number
of allowed iterations, the optimal length of the chromosome l
is selected, with each chromosome string represented by a bit
B ∈ {0, 1}. All chromosomes encoding the target parameters
of the transistors are combined to form an initial genome.
Based on the initial genome, the initial population of size
N is generated by randomly altering the chromosome bits.
Applying selection, crossover, and mutation to the initial
population results in the creation of the �rst generation
genomes. �e genome with the best �tness value from
the �rst generation is saved, and the genetic processes of
selection, mutation, and crossover are then applied to the �rst
generation genomes, which results in the second generation
genomes. �e process of producing new generations and
storing the genome with the best �tness value is completed
M times, and the genome with the best-�tness value from
all the M generations is selected as the desired solution. �e
chromosome bits are decoded to obtain the values for each
design parameter.

A. Selection
Selection is the process of choosing two genomes from

the population for breeding. �e stochastic-based tournament
selection technique is utilized. �e selection technique is
implemented as follows.
1) �ree random genomes (k = 3, where k is the number

of genomes considered for tournament selection) from
the population are randomly selected.

2) A �tness value for the randomly chosen genomes is
determined as follows.

• Decode the genome to obtain the values of the
target design parameters,

• Apply the values of the decoded design param-
eters (transistor sizes) to SPICE simulations to
characterize the circuit response, and

• Add the error between the simulated and the tar-
get values of di�erent performance parameters to
obtain the �tness value.

3) �e genome with the best �tness value is selected as
the �rst parent.

4) Steps (1-3) are repeated to select the second parent.
5) Steps (1-4) are repeated N

2 times to obtain N parents.
�e process of selecting parents is followed by crossover,
where two children are obtained from each pair of parents.

B. Crossover
Crossover is a stochastic process used in GA to combine

genetic information of the two parents to produce two
o�spring. Two-point crossover is utilized, where two points
in the parents’ genome selected randomly are combined to
produce two o�spring. �e crossover process is depicted in
Fig. 2. �e probability that a random point in the parent
chromosome is picked for crossover depends on the value



Fig. 1: Flowchart of the genetic algorithm with tournament selection for analog transistor sizing.
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Fig. 2: Pictorial representation of the two-point crossover
operation applied by the genetic algorithm.

of the probability of crossover (pc). �e bits of the parent
chromosomes between the two randomly selected points are
swapped, resulting in two children as shown in the Fig. 2.

C. Mutation
Mutation is a process used for maintaining genetic diver-

sity from one generation to another by altering the state
of one or more chromosomes from the initial state. In the
proposed GA, an initial probability of mutation pm is set.
For each chromosomal bit, a random probability value is
selected between 0 and 1. If the random number selected is
less than pm, then the chromosome bit is �ipped. If, however,
the random number is greater than pm, then the initial bit
of the chromosome is preserved. �e genetic operators of
selection, crossover, and mutation are performed N

2 times,
which results in N number of children belonging to the next
generation.

IV. Application of Optimization Algorithms on a VCO
�e proposed analog design methodology based on simu-

lated annealing and genetic algorithm optimization is applied
to an active inductor based voltage controlled oscillator.
A voltage controlled oscillator (VCO) is an essential com-
ponent of radio-frequency systems that generates a stable

and tunable oscillating frequency based on an applied input
voltage. �e VCOs are used in frequency synthesizers in-
cluding local oscillators, phase locked loops (PLL), and clock
recovery circuits. Traditional VCOs utilize a passive inductor-
capacitor (LC) tank architecture. Primary disadvantages of
LC-tank based VCOs include 1) the tuning range of the
oscillator is relatively low (around 10% to 20% of the nominal
locking frequency), 2) on-chip passive inductors exhibit poor
high frequency performance without active compensation,
and 3) on-chip passive inductors signi�cantly increase the
circuit area [12, 13].
To improve the tuning range, increase the oscillating

frequency, and reduce the area, an active inductor based VCO
is implemented with a schematic topology as shown in Fig.
3. Transistors M1 to M6 form the active inductor, whose
equivalent inductance is given by

Leq =
2 · (Cgs1 + Cgs3)

gds5 · (2 · gm1
+ gm5

− gds5)
(2)

where Leq is the equivalent inductance of the gyrator, Cgs

is the gate to source parasitic capacitance of the given tran-
sistor, gm is the small signal transconductance of the given
transistor, and gds is the small signal output conductance
of the given transistor [14, 15]. �e equivalent inductance of
the gyrator is controlled by the voltage Lcntrl. Transistors
Mvar1 andMvar2 form the active capacitor, whose equivalent
capacitance is given by

Cvar = Cox ·Wvar · Lvar + Cgs ·Wvar + Cgd ·Wvar (3)
where Cvar is the equivalent capacitance of the varactor, Cox

is the oxide capacitance of the Mvar transistor, Cgs is the
gate-to-source capacitance, andWvar and Lvar are the width
and the length, respectively, of the Mvar transistors. �e
capacitance of the varactor is tuned by the control voltage
Ccntrl. Transistors M7 and M8 form the negative resistor,
which compensates for the parasitic resistances of the gyrator
and varactor circuits and increases the voltage swing.



TABLE I: SPICE results from characterization of the active inductor based VCO with transistor dimensions determined by
the simulated annealing optimization algorithm for multiple target frequencies and amplitudes.

Target
Frequency

Target
Amplitude

Number of
Iterations Time Simulated

Frequency
Simulated
Amplitude

% Frequency
Error

% Amplitude
Error Cost Function Area

(um*um)
1.5 GHz 1.2 V 500 5693 s 1.49 GHz 0.92 V 0.67 % 23.58 % 0.29 254.15
2.0 GHz 1.0 V 500 5678 s 1.99 GHz 0.91 V 0.50 % 9.10 % 0.10 251.00
2.5 GHz 1.0 V 500 5713 s 2.45 GHz 0.89 V 2.00 % 10.60 % 0.16 219.29
3.0 GHz 0.9 V 500 5901 s 3.01 GHz 0.79 V 0.33 % 12.78 % 0.13 220.19
3.5 GHz 0.9 V 500 5714 s 3.30 GHz 0.81 V 5.71 % 10.00 % 0.29 215.83
4.0 GHz 0.9 V 500 5473 s 4.10 GHz 1.17 V 2.50 % 30.00 % 0.37 66.787

TABLE II: SPICE results from characterization of the active inductor based VCO with transistor dimensions determined by
the genetic algorithm for multiple target frequencies and amplitudes.

Target
Frequency

Target
Amplitude

Number of
Iterations Time Simulated

Frequency
Simulated
Amplitude

% Frequency
Error

% Amplitude
Error Cost Function Area

(µm*µm)
1.5 GHz 1.2 V 500 22982 s 1.58 GHz 1.05 V 5.33% 12.50% 0.23 270.89
2.0 GHz 1.0 V 500 22587 s 1.93 GHz 0.95 V 3.50% 5.00% 0.12 268.18
2.5 GHz 1.0 V 500 24922 s 2.51 GHz 0.88 V 0.40% 12.00% 0.13 225.28
3.0 GHz 0.9 V 500 22392 s 3.05 GHz 0.80 V 1.67% 11.11% 0.15 232.22
3.5 GHz 0.9 V 500 20363 s 3.55 GHz 0.89 V 1.43% 1.11% 0.06 195.81
4.0 GHz 0.9 V 500 20253 s 3.95 GHz 0.87 V 1.25% 3.33% 0.08 217.42

Vdd

Lcntrl
M5 M6

M3 M4M1 M2
Ccntrl

M7 M8

Mvar1 Mvar2

Fig. 3: Schematic representation of the active inductor based
voltage controlled oscillator.

�e simulated annealing and genetic algorithm is imple-
mented in Python 2.7. �e simulation framework is im-
plemented using a combination of Cadence SKILL and the
OCEAN scripting language. �e circuit simulations are per-
formed using SPECTRE.

�e independent execution of both SA and GA results in
the selection of widths for transistors M1 to M8, Mvar1, and
Mvar2 of the active inductor based VCO circuit shown in
Fig. 3, which is then characterized through SPICE simulation.
Parameters provided to the cost function include operating
frequency and oscillating amplitude. �e cost function (�t-
ness value) for the active inductor based VCO is given by

Φ = |Ftarget − Fsimulated| · 10−9

+|Amptarget −Ampsimulated|,
(4)

where Ftarget and Fsimulated are the target and SPICE
simulated frequencies, respectively, and Amptarget and
Ampsimulated are the amplitude of the target and SPICE
determined output voltages, respectively. �e operating fre-

quency and the amplitude of the simulated VCO with sizes
determined using the optimization algorithm are compared
against the desired speci�cations. �e analysis is performed
for 1.5 GHz, 2 GHz, 2.5 GHz, 3 GHz, 3.5 GHz, and 4 GHz
target frequencies with accuracy and performance results
listed in Table I and Table II for, respectively, SA and GA.

V. Results and Discussions
�e SA and GA are implemented with an upper execution

limit of 500 iterations. �e simulated annealing algorithm
searches �ve neighbors each iteration around a selected point
as the temperature is decreased 100 times from 1000◦C to
0◦C. For the genetic algorithm, the size of the population
N for each generation is set to 10, and the total number of
generations M is set to 50. Both SA and GA are executed
�ve times with randomly generated initial conditions for
each target frequency and the results with the best cost
function (�tness value) are listed in Table I and Table II,
respectively.
�e results listed in Table I and Table II indicate that

simulated annealing is almost 4x faster than the genetic
algorithm for the same number of iterations. For lower target
frequencies, the SA optimized transistor sizes of the VCO
resulted in simulated frequencies with percentage errors,
measured as a deviation in frequency from the target value,
less than that observed for transistor sizes optimized by
applying GA. At higher frequencies, the percentage error in
the simulated frequencies from the SA optimized VCO were
larger as compared to results produced by the GA. �e �tness
value calculated for the GA optimized VCO is much lower
than the cost function determined for the SA optimized VCO,
which indicates a superior quality of results from applying
GA optimization on multivariate problems.
A hybrid algorithm consisting of both the simulated an-

nealing and genetic algorithms combines the computational
e�ciency o�ered by SA with the greater quality of results
provided by GA for multivariate search space exploration.
For the hybrid algorithm, the GA is used to initially explore



TABLE III: SPICE results from characterization of the active inductor based VCO with transistor dimensions determined by
the hybrid GA-SA optimization algorithm for multiple target frequencies and amplitudes.

Target
Frequency

Target
Amplitude

Number of
Iterations Time Simulated

Frequency
Simulated
Amplitude

% Frequency
Error

% Amplitude
Error Cost Function Area

(µm*µm)
1.5 GHz 1.2 V 300 7659 s 1.52 GHz 1.11 V 1.33% 7.50% 0.11 266.66
2.0 GHz 1.0 V 300 7528 s 1.97 GHz 0.94 V 1.50% 6.00% 0.09 247.13
2.5 GHz 1.0 V 300 7579 s 2.48 GHz 0.91 V 0.80% 9.00% 0.11 224.56
3.0 GHz 0.9 V 300 7722 s 2.94 GHz 0.84 V 2.00% 6.67% 0.12 212.24
3.5 GHz 0.9 V 300 7638 s 3.54 GHz 0.86 V 1.14% 4.44% 0.08 178.28
4.0 GHz 0.9 V 300 7466 s 3.92 GHz 0.94 V 2.00% 4.44% 0.12 196.66

the search space and determine ideal starting transistor
dimensions that are then provided to the SA algorithm,
which returns an optimized solution for the given constraints
and circuit topology. �e results from characterizing the
VCO optimized by the hybrid algorithm are listed in the
Table. III. As GA provides be�er search space exploration
while SA provides improved localized optimization to �nd
a minima, the number of iterations to optimize the VCO
was reduced to 300 while the computational time was at
least 2.6x shorter. �e GA was performed for 150 iterations
with N set to 10 and M to 15. �e SA was then performed
for an additional 150 iterations, where 5 nearest neighbors
were searched each iteration around a selected point. �e
temperature was decreased 30 times from 1000◦C to 0◦C.
�e hybrid-optimization technique generated transistor sizes
that when simulated in SPICE resulted in output frequencies
of the VCO that were no more than 2% from target values,
amplitudes that were no more than 9% from target values,
and calculated cost functions that were lower than either SA
or GA optimization alone. �e results indicate that hybrid
optimization not only reduces the number of iterations and
computational time, but also improves the accuracy of the
solution by more e�ciently pruning the search space.

VI. Conclusions
A low overhead and circuit and technology independent

simulation based optimization methodology for analog circuit
transistor sizing is described that applies both SA and the
GA, resulting in a reduction in design time and cost. �e
proposed optimization algorithms take analog speci�cations
as inputs and utilize multivariate search space exploration
to output transistor sizes that minimize the error between
the simulated and the target circuit performance parameters.
�e proposed methodology was applied to an active inductor
based VCO for multiple target frequencies and amplitudes.
�e number of iterations of the optimization and simulation
loop was set to 500. �e SA algorithm produced no more
than 6% error and 24% error between the simulated and
target frequencies and amplitudes, respectively, while also
generating transistor sizes that resulted in lower overall area.
�e GA produced transistor sizes that resulted in no more
than 6% error in frequency and 13% error in amplitude, while
providing a superior quality of results when selecting transis-
tor sizes for higher target frequencies. Based on the results of
the SA and GA, a hybrid optimization technique is proposed,
where GA performs coarse search space exploration to de-
termine the initial conditions for the SA algorithm, and the

SA algorithm performs �ne grain optimization to determine
the optimal solution for the given search space. �e hybrid
optimization reduces the computational time by at least
2.6x and produces transistor sizes that result in signi�cantly
lower cost functions as compared to executing GA or SA
optimization alone. �e proposed methodology provides an
e�cient approach to size analog circuits by reducing the
design time and complexity.
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