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Abstract—A central problem in analog wireless sensor net-
works is to design the gain or phase-shifts of the sensor nodes
(i.e. the relaying configuration) in order to achieve an accurate
estimation of some parameter of interest at a fusion center,
or more generally, at each node by employing a distributed
parameter estimation scheme. In this paper, by using an over-
parametrization of the original design problem, we devise a
cyclic optimization approach that can handle tuning both gains
and phase-shifts of the sensor nodes, even in intricate scenarios
involving sensor selection or discrete phase-shifts. Each iteration
of the proposed design framework consists of a combination of the
Gram-Schmidt process and power method-like iterations, and as
a result, enjoys a low computational cost. Along with formulating
the design problem for a fusion center, we further present
a consensus-based framework for decentralized estimation of
deterministic parameters in a distributed network, which results
in a similar sensor gain design problem. The numerical results
confirm the computational advantage of the suggested approach
in comparison with the state-of-the-art methods—an advantage
that becomes more pronounced when the sensor network grows
large.

Index Terms—Distributed beamforming, fusion center, alter-
nating direction method of multipliers (ADMM), consensus
algorithms, parameter estimation, signal recovery, wireless sensor
networks, waveform design on graphs

I. INTRODUCTION

ANALOG vs. Digital? When it comes to wireless sensor
networks (WSNs), analog WSNs exhibit a significantly

reduced level of distortion in parameter estimation compared
to their digital counterparts [2]. Consequently, analog WSNs
have been recently subject to extensive study—see, e.g., [2]–
[9], and the references therein.

The task of collecting an estimated (or recovered) parameter
(or signal) from measurements of the sensor network is usually
performed in a centralized manner, i.e. at a fusion center (FC).
To further improve the estimation or detection performance
in WSNs, the FC can be configured with multiple antennas
[5], [7], [9]. Several measurement relaying strategies have
been proposed, including amplify-and-forward [4], [5], and
phase-shift-and-forward schemes [7]. It was shown that the
transmission gain or phase-shift at the sensor nodes can be
optimized in order to considerably reduce the estimation error
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at the FC. On the other hand, due to the fact that in a WSN
the sensors are usually located in geographically different
positions, the task of parameter estimation using a WSN
requires the development of local signal processing techniques
as well as developing inter-sensor communication strategies to
further facilitate the estimation process. In addition, due to the
limited bandwidth, cost, and energy budget available in WSNs,
one should also consider the design of efficient compression
techniques for local observations of each node so that it allows
for low rate communications for node-to-node and node-
to-FC transmissions. Hence, it is of importance to develop
distributed estimation algorithms that allow for a low rate, yet
optimized, communication strategy for both centralized and
decentralized parameter estimation. To this end, we attempt
in this work to provide a unifying optimization framework
in the context of sensor transmission gain design for both
centralized and decentralized parameter estimation in a WSN,
and also propose a novel compression and diffusion strategy
for inter-sensor communications which relies not only on the
quality of the sensor observations but also the quality of the
communication channel and observations of the neighboring
nodes as well.

There exists an extensive literature on the routing strategy
optimization and sensor selection schemes for distributed
networks to increase the efficacy of the distributed system
while maintaining the accuracy of the estimation framework
for both centralized or decentralized scenarios. The approaches
used for addressing the design of energy-efficient routing and
relaying schemes for such systems are based on convex and
non-convex optimization techniques [10]–[12]. Researchers
have looked at these problems from different perspectives, e.g.,
reducing communication cost [13]–[15], joint optimization of
the routing and power allocating scheme [16]–[18], devel-
oping opportunistic-based routing protocols [19]–[21], joint
optimization of resources and routing in a distributed manner
[22], among others; interested reader may consult [23], [24]
and the references therein for further details. In an effort to
extend the lifetime of the network, several sensor selection
algorithms were also proposed and studied in [7]. Furthermore,
the authors in [25] have considered the problem of energy effi-
cient distributed parameter estimation in a WSN and proposed
a Fixed-Tree Relaxation-Based Algorithm (FTRA) in con-
junction with a computationally efficient iterative distributed
algorithm to jointly optimize the sensor selection and routing
scheme in a WSN. In such scenarios, [25] shows that the well-
known Shortest-Path Tree routing scheme is not optimal if
one wishes to consider both the total communication cost and
the estimation accuracy, while the authors provide a method
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with better trade-off when both of the criteria must be taken
into account. In [26], the authors considered the problem of
distributed estimation of a vector-valued parameter in a WSN
with faulty transducers and proposed a diffusion-averaging
distributed Expectation-Maximization (EM) algorithm in order
to perform the estimation task. Most notably, a class of dis-
tributed (but centralized) linear estimators based on reduced-
dimensionality observations were developed in [27] to tackle
the problem of estimating stationary random signals, and in
particular, block coordinate descent based iterations to handle
the estimation task for correlated sensor observations were
proposed.

In the centralized parameter estimation scenario, a central
node (i.e., the fusion center) collects the data from the sensor
nodes in the network to perform the task of parameter esti-
mation. Then, the FC applies an inference algorithm (e.g., the
maximum likelihood estimation method) on the raw data to
obtain the final estimate. However, if the data transmission to
the FC is costly, the data processing and power limitations
can be alleviated via employing a decentralized/distributed
communication and estimation model in which each node
performs the task of estimation locally while restricting the
data exchange between neighboring nodes. Another approach
is to use low-resolution sampling techniques for addressing
the power and data-rate limitations [28]–[33]. Early works
in the context of analog estimation include the study of
algorithms for data fusion in both centralized and decentralized
scenarios. For instance, the authors in [34] have proposed
an average consensus-based decentralized estimation scheme
for a network with both fixed and time-varying topologies.
In some recent efforts to achieve minimum estimation er-
ror, analog amplify-and-forward and phase-shift-and-forward
transmission schemes for signal transmission from sensor to
fusion center (FC) have been proposed in [3], [4], [5], [35],
and [7], where the sensor gain optimization is usually subject
to a total power constraint. Moreover, a distributed parameter
estimation algorithm based on alternating direction method
of multipliers (ADMM [36]) has been proposed in [37] and
[38]. In addition, an ADMM-based method for phase-shift-
and-forward (i.e., unit-modulus beamforming) wireless sensor
networks aiming at estimating a deterministic parameter from
noisy sensor measurements in a centralized manner has been
proposed in [39]. In particular, the authors of [39] formulate
the problem of centralized parameter estimation as a uni-
modular quadratic program (UQP) and tackle it using the
ADMM technique. Furthermore, the authors in [40] have
considered the scenario of detection of a zero-mean Gaussian
signal in a centralized manner and propose a convex sensor
gain optimization framework by minimizing the ratio of the
log probability of detection and log probability of false alarm
under a fixed-norm gain constraint. Nevertheless, our work
differs from [39] and [40] due to the fact that our proposed
method can handle several practical scenarios (see Sec. III(A)-
(B)) including, e.g., both the unit-modulus beamforming sce-
nario of [39] and fixed-norm gain design of [40] in centralized
and decentralized system architectures, and even more. For a
more general overview of beamforming and sensor gain design
techniques, the reader is referred to [41] and [42].

Contributions: In this work, we first formulate the prob-
lem of parameter estimation for both cases of centralized
and decentralized data fusion models. Then, we derive the
asymptotic variance of the estimation for both cases and we
propose an efficient framework that can deal with tuning
both gains and phase-shifts of the sensors for an optimized
forwarding of the observed signal for node-to-node and node-
to-FC communication purposes, which effectively minimizes
the final error variance of the estimation, facilitating a better
estimation accuracy for the parameter in both the decentral-
ized and centralized scenarios. Furthermore, we propose a
novel data compression and communication strategy for the
decentralized estimation scenario, and further show that the
centralized and decentralized estimation frameworks can be
viewed under a single unified optimization model. In addition,
the corresponding mean-squared-error (MSE) performance of
the proposed estimation techniques for both scenarios are
derived in terms of the sensor gain vectors. In particular,

• The proposed algorithm can deal with the optimization
of the complex gains of the sensors (i.e. both phase-shifts
and transmit gains) for both centralized and decentralized
parameter estimation models. In addition, our method
offers an extremely low computational complexity com-
pared to state-of-the-art methods. In particular, in the
centralized parameter estimation scenario, our proposed
optimization method demonstrates far better estimation
accuracy compared to other methods. In addition, it is
superior in computational performance for large-scale
distributed systems, compared to the state-of-the-art SDP-
based approaches.

• The proposed approach can be used for various types
of sensor constraints including e.g., phase-shift only and
sensor selection cases.

• In the phase-shift only case, we propose a simpler alter-
native to our general framework.

Organization of the Paper: The rest of the paper is organized
as follows. In Section II, we give the general problem for-
mulation of the both decentralized and centralized parameter
estimation schemes with their associated data fusion algorithm.
In Section III, we propose our efficient sensor gain optimiza-
tion technique which effectively minimizes the variance of
the estimation methods for both the cases of decentralized
and centralized parameter estimation. In Section IV, we thor-
oughly investigate the performance of our proposed sensor
gain optimization for different scenarios and we compare
our algorithm with several state-of-the-art methods. Finally,
Section V provides a summary that concludes the paper.

Notation: We use bold lowercase letters for vectors and bold
uppercase letters for matrices. (·)T , and (·)H denote the vec-
tor/matrix transpose, and the Hermitian transpose, respectively.
1 and 0 are the all-one and all-zero vectors/matrices. ‖x‖n
or the ln-norm of the vector x is defined as (

∑
k |x(k)|n)

1
n

where {x(k)} are the entries of x. The symbol � stands for
the Hadamard matrix product. Diag(·) denotes the diagonal
matrix formed by the entries of the vector argument, and
blkdiag(·) returns a block diagonal matrix with matrices
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on its diagonal. ZQ denotes the set {0, 1, · · · , Q − 1}. We
represent the topology of the WSN by an undirected and
connected graph G = (E ,V), consisting of a finite set of
vertices V = {1, . . . , n} (also called nodes), and a set of edges
E ⊆ {{i, j} : i, j ∈ V}. We denote the edge between node i
and j as {i, j}, which indicates a bidirectional communication
between the nodes i and j. We further assume that the sensor
connections in G are time-invariant and the transmissions are
always successful. We define the set of neighbors of node i
including itself as Ni , {j ∈ V : {i, j} ∈ E}. The degree of
the ith node is given by di = |Ni|.

II. SYSTEM AND FUSION MODEL

In this section, we consider two different data exchange
scenarios in a multi-agent network (e.g., a WSN) where
the ultimate goal is to achieve a maximum likelihood (ML)
estimation of some observed parameter. We will refer to the
two scenarios as centralized and decentralized data exchange
schemes. We further present a consensus-based framework
for decentralized estimation of deterministic parameters in
wireless sensor networks and further show that the error
variance in this case converges to that of the global maximum
likelihood estimate of the parameter when a central node has
access to all information available in the network. Next, we
propose an efficient sensor gain optimization technique to
minimize the overall error variance of the estimate derived
in both centralized and distributed frameworks.

A. Problem Formulation: Decentralized Estimation

We present a distributed consensus-based estimation frame-
work for our problem and further derive the error variance
formulation for this case, which will be utilized as a metric to
optimize the transmission gains for our amplify and forward
node-to-node data exchange protocol. We consider a network
with N single-antenna agents (nodes) each of which observes
an unknown deterministic parameter θ ∈ C, according to the
following linear observation model:

zi = θ + vi, (1)

where i denotes the sensor index, and vi ∼ CN (0, σ2
v,i) is

additive Gaussian observation noise. We further assume that
the observation noise is independent from one node to another,
and that the channel state information (CSI) of the network is
available at the nodes (at least for neighbors).

Our distributed data exchange protocol operates as follows.
The ith agent amplifies its observation zi with an adjustable
complex gain ai ∈ C, and then, transmits this amplified
observation to its immediate neighbors (i.e., k ∈ Ni). Hence,
the received vector at a generic node i from its neighbor node
k can be modeled as:

yi,k = hi,kakzk + ni. for k ∈ Ni (2)

where hi,k ∈ C denotes the complex gain of the chan-
nel between nodes k and i, and ni ∼ CN (0, σ2

n) is the
zero-mean Gaussian communication noise which is assumed
to be uncorrelated from one transmission to another. Let
Si = {si1, . . . , si|Ni|} denote the ordered sequence of all nodes

neighboring the i-th node. This ordered set allows for a concise
description of the estimation and system model in the rest
of the paper. Considering the generic node i to be a data
sink point in the network, the vector of all observations of
its neighboring nodes prior to amplification can be modeled
as,

zi = θ1 + vi, (3)

where zi = [zsi1 , . . . , zsi|Ni|
]T , and vi = [vsi1 , . . . , vsi|Ni|

]T

denotes the vector of observation noise for all nodes in the
neighborhood of the i-th node (i.e., k ∈ Ni), for which the
covariance of the aggregated noise vector is given by

Rvi = E{vivHi } = Diag

(
σ2
v,si1

, . . . , σ2
v,si|Ni|

)
.

Consequently, the received vector of the amplified signal at
node i from its neighbors can be expressed as:

yi = HiDizi + ni = Hiaiθ + HiDivi + ni︸ ︷︷ ︸
,wi

, (4)

where ai = [asi1 , . . . , asi|Ni|
]T denotes the complex sen-

sor gains to be optimized, Di = Diag(ai), yi =
[yi,si1 , . . . , yi,si|Ni|

]T whose elements are defined in (2), Hi =

Diag
(
hi,si1 , . . . , hi,si|Ni|

)
, and ni is complex Gaussian com-

munication noise vector at the sink node i, with covariance
matrix Rni = E{ninHi } = σ2

nI|Ni| . In addition, according to
(4), we define wi , HiDivi+ni, as the combined noise term
for the communication noise and the amplified measurement
noise. Clearly, the combined noise term wi follows a zero-
mean Gaussian distribution with covariance matrix

Rwi
= E{wiw

H
i } = HiDiRviD

H
i HH

i + Rni . (5)

B. Local Estimation Model
Let θ̂(t)i denote the local estimate of the unknown parameter

at node i after t rounds of data exchange in the network.
Henceforth, according to (4) and after the first round of node-
to-node communication (data exchange via the amplify-and-
forward scheme) in the network, each node can compute the
initial maximum likelihood estimate of the parameter based
on the received information from its neighboring nodes as

θ̂
(1)
i =

(
aHi HH

i R−1wi
Hiai

)−1
aHi HH

i R−1wi
yi, (6)

where the error variance of the above estimate is given by

Var
(
θ̂
(1)
i

)
=
(
aHi HH

i R−1wi
Hiai

)−1
. (7)

A drawback of such a distributed amplify-and-forward
scheme (governed by variable sensor gains) is that all nodes
neighboring a specific node i will receive the amplified noisy
observation of that node, yi,k for k ∈ Ni, and further
incorporate that single noisy observation into their estimation
model. In such an approach, the aggregated global data of the
entire network is correlated. In order to alleviate this problem,
and further reduce the diffusion of redundant information
in the network, we propose the following data compression
strategy which results in a more efficient node-to-node com-
munication in that it allows the diffusion of the most useful
(less contaminated) data in the network.
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Fig. 1. An intuitive illustration of the proposed data compression and diffusion strategy for a graph with N = 6 nodes. Purple nodes represent the parent
nodes at each data compression phase, while the red ones show the node that is assigned to carry the information received from the corresponding parent
node. Each node starts with an initialization of the information variable Ii(0) for i = 1, . . . , N , and transmits this variable to its immediate neighbors. Next,
each node (denoted by the color purple, considered as a parent node in its neighborhood) assigns the node with the highest information value (red node) to
incorporate the parent node’s observation into its diffusion process.

C. Data Compression and Diffusion Strategy

Each node starts an initial local information variable Ii(t)
for i ∈ V , according to the following model (where t denotes
the discrete time index):

Ii(0) = aHi HH
i R−1wi

Hiai. (8)

Note that the above initialization scheme requires each node to
have the (partial) channel state information, the transmission
gains, and the second-order noise statistics of its neighboring
nodes, which we assume are available at all nodes. Each node
then transmits its initial local information variable Ii(0) to
its immediate neighbors. Furthermore, note that Ii(0) can be
seen as a measure of information in that the inverse of Ii(0)
provides the local error variance of the maximum likelihood
estimate (MLE) of the unknown parameter at each node. After
this round of information exchange, each node (which also
can be seen as a parent node in its local neighborhood) will
select the node from its neighbors with the highest information
value and only the selected node will retain/use the received
data from the parent node; all other nodes will discard their
associated received signal for that particular parent node. In
the case that more than one node has the highest information
value, the parent node can choose either one for relaying pur-
poses (e.g., by random assignment) as our diffusion strategy
is based on one-hop information. In other words, assume that
the j-th node has the highest information value among the
i-th node’s neighborhood. Then, all nodes k ∈ Ni\{j} will
discard yi,k, except the j-th node.

In order to further clarify the above described data com-
pression strategy, consider the toy graph example with N = 6
nodes illustrated in Fig. 1. In this case, we assume that the
initial information values of the nodes are given by the vector
I(0) = [2, 6, 5, 7, 1, 3]T , respectively. As it can be seen from
the illustrated graph, node 1 has only one immediate neighbor
which is node 3, and thus, it has the highest information
value in N1. Therefore, node 1 assigns node 3 to carry the
information received from node 1 in the graph. Similarly,
consider node 3 as the parent node where N3 = {1, 2, 4}
with corresponding information values of [2, 6, 7] respectively.
Consequently, node 4 now has the highest information value

among the immediate neighbors of node 3 (the parent node),
and thus, node 3 assigns node 4 for processing the information
received from node 3 in N3, and all other nodes in the
neighborhood of the parent node 3 will discard the received
data from it, i.e., the nodes N3\{4} = {1, 2}. Eventually, in a
similar manner, the nodes {3, 5, 6} assign node 4 as the carrier
of their transmitted information, and the nodes {1, 2, 4} choose
node 3 as the carrier of their information.

The above local estimation and data compression scheme
can be described as follows. Let {Ti}Ni=1 denote the row
selection matrix associated with the i-th node, which points
to the rows of the vector yi that are to be retained according
to the above data compression strategy. Thus, the aggregated
received data at each node and after applying the proposed
compression strategy is given by

y′i = Tiyi.

For instance, in the toy example illustrated in Fig 1, node 4
is assigned to retain the information received from the nodes
{3, 5, 6}. Thus, its row selection matrix should be set as T4 =
I3, where In denotes the identity matrix of dimension n. On
the other hand, nodes {1, 2, 5, 6} have not been chosen by any
node for information diffusion purposes, and therefore, their
row selecting matrix is the all-zero square matrix of dimension
|Ni| for i ∈ {3, 5, 6}, respectively.

The compressed global observation vector collected from
all nodes following the above described compression strategy
can be modeled as follows:

y = Haθ + HDv + Gn, (9)

where a = [a1, . . . , aN ]T is the vector of complex gains
to be optimized, D = Diag (a), v = [v1, . . . , vN ]T de-
notes the vector of observation noise at all nodes whose
covariance matrix is given by Rv = Diag(σ2

v,1, . . . , σ
2
v,N ),

G = blkdiag
(
{Ti}Ni=1

)
, and H = [T1Ω1, . . . ,TNΩN ]T

where the matrix Ωi is a |Ni|×N matrix whose elements are
defined as follows:

[Ωi]m,n =

{
hi,n if n ∈ Si and n = sim,

0 otherwise.
(10)
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Moreover, we define the global combined noise term in (9) as

w = HDv + Gn, (11)

which is zero-mean Gaussian noise with covariance matrix

Rw = E{wwH} = HDRvDHHH + M, (12)

where M = σ2
nIM , and M = 2|E|− r, where r represents the

total number of discarded communications emanating from the
proposed data compression strategy.

Following the global data model of (9), the maximum
likelihood estimate of the unknown parameter can thus be
expressed as:

θ̂ML =
(
aHHHR−1w Ha

)−1
aHHHR−1w y (13)

=

(
N∑
i=1

aHi HH
i R−1wi

Hiai

)−1 N∑
i=1

aHi HH
i R−1wi

y′i,

(14)

where, for the sake of simplicity, we assume that in (14),
the local sensor gain vector ai, the diagonal channel matrix
Hi, and diagonal noise covariance matrix Rwi

only contain
the values associated with the nodes whose information has
not been discarded as a result of suggested data compression
strategy at each node. Furthermore, note that the maximum
likelihood estimate θ̂ML is unbiased (i.e., E{θ̂ML} = θ) with
variance,

Var(θ̂ML) =
(
aHHHR−1w Ha

)−1
=

(
N∑
i=1

aHi HH
i R−1wi

Hiai

)−1
. (15)

Remark 1: The maximum likelihood estimation of the
parameter presented in (13) can be split into the summa-
tion of N terms of the form (14) as a result of our data
compression and diffusion strategy. Namely, the proposed
compression technique diffuses the information of each node
in such a way that each amplified observation only appears
once in the network. Indeed, there exists only one node in
the neighborhood of a generic node i that incorporates the
amplified observation of the i-th node into its estimation
model. Therefore, the amplified observations are uncorrelated
across the whole network resulting in the expressions (13) and
(14). �

Our goal is to facilitate computing the global maximum
likelihood estimate of the parameter presented in (13) and
(14) in a distributed manner. Namely, we employ an average-
consensus scheme based on the alternating direction method
of multipliers (ADMM) [36] enabling us to asymptotically
converge to the global MLE of the parameter via local
computations while allowing only communication between the
nodes and their immediate neighbors. Finally, we derive the
error variance for the distributed estimation algorithm which
will be used as a metric for optimizing the complex sensor
gains.

D. ADMM-Aided Distributed ML Estimation
We begin this part by describing the general consensus

problem in a multi-agent system, and then, use an ADMM-
based average consensus algorithm to solve the maximum
likelihood estimation of (14) in a decentralized and distributed
manner.

Consensus: Consider a group of agents i ∈ {1, . . . , N}
each of which has access to a local variable xi associated
with its initial observation, and let x = [x1, . . . , xn]T denote
the stacked column vector of the variables for all agents. The
aim of the distributed average-consensus algorithms is to find
the average of the local variables, e.g., xavg = 1

N 1Tx, in
a distributed manner and via restricting collaborations to be
between adjacent agents. In addition, finding the average value
of the local variables can be recast as the unique solution of
the following unconstrained least-squares program:

xavg = argmin
y

1

2

N∑
i=1

(y − xi)2 = argmin
y

1

2
||y1− x||22. (16)

The goal is next to compute (16) in a decentralized manner
by allowing only local data-exchanges in each neighborhood.
In order to do so, the minimization of (16) can be further
reformulated as a global consensus probem via utilizing the
underlying network (graph) connectivity structure. Namely, we
first decouple the unconstrained program of (16) by introduc-
ing local copies of the global variable y at each node, and then,
enforcing the local copies to be equal across the network. This
reformulation of (16) can be expressed as follows:

minimize
{yi},{ci,j}

N∑
i=1

1

2
(yi − xi)2

s.t. yi = ci,j , yj = ci,j ,∀(i, j) ∈ E , (17)

where yi is the i-th node’s local copy of the global variable
y, and ci,j are auxiliary variables ensuring consensus between
the neighboring nodes. Note that for a connected graph where
there exists at least one path (a chain of edges) between any
two nodes in the network, the two problems in (16) and (17)
are equivalent. It is noteworthy to mention that problem (16)
is centralized in that it requires all of the information (e.g.,
{xi}Ni=1) in the network to find the optimal solution xavg. On
the other hand, the new (equivalent) program in (17) requires
each node i to find the local variable yi that is optimal for the
overall objective function R , (1/2)

∑
i(yi − xi)2, without

having global knowledge of the observations at other nodes.
Herein, we use the alternating direction method of multipli-

ers (ADMM) to efficiently solve (17) in a distributed manner.
In particular, the following ADMM update equations were
derived in [43] to efficiently solve (17) and to eventually
achieve an average-consensus in the network:

yk+1
i =

1

1 + 2ρ|Ni|

(
ρ|Ni|yki + ρ

∑
j∈Ni

ykj − λki + xi

)
, (18)

λk+1
i = λki + ρ

(
|Ni|yk+1

i −
∑
j∈Ni

yk+1
j

)
, (19)

where k denotes the iteration number, yk+1
i is the local

copy of the global variable at node i (which will eventually
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converge to the average value of the initial observations
xavg = (1/n)

∑n
i=1 xi), xi is the initial observation of node

i, and ρ > 0 is an arbitrary constant. As it can be seen
from above update equations, the updates of each node only
depend on the local information, and the algorithm is hence
fully distributed. Next, we use this ADMM-based distributed
average-consensus scheme to determine the ML estimate of
the unknown parameter, i.e., solving (14) using (18)-(19).

Distributed maximum likelihood estimation: In order to use
the average-consensus algorithm to compute the MLE of the
parameter in a distributed and decentralize manner, we follow
a similar approach to the one proposed in [34], and first assign
the following initial variables to each node, which will be
further used as the local observation of each node in the
average-consensus algorithm:

Information Value: Ii(0) , aHi HH
i R−1wi

Hiai, (20)

State Information Value: Pi(0) , aHi HH
i R−1wi

y′i. (21)

Note that the MLE of θ in (14) is comprised of two terms:
the inverse of the summation of the information values at
each node (

∑
i Ii(0))−1, multiplied by the summation of

state information values
∑
i Pi(0). Henceforth, each node

can (asymptotically) compute the global ML estimate of
the parameter θ defined in (14) by separately applying the
distributed average consensus in (18) and (19) on the local
variables, Ii(0) and Pi(0). More precisely, each node updates
its information value and the state information value according
to (18)-(19) (by substituting xi in (18) with Ii(0) and Pi(0)),
and will obtain a local estimate of the parameter of interest at
each iteration by computing

θ̂i(k) = Ii(k)−1Pi(k). (22)

The asymptotic behaviour of Ii(k) and Pi(k) in the averge-
consensus algorithm can be calculated as follows,

Ic , lim
k→∞

Ii(k) =
1

N

N∑
i=1

aHi HH
i R−1wi

Hiai, (23)

Pc , lim
k→∞

Ii(k) =
1

N

N∑
i=1

aHi HH
i R−1wi

y′i. (24)

Therefore, the local ML estimate of the unknown parameter
at each node (i.e., θ̂i(k)) will eventually converge to that of
the global MLE of θ defined in (14), i.e.,

θ̂iML = I−1c Pc =

∑N
i=1 a

H
i HH

i R−1wi
y′i∑N

i=1 a
H
i HH

i R−1wiHiai
. (25)

Note that the average scaling factor 1
N is eliminated in (22)

and (25), and therefore, it will not affect the ML estimate
at each iteration. In addition, it can be easily shown that the
variance of the estimate at each node converges to that of the
global ML etimation variance in (15), i.e.,

lim
k→∞

Var
(
θ̂iML(k)

)
=

(
N∑
i=1

aHi HH
i R−1wi

Hiai

)−1
=
(
aHHHR−1w Ha

)−1
. (26)

By further substituting (12) into (26), we have the following
asymptotic expression for the error variance at each node:

Var(θ̂ML) =
(
aHHH(HDRvDHHH + M)−1Ha

)−1
,

(27)
where Var(θ̂ML) denotes the asymptotic estimation variance
of each node after convergence (and after reaching a consen-
sus). Note that the proposed data compression and diffusion
strategy plays a vital role in decoupling the sensor observations
throughout the network, and specifically, it paves the way for
optimizing the sensor gains without dealing with correlated
data. On the other hand, the decentralized ADMM algorithm
described above together with the proposed compression tech-
nique enables us to derive a closed form expression for the
asymptotic variance of the estimation error based on the sensor
gains, while allowing the network to achieve a very fast
consensus on the global ML estimate. In Section 3, we devise
a low-cost cyclic optimization approach to design the complex
gains at each node via optimizing (27).

E. Problem Formulation: Centralized Estimation

We now assume that there exists a fusion center aggregating
the information received from the nodes to perform the task
of parameter estimation in a centralized manner. In this case,
the derivation of the error variance is straightforward and
resembles the same structure as the decentralized case given
in (27).

We consider a network of N sensors that observe an un-
known parameter, where a maximum likelihood (ML) estimate
of the unknown parameter is formed at the FC with M
antennas. As indicated earlier, it was shown in [4], [5], and [7]
that the parameter estimation performance at the FC can be
significantly improved by a judicious design of the complex
relaying gains of the sensors. The variance of the ML estimate
of the parameter is given by

Var
(
θ̂ML

)
=

(
aHHH

(
HDΣDHH

H
+ M

)−1
Ha

)−1
(28)

where θ is the parameter to be estimated, H ∈ CM×N
denotes the channel matrix, Σ ∈ CN×N is the covariance
matrix of the sensor measurement noise, M ∈ CM×M denotes
the covariance matrix of the noise at the FC (similar to the
communication noise in the decentralized case), a ∈ CN
comprises the adjustable complex gains of the sensors, and
D = Diag(a). Moreover, we intentionally use the same
notation for the centralized estimation problem as for the
decentralized one to emphasize the fact that the two gain
optimization problems boil down to the same formulation.

III. SENSOR GAIN OPTIMIZATION

Hereafter, we address the problem of designing the (possibly
complex) sensor gains a ∈ CN in order to minimize the vari-
ance of both the consensus-based distributed estimate given
in (27), and the centralized estimate scenario defined in (28).
As shown in the previous section, for the decentralized MLE,
the variance of the estimation at each node asymptotically
converges to that of the global ML estimate of the unknown
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parameter. Furthermore, for the centralized estimation case, the
error variance follows the same structure as the decentralized
case paving the way for proposing a general gain optimization
framework for both cases. It is worth mentioning that although
we have considered the problem of estimating a deterministic
source signal θ in (1), our formulations are also valid for more
complicated scenarios such as multi-dimensional correlated
sources [44]. In this paper, we assume that the source signal
θ is deterministic; however, in the case that the parameter
of interest is probabilistic in nature, one can make use of
the available knowledge on the parameter of interest in the
form of a prior distribution p(θ), and approach the problem
through a Bayesian framework. In this case, given the sen-
sors observation vector z = [z1, . . . , zN ], one can consider
the maximum a posteriori (MAP) estimator framework and
evaluate argmaxθ p(θ|z) in a distributed manner where the
posterior distribution is obtained by utilizing the Bayes’ rule,
i.e., p(θ|z) = p(z|θ)p(θ)/p(z) (sensor gains vector must be
further incorporated in the formulations).

Our goal here is to minimize Var(θ̂ML) by considering the
sensor gain vector a as the optimization variable in both cases
of centralized and decentralized estimation. In particular, the
sensor gain optimization problem for both scenarios can be
formulated as:

max
a

aHHH
(
HDV DHH

H
+ M

)−1
Ha (29)

s. t. a ∈ Θ, (30)

where in the sequel, we denote the search space of the sensor
vector a by Θ, and for a concise formulation we denote the
covariance matrix of the observation noise by V for both cen-
tralized and decentralized scenarios. It must be mentioned that
the variance for the centralized and decentralized case follows
the same mathematical structure, and although the structure of
the channel matrix H and the noise covariance matrices might
be slightly different for the two scenarios, it does not affect
the proposed formulation of the gain optimization framework
in (29). Briefly, the channel matrix used in the decentralized
setting is a compressed version of the complete channel state
information, and it only contains the CSI of the nodes chosen
for diffusing information at each neighborhood. On the other
hands, for the centralized scenario, the matrix H contains the
full CSI between the FC and the nodes.

Note that as D = Diag(a), the core matrix of the seem-
ingly quadratic objective in (29) depends on a. In the follow-
ing, we will show that using a particular over-parametrization
approach, the above problem can be approached via a sequence
of quadratic optimization problems.

Let η = η0 − aHHH
(
HDV DHH

H
+ M

)−1
Ha, and

suppose that η0 is sufficiently large to keep η positive for
all a.1 A detailed derivation of such an η0 can be found
in Appendix A. We seek to solve the following optimization

1To give an example of such η0, as shown in the appendix, one can consider
the following (although conservative) criterion to ensure the positivity of

η: η0 >
N ‖H‖2F
λmin{M} .

problem:

min
a

η (31)

s. t. a ∈ Θ.

Now let

R ,

 η0 | aHHH

−−−− −−−−−−−−−−
Ha | HDV DHHH + M

 , (32)

and note that eH1 R−1e1 = η−1 where e1 = (1 0 · · · 0)T .
In order to tackle (31), let g(y,a) , yHRy (where y is
an auxiliary vector variable), and consider the optimization
problem:

min
a, y

g(y,a) (33)

s. t. yHe1 = 1 (or equivalently y1 = 1), (34)
a ∈ Θ. (35)

The minimization of g(y,a) in (33) can be tackled via
employing a cyclic optimization approach with respect to a
and y. Note that for fixed a, the minimizer y of (33) is given
by (see Result 35 in [45, p. 354])

y =

(
1

eH1 R−1e1

)
R−1e1 (36)

which is the first column of R−1 scaled in such a way to
satisfy (34). A fast approach to computation of y in (36) is
as follows: Observe that y is a scaled version of the solution
to the linear system Ry = e1. Consequently, y is a scaled
version of the vector orthogonal to all rows but the first row
of R. Therefore, the direction of y can be easily obtained via
the Gram-Schmidt process applied to the rows (excluding the
first row) of R. Once the direction vector of y (i.e. y/‖y‖2)
is obtained, it can be scaled to achieve the optimal y in (36)
by simply making the first entry of y equal to one.

Interestingly, for a fixed y, the minimization of (33) with
respect to a boils down to a quadratic optimization; see the
following. We first note that a feasible y in (33) can be
partitioned as

y ,

(
1
ỹ

)
(37)

Then,

yHRy (38)

=

(
1
ỹ

)H  η0 | aHHH

−−− −−−−−−−−−
Ha | HDV DHHH + M

( 1
ỹ

)
= C1+(

a
1

)H 
(
HH ỹỹHH

)
� V | HH ỹ

−−−−−−−−− −−−
ỹHH | 0


︸ ︷︷ ︸

,Q

(
a
1

)

where C1 = η0 + ỹHMỹ is invariant with respect to the
sensor gain vector a, and we have used the identity

ỹHHDV DHHH ỹ = aH
((

HH ỹỹHH
)
� V

)
a.
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As a result, the minimization of (33) with respect to a can be
recast as

min
a

(
a
1

)H
Q

(
a
1

)
(39)

s. t. a ∈ Θ .

Note that when Θ enforces a fixed-energy constraint for a (i.e.
‖a‖22 = N ), (39) is equivalent to

max
a

(
a
1

)H
Q̃

(
a
1

)
(40)

s. t. a ∈ Θ

where Q̃ , λIN+1 − Q, and λ > λmax(Q). Using the
following power-method-like iterations, the objective of (40)
can be made to be monotonically increasing, and the objective
of (33) monotonically decreasing (see [46]- [48] for details):

min
a(t+1)

∥∥∥∥∥
(

a(t+1)

1

)H
− Q̃

(
a(t)

1

)∥∥∥∥∥
2

(41)

s. t. a ∈ Θ,

where t denotes the iteration number, and a(t) is the current
value of a.

By calculating (36), it is now straightforward to verify that
at the minimizer y of (33),

g(y,a) = η. (42)

Therefore, each step of the cyclic optimization of (33) with
respect to y and a leads to a decrease of η. More concretely,
observe that if f(a) = η then

f
(
a(k+1)

)
= f

(
y(k+2),a(k+1)

)
(43)

≤ f
(
y(k+1),a(k+1)

)
≤ f

(
y(k+1),a(k)

)
= f

(
a(k)

)
where the index k denotes the iteration number.

Remark 2: When Θ represents the finite-energy constraint,
problem (33) is biconvex in (y,a), and (40) is simply a
quadratically constrained quadratic program (QCQP). In par-
ticular, our cyclic approach described above boils down to an
alternate convex search (ACS); see [49, p. 393] for details. �

In the following, we consider various practical constraints
on the gain vector a and provide the corresponding power
method-like iterations for each case.

A. Practical Signal Constraints

In a practical model, the sensor gains should always be
bounded by a finite-energy constraint. However, the variance
expression in (28) is a monotonically decreasing function of
the energy of a (i.e. ‖a‖22) which implies that (28) attains its
minimum only if the sensor network employs the maximum
energy possible. In light of the latter observation, we consider
a number of possible sensor signal constraints, including:
(a) Finite or fixed energy:

‖a‖22 = N. (44)

(b) Phase-shift only:

|ai| = 1, i ∈ {1, · · · , N}. (45)

(c) Phase-shift only with quantized phase values:

ai ∈
{
ej

2π
Q q : q ∈ ZQ

}
, i ∈ {1, · · · , N}. (46)

(d) Sensor selection: Only K < N of the sensors can
transmit, viz. ‖a‖0 ≤ K which may be combined with a
finite-energy constraint, i.e. ‖a‖22 = N , or the phase-shift
only constraint at the non-zero entries of a.

In the following subsection, we provide the corresponding
power method-like iterations for each constraint—more on this
below.

B. Constrained Solutions to (41)

Let â(t) denote the vector comprising the first N entries

of Q̃

(
a(t)

1

)
, viz. â(t) = (IN 0N×1) Q̃

(
a(t)

1

)
. The

solutions to (41) for different sensor gain constraints Θ are
given by:
(a) Finite or fixed energy:

a(t+1) =
(√

N/‖â(t)‖2
)
â(t). (47)

(b) Phase-shift only:

a(t+1) = exp
(
j arg

(
â(t)

))
. (48)

(c) Phase-shift only with quantized phase values:

a(t+1) = exp
(
jµQ

(
arg
(
â(t)

)))
(49)

where µQ(.) yields (for each entry of the vector argu-
ment) the closest element in the Q-ary alphabet.

(d) Sensor selection: Note that for the optimal a(t+1) of (41)
we have that arg(a(t+1)) = arg(â(t)). Therefore, we can
exclude the phase variables while finding the absolute
values of the entries of the optimal a(t+1). In fact, without
loss of generality, we can assume that both a(t+1) and
â(t) are real-valued and non-negative. Note that∥∥∥a(t+1) − â(t)

∥∥∥2
2

= C2 − 2aT (t+1)â(t), (50)

where C2 = ‖a(t+1)‖22 + ‖â(t)‖22 is constant. According
to a theorem due to Hardy, Littlewood, and Polya [53],
the inner product of a(t+1) and â(t) can be maximal
only if the elements of a(t+1) are sorted to have the
same order of magnitude as in â(t). Consider the K
elements in â(t) with maximum absolute values, and
let s be a binary (0/1) vector that is one only in the
corresponding locations of these largest K elements,
and is zero otherwise. Then the optimal a(t+1) of (41)
becomes

a(t+1) =
√
N

 â(t) � s∥∥∥â(t) � s
∥∥∥
2

 . (51)
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TABLE I
THE PROPOSED SENSOR GAIN OPTIMIZATION APPROACH

Step 0: Initialize the auxiliary vector y with a random vector in CN+1

such that y1 = 1. Initialize a ∈ Θ.
Step 1: Employ the quadratic formulation in (40), and particularly the
power method-like iterations in (41) to update the sensor gain vector a
(until convergence).
Step 2: Update y using (36), or by employing the fast approach discussed
below (36).
Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion is satisfied,
e.g.

∣∣f(a(k))− f(a(k+1))
∣∣ ≤ ξ for some ξ > 0, where k denotes the

outer-loop iteration number, and f(·) is the criterion to be optimized (e.g.,
f(a) = η).

Similarly, if the non-zero entries of a(t+1) are to be
constant-modulus (i.e., phase-shift only and sensor se-
lection scenario) then the optimal a(t+1) can be obtained
as

a(t+1) =
√
N/K

(
exp

(
j arg

(
â(t)

))
� s
)
. (52)

Finally, the proposed method is summarized in Table I.

C. Phase-Shift Only Case—A Simplified Approach

We note that, in phase-shift only scenarios, the problem in
(29) becomes a unimodular quadratic program (UQP) [46] and
we can deal with it more easily compared to the general case.
Namely, (29) can be rewritten as

max
a

aHBa (53)

s. t. |ai| = 1, i ∈ {1, · · · , N},

in which B is not dependent on a. The power method-like
iterations for (53) are simply given by

a(k+1) = exp
(
j arg

(
Ba(k)

))
(54)

and yield a monotonically increasing objective function in
(53). We refer the interested reader to find more details on
the properties of power method-like iterations in [46]- [48].

Remark 3: A brief computational analysis of the proposed
method (see Table I) is as follows. Employing the power
method-like iterations for updating the sensor gain vector
a has a complexity of O(LN2) where L denotes the total
number of iterations that are performed within each outer-
loop iteration of the proposed optimization method. On the
other hand, the design of y using (36) has a O(M2.38)
complexity per-iteration while the proposed fast approach for
computation of y described below (36) has a complexity
of O(M2). Hence, the optimization method (summarized in
Table I) has a complexity of O

(
max{LN2,M2}

)
per-iteration

(if the proposed fast method is used for finding y at each
iteration). Further note that the proposed algorithm yields a
monotonically decreasing objective function according to (43).
�

IV. NUMERICAL RESULTS

To evaluate the performance of the proposed optimization
framework, in this section, we present several numerical
examples for both centralized and decentralized estimation

scenarios. For a fair comparison, we set the parameters to the
same values as those in [7]: The sensor nodes are configured
with a single antenna, and the FC is assumed to have four
antennas. The wireless fading channel coefficient between
sensor node i and the FC is modeled as hi = ejγi/dαi , where
the phase argument γi is uniformly distributed over [0, 2π),
di is the distance between the sensor node and FC, and the
path loss exponent α is set to 1. In all plots, the results are
obtained by averaging the outcomes over 300 random channel
realizations.

A. Decentralized Parameter Estimation Scenario

In this part, we investigate the performance of our proposed
sensor gain optimization algorithm for the decentralized and
distributed parameter estimation scenario. We compare our
sensor gain optimization algorithm (Table I) with the SDP-
based approach of [7].

Fig. 2(a) shows a comparison of the computational cost
(machine runtime) between our algorithm and the SDP-based
approach in [7]. It is observed from Fig. 2(a) and Fig. 2(b) that
although the two algorithms yield similar estimation variance,
our proposed optimization algorithm has a significantly lower
computational burden. For example, with N = 50 nodes,
the runtime of our algorithm is less than 1% of the runtime
associated with the SDP-based approach. This is particularly
of importance in WSNs since not only are the processing
resources of the nodes limited, the environmental parameters
(e.g., the channels) might change and need frequent reassess-
ment. Hence, it is important for the network to be able to adapt
to the new environment as quickly as possible with minimal
cost.

Our proposed two-stage algorithm also enables the nodes to
obtain the global ML estimate of the parameter based on their
local information by applying the distributed fusion algorithm
described in subsection 2.A. Fig. 3 illustrates the simulation
results for this ADMM-based decentralized estimation and the
convergence of the proposed decentralized MLE algorithm to
that of the global MLE for a network with N = 16, and
θ = 10. We see that the local estimate of each node θ̂iML(k)
converges to the global MLE of the parameter computed in
(13), and a consensus is thus achieved quickly.

B. Centralized Parameter Estimation Scenario

We begin by comparing the estimation variance of different
sensor phase (or gain) optimization methods, namely (i) the
proposed gain optimization method (Table I) with finite (or
fixed energy) constraint, (ii) the proposed phase-shift only
approach (subsection III-C), (iii) the phase-shift only solutions
provided by the semidefinite programming (SDP) approach of
[7], and (iv) the no feedback case. For the no feedback case,
we assume that there is no feedback channel between the FC
and sensor nodes and that the vector a is set to a vector of
all ones. The results are shown in Fig. 4. We see that after
phase or gain optimization the estimation error is considerably
reduced (∼ by a factor of 10) compared to the no feedback
case. Moreover, our proposed phase-shift only approach can
achieve an estimation variance almost identical to that of the
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Fig. 2. Comparison of (a) the runtime and (b) the estimation variance of the proposed method and the SDP-based approach of [7], for the decentralized
scenario. The proposed algorithm exhibits significantly lower computational cost, while achieving a similar estimation variance.
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Fig. 3. Convergence of the ADMM-based ML estimate.

SDP-based approach of [7]. Although our proposed method
and the SDP-based approach exhibit the same performance in
this scenario, we will later show that the proposed power-
method iterations have a significantly lower computational
burden compared to that of the SDP-based approach. To assess
the quality of our design in the complex gain optimization
case, we also resort to comparison with (i) a general-purpose
numerical search algorithm based on the active set method
[55], as well as (ii) solving the optimization problem in (40) by
a general-purpose QCQP solver in lieu of directly employing
the power method-like iterations. In terms of the estimation
variance, the performance of the proposed gain optimization
appears to be identical to the numerical search. Additionally,
the low-complexity power method-like iterations can achieve
the same performance as the QCQP solver, which verifies
the optimality of the results obtained by power method-like
iterations—as expected due to the convexity of (40) in the
finite-energy scenarios.

A comparison of the computational cost (machine runtime)
between the state-of-the-art SDP-based approach of [7] and
the proposed algorithm is presented in Fig. 5 (the results were
obtained on a standard PC with a 2.40GHz CPU and 3.5 GB
memory). Due to the fact that the SDP-based approach can

only handle the phase-shift case, we consider a comparison
with the phase shift-only method described in subsection
III-C. As shown earlier in Fig. 4, the two methods yield
similar estimation variance. However, according to Fig. 5, the
computational cost of the proposed phase shift-only approach
is significantly smaller compared to the SDP-based method.
More precisely, while for a small number of sensors (N ≤ 10)
the two methods have similar cost, the advantage of the
proposed approach becomes more clear when N grows large.
For instance, with N = 60 sensors, the runtime of the
proposed approach is less than 1% of that associated with
the SDP-based method.

Finally, Fig. 6 investigates the performance of the sensor se-
lection problem (with a fixed-norm sensor gain) for a scenario
in which 10 sensors are to be selected out of 35 sensor nodes
for signal transmission. We set the covariance matrix of the
noise at the FC to M = σ2

nI with variable noise variance σ2
n.

The simulation results show that when the additive noise at the
FC is small, the performance of the proposed sensor selection
method is close to the greedy or min-sensor-noise methods
devised in [7], whereas, when the additive noise grows large,
its performance is superior to that of both the greedy and
min-sensor-noise methods. It is interesting to observe that,
for large values of the FC noise variance, the performance
of the proposed sensor selection algorithm is relatively close
to the case when all the 35 sensor nodes are used for signal
transmission.

V. CONCLUSIONS

In this work, we considered the problem of transmission
gain optimization in a distributed wireless sensor network
for both centralized and decentralized parameter estimation
scenarios. We proposed an efficient sensor gain optimization
framework which enables us to effectively reduce the parame-
ter estimation variance resulting in a far better estimation accu-
racy in both the centralized and decentralized cases. The pro-
posed optimization framework is based on the power method-
like iterations and can deal with the optimization of complex
gains of the sensors, and furthermore, can handle various
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Fig. 6. Performance of various sensor selection algorithms (10 sensor nodes
are selected out of 35 sensors). The greedy and min-sensor-noise selection
methods were proposed in [7].

sensor gain constraints including e.g., finite or fixed energy,
phase-shift only (with a quantized phase values as a simple
extension) and sensor selection cases, and was shown to ex-
hibit a superior performance in large-scale sensor networks. In
addition, the suggested framework enjoys a low computational
cost compared to the SDP-based approach, and thus, can be a
good candidate for large-scale sensor networks that may need

adaptive sensor gain optimization in real-time. Moreover, we
extended our sensor gain optimization algorithm to the decen-
tralized parameter estimation scenario in which a consensus-
based algorithm in conjunction with graph signal processing
methods are employed to perform the parameter estimation
with optimized transmission gains in a decentralized manner.

APPENDIX A
SELECTION OF η0

In order to ensure that η stays positive, we choose η0 such
that

η0 > N λmax

{
HH

(
HDV DHH

H
+ M

)−1
H

}
. (55)

Note that

λmax

{
HH

(
HDV DHH

H
+ M

)−1
H

}
(56)

≤ tr

{
HH

(
HDV DHH

H
+ M

)−1
H

}

≤
tr
{
HHH

}
λmin {M}

=
‖H‖2F

λmin {M}
.

As a result, it would be sufficient if we choose

η0 >
N ‖H‖2F
λmin {M}

. (57)
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