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Abstract— Existing work has tackled the problem of es-
timating Origin-Destination (OD) demands and recovering
travel latency functions in transportation networks under the
Wardropian assumption. The ultimate objective is to derive an
accurate predictive model of the network to enable optimization
and control. However, these two problems are typically treated
separately and estimation is based on parametric models. In this
paper, we propose a method to jointly recover nonparametric
travel latency cost functions and estimate OD demands using
traffic flow data. We formulate the problem as a bilevel
optimization problem and develop an iterative first-order opti-
mization algorithm to solve it. A numerical example using the
Braess Network is presented to demonstrate the effectiveness
of our method.

I. INTRODUCTION

The purpose of solving the Traffic Assignment Problem
(TAP) in transportation planning processes is to evaluate
performance metrics of the system, assess deficiencies and
evaluate potential improvements and capacity expansions to
the transportation network.

The TAP assumes that users selfishly choose the best route
in the network resulting in an equilibrium known as Wardrop
equilibrium. Modeling drivers’ routing behavior under the
Wardrop equilibrium assumption is one of the most widely-
used frameworks for the purpose of analyzing transportation
networks, with applications in traffic diagnosis, control, and
optimization [1], [2]. This modeling framework uses three
main inputs: (1) a strongly connected directed graph; (2)
an Origin Destination (OD) traffic demand vector; and (3)
a link latency cost or travel time cost function that typically
depends on link flows. Small perturbations to these OD
demand estimates and travel time functions may have a large
impact on the equilibrium solution [3].

In practice, however, OD demands and cost functions are
not readily available. The OD demand estimation problem
for the static TAP has been solved differently depending on
whether a network is congested or not. For uncongested net-
works, entropy maximization [4], generalized least squares
[5] and maximum likelihood estimation [6] have been used.
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Whereas for congested networks, estimating OD demands
has been done by solving a bilevel optimization problem
given the circular dependence between the OD estimation
and the traffic flow assignment [7].

The problem of estimating travel time functions has re-
ceived less attention in the transportation community. In the
context of transportation systems, as traffic volume grows
we expect the speed on the link to decrease, first slowly
but as queues start to accumulate, the effects become more
significant. Therefore, these functions are usually modeled
as positive, nonlinear and strictly increasing functions. A
typical travel time function is as a polynomial function.
In particular, urban planners and researchers often use the
Bureau of Public Roads (BPR) function [8]:

t(xa) = t0a(1 + 0.15(xa/ma)4), (1)

where t0a is the free-flow travel time, xa the flow, and ma

the capacity of link a.
With the increasing availability of various sensors, large

traffic datasets have been collected, raising the possibility of
estimating OD demands and travel time functions from data
by solving appropriate inverse optimization problems. More
specifically, given an OD demand and equilibrium flows,
recovering the travel time function can be performed for both
single-class vehicle networks [3], [9] and multi-class vehicle
networks [10].

Most of the existing work typically deals with these two
inverse problems separately; a limitation we seek to address
in this paper. Closer to the goal of our work, [11] considered
the simultaneous estimation of travel cost and OD demand
in a Stochastic User Equilibrium setting. Yet, this work does
not attempt to estimate (nonparametrically) the full structure
of the travel cost functions as we do. Rather, it seeks to
estimate a sensitivity constant that adjusts how a given travel
cost function affects route choice probabilities.

In this paper, we aim to jointly investigate the two related
inverse problems – recovering cost functions (IP-1) in a
non-parametric setting and adjusting OD demand matrices
(IP-2). Our work contributes to improving the consistency
and robustness of the data-driven traffic model. The ultimate
utility of obtaining such a model is to make predictions
under various topology and demand scenarios, drive control
and optimization tasks, or simply assess the amount of
inefficiency of the system (e.g., as in [10]). In this work we
consider only the (data-driven) model estimation problem.

We solve the joint problem by converting the bilevel
optimization model into a single-level one. We do this by
transforming the lower-level problem (IP-1) into constraints
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for the upper-level one (IP-2). As a result, we obtain a formu-
lation with a quadratic objective and non-convex constraints.
Using weak duality and an iterative approach, we are able to
relax the non-convex constraints, which allows the problem
to be solved using a first-order feasible direction algorithm.
To validate its effectiveness and performance, we conduct a
numerical experiment using the Braess’ network [12]. In this
example, we show that the algorithm approaches the ground
truth values of both travel time functions and OD demands.

The rest of the paper is organized as follows. In Sec. II
we introduce the modeling framework and mathematical
definitions used throughout the paper. In Sec. III we present
the structure of the joint problem, its transformation to its
Frank-Wolfe form, and a method for calculating the gradient
of the cost function. In Sec. IV we present some numerical
results applied to the Braess network. Conclusions are in
Sec. V.

Notation: All vectors are column vectors and denoted by
bold lowercase letters. Bold uppercase letters denote matri-
ces. To economize space, we write x = (x1, . . . , xdim(x)) to
denote the column vector x, where dim(x) is its dimension-
ality. We use “prime” to denote the transpose of a matrix or
vector. We denote by 0 and I the vector of all zeroes and
the identity matrix, respectively. Unless otherwise specified,
‖ · ‖ denotes the `2 norm. |D| denotes the cardinality of a
set D, and [[D]] the set {1, . . . , |D|}.

II. MODEL AND PRELIMINARIES
A. Transportation network model and definitions

Consider a strongly-connected directed graph denoted by
G (V,A), where V is the set of nodes and A is the set of
links. Let N ∈ {0, 1,−1}|V|×|A| be the node-link incidence
matrix, and let ea ∈ R|A| be a vector with an entry equal to
1 corresponding to link a and all the other entries set to 0.
Let w = (ws, wt) denote an Origin-Destination (OD) pair
and W = {wi : wi = (wsi, wti) , i ∈ [[W]]} be the set of
all OD pairs. Furthermore, let dw ≥ 0 be the flow demand
that travels from origin ws to destination wt. In the same
manner, let us denote by dw ∈ R|V| the vector of all zeros
except for the coordinates of nodes ws and wt which take
values −dw and dw, respectively. We will also use vector
g = (dw;w ∈ W) to denote the flow demands for all OD
pairs. Let xa be the total link flow of link a ∈ A and x
the vector of these flows. Let F be the set of feasible flow
vectors defined by

F =
{
x ∈ R|A|+ : x =

∑
w∈W

xw, Nxw = dw, ∀w ∈ W
}
,

where xw is the flow vector attributed to OD pair w.
For each OD pair w let us also define a set of possible

routes Rw; each route r ∈ Rw is a sequence of links starting
from the origin ws and ending at the destination wt. We will
write a ∈ r if a route r contains link a. For each OD pair
wi ∈ W we define the indicator functions

δair =

{
1, if r ∈ Rwi uses link a
0, otherwise.

(2)

Finally, we denote with ta(x) : R|A|+ 7→ R+ the latency
cost (i.e., travel time) function for link a and write t(·) for
the vector of these link functions. Using the same structure
used in [13] we can characterize ta(xa) as:

ta(xa) = t0af(xa/ma),

where ma is the flow capacity of link a, f(·) is a strictly
increasing, positive, and continuously differentiable function,
and t0a is the free-flow travel time on link a. We set f(0) = 1,
which ensures that if there is no constraint on flow capacity,
the travel time ta is equal to the free-flow travel time.

B. Wardrop equilibrium

The notion of a Wardrop equilibrium, sometimes referred
to as a non-atomic game1, is interpreted as requiring that all
users optimize their travel times. In general, a feasible flow
x∗ is a Wardrop equilibrium if for every OD pair wi, and any
route r ∈ Rwi with positive flow, the latency cost (i.e., travel
time) is no greater than the travel time on any other route. It
is worth mentioning that given G(V,A) and f(·) there exists
a unique equilibrium2. Such a result is the solution to the
Traffic Assignment Problem (TAP) which precisely returns
the flows that minimize the potential function:

Φ(x) =
∑
a∈A

xa∫
0

ta(s)ds,

where the integral is adding the costs of the flow segments
of link a. The function f(·) is continuous and F is a
compact set, thus, Weierstrass Theorem implies there exists
a solution. Moreover, since cost functions are non-decreasing
(by assumption), then Φ(·) is convex and therefore a unique
solution exists [13].

C. Models

1) User-centric: As stated in the previous section, the
TAP (also known as the user-centric forward optimization
problem) can be formulated as

min
x∈F

∑
a∈A

xa∫
0

ta(s)ds. (3)

An alternative way of solving this problem is via a Varia-
tional Inequality (VI) formulation as first proposed in [14],
[15]; finding a solution x∗ to

t(x∗)′(x− x∗) ≥ 0, ∀x ∈ F . (4)

In order for the solution of (4) to be equivalent to the solution
of (3) we have to assume (i) strong monotonicity of t(·) over
F , (ii) t(·) to be continuously differentiable over R|A|+ , and
(iii) F to contain an interior point (Slater’s condition). One
of the most successful algorithms to find such an equilibrium
is the Method of Successive Averages (MSA) proposed in [16]
which uses a Frank-Wolfe type algorithm.

1These are games where every user (driver) has a negligible contribution
to the overall traffic. Hence, the actions of individual users have essentially
no effect on network congestion.

2Backman proves this using KKT conditions [13].
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2) User-Centric Inverse Model (I-VI): Given that one of
the parameters of the TAP is the latency cost functions, we
aim to estimate them (in particular function f(·)) using data.
To that end, we consider an Inverse Variational Inequality
problem (I-VI). We assume that the data measurements are
solutions of the TAP for specific cost functions and OD
demands. Therefore, it is natural to think about these flows as
snapshots of the network at different instants. Let k ∈ [[K]]
index different snapshots of a network with corresponding
flows x(k) = (x

(k)
a ; a ∈ A(k)), where the set A(k) ⊂ A

denotes the links on which we have flow measurements for
instance k. (We will use F (k), Nk, and W(k) to denote the
set of feasible flows, node-link incidence matrix, and OD
pairs for the network instance k.) The inverse formulation of
the Wardrop equilibrium seeks to find a cost function t(·) (or,
equivalently, f(·)) such that each flow observation is as close
to an equilibrium as possible. Because this formulation relies
on measured data, we expect measurement noise. Hence, the
notion of an approximate solution to this problem is natural.
For a given ε > 0, we define an ε-approximate solution x̂ to
the VI as satisfying:

t(x̂)′(x− x̂) ≥ −ε, ∀x ∈ F . (5)

The inverse VI problem amounts to finding a function f(·)
such that x(k) is an εk-approximate solution to VI(t,F (k))

for each k. Denoting ε
4
= (εk; k ∈ [[K]]), we can formulate

the inverse VI problem as in [3], [10]. Then we define the
(I-VI) problem as minimizing the `2 norm of ε:

min
t(·),ε

‖ε‖ (6)

s.t. t(x(k))′(x− x(k)) ≥ −εk, ∀x ∈ F (k), k ∈ [[K]] ,

εk > 0, ∀k ∈ [[K]] .

Notice that in this formulation, the set of constraints restricts
the travel time function to be within εk units of the Wardrop
equilibrium flows for each sample. In this sense, if we
solve the problem using k of these constraints for multiple
observed networks, we will find a more “stable” travel time
function.

In order to solve this problem we express the function f(·)
in a Reproducing Kernel Hilbert Space (RKHS) H as in [3].
This leads to the following formulation of the ε-approximate
Inverse Variational Inequality Problem (εI-VI):

min
f,y,ε
‖ε‖+ γ‖f‖2H (7)

s.t. e′aN
′
ky

w ≤ t0af
(
xa
ma

)
, ∀w ∈ W(k), a ∈ A(k), k,∑

a∈A(k)

t0axaf

(
xa
ma

)
−
∑

w∈W(k)

(dw)′yw ≤ εk, ∀k,

f

(
xa
ma

)
≤ f

(
xâ
mâ

)
, ∀a, â ∈ ∪kA(k) s.t.

xa
ma
≤ xâ
mâ

,

ε ≥ 0, f ∈ H, f(0) = 1,

where the first constraint corresponds to dual feasibility,
the second constraint maintains the primal-dual gap within

ε, and the third constraint imposes the assumption that
f(·) is monotone. We note that yw contains dual variables
associated with the VI problem, ‖ · ‖H is the norm of the
RKHS, and γ is a regularization parameter. A larger γ will
recover a more general f(·) whereas a smaller one will
recover an f(·) which fits the dataset better.

As we can see, the problem we have defined is still hard
to solve since it involves optimization over functions f(·).
However, we specify H (and thus the class of f(·)) by
choosing a polynomial kernel [3], i.e., using kernel functions
φ(x, y) = (c+xy)n. We believe this is a good choice since it
matches our intuition on how congestion affects the latency
cost of links (cf. (1)). The polynomial kernel function can
be rewritten as

φ(x, y) = (c+ xy)n =
n∑
i=0

(
n

i

)
cn−1xiyi.

Then, using the representer theorem for kernel functions,
we can modify the cost function of the (εI-VI) problem
to a quadratic function parameterized by β = {βj : j =
1, . . . , n} resulting in a tractable Quadratic Programming
(QP) problem (see [3], [10] for details). As an output to this
reformulated (εI-VI) problem we obtain β∗, and therefore
our estimator for f(·) is equal to

f̂(x) =
n∑
i=0

β∗i x
i = 1 +

n∑
i=1

β∗i x
i,

where we set β0 = 1 to have f(0) = 1.
To facilitate the analysis of the joint problem presented in

the next section, let us write the QP problem corresponding
to (εI-VI) using compact notation:

min
β,y,ε

ε′Iε+ β′Hβ (8)

s.t. A(g)y + B(x)β + Cε+ h ≤ 0,

where matrices A(g) and B(x) depend on the OD demand
vector g and the provided data flow measurements x, re-
spectively, and H is a positive definite matrix. We call this
problem (IP-1).

III. THE JOINT PROBLEM

A. Bilevel formulation

Unlike previous work, we will jointly recover both the
travel time function f(·), specifically the coefficients β =
(βo, . . . , βn), and the OD demand vector g. To simplify
notation, we let x(β,g) = (xa(β,g); ∀a ∈ A) be the
optimal solution to the VI(t,F) (i.e., the TAP), for any given
feasible β and g. Recall that we observe an equilibrium flow
vector from data which we define as x∗ = (x∗a; ∀a ∈ A).
Equipped with these definitions we can define the bilevel
optimization problem as follows

min
β,g

F (β,g)
4
=
∑
a∈A

(xa(β,g)− x∗a)2 (9)

s.t. (β,y, ε) = arg min
β,y,ε

{
ε′Iε+ β′Hβ,

s.t. A(g)y + B(x(β,g))β + Cε+ h ≤ 0
}
,
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β ≥ 0, g ≥ 0.

Notice that F (β,g) is bounded below by 0.
To solve this problem we replace the convex lower-level

problem (IP-1) by its KKT optimality conditions and write
the bilevel problem as a single-level problem. Finally, we
relax the resulting formulation to make it solvable by using
a feasible direction method (Frank-Wolfe).

B. IP-1 Optimality conditions

To reduce the lower level problem in (9) into its equivalent
optimality conditions, we first write the Lagrangian function:

L(β,y, ε;ν) = ε′Iε+ β′Hβ + ν ′(Ay + Bβ + Cε+ h),

where ν are the dual variables and (for ease of notation)
we dropped the dependence of A and B on g and x(β,g),
respectively.

This leads to the first order optimality conditions:

∂L/∂ε = 2Iε+ C′ν = 0⇒ ε = −(1/2)I−1C′ν,

∂L/∂β = 2Hβ + B′ν = 0⇒ β = −(1/2)H−1B′ν,

∂L/∂y = A′ν = 0. (10)

Substituting β and ε in the Lagrangian using (10), we can
write the dual objective function as

D(ν) = −1

4
ν ′CIC′ν − 1

4
ν ′BH−1Bν + h′ν. (11)

Consequently, for each primal-dual pair (β,y, ε; ν) in
the lower-level optimization problem, it is sufficient and
necessary to satisfy the conditions

Ay + Bβ + Cε+ h ≤ 0, (12)
A′ν = 0,

ν ≥ 0,

ε′Iε+ β′Hβ = − 1
4ν
′CIC′ν − 1

4ν
′BH−1B

′
ν + h′ν,

to reach optimality.

C. Relaxation and Frank-Wolfe

So far, we have eliminated the lower optimization problem
by transforming it into constraints involving the dual vari-
ables. Note that the fourth constraint of (12), corresponding
to strong duality of (IP-1), is a non-convex quadratic equality
constraint. To address this issue, we relax it by requiring that
the duality gap is upper bounded by some ξ and penalizing
ξ:

min
β,y,ε,g,ν,ξ

F (β,g, ξ)
4
=
∑
a∈A

(xa(β,g)− x∗a)2 + λξ (13)

s.t. Ay + Bβ + Cε+ h ≤ 0,

A′ν = 0,

ε′Iε+ β′Hβ +
1

4
ν ′CIC′ν

+
1

4
ν ′BH−1B

′
ν − h′ν ≤ ξ,

ν, g,β, ξ ≥ 0,

where, again, we have suppressed the dependence of A
and B on g and x(β,g), respectively. Notice that both
the objective and the constraints (through A and B) are
nonlinear functions of β,g through x(β,g).

We next develop an iterative feasible direction method. Let
z = (β,g, ξ) and j denote the iteration count. We evaluate
the gradient of F (·) at the previous iteration and seek the
steepest feasible direction of descent by solving:

min
zj ,y,ν,ε

∇F (zj−1)′(zj−1 − zj) (14)

s.t. Ay + Bβ + Cε+ h ≤ 0,

A′ν = 0,

ε′Iε+ βj
′Hβj +

1

4
ν ′CIC′ν

+
1

4
ν ′BH−1B

′
ν − h′ν ≤ ξj

gj−1 − c1e ≤ gj ≤ gj−1 + c2e

ν, zj ≥ 0,

where we use e to denote the vector of all ones, c1, c2 are
constants, A and B in the constraints of (14) are functions
of (β,g) evaluated at (βj−1,gj−1), and

∇F (zj)
′ =

[∑
a∈A

2(xa(zj)− x∗a)
∂xa(βj ,gj)

∂βl
, l = 1, . . . , n;

∑
a∈A

2(xa(zj)− x∗a)
∂xa(βj ,gj)

∂gi
, i = 1, . . . , |W|;λ

]
. (15)

As a result, problem (14) has a linear objective and
constraints that are linear and convex quadratic, rendering
it easy to solve. Given these “constant” approximations of
the constraints at the prior iterate, the role of c1, c2 is to
ensure that the optimization takes place in a relatively small
“trust” region for gj that is not too far from the prior iterate
gj−1.

D. Derivatives

For the cost function of (14) (cf. (15)) we need to estimate
the partial derivatives of the link flows with respect to
parameters β of the latency functions and the OD demand
vector g.

1) Directional flow derivatives with respect to perturba-
tions in OD demand: Let us first derive an approximation
to the gradient of x(β,g) with respect to g. By adding the
flows of different OD pairs demands we have

xa(β,g) =
∑

{i:wi∈W}

∑
r∈Rwi

δair p
irgi

=
∑

{i:wi∈W}

gi
∑

r∈Rwi

δair p
ir,

where Rwi denotes the set of feasible routes associated with
OD pair wi, δair was defined in (2), and pir is the probability
that commuter in OD pair wi selects route r ∈ Rwi .

For each OD pair wi ∈ W , let us only use the shortest
route ri(β,g) based on the travel latency cost (i.e., travel
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time). Then we have

∂xa (β,g)

∂gi
≈ δairi(β,g) =

{
1, if a ∈ ri(β,g),

0, otherwise,

where a ∈ ri(β,g) indicates that route ri(β,g) uses link
a. Note also that we have assumed existence of the partial
derivatives; if not, one can replace them with subgradients.
Such partial derivatives typically do not have an exact
analytical expression and we in turn use this approximation
technique; a comprehensive discussion on this approximation
can be found in [17].

Similar to [9], [10], the reasons we consider only the
shortest routes for the purpose of calculating these gradi-
ents include: (1) GPS navigation is widely-used by vehicle
drivers so they tend to always select the fastest routes
between their OD pairs. (2) Considering the fastest routes
only significantly simplifies the calculation of the route-
choice probabilities. (3) Extensive numerical experiments
show that such an approximation of the gradients performs
satisfactorily well.

2) Directional flow derivatives with respect to parameters
of the latency function: To the best of our knowledge there
are two main approaches [18], [17] to calculate directional
derivatives of the cost function with respect to a perturbation
ρ on the cost coefficients β. In [18] the sensitivity analysis is
made with respect to the routes and requires solving a linear
system that in some cases may be difficult when dealing with
large-scale networks as pointed out in [19]. To overcome
this issue, [19] proposes a QP formulation to calculate such
derivatives. To find a solution to this QP, [19] solves a similar
problem to TAP. Therefore, although we are able to use any
of these methods to calculate ∂xa(βj ,gj)/∂βl we prefer to
use a finite-difference approximation. This is because: (1) the
complexity of solving the TAP is similar to that of the QP
proposed by [19], and (2) the MSA algorithm is an efficient
algorithm that allows us to include all routes connecting an
OD pair wi in its route set Rwi . Using TAPa(·) to denote
the outcome of MSA for link a, for some small enough ρ
we compute

∂xa(βj ,gj)

∂βl
≈

TAPa(βj + ρel,gj)− TAPa(βj ,gj)

ρ
,

where el is the lth unit vector.

IV. NUMERICAL EXAMPLE

We perform a numerical experiment to test our method. To
do so, we generate ground truth data by choosing specific
OD demands and cost functions. Then, we solve the TAP
to obtain data flows x∗. Once we have the ground truth
information, we initialize our method with a feasible f(·)
and g0. We aim to adjust these initial OD demands and cost
functions such that the resulting link flows x(β,g) are close
to the ground truth flows x∗.

As an example we use the Braess network (Fig. 1). In
this network, we generate ground truth by considering a
single OD pair which transports 4, 000 vehicles from node
1 to 2. Furthermore, we consider the cost function to be

1

3

4

2

1

3

2

4 5

Fig. 1. Braess’ network; we consider one OD pair from node 1 to node 2.

f(x) = 1 + x. The resulting flows when solving the TAP
for this example are: (2080, 2080, 0, 1920, 1920) for links
(1, 2, 3, 4, 5) respectively.

Then, for solving the bilevel problem, we set an initial de-
mand g0 to be 5, 500 vehicles, and initial cost function equal
to BPR i.e. f(x) = 1+0.15x4, i.e., β0 = (1, 0, 0, 0, 0.15, 0).
Then, we implement our model using c = 30, λ = 103,
c1 = c2 = 5, ρ = 0.5 and n (polynomial degree) equal to
5. Notice that these parameters can be selected using cross-
validation.

By running experiments, we observe that the objective
function of the bilevel problem (cf. (9)) converges to zero
(see Fig. 2). However, we also noticed that is quite sensitive
to the parameters used, in particular, we have to be careful
when selecting (c1, c2) and λ because these may cause
unboundness by violating the (IP-1) constraint set and the
bilevel primal-dual gap respectively. Moreover, note that the
selection of (c1, c2) has a direct impact on the algorithm’s
convergence rate.

When solving the problem we obtain the estimated
OD demand, cost function and link flows as: 4, 035
(Fig. 4); f(x) = 1 + 1.45x (Fig. 3); and x =
(2079.5, 2079.5, 0, 1950.5, 1950.5), respectively. This is a
very good estimate of the ground truth. Even though the
latency function is not exactly the same, it is returning similar
flows. This happens because commuters respond equally to
f(x) = 1 + x and to f(x) = 1 + 1.45x for this particular
network and conditions. We would expect the difference
between cost function estimation to decrease as we add more
data samples to the joint problem.

V. CONCLUSION

In this work, we were able to solve the joint problem of
estimating OD demands and cost functions in a transportation
network. We approached the problem by rewriting (9) with
the lower-level KKT conditions (13). Then, we solved the
problem using an iterative approach (14). To be able to
accomplish this, we relaxed some constraints by allowing a
small gap to exist between the primal-dual costs. Addition-
ally, we took care of the non-convexity of the constraints
by using the previous iteration solution and bounding these
variables.
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Fig. 2. Objective function of the Bilevel problem, i.e., F (βj ,gj) as a
function of the number of iterations j.

Fig. 3. Cost function estimators with respect to the joint iterations. In this
example, the cost function coefficient converges around iteration j = 130.

Finally, we tested our algorithm using the Braess network
and concluded that our proposed method works well in terms
of reducing the objective function of the bilevel formulation
(9). We performed this task by adjusting both, the OD de-
mand and the cost functions. It is important to keep in mind
that the output of the algorithm is sensitive to the accuracy of
flow observations and to the parameters chosen. To overcome
the parameter selection issue, we suggest practitioners to
use cross-validation techniques. As future extensions of this
work, we plan to implement this algorithm in significantly
larger networks and we aim at extending our framework to
multi-class transportation networks.
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