
Waveform Design for One-Bit Radar Systems Under
Uncertain Interference Statistics

Aria Ameri∗, Arindam Bose, and Mojtaba Soltanalian
University of Illinois at Chicago, Chicago, IL 60607, USA.

Abstract—An important problem in cognitive radar is to
enhance the estimation performance of the system by a joint
design of its probing signal and receive filter using the a priori
information on interference. In such cases, the knowledge of
interference statistics (particularly the covariance) plays a vital
role in an effective design of the radar waveforms. In most
practical scenarios, however, the received signal and interference
statistics are available subject to some uncertainty. An extreme
manifestation of this practical observation occurs for radars
employing one-bit receivers, where only a normalized version
of interference covariance matrix can be obtained. In this paper,
we formulate a waveform optimization problem and devise an
algorithm to design the transmit waveform and the receive
filter of one-bit radars given such uncertainties in acquired
interference statistics. The effectiveness of the proposed algorithm
is corroborated through numerical analysis.

Index Terms—Cognitive radar, clutter rejection, joint design,
probing signal, receive filter

I. INTRODUCTION AND PRIOR WORKS

In cognitive active sensing applications, an important prob-
lem is to jointly design the probing sequence and the receive
filter using the apriori knowledge of clutter and interference in
order to minimize the estimation error of the target parameters
[1]–[3]. Clutter refers to the unwanted echoes that are usually
correlated with the transmitted waveform, while the signal
independent noise as well as (adverse) jamming signals are
termed as interference [2]. A natural way to minimize the
effects of clutter and interference is to maximize the signal-
to-clutter-plus-interference ratio (SCIR) of the receiver output.
It is well known that a matched filter (MF) can maximize
the signal-to-noise (SNR) in the presence of additive white
noise, it however, fails to perform well in the case of clutter
or jamming suppression. As an alternative, one can use a
mismatched filter (MMF) at the receiver by trading off SNR
for SCIR [2]. In comparison to MF, an MMF allows more
degrees of freedom by introducing a receive filter and is not
subject to various power constraints of the transmit waveform
such as constant-modulus or low peak-to-average ratio (PAR)
constraint. Thus, a joint design of the transmit waveform and
the MMF receive filter can offer a more efficient parameter
estimation framework [4].

In [1], the authors presented a joint design scheme of the
receive filter and transmit waveform by minimizing the mean-
squared error (MSE) of the estimate of a target’s scattering
coefficient in the presence of clutter and interference subject
to some practical constraints such as constant-modulus or
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low PAR constraint on the transmit signal. To this end,
they presented three flavors of their algorithm: Cognitive
REceiver and Waveform design (CREW); namely, CREW
(gra), CREW (fre), and CREW (mat). Another variation of
CREW; namely, CREW (cyclic) can be found in [3], where
the authors formulated a cyclic approach to jointly design the
transmit waveform and receive filter coefficients. Note that
in all the aforementioned techniques, the receiver is assumed
to have high precision analog-to-digital converters (ADC). In
other words the quantization noise is modeled as additive
noise that usually has little to no impact on algorithms that
assume the infinite precision case, provided that the sampling
resolution is high enough. The assumption of high-precision
data is, however, inappropriate when the measurements are
extremely quantized to very low bit-rates. In the most extreme
case, the sampling process is done by utilizing a simple sign
comparator and the received signal is represented using only
one bit per sample [5], [6]. One-bit quantizers on one hand, are
not only low-cost and low-power hardware components, but
also much faster than traditional scalar quantizers, resulting in
great reduction in the complexity of hardware implementation.
On the other hand, it is now well known that signals can be
recovered with high accuracy from one-bit measurements, at
a slightly increased computational cost [7]. This increased
cost incurs from the fact that by using a one-bit receiver,
the knowledge of interference statistics are available in only
a normalized sense and such uncertainties prohibit one from
using traditional algorithms.

In the subsequent, we propose a specialized variation of
CREW (cyclic) [3] to tackle the problem of jointly designing
the probing signals and the receive filter coefficients in the
presence of uncertainty in interference statistics.

Notation: We use bold-lowercase and bold-uppercase let-
ters to represent vectors and matrices, respectively. The su-
perscripts (·)∗, (·)T , and (·)H represent the conjugate, the
transpose, and the Hermitian operator. sign(·),<(·), and =(·)
are the element-wise sign, real part and imaginary part of
a complex element, respectively. E{·} represents expected
value of a random variable. tr(·) is the trace of a matrix.
In addition, diag(·) and Diag(·) represent the diagonal vector
of its argument matrix and the diagonal matrix made with its
argument vector, respectively. I is the identity matrix. CN is
the set of complex vectors of length N . Finally, � represents
the elementwise product.

II. SIGNAL MODEL AND PROBLEM FORMULATION

Let s = [s1 s2 · · · sN ]T ∈ CN denote the transmit sequence
of length N , that is to be used to modulate the train of



subpulses. We adopt the discrete data model described in
[1] in order to layout the problem formulation. Under the
assumptions of negligible intrapulse Doppler shift, and that
the sampling is synchronized to the pulse rate, the received
discrete-time baseband signal after pulse compression and
alignment with the current range cell of interest, satisfies

y = AHα+ ε, (1)

where

AH =


s1 0 · · · 0 sN sN−1 · · · s2

s2 s1
... 0 sN

...
...

...
. . . 0

...
...

. . . sN
sN sN−1 · · · s1 0 0 · · · 0

 ,
(2)

α = [α0 α1 · · · αN−1 α−N+1 · · · α−1]T ∈ C2N−1, (3)

where the parameter α0 is the scattering coefficient of the
current range cell, while {αk}k 6=0 are that of the adjacent
range cells contributing to the clutter, and ε is the signal
independent interference comprising of measurement noise as
well as other disturbances such as jamming. In addition, we
assume that Γ , E{εεH}, and β , E{|αk|2} for k 6= 0, and
that ε and {αk} are zero-mean i.i.d. Note that in a traditional
radar system, β and Γ can be obtained via some prescanning
procedure [2].

For a known β and Γ, the estimation of the scattering
coefficient of the current range cell, α0, can be efficiently
achieved by using an MMF, and is given as [3],

α̂0 =
wHy

wHs
,

where w ∈ CN is the MMF coefficient vector. Therefore, the
MSE of estimation of α0 can be derived as

MSE(α̂0) = E

{∣∣∣∣wHy

wHs
− α0

∣∣∣∣2
}

=
wHRw

|wHs|2
, (4)

where

R = β

N−1∑
k=−N+1
k 6=0

Jkss
HJHk + Γ, (5)

and {Jk} are the shift matrices satisfying,

Jk = JH−k =


0 . . . 0 1 . . . 0
...

. . .
1︸ ︷︷ ︸

k

0 . . . 0 . . .


H

N×N

, (6)

k = 0, 1, · · · , N − 1.

Note that the denominator of the MSE in (4) is the power of
the signal at the receiver and its numerator is the power of the
interferences. Therefore, minimizing the MSE is identical to
maximizing the SCIR.

A. One-bit receiver

In the case of receivers with one-bit ADC, the quantizer is
nothing but a simple sign comparator and each measurement
is represented using only one bit, i.e., +1 or −1, and thus, the
auto-correlation of the received signal is only obtainable in a
normalized sense, as described in the subsequent [5].

Let Y (t) denote a real-valued, scalar, and stationary Gaus-
sian process that undergoes a one-bit sampling process Z(t) =
sign(Y (t)). The auto-correlation function of the process Z(t),
denoted by RZ(τ), is given by

RZ(τ) = E{Z(t+ τ)Z(t)} =
2

π
sin−1 R̄Y (τ), (7)

where R̄Y (τ) = RY (τ)/RY (0) is the normalized auto-
correlation function of the process Y (t) [10]. On the other
hand, the Bussgang theorem [11] states that the cross-
correlation function of the processes Y (t) and Z(t) is propor-
tional to the auto-correlation function of Y (t), i.e., RZY (τ) =
ζRY (τ), where the factor ζ depends on the power of the
process Y (t).

The case of complex-valued vector processes can be elabo-
rated in a similar manner [12]. Let υ be the one-bit sampled
data obtained from y using complex one-bit ADCs at the
receiver, given by

υ =
1√
2

csign(y) ,
1√
2

[sign(<(y)) + jsign(=(y))]. (8)

Let Ry and Rυ denote the auto-correlation of the processes
y and υ, respectively. It has been shown in [12] that the
following equality holds:

R̄y = sin
(π

2
Rυ

)
, (9)

where the normalized auto-correlation matrix of y is given as

R̄y ,W− 1
2RyW

− 1
2 , (10)

and W = Ry � I .
In the light of above, it can be verified that in the scenario

of having complex one-bit sampled data, the matrix R in (4)
is obtainable only in a normalized sense, i.e., one only has
access to

R̄ = D−
1
2RD−

1
2 , (11)

where D = R � I . Then, the problem of interest is to
design the transmit waveform s and the receive filter w given
the normalized interference statistics R̄. In the following, we
denote d = diag(D

1
2 ).

In such a case, a meaningful approach to the aforementioned
design problem is to consider:

min
w,s

E

{
wHD

1
2 R̄D

1
2w

|wHs|2

}
, (12)

under some practical signal power constraint. Note that the
expectation is taken over D. The above problem is clearly
non-convex. In the following, we handle the non-convexity of
the optimization objective in (12) with respect to (w.r.t.) the



probing sequence s and the receive filter w using an alter-
nating approach and propose a specialized flavor of CREW
(cyclic), named as CREW (one-bit).

III. PROPOSED METHOD: CREW (ONE-BIT)

A. Optimization of s

Following (5), the numerator of (4) can be rearranged, for
a fixed w, as

wHRw = wH

β N−1∑
k=−N+1
k 6=0

Jkss
HJHk + Γ

w (13)

= sH

β
N−1∑

k=−N+1
k 6=0

Jkww
HJHk

︸ ︷︷ ︸
χ

 s+wHΓw.

Thus, the criterion in (4) can be reformulated as,

MSE(α̂0)

β
=
sHχs+ µ

sHWs
, (14)

where µ = (wHΓw)/β and W = wwH . It is interesting to
note that µ is unknown, however, independent of s, and thus
merely a constant scalar w.r.t. s. Hence, solving the original
problem in (12) is equivalent to solving the following reduced
objective function in (14) w.r.t. s:

min
s

sHχs

sHWs
. (15)

To deal with the optimization problem of (15), we follow the
identical framework as [3] that exploits the idea of fractional
programming [13].

Let a(s) = sHχs, and b(s) = sHWs > 0 (MSE needs
to be finite). Further, let f(s) = a(s)/b(s) and s∗ denote
the current value of s. We define g(s) , a(s) − f(s∗)b(s),
and s† , arg mins g(s). It can be easily verified that
g(s†) ≤ g(s∗) = 0. As a result, we have that g(s†) =
a(s†) − f(s∗)b(s†) ≤ 0 which indicates to f(s†) ≤ f(s∗)
as b(s†) > 0. Therefore, s† can be considered as a new
vector s that monotonically decreases f(s). Note that s† does
not necessarily have to be a minimizer of g(s); instead, it is
enough if s† is such that g(s†) ≤ g(s∗).

Under the assumption that ‖s‖22 = N , for a fixed w, and
any arbitrary s∗ of the minimizer s of (15), we have:

g(s) = sH(χ− f(s∗)W )s = sHTs, (16)

where T , χ − f(s∗)W . Then the problem of (15) w.r.t.
unimodular s can be recast as the following unimodular
quadratic program (UQP) [14]:

max
s

sH T̃ s s.t. |sk| = 1, 1 ≤ k ≤ N, (17)

where T̃ , λI − T is a positive definite matrix and λ is a
real scalar greater than the maximum eigenvalue of T . Note

that (17) is NP-hard in general, and a sub optimal solution
can be sought by semi-definite relaxation (SDR). To tackle
this problem efficiently, in [14] a set of power method-like
iterations was suggested that can be used to monotonically
increase the criterion in (17); namely, the vector s is updated
in each iteration n using the nearest-vector problem

min
s(n+1)

∥∥∥s(n+1) − T̃ s(n)
∥∥∥
2

s.t.
∣∣∣s(n+1)
k

∣∣∣ = 1, 1 ≤ k ≤ N. (18)

Fortunately, the solution to (18) is simply given analytically
by s(n+1) = ej arg(T̃ s

(n)). A proof of monotonically increasing
behavior of the UQP objective in (17) can be found in [3].

B. Optimization of w

For a fixed s, the objective of (12) can further be simplified
as,

E

{
wHD

1
2 R̄D

1
2w

|wHs|2

}
=
E
{

tr
(
wwHD

1
2 R̄D

1
2

)}
|wHs|2

(19)

=
E
{
dH
(
wwH � R̄H

)
d
}

|wHs|2

=
tr
((
wwH � R̄H

)
E
{
ddH

})
|wHs|2

.

It is clearly evident that the knowledge of d indirectly demands
more information about β and Γ. However, assuming the
statistics of the noise is unchanging, one can estimate Γ in
a normalized sense by just listening to the channel while
not transmitting any waveform. As a result, from the one-bit
receiver, the normalized interference covariance matrix Γ̄ can
be obtained in a similar fashion as,Γ̄ , A−

1
2 ΓA−

1
2 , where

A = Γ� I . Thus the interference covariance matrix R in (5)
can be reformulated as,

R = D
1
2 R̄D

1
2 = βS +A

1
2 Γ̄A

1
2 , (20)

where S =
∑
k 6=0 Jkss

HJHk is constant for a known s.
Hence, a judicious approach is to solve the following problem
in order to optimize d,a, and β in a joint manner:

{d̂, â, β̂} =

arg min
d,a,β

∥∥∥Diag(d)
1
2 R̄ Diag(d)

1
2

−βS + Diag(a)
1
2 Γ̄ Diag(a)

1
2

∥∥∥2
F
,

s.t. d > 0,a > 0, β > 0. (21)

The above minimization problem is non-convex, and hence
in order to efficiently solve it, we resort to an alternating
approach: by solving for each variable while keeping the other
two constant. By doing so, w.r.t. each variable the problem
becomes convex and can be solved using a number of available
numerical solvers, such as the “fmincon” function in MAT-
LAB that implements BFGS. Note that by solving (21), one



can obtain β and d in an average sense which in other words
justifies the usage of expectation in the formulation of (19).

With this information in mind, let
∑N
k=1 νkuku

H
k represent

the eigenvalue decomposition (EVD) of E{ddH}, where {νk}
and {uk} are the k-th eigenvalue and eigenvector, respectively.
As a result, the numerator of (19) can further be simplified as,

tr

((
wwH � R̄H

) N∑
k=1

νkuku
H
k

)

=

N∑
k=1

νku
H
k

(
wwH � R̄H

)
uk

= tr

((
wwH

) N∑
k=1

νk Diag(uk) R̄ Diag(uHk )

)
= wHQw, (22)

where

Q =

N∑
k=1

νk Diag(uk) R̄ Diag(uHk ). (23)

It is interesting to notice that, Q can be viewed as E{R}.
A relevant proof is discussed in Appendix A. Finally, the
optimization problem translates to,

min
w,s

wHQw

|wHs|2
. (24)

Hence, for a given s, the optimization problem in (24) w.r.t.
w results in a closed-from solution: w = Q−1s, within a
multiplicative constant. Finally, the algorithm CREW (one-bit)
is summarized in Algorithm 1 in a concise manner.

IV. NUMERICAL EXAMPLES AND DISCUSSION

In this section, we evaluate the performance of CREW (one-
bit) and compare it with three state-of-the-art methods; namely
CAN-MMF, CREW (fre) and CREW (cyclic). The CAN-MMF
method employs the CAN algorithm in [15] to simply design
a transmit waveform with good correlation properties and
independent of the receive filter. Note that no prior knowledge
of interference is used in the waveform design of CAN-MMF.

We adopt the same simulation setups as in [3]. Especially,
for the interference covariance matrix we consider the follow-
ing:

Γ = σ2
JΓJ + σ2I,

where σ2
J = 100, and σ2 = 0.1 are the jamming and

noise powers, respectively. Furthermore, the jamming co-
variance matrix ΓJ is given by [ΓJ ]k,l = γk−l where
[γ0, γ1, · · · , γN−1, γ−(N−1), · · · , γ−1]T can be obtained by an
inverse FFT (IFFT) of the jamming power spectrum {ηp}
at frequencies (p − 1)/(2N − 1), p = 1, · · · , 2N − 1. For
CREW(fre) and CREW(cyclic) we fix the average clutter
power to β = 1. Finally, we use the Golomb sequence in
order to initialize the transmit waveform s for all algorithms.

We consider two modes of jamming: spot and barrage. Spot
jamming is concentrated power directed toward one channel

Algorithm 1 CREW (ONE-BIT)

Initialize: s(0) ← unimodular (or low PAR) vector in CN ,
w(0) ← random vector in CN , the outer loop index t← 1.

1: repeat
2: For fixed w,

i: Compute χ,W using (13), and thus, in turn find T̃ .
ii: Solve the power method like iterations discussed in

(18), and calculate s(t) in each iteration until conver-
gence.

3: Measure Γ̄ at the output of the one-bit receiver and
compute R̄ using s(t).

4: For fixed s,
i: Solve (21) to obtain d and β in average sense.

ii: Compute the EVD of E{ddH}, and in turn find Q.
iii: Update w(t) as Q−1s(t).

5: until convergence, e.g.,
∣∣∣MSE(t+1) −MSE(t)

∣∣∣ < ε for
some given ε > 0.

or frequency. In our example we use a spot jamming located at
a normalized frequency f0 = 0.2. On the other hand, barrage
jamming is power spread over several frequencies or channels
at the same time. We consider a barrage jamming located in
the normalized frequency bands [f1, f2] = [0.2, 0.3].

Fig. 1 (a)-(b) depict the MSE values for spot and bar-
rage jamming, respectively, corresponding to CAN-MMF,
CREW(fre), and CREW(cyclic), under the unimodularity con-
straint, for various sequence lengths. It is evident from the
figures that when the sequence length N is small, the MSE
is higher for CREW (one-bit) compared to other algorithms.
However, as N increases, CREW (one-bit) shows similar per-
formance as CREW (cyclic) and eventually, they coincide with
one another for higher values of N . Consequently, it is implied
that higher signal length introduces more degrees of freedom
in designing transmit waveform and thus, compensates for the
uncertainties in interference statistics. It is further important to
notice that the knowledge of the one-bit measurements impacts
the design of the receive filter and alternatively the design of
the receive filter coefficients impacts the design of transmit
waveform, which justifies the role of a cognitive radar.

APPENDIX A

By using D
1
2 = Diag(d), the following can be deduced:

E{R} = E{D
1
2 R̄D

1
2 } = E{ddH} � R̄. (25)

Assuming E{ddH} = ηηH + Σ, (25) can reformulated as

E{R} = (ηηH + Σ)� R̄

=

N∑
k=1

νkuku
H
k � R̄

=

N∑
k=1

νk diag(uk) R̄ diag(uHk ), (26)

and the proof is complete.
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Fig. 1. MSE values obtained by the different design algorithms for (a) spot jamming with normalized frequency f0 = 0.2, and (b) barrage jamming in the
normalized frequency interval [f1, f2] = [0.2, 0.3] for the unimodularity constraint on the transmit sequence.
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