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Abstract— We present a Distributionally Robust Optimization
(DRO) approach for Multivariate Linear Regression (MLR),
where multiple correlated response variables are to be regressed
against a common set of predictors. We develop a regularized
MLR formulation that is robust to large perturbations in the
data, where the regularizer is the dual norm of the regression
coefficient matrix in the sense of a newly defined matrix norm.
We establish bounds on the prediction bias of the solution,
offering insights on the role of the regularizer in controlling
the prediction error. Experimental results show that, compared
to a number of popular MLR methods, our approach leads to
a lower out-of-sample Mean Squared Error (MSE) in various
scenarios.

I. INTRODUCTION

We are interested in the problem of regressing multiple
correlated responses against a common set of predictors,
which we call Multivariate Linear Regression (MLR). This
term is distinct from multiple linear regression, where only
a scalar response with more than one predictors is involved.
MLR has found applications in econometrics [1], health care
[2], and finance [3]. It is useful when multiple measurements
for a single individual are available [4], or the valuation of
a group of interdependent variables is of interest [5]. It can
also be used for multiple-task learning [6], where a set of
related tasks are to be learned simultaneously.

We assume the following model for the MLR problem:

y = B′x + ε,

where y = (y1, . . . , yK) is the vector of K responses,
potentially correlated with each other; x = (x1, . . . , xp) is
the vector of p predictors; B = (Bij)

j=1,...,K
i=1,...,p is the p×K

matrix of coefficients, the j-th column of which describes
the dependency of yj on the predictors; ε is the random
error and prime denotes transpose. Suppose we observe N
realizations of the data, denoted by (xi,yi), i = 1, . . . , N ,
where xi = (xi1, . . . , xip),yi = (yi1, . . . , yiK). Ordinary
Least Squares (OLS) solves the regression coefficients by
minimizing the sum of squared errors, which is equivalent
to regressing each response variable against the predictors
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independently. It does not take into account the potential
correlation existing among the responses, and is vulnerable to
large perturbations in the data. Its performance is significantly
degraded when the predictors are highly correlated or p is
relatively large [7].

A class of methods that are used to overcome the afore-
mentioned problems is called linear factor regression, where
the response y is regressed against a small number of linearly
transformed predictors (factors). Examples include reduced
rank regression [8], principal components regression [9], and
Factor Estimation and Selection (FES) [7]. Another type of
methods apply multivariate shrinkage by either estimating a
linear transformation of the OLS predictions [5], or solving
a regularized MLR problem, e.g., ridge regression [10], and
FES [7] whose regularizer is the coefficient matrix’s Ky Fan
norm defined as the sum of its singular values.

None of the aforementioned methods, however, explicitly
take into account the robustness of the model, and could result
in estimates that are vulnerable to adversarial perturbations
in the data. The multivariate extension of ridge regression,
which penalizes the trace of B′B, hedges against large noise
to some extent, but is criticized for not offering interpretable
models because of the dense coefficient estimates [7].

In this paper, we address this problem by adopting a
Distributionally Robust Optimization (DRO) formulation that
minimizes the worst-case expected loss within a probabilistic
ambiguity set defined by the Wasserstein metric [11, 12].
This approach induces robustness by hedging against a set of
probability distributions, and has been extensively studied in
the single-response scenario [13, 14, 15, 16]. However, there
is no work examining the multivariate DRO problem, which
is a nontrivial extension of the prior work in light of the
correlation between responses and the geometrical structure
of the coefficient matrix. We will fill this gap and establish
the connection between robustness and regularization in the
multivariate scenario by defining a new notion of norm on
the regression coefficient matrix.

To the best of our knowledge, we are the first to study
the distributionally robust MLR problem, without imposing
any assumption on the correlation structure of the response
variables. We relax the DRO-MLR formulation into a convex
regularized regression problem, with the regularizer being
the dual norm of the coefficient matrix, in the sense of a
newly defined matrix norm that scalarizes each column by
the sum of the absolute values of its elements. This model
is completely optimization-based, and avoids the need of
explicitly modeling the relationship between responses. It is
computationally more efficient to solve, and is more robust
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to outliers than other MLR models.
The rest of the paper is organized as follows. In Section

II, we develop the DRO-MLR formulation and introduce the
new matrix norm that is involved in its relaxation. Section
III establishes the out-of-sample performance guarantee. The
numerical experimental results are presented in Section IV.
We conclude the paper in Section V.

Notational conventions: We use boldfaced lowercase
letters to denote vectors, ordinary lowercase letters to de-
note scalars, boldfaced uppercase letters to denote matrices,
and calligraphic capital letters to denote sets. E denotes
expectation and P probability of an event. All vectors
are column vectors. For space saving reasons, we write
x = (x1, . . . , xdim(x)) to denote the column vector x, where
dim(x) is the dimension of x. We use prime to denote the
transpose, ‖ · ‖p for the `p norm with p ≥ 1, and ‖ · ‖ for the
general vector norm that satisfies the following properties:
(i) ‖x‖ = 0 implies x = 0; (ii) ‖ax‖ = |a|‖x‖, for any
scalar a; (iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖; (iv) ‖x‖ = ‖|x|‖,
where |x| = (|x1|, . . . , |xdim(x)|); and (v) ‖(x,0)‖ = ‖x‖,
for an arbitrarily long vector 0. Note that any W-weighted
`p norm defined as ‖x‖Wp ,

(
(|x|p/2)′W|x|p/2

)1/p with a
positive definite W satisfies the above conditions, where
|x|p/2 = (|x1|p/2, . . . , |xdim(x)|p/2). Finally, ‖ · ‖∗ denotes
the dual norm of ‖ · ‖ defined as ‖θ‖∗ , sup‖z‖≤1 θ

′z, and
IK denotes the K-dimensional identity matrix.

II. FORMULATION

In this section we introduce the Wasserstein DRO formula-
tion for MLR, and present a matrix norm interpretation that
resembles the single-response scenario developed in [13].

A. The Wasserstein DRO Formulation

The Wasserstein DRO formulation for MLR minimizes the
following worst-case expected loss:

inf
B

sup
Q∈Ω

EQ‖y −B′x‖1, (1)

where Q is the probability distribution of the data (x,y),
belonging to a set Ω defined as

Ω , {Q ∈ P(Z) : W1(Q, P̂N ) ≤ ε},

where Z is the set of possible values for (x,y); P(Z) is
the space of all probability distributions supported on Z; ε
is a pre-specified positive constant that measures the size
of the set Ω; P̂N is the empirical distribution that assigns
equal probability to each observed sample; W1(Q, P̂N ) is
the order-1 Wasserstein distance between Q and P̂N defined
as

W1(Q, P̂N ) , inf
Π∈P(Z×Z)

{∫
Z×Z

‖z1 − z2‖ Π
(
dz1, dz2

)}
,

(2)
where z1 = (x1,y1), z2 = (x2,y2); and Π is the joint
distribution of z1 and z2 with marginals being Q and P̂N ,
respectively; ‖ · ‖ could be any vector norm which measures
the cost of transporting the probability mass.

Define the loss function hB̃(z) , ‖B̃z‖1, where z =
(x,y), and B̃ = (−B′, IK). To make the inner supremum of
(1) finite, we first observe that, for any Q ∈ Ω,∣∣∣EQ[hB̃(z)

]
− EP̂N

[
hB̃(z)

]∣∣∣
=

∣∣∣∣∫
Z
hB̃(z1)Q(dz1)−

∫
Z
hB̃(z2)P̂N (dz2)

∣∣∣∣
=

∣∣∣∣∫
Z
hB̃(z1)

∫
Z

Π0(dz1, dz2)−
∫
Z
hB̃(z2)

∫
Z

Π0(dz1, dz2)

∣∣∣∣
≤
∫
Z×Z

∣∣hB̃(z1)− hB̃(z2)
∣∣Π0(dz1, dz2), (3)

where Π0 is the joint distribution of z1 and z2 that achieves
the optimal value of (2). Comparing (3) with (2), we see that
to establish a connection between the expected loss difference
and the Wasserstein distance, bounding the following growth
rate of the loss is the key. Define the Growth Rate (GR) of
hB̃(·) as:

GR
(
hB̃
)
,

∣∣hB̃(z1)− hB̃(z2)
∣∣

‖z1 − z2‖

=

∣∣‖B̃z1‖1 − ‖B̃z2‖1
∣∣

‖z1 − z2‖

≤ ‖B̃(z1 − z2)‖1
‖z1 − z2‖

, ∀z1, z2 ∈ Z,

where in the last step we use the reverse triangle inequality.
We would like to derive an upper bound for GR(hB̃) that is
independent of the data z1 and z2. To this end, it is desired to
bound ‖B̃(z1 − z2)‖1 in terms of ‖z1 − z2‖. The following
two corollaries serve this purpose.

Corollary II.1. Given a matrix A ∈ Rm×n and a vector
x ∈ Rn, we have

‖Ax‖1 ≤ ‖x‖
m∑
i=1

‖ai‖∗,

where ‖ · ‖∗ is the dual norm of ‖ · ‖, and ai is the i-th row
of A.

Proof. By the Cauchy-Schwarz inequality, we have:

‖Ax‖1 =
m∑
i=1

|a′ix| ≤
m∑
i=1

‖x‖‖ai‖∗.

Corollary II.2. Given an m× n matrix A = (aij)
j=1,...,n
i=1,...,m

and a vector x ∈ Rn, the following holds:

‖Ax‖1 ≤ ‖v‖∗‖x‖,
where ‖ · ‖∗ is the dual norm of ‖ · ‖, and v = (v1, . . . , vn),
with vj =

∑m
i=1 |aij |.

Proof.

‖Ax‖1 =
∣∣∣ n∑
j=1

a1jxj

∣∣∣+ . . .+
∣∣∣ n∑
j=1

amjxj

∣∣∣
≤ |x1|

m∑
i=1

|ai1|+ . . .+ |xn|
m∑
i=1

|ain|

, v′x̄,
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where v = (v1, . . . , vn), with vj =
∑m

i=1 |aij |, and x̄ =
(|x1|, . . . , |xn|). Thus,

‖Ax‖1 ≤ ‖v‖∗‖x̄‖ = ‖v‖∗‖x‖.

Remark 2.1: Corollaries II.1 and II.2 provide two forms of
bounds for the `1 norm of the matrix-vector product. Notice
that v =

∑m
i=1 |ai|, where the | · | is applied element-wise

to ai, and therefore,

‖v‖∗ =
∥∥∥ m∑

i=1

|ai|
∥∥∥
∗
≤

m∑
i=1

‖ai‖∗,

implying that Corollary II.2 gives a tighter bound.
We now proceed to obtain a tractable upper bound to the

inner supremum of (1). Using Corollary II.1, (3) can be
further bounded by:∣∣∣EQ[hB̃(z)

]
− EP̂N

[
hB̃(z)

]∣∣∣
≤
∫
Z×Z

∣∣hB̃(z1)− hB̃(z2)
∣∣Π0(dz1, dz2)

=

∫
Z×Z

∣∣hB̃(z1)− hB̃(z2)
∣∣

‖z1 − z2‖
‖z1 − z2‖Π0(dz1, dz2)

≤
( K∑

i=1

‖bi‖∗
)∫
Z×Z

‖z1 − z2‖Π0(dz1, dz2)

=
( K∑

i=1

‖bi‖∗
)
W1(Q, P̂N )

≤ ε
K∑
i=1

‖bi‖∗, ∀Q ∈ Ω,

where bi = (−B1i, . . . ,−Bpi, ei) is the i-th row of B̃, with
ei the i-th unit vector in RK . The above derivation implies
that the inner supremum of (1) can be upper bounded by:

sup
Q∈Ω

EQ‖y −B′x‖1 ≤ EP̂N
[
hB̃(z)

]
+ ε

K∑
i=1

‖bi‖∗,

which directly yields the following relaxation to (1):

inf
B

1

N

N∑
i=1

‖yi −B′xi‖1 + ε
K∑
i=1

‖bi‖∗. (4)

Problem (4) is equivalent to solving a single-response
regularized regression formulation, which is a relaxation to the
single-response Wasserstein DRO problem [13], for each of
the K responses separately. Though the regularizer guarantees
robustness to large perturbations, the correlation between
responses is still not explored. Using a similar derivation,
Corollary II.2 yields the following relaxation to (1):

inf
B

1

N

N∑
i=1

‖yi −B′xi‖1 + ε‖v‖∗, (5)

where v , (v1, . . . , vp, 1, . . . , 1), with vi =
∑K

j=1 |Bij |,
i.e., vi is a condensed representation of the coefficients

for predictor i through summing over the K coordinates.
Formulation (5) cannot be decomposed into K subproblems
due to the entangling of coefficients in the regularization
term. It is though computationally efficient to solve due to
the convexity of the loss and the regularizer. According to
Remark 2.1, it serves as a tighter relaxation than (4).

The growth rate analysis gives us an intuitive derivation
of the relaxations. We next present a more rigorous proof for
formulation (5), based on a convex program reformulation
developed in [12]. When the loss function is convex in the
data that resides in a closed and convex set, Theorem 6.3 in
[12] shows that the worst-case expected loss can be upper
bounded by

sup
Q∈Ω

EQ[‖y −B′x‖1] ≤ 1

N

N∑
i=1

‖yi −B′xi‖1 + κε, (6)

where κ = sup{‖θ‖∗ : h∗
B̃

(θ) < ∞}, and h∗
B̃

(·) is the
conjugate function of hB̃(·) defined as h∗

B̃
(θ) , supz {θ

′z−
hB̃(z)}. In the next theorem we will build a connection
between κ and the regression coefficients B̃, and try to recover
(5) from the upper bound given in (6).

Theorem II.3. Define κ = sup{‖θ‖∗ : h∗
B̃

(θ) <∞}, where
‖ · ‖∗ is the dual norm of the norm that is used to define
the Wasserstein metric in (2), and h∗

B̃
(·) is the conjugate

function of hB̃(·). When the loss function is hB̃(z) = ‖B̃z‖1,
we have κ = ‖v‖∗, where v ∈ Rp+K , and the j-th element
of v is the sum of absolute values of the j-th column of B̃.

Proof. Consider the following optimization problem:

max
z

θ′z− ‖B̃z‖1.

We can translate it into the linear programming problem:

max
z,ri

θ′z− r1 − . . .− rK

s.t. r1 − b′1z ≥ 0,

r1 + b′1z ≥ 0,

...
rK − b′Kz ≥ 0,

rK + b′Kz ≥ 0,

where bi is the i-th row of B̃. Form its dual using dual
variables qi, si, i = 1, . . . ,K:

min
qi,si

0

s.t. b1(s1 − q1) + . . .+ bK(sK − qK) = θ,

qi + si = −1, ∀i = 1, . . . ,K,

qi, si ≤ 0.

In order to make the optimal value of the primal problem
finite, as required by the definition of κ, the dual needs to be
feasible. From the first constraint of the dual, we have the
following:

‖θ‖∗ = ‖B̃′w‖∗ = ‖(t′1w, . . . , t′p+Kw)‖∗,
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where w = (s1 − q1, . . . , sK − qK), ti is the i-th column of
B̃, for i = 1, . . . , p+K.

Write v , (v1, . . . , vp, 1, . . . , 1), with vi =
∑K

j=1 |Bij |.
The last two constraints of the dual imply that |si−qi| ≤ 1, ∀i,
which yields the following:

|t′iw| =
∣∣∣ K∑
j=1

−Bij(sj−qj)
∣∣∣ ≤ K∑

j=1

|Bij | = vi, ∀i = 1, . . . , p,

and,
|t′p+iw| = |si − qi| ≤ 1, ∀i = 1, . . . ,K.

Therefore,

‖θ‖∗ ≤ ‖(v1, . . . , vp, 1, . . . , 1)‖∗ = ‖v‖∗,

which leads to the conclusion that κ = sup{‖θ‖∗ : h∗
B̃

(θ) <
∞} = ‖v‖∗.

Plugging the value of κ into (6), we arrive at the relaxation
(5). Note that the regularizer depends on the norm that is used
to define the Wasserstein metric, and the regularization coef-
ficient coincides with the size of the underlying distributional
ambiguity set. Such a regularized regression formulation
stems from the basic DRO problem, ensuring its robustness
to larger perturbations, and providing a fundamental way of
preventing overfitting in the multiple-response setting.

B. A New Perspective on the Formulation

In this subsection we will present a matrix norm interpre-
tation for formulation (5). Different from the commonly used
matrix norm definitions in the literature, e.g., the vector norm-
induced matrix norm ‖A‖ , max‖x‖≤1 ‖Ax‖, the entrywise
norm that treats the matrix as a vector, and the Schatten
norm that defines the norm on the vector of singular values
[17], we adopt a new notion of matrix norm that summarizes
each column by its absolute sum. We will call it the Column
Matrix Norm.

Definition 1 (Column Matrix Norm). For any m× n matrix
A = (aij)

j=1,...,n
i=1,...,m, define its column matrix norm as:

‖A‖ , ‖v‖,

where ‖ · ‖ could be any vector norm operator, and v =
(v1, . . . , vn), with vj =

∑m
i=1 |aij |. We write ‖A‖p to denote

the `p-norm induced column matrix norm.

We note that the column matrix norm depends on the
structure of the matrix, and transposing a matrix changes
its norm. For example, given A ∈ Rn×1, ‖A‖p = ‖a‖1,
‖A′‖p = ‖a‖p, where a represents the vectorization of A.
We next show that the column matrix norm is a valid norm.
It is easy to verify that:

1) ‖A‖ ≥ 0.
2) ‖A‖ = 0 if and only if A = 0.
3) ‖αA‖ = |α|‖A‖.
4) ‖A + B‖ ≤ ‖A‖+ ‖B‖.

The column matrix norm also satisfies the following sub-
multiplicative property:

‖AB‖p ≤ ‖A‖q‖B‖p,

for A ∈ Rm×n,B ∈ Rn×r, and p, q ≥ 1.
Next we will reformulate (5) using the column matrix norm.

Notice that the regularizer of (5) is just the dual norm of B̃.
Thus, it is equivalent to:

inf
B̃

1

N

N∑
i=1

‖B̃zi‖1 + ε‖B̃‖∗, (7)

which is in the same form as formulation (10) in [13], where
the Wasserstein DRO relaxation for the single-response case
was presented. This reformulation allows us to explore the
predictive performance of the solution to (7), which enables
a quantitative characterization of the performance of the two
relaxations (4) and (5), and will be discussed in Section III.

III. PREDICTIVE PERFORMANCE

In this section we study the out-of-sample predictive
performance of the solutions to (4) and (5) using Rademacher
complexity [18], which is a measurement of the complexity
of a class of functions. Though the derivation technique
is not new, see [13], the resulting bounds are informative
for understanding the role of the regularizer, enabling a
comparison between (4) and (5) in terms of their prediction
biases. We first make the following assumptions that are
essential for deriving the bounds.

Assumption A. The norm of the data (x,y) is bounded
above almost surely, i.e., ‖(x,y)‖ ≤ R.

Assumption B.
∑K

i=1 ‖bi‖∗ ≤ B̄1, where bi is the i-th row
of B̃.

Assumption C. ‖B̃‖∗ ≤ B̄2.

Under Assumptions A and B, Corollary II.1 yields that

‖B̃z‖1 ≤ ‖z‖
K∑
i=1

‖bi‖∗ ≤ RB̄1.

Similarly, under Assumptions A and C, Corollary II.2 yields
the following:

‖B̃z‖1 ≤ ‖z‖‖B̃‖∗ ≤ RB̄2.

With the above results, the idea is to bound the out-of-
sample prediction error using the empirical Rademacher
complexity RN (·) of the following class of loss functions:

H = {z 7→ hB̃(z) : hB̃(z) = ‖B̃z‖1},

which is defined as:

RN (H) , E

[
sup
h∈H

2

N

∣∣∣∣ N∑
i=1

σihB̃(zi)

∣∣∣∣
∣∣∣∣∣z1, . . . , zN

]
,

where σ1, . . . , σN are i.i.d. uniform random variables on
{1,−1}.

Lemma III.1. Under Assumptions A and B,

RN (H) ≤ 2B̄1R√
N

.
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Under Assumptions A and C,

RN (H) ≤ 2B̄2R√
N

.

Lemma III.1 can be proved by plugging the corresponding
upper bounds on the loss functions into Lemma 3.2 of [13].
Using the Rademacher complexity of the loss functions, the
out-of-sample prediction biases of the solutions to (4) and
(5) can be bounded by applying Theorem 8 in [18].

Theorem III.2. Suppose the solution to (4) is B̂. Under
Assumptions A and B, for any 0 < δ < 1, with probability at
least 1− δ with respect to the sampling,

E[‖y−B̂′x‖1] ≤ 1

N

N∑
i=1

‖yi−B̂′xi‖1+
2B̄1R√
N

+B̄1R

√
8 log( 2

δ
)

N
,

and for any ζ > 2B̄1R√
N

+ B̄1R
√

8 log(2/δ)
N

,

P
(
‖y − B̂′x‖1 ≥

1

N

N∑
i=1

‖yi − B̂′xi‖1 + ζ
)

≤
1
N

∑N
i=1 ‖yi − B̂′xi‖1 + 2B̄1R√

N
+ B̄1R

√
8 log(2/δ)

N

1
N

∑N
i=1 ‖yi − B̂′xi‖1 + ζ

.

Theorem III.3. Suppose the solution to (5) is B̂. Under
Assumptions A and C, for any 0 < δ < 1, with probability at
least 1− δ with respect to the sampling,

E[‖y−B̂′x‖1]≤ 1

N

N∑
i=1

‖yi−B̂′xi‖1+
2B̄2R√
N

+B̄2R

√
8 log( 2

δ
)

N
,

and for any ζ > 2B̄2R√
N

+ B̄2R
√

8 log(2/δ)
N

,

P
(
‖y − B̂′x‖1 ≥

1

N

N∑
i=1

‖yi − B̂′xi‖1 + ζ
)

≤
1
N

∑N
i=1 ‖yi − B̂′xi‖1 + 2B̄2R√

N
+ B̄2R

√
8 log(2/δ)

N

1
N

∑N
i=1 ‖yi − B̂′xi‖1 + ζ

.

Remark 3.1: Theorems III.2 and III.3 present bounds on
the out-of-sample prediction errors of the solutions to (4) and
(5), respectively. The bounds depend on the average training
loss and the magnitude of the regularizer. It can be concluded
that using a regularized learning procedure improves the
prediction accuracy.

IV. EXPERIMENTS

In this section we will test the two relaxations (4) and
(5) on a number of synthetic datasets, and compare them
against several other popular methods for MLR, including
OLS, Reduced Rank Regression (RRR) [19, 8], Principal
Components Regression (PCR) [9], FES [7], the Curds and
Whey (C&W) procedure [5], and Ridge Regression (RR)
[20, 10].

To test the robustness of various methods, we inject outliers
to the datasets whose distribution differs from the majority
by a normally distributed random quantity. Note that the
perturbation occurs only on the response variables. The data
generation process can be described as follows.
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(a) σy
ij = 0.5|i−j|.
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Fig. 1. The out-of-sample WMSE as r varies.

1) Generate each element of the true coefficient matrix
B∗ ∈ Rp×K with p = 8,K = 3 from the standard
normal distribution.

2) Generate x ∈ Rp from a multivariate normal distribu-
tion N (0,Σx), where Σx = (σx

ij)
j=1,...,p
i=1,...,p has ones on

the diagonal, and off-diagonal elements specified by
σx
ij = 0.7|i−j|, i 6= j.

3) For a clean sample, generate y from N ((B∗)′x, IK);
for outliers, generate y from N ((B∗)′x, IK) +
N (0,Σy), where Σy = (σy

ij)
j=1,...,K
i=1,...,K has ones on

the diagonal, and off-diagonal elements specified by
σy
ij = 0.5|i−j|, i 6= j.

We generate N = 60 training samples that contain a
proportion r of outliers to train the MLR models mentioned
above, and compare their performance on a set of M = 40
test samples. Note that the test samples do not contain any
outlier, as we expect the estimated regression coefficients
to be consistent with the clean data distribution (robust to
outliers), and only care about their predictive performance
on clean data samples.

All parameters, including the regularization coefficients of
our methods and RR, the number of principal components
used in PCR, the optimal rank in RRR, are tuned using cross-
validation. We evaluate the following Weighted Mean Squared
Error (WMSE) on the test set:

WMSE ,
1

M

M∑
i=1

(yi − ŷi)
′Σ̂
−1

(yi − ŷi),

where yi, ŷi are the true and predicted responses for the i-th
test sample, and Σ̂ = (Y − Ŷ)′(Y − Ŷ)/(N − pK), with
Y, Ŷ ∈ RN×K the true and estimated response matrices on
the training set, respectively.

We plot the simulation results in Fig. 1 as the proportion
of outliers r is varied. Note that we rename relaxation (4) as
DRO-Decomp since it can be decomposed into K independent
sub-problems. DRO-MLR corresponds to formulation (5).

To investigate the effect of the noise covariance Σy on the
performance, we decrease the value of σy

ij to 0.1|i−j|. By
comparing the two figures, we conclude:

1) Both DRO-MLR and DRO-Decomp achieve a smaller
prediction bias than other methods, with DRO-MLR
slightly better than DRO-Decomp.

2) PCR has a similar performance to our methods when
the proportion of outliers r is low. As r increases,
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however, our methods perform better.
3) When the added noise becomes less correlated, PCR

achieves a comparable performance to us. Our methods
are more advantageous when the response variables are
highly correlated.

The success of PCR is due to the fact that it eliminates the
multicollinearity through transforming the original predictors
into a set of uncorrelated Principal Components (PCs). It can
result in dimension reduction through excluding some of the
low variance PCs. Essentially, PCR transforms the problem
to one that is decomposable. However, PCR is criticized for
not offering easily interpretable models due to the linear
transformation of the predictors. By contrast, our methods
retain the structure of the predictors, yielding a model that
has a comparable performance to PCR without sacrificing
interpretability.

V. CONCLUSIONS

We proposed a Distributionally Robust Optimization (DRO)
formulation for Multivariate Linear Regression (MLR) to
estimate a robust regression coefficient matrix that is immu-
nized against large noise in the data. A regularized regression
reformulation was derived using a newly defined matrix
norm that scalarizes each column by the sum of the absolute
values of its elements. We provided bounds on its prediction
bias, and empirically tested its performance on a number of
synthetic datasets, showing that our approach results in a
smaller prediction error compared to a series of alternatives.

REFERENCES

[1] H. Zhang, H. Zhao, J. Sun, D. Wang, and K. Kim,
“Regression analysis of multivariate panel count data
with an informative observation process,” Journal of
Multivariate Analysis, vol. 119, pp. 71–80, 2013.

[2] B. Hidalgo and M. Goodman, “Multivariate or multi-
variable regression?” American journal of public health,
vol. 103, no. 1, pp. 39–40, 2013.

[3] R. S. Tsay, Multivariate time series analysis: with R
and financial applications. John Wiley & Sons, 2013.

[4] K. J. Friston, A. P. Holmes, K. J. Worsley, J.-P. Poline,
C. D. Frith, and R. S. Frackowiak, “Statistical parametric
maps in functional imaging: a general linear approach,”
Human brain mapping, vol. 2, no. 4, pp. 189–210, 1994.

[5] L. Breiman and J. H. Friedman, “Predicting multivari-
ate responses in multiple linear regression,” Journal
of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 59, no. 1, pp. 3–54, 1997.

[6] T. Evgeniou, C. A. Micchelli, and M. Pontil, “Learning
multiple tasks with kernel methods,” Journal of Machine
Learning Research, vol. 6, no. Apr, pp. 615–637, 2005.

[7] M. Yuan, A. Ekici, Z. Lu, and R. Monteiro, “Dimension
reduction and coefficient estimation in multivariate linear
regression,” Journal of the Royal Statistical Society:
Series B (Statistical Methodology), vol. 69, no. 3, pp.
329–346, 2007.

[8] R. Velu and G. C. Reinsel, Multivariate reduced-rank
regression: theory and applications. Springer Science
& Business Media, 2013, vol. 136.

[9] W. F. Massy, “Principal components regression in
exploratory statistical research,” Journal of the American
Statistical Association, vol. 60, no. 309, pp. 234–256,
1965.

[10] Y. Haitovsky, “On multivariate ridge regression,”
Biometrika, vol. 74, no. 3, pp. 563–570, 1987.

[11] R. Gao and A. J. Kleywegt, “Distributionally robust
stochastic optimization with wasserstein distance,” arXiv
preprint arXiv:1604.02199, 2016.

[12] P. M. Esfahani and D. Kuhn, “Data-driven distribution-
ally robust optimization using the wasserstein metric:
Performance guarantees and tractable reformulations,”
Mathematical Programming, vol. 171, no. 1-2, pp. 115–
166, 2018.

[13] R. Chen and I. C. Paschalidis, “A robust learning
approach for regression models based on distributionally
robust optimization,” The Journal of Machine Learning
Research, vol. 19, no. 1, pp. 517–564, 2018.

[14] S. S. Abadeh, P. M. M. Esfahani, and D. Kuhn,
“Distributionally robust logistic regression,” in Advances
in Neural Information Processing Systems, 2015, pp.
1576–1584.

[15] S. Shafieezadeh-Abadeh, D. Kuhn, and P. M. Esfahani,
“Regularization via mass transportation,” arXiv preprint
arXiv:1710.10016, 2017.

[16] R. Gao, X. Chen, and A. J. Kleywegt, “Wasserstein
distributional robustness and regularization in statistical
learning,” arXiv preprint arXiv:1712.06050, 2017.

[17] R. Tomioka and T. Suzuki, “Convex tensor decom-
position via structured schatten norm regularization,”
in Advances in neural information processing systems,
2013, pp. 1331–1339.

[18] P. L. Bartlett and S. Mendelson, “Rademacher and Gaus-
sian complexities: risk bounds and structural results,”
Journal of Machine Learning Research, vol. 3, pp. 463–
482, 2002.

[19] A. J. Izenman, “Reduced-rank regression for the multi-
variate linear model,” Journal of multivariate analysis,
vol. 5, no. 2, pp. 248–264, 1975.

[20] P. J. Brown, J. V. Zidek et al., “Adaptive multivariate
ridge regression,” The Annals of Statistics, vol. 8, no. 1,
pp. 64–74, 1980.

3660


