
1

Understanding Node-Link and Matrix
Visualizations of Networks: A Large-Scale Online

Experiment

Donghao Ren1, Laura R. Marusich2, John O’Donovan1, Jonathan Z. Bakdash3,4, James 
Schaffer1, 5, Daniel N. Cassenti6, Sue E. Kase6, Heather Roy6, Wanyi (Sabrina) Lin7, and 

Tobias Höllerer1

1University of California, Santa Barbara
2U.S. Army Research Laboratory South at the University of Texas at Arlington

3U.S. Army Research Laboratory South at the University of Texas at Dallas
4Texas A&M–Commerce

5U.S. Army Research Laboratory West
6U.S. Army Research Laboratory

7IBM Thomas J. Watson Research Center. The author is currently affiliated with BOSCH 
Center for Artificial Intelligence. 

Abstract

We investigated human understanding of different network visualizations in a large-scale online
experiment. Three types of network visualizations were examined: node-link and two different sort-
ing variants of matrix representations on a representative social network of either 20 or 50 nodes.
Understanding of the network was quantified using task time and accuracy metrics on questions
that were derived from an established task taxonomy. The sample size in our experiment was more
than an order of magnitude larger (N = 600) than in previous research, leading to high statistical
power and thus more precise estimation of detailed effects. Specifically, high statistical power al-
lowed us to consider modern interaction capabilities (e.g., mouse-over highlighting and pen-stroke
annotations) as part of the evaluated visualizations, and to evaluate overall learning rates as well as
ambient (implicit) learning. Findings indicate that participant understanding was best for the node-
link visualization, with higher accuracy and faster task times than the two matrix visualizations.
However, this performance advantage for node-link over matrix was attenuated in the larger (50-
node) network. Analysis of participant learning indicated a large initial difference in task time
between the node-link and matrix visualizations, with matrix performance steadily approaching
that of the node-link visualization over the course of the experiment. We also report an exploratory
analysis of participants’ mouse movements and annotations. This research is fully reproducible as the
web-based module and results have been made publicly available at: https://osf.io/qct84/.

Introduction

Understanding graph data is an important task in many domains, including law enforce-
ment (Baccara & Bar-Isaac, 2008; McIllwain, 1999; Sparrow, 1991) (e.g., identifying
key players in organized crime networks), public health (Blanchet & James, 2011; New-
man, 2002) (e.g., detecting and mitigating outbreaks of disease), and military intelligence
analysis (Bohannon, 2009; Krebs, 2002; MacCalman et al., 2013) (e.g., uncovering the
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structure of terrorist organizations or identifying key leaders to engage within host nations).
The widespread use of social networks, and the use of network visualizations in mass
media (Sullivan, 1987; Lankow et al., 2012), has caused the public to become familiar
with general network concepts, yet interactive network visualization has not yet found its
way into the most prevalent web search and social network sites. Effective visualization
is helpful for understanding and interpreting most types of data, but for graph data it
is critical. For example, a variety of tools exist within the field of intelligence analysis
to help synthesize information from disparate intelligence sources, identify entities and
the various relationships between them, and visualize this network to allow the analyst
to identify patterns and draw inferences (Hall et al., 2015). These tools typically rely
on one of two types of graph visualization: 1) node-link representations, in which each
node represents an entity and connecting lines represent the relationships between them,
and 2) matrix-based representations, where each row/column corresponds to an entity and
filled squares represent relationships between entities (see Figure 1 for an example of each
visualization). In this work we investigate how these two visualization types affect human
comprehension of graph data, and specifically networks relevant to the field of intelligence
analysis. We focus here on the low-level graph comprehension tasks that are fundamental
to intelligence analysis, but that do not require the domain expertise of the intelligence
community. Because these tasks can be performed by the general population with only a
small amount of training, we were able to use Amazon Mechanical Turk (Mturk) to recruit
a large number (N = 600) of participants.

Knowledge about human performance on low-level graph analysis tasks, given one of
these representations, is important for designing the next generation of visualization tools,
which could potentially be embedded in social and information computing platforms (Bo-
standjiev et al., 2011). While this research topic has received considerable attention over
a decade ago (Ghoniem et al., 2004, 2005), modern interactive graph visualization capa-
bilities provide new opportunities for evaluation. Specifically, we partially replicate and
build upon behavioral experiments by Ghoniem et al. (2004, 2005) using a much larger
sample size. While previous work has compared both node-link and matrix visualizations
for speed and accuracy, these studies have relatively small numbers of participants. The
N = 600 study presented here brings improved statistical power that may better highlight
performance differences between node-link and matrix visualizations for a variety of dif-
ferent analytical tasks. Last, our work emphasizes the importance and value of reproducible
research (Peng, 2011). We share the code for the web-based study module used to run the
experiment, the participant data, and the code for statistical analysis: https://osf.
io/qct84/.

1 Related Work

Many studies that compared visualization types for graph data have typically focused on
the efficiency of layout algorithms or aesthetic differences. Battista et al. (1998) provided
a review of traditional approaches, and a more recent review is given by Von Landesberger
et al. (2011). Less common are experiments that assess the impact of visualization type
on human performance. The majority of earlier research used a limited subset of graph
understanding tasks (e.g., path finding, importance of nodes, and number of nodes) with
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Node-link Matrix (order by attribute)
Fig. 1. Example tasks in our study: “Which people lie along the shortest path between
Pasquale Dotson and Mohamed Coffey?” “How many direct connections are there
between people in Janfield and people in Oldlight?” Participants were asked to use one
of the visualizations to complete the tasks.

randomly generated networks. A description of previous behavioral research in graph
visualization is provided below.

In the context of path-finding tasks, Purchase (1998) has examined human performance
on node-link visualizations using eight different layout algorithms and a single graph of 17
nodes and 29 edges. Results indicated very similar performances across the eight layout
algorithms, with somewhat lower accuracy on only one of the layouts. Purchase concluded
that many of the efficiency and aesthetic considerations that go into the creation of layout
algorithms do not necessarily have a corresponding impact on human readability, at least
on small graphs similar to the one used in their experiment.

Similarly, McGrath et al. (1997) assessed node importance for connectivity with five
different spatial arrangements of the node-link representation, using a single graph of
12 nodes. The graph was presented as a network of communications among people, and
participants were asked to rate a subset of the nodes on prominence and importance as
a bridge within the network. For this relatively higher-level interpretation task, results
indicated that spatial arrangement does affect participants’ ratings, although the researchers
acknowledge that the best spatial arrangement is likely task dependent.

Ghoniem et al. (2004, 2005) performed studies of graph readability that compared node-
link and matrix representations with random graphs. In their work, graphs varied in both
size (20, 50, or 100 nodes) and edge density (0.2, 0.4, or 0.6). Readability was assessed
using a variety of relatively simple tasks (e.g., estimating the total number of nodes and
edges, finding a specific node, finding a specific edge connecting two nodes, identifying
the node with the most edges, or identifying a path between two nodes). At the smallest
graph sizes, performance was best when using the node-link visualization. However, as
size and density increased, the authors found indications of improved performance when
using matrix visualization over node-link on tasks other than path-finding. Okoe & Jianu
(2015) replicated this experiment with 112 participants from MTurk. Our work considers
a wider variety of network-relevant search and identification tasks.
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While node-link and matrix graph representations have been combined in visual ana-
lytics tasks (Wong et al., 2006) and compared for tasks involving weighted graphs (Alper
et al., 2013; Chang et al., 2017), and novel compound graph visualizations have been
derived and evaluated (Henry et al., 2007; Henry & Fekete, 2007), to our knowledge,
only one study compares human performance differences between node-link and matrix
visualizations specifically in the context of intelligence analysis (Berardi et al., 2013). In
this experiment, participants (all U.S. Air Force intelligence analysts) were provided either
a node-link or matrix visualization of a social network of 34 actors along with betweenness
and closeness centrality measures for each actor. Their task was to identify leaders and
clusters within the network. Both response time and the accuracy of responses indicated
better performance in the node-link visualization.

In summary, previous work comparing human performance in matrix and node-link
representations suggests that node-link may be more advantageous overall when networks
are relatively small (∼ 30 nodes or fewer) and on tasks that require tracing a path between
two entities that are not directly connected. These studies indicated decreased human
performance for node-link visualizations when networks were large and densely connected
due to overlapping edges, which can make interpretation more difficult.

Prior studies have typically been conducted in small-scale laboratory environments that
use either a single graph or a set of randomly generated graphs. One substantial limitation
to these studies is the low statistical power associated with small sample sizes, which
leads to potentially spurious and/or inflated statistical significance and effect sizes (Open
Science Collaboration, 2015; Bakker et al., 2012). Second, the “representativeness” of
the networks used in some prior research is another possible limitation. Depending on
the generating process, random networks often do not display characteristics common to
real-world networks of people, including long-tailed degree distributions, triadic closure,
and homophily, for example. While other studies, such as TopicNets (Gretarsson et al.,
2012) have focused on human understanding of relatively large social graphs through
interactive tools, we focus our comparative study at a smaller scale (20 to 50 node range),
following Henry and Fekete’s hypothesis that larger graph sizes would introduce additional
navigation and scrolling issues (Henry & Fekete, 2007), and Ghoniem et al.’s hypothesis
that (static) node-link representations do not perform as well on large graphs with high
density clusters, typical of social networks.

One additional factor that might affect the decision to utilize node-link or matrix visual-
izations is the idea of visualization insight (Yi et al., 2008; Chang et al., 2009). While cer-
tain visualizations might be more or less useful for answering particular types of targeted
questions, there may be a less tangible “understanding” of underlying data relationships
and distributions that arises from the experience of interacting with a visualization, and
different visualizations can produce very different interaction experiences. For instance, a
recent study of Twitter sense-making demonstrated that interface design could significantly
affect a user’s performance on a post-study estimation questionnaire (Schaffer et al.,
2015). Understanding visualization insight or bias is important because long-term memory
is critical in the pattern recognition process (Eysenck & Keane, 2013), and insights might
come at any time, not just during an analysis session (North, 2006). One might expect that
node-link visualizations lead to more insight, due to their more intuitive presentation.
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In the work presented here, our goal was to conduct a large-scale experiment with
sufficient power to tease apart effects of visualization, network size, and task type on
human performance. We evaluated participants on a wide range of questions that included
lower-level readability tasks as well as higher-level understanding and interpretation tasks.
In addition, we focused on realistic social networks that would be relevant to the domain
of intelligence analysis. Finally, we collected not only task performance data but also data
on interaction with the interface (e.g., mouse movement, annotation) in order to more fully
understand how people complete graph-understanding tasks.

2 Research Question

The overarching research question is how human understanding differs when using the
node-link and matrix visualizations to perform basic analytical tasks. Specifically, we
evaluate and compare understanding in terms of node-, connectivity-, and attribute-level
tasks. Human understanding, or readability, of graph representations for task completion
was quantified using two objective measures of performance: response time and accuracy.

3 Study Design

We employed a mixed design with two between-participant factors (visualization type and
graph size) and one within-participant factor (task type). Below, we describe the task types
completed by each participant, the graph data used in the study, and the layout of each
visualization type.

3.1 Experiment Task

This experiment was designed to assess graph understanding through a range of tasks that
would be relevant to intelligence analysis without requiring domain expertise. Following
the taxonomy of tasks common in graph analysis devised by Lee et al. (2006), we devel-
oped a list of questions that fell into one of five task categories: Adjacency, Accessibility,
Common Connection, Connectivity (shortest path), and Attribute. These questions were
presented in a random order to each participant and are listed below.

Adjacency (AD)

• (AD1) Name all of the people Person AD1-A1 is directly connected to.
• (AD2) Do Person AD2-A and Person AD2-B have a direct (one-hop) connection?
• (AD3) Which person has the most direct connections?
• (Discarded2) How many people have no connection?

1 AD1-A, AD2-A, etc., are placeholders for person names, which are randomly generated in
“FirstName LastName” format.

2 This question was phrased differently in different graph sizes, thus we discarded it from analysis.
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Accessibility (AC)

• (AC1) Is Person AC1-A connected to Person AC1-B in two hops or less?
• (AC2) Is Person AC2-A connected to Person AC2-B in three hops or less?
• (AC3) How many people are exactly two hops away from Person AC3?
• (AC4) Name all the people who are exactly two hops away from Person AC4.

Common Connection (CC)

• (CC1) How many people are directly connected to both Person CC1-A and Person
CC1-B?
• (CC2) Name all the people directly connected to both Person CC2-A and Person

CC2-B.

Connectivity (CO)

• (CO1) What is the minimum number of hops between Person CO1-A and Person
CO1-B?
• (CO2) Which people lie along the shortest path between Person CO2-A and Person

CO2-B?
• (CO3) If Person CO3-A was removed from the network, would Person CO3-B and

Person CO3-C still have a connection between them (either directly or through other
people)?

Attribute (AT)

• (AT1) How many people are in Town AT1?
• (AT2) Name all the people in Town AT2.
• (AT3) How many direct connections are there between two people that are both in

Town AT3?
• (AT4) How many direct connections are there between people in Town AT4-A and

people in Town AT4-B?

In addition, we assessed each participant’s implicit learning about the graph they en-
countered with several overview questions presented in a post-study questionnaire.

3.2 Graphs

Compared with other domains, intelligence analysts typically work with fairly small net-
works. When they encounter data sets with large numbers of entities, they will prune the
network to a manageable number of key actors (see examples in Army (2006)). Conse-
quently, we limited our assessment to a graph of 20 nodes (a typical size for intelligence
analysts) and a graph of 50 nodes (approaching the upper limit of what intelligence analysts
would generally work with). Each participant saw only one of these two graphs, described
in detail below.
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The 20-node network of people was adapted from the Kandahar Human Terrain Dataset
and Scenario originally developed for the Army field exercise Command, Control, Com-
munications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) and Net-
work Modernization Event 13 (E13). C4ISR E13 is an annual exercise offering researchers
a military-relevant venue to assess, evaluate, and validate emerging technologies. The
Kandahar data set consists of text data simulating blogs, news story feeds, tweets, and
intelligence reports. These data sources contain an embedded network of 20 individuals of
different tribal membership representing friendly, insurgent, and criminal elements operat-
ing near the Kandahar region of Afghanistan. The Kandahar data set was initially used in
an experiment focused on visualization approaches for displaying measures of sentiment
as well as an information-based problem-solving game currently under development (Kase
et al., 2015). For this experiment, the Kandahar 20-node network of individuals was ex-
tracted, with the four tribal affiliations used as a node attribute. The extracted graph has 20
vertices and 19 edges, with density 0.10.

The 50-node network of people was adapted from the synthetic Ali Baba data set origi-
nally developed at the National Security Agency (NSA) Jaworowski & Pavlak (2003). The
Ali Baba data set consists of 752 simulated human intelligence (HUMINT) reports tracking
the activities of a suspected terrorist network operating in England. The original version
of the data set was cleaned and modified, and ground truth was determined, enabling its
use for testing text extraction and social network analysis technologies, Mittrick et al.
(2012). The Ali Baba data set provides rich social relational data contained within the text
messages, making it an ideal data set for testing social network and information extraction
techniques. The primary plot of the Ali Baba data set focuses around a fictitious terrorist
group, the Ali Baba Group. The primary plot is woven within several distractor plots.
The Ali Baba Group consists of approximately nine core members operating in England;
however, the group members do not all interact directly — some interact with the many
periphery characters. For this experiment, a 50-node network of individuals was extracted
from the Ali Baba data set. The first-mentioned location (seven in total) of each individual
was used as a node attribute. The extracted graph has 50 vertices and 71 edges, with density
0.06.

In both graphs, we randomly assigned a new name to each node so that the first three
letters of first names and last names are unique. Similarly, the attribute category on each
graph was relabeled as “people’s home towns,” and we generated random town names to
avoid any familiarity of existing towns.

3.3 Visualizations

The layout of the node-link visualization was generated by the force-directed algorithm
in D3. While there is no inherent ordering to nodes in the node-link visualization, node
order is a key aspect in the matrix visualization and may affect performance on various
tasks. Consequently, we assessed two basic layouts for the matrix representation in our
online experiment – one ordered by attribute, and one ordered by degree. Degree ordering
is considered as a baseline ordering. Despite the obvious benefit to the degree counting task
(AD3), it falls shorts on revealing the community structure. Attribute ordering is chosen
because of its direct connection to the graph attribute. In the graph we use, the attribute
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Nodelink Matrix (order by attribute) Matrix (order by degree)

V=
20

V=
50

Fig. 2. Data sets and visualizations for the study. Two representational graphs from
analytical tasks (small and large) were used to evaluate three visualizations (node-link,
matrix order by attribute, matrix order by degree).

is related to the community structure, and it is hypothesized that ordering the matrix by
attribute would be beneficial to the attribute-related tasks. As a result, each participant
encountered one of three visualization types in this study: node-link, matrix-attribute, and
matrix-degree (see Figure 2).

Across all visualization types, the color palette, node size, and font size for the same
graph were identical. Within the same visualization type, the layout was the same for all
participants. We enforced a minimal window size (1150× 600 pixels) for the study. For
users with higher resolution displays, the graph automatically scaled to accommodate the
available screen space. Note we used a color-blind safe palette and we did not assess color-
blindness.

In order to allow straightforward comparison between the visualization types, we did not
allow participants to customize (e.g., repositioning nodes in node-link, reordering nodes in
matrix, etc.) the visualization. However, we did allow a limited number of interactions that
could be consistently applied across all conditions. These were designed to ease some of
the practical challenges associated with the task, such as locating a specific node on the
display, and to keep overall participation time within a reasonable range. The interactions
are described below and can be viewed at https://osf.io/qct84/.

Mouse-over Interactions Mouse-over node: When the user mouses over a name or node
in the node-link visualization, that node and its label are highlighted in red, the line weights
of its edges are increased, and the labels and nodes of its neighbors are highlighted in
orange. In the matrix visualizations, the node and its label are highlighted in red, the row
and column corresponding to the node are shaded, and the labels and nodes of its neighbors
are highlighted in orange. Mouse-over edge: When the user mouses over an edge in the
node-link visualization, the line weight of that edge increases, the two connected nodes and

https://osf.io/qct84/
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their labels are highlighted in red, and all neighbors of those two nodes are highlighted in
orange. In the matrix visualizations, the rows and columns of the two connected nodes are
shaded, the two connected nodes and their labels are highlighted in red, and the nodes and
labels of all neighbors of those two nodes are highlighted in orange. Mouse-over legend:
When the user mouses over an attribute category in the legend, all nodes that belong
to that category (i.e., all people in the specified town) are highlighted in black, and the
corresponding node labels appear in bold weight.

Annotation In addition to mouse-over interactions, we supported annotations. Henry &
Fekete (2007) argue that such interactive highlighting is useful, and also applied it in their
comparative study. Dragging the mouse over the visualization results in a semi-transparent
stroke. Two buttons at the top-left corners of the visualizations allow the user to clear all
annotations or undo the last stroke.

Highlight Node from Question In questions that refer to specific nodes (e.g., “Name
all of the people Person A is directly connected to”), the name is made bold within the
question text. When participants hover the mouse over the name, the corresponding node
is highlighted in the visualization (node in node-link, and row/column in the matrix, see
Figure 1).

4 Methodology

This experiment was approved by the University of California at Santa Barbara’s Institu-
tional Review Board (IRB) and the U.S. Army Research Laboratory’s IRB.

Participants We predetermined the number of participants to be 600 before running the
study to attain greater than 80% statistical power to detect medium effect sizes for ANOVA.
This included each main effect for the two between factors (visualization types and graph
sizes), the main effects for the within factors (17 task type questions and each of the five
categories of questions), and the two within-between interactions (visualization type x task
type and graph size x task type). There were 100 participants for each of the six between-
subject factor combinations (3 visualization types × 2 graph sizes). We randomized the
order of the 17 task type questions to minimize the possible impact of task order.

The study system was run on MTurk with multiple batches until we obtained 600 suc-
cessful completions. Use of MTurk enabled us to collect a much larger sample of par-
ticipants than would be feasible in most laboratory studies. In addition, MTurk enables
researchers to collect data from a diverse international population of English speakers,
instead of a more uniform population of Western undergraduate students (Buhrmester
et al., 2011). While we lose the benefits of controlled environments that are possible in
supervised studies, we benefited from increased statistical power and a more diverse and
thus generalizable sample. There is also some evidence. There is also some evidence to
suggest that MTurk participants may pay more attention to instructions than undergraduate
students participating in typical lab studies (Hauser & Schwarz, 2015). In this study, we
required that workers had a history of at least 50 approved Human Intelligence Tasks
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Fig. 3. Participant demographics.

(HITs). We did not use location-based filtering, but did ask about self-reported English
language proficiency in the pre-study questionnaire.

We imposed several other prerequisites on eligibility for the study: 1) participants were
required to use the Chrome browser, with a minimum window size of 1150×600; 2) they
were also required to use a keyboard and mouse for interaction input (no mobile devices
or touch-screen interaction); and 3) zoom level of the browser was set to zero.

On MTurk we advertised that participants would receive a one dollar base payment
for completing the study with an additional bonus amount up to one dollar based on
their performance. During the course of the study the current bonus payment earned was
displayed on the screen, with increments added with every correct answer. After the study,
all participants were ultimately paid the full amount of two dollars regardless of their actual
performance.

We ran the study on MTurk in multiple batches until we had collected 100 valid sessions
in each experimental condition (600 in total). A valid session was defined as follows: 1)
The participant had not previously attempted the study, 2) the participant completed the
entire study and the results were successfully submitted to our server, and 3) the participant
correctly answered the pre-study attention check questions (described below). Participants
were primarily between the ages of 25 and 40, with 281 reported males and 316 reported
females (see Figure 3).

Procedure Upon accepting the task on MTurk, participants were redirected to our study.
Participants read and agreed to a consent form and were checked that they met the study
prerequisites. At this point, each participant was randomly assigned to a visualization type
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and graph size condition and asked to complete the following four main phases of the study:
pre-study questionnaire, training, tasks, and post-study questionnaire. Here we describe
these four phases.

Pre-study Questionnaire All participants completed an initial questionnaire that col-
lected basic demographic information, as well as information about general familiarity with
graph data, data visualization, and social networking. This questionnaire also included two
attention check items to filter out participants who responded randomly instead of engaging
with the task.

Training Each participant completed a self-paced training tutorial that explained the as-
signed visualization type using a very small example network. As part of the tutorial,
participants were required to complete at least one instance of each of the interaction
capabilities available (i.e., mouse-over, annotation, highlighting node from question). The
training also included a small set of questions about the example data set, which par-
ticipants were required to answer correctly to proceed to the next phase of the study.
Participants that did not complete the training tutorial were replaced (see Table 5 for a
summary of training completion rates).

Task Questions Immediately following the training, the participant began the experimen-
tal task questions. The presentation order of each of the 17 questions was randomized for
each participant. Only the question text was initially visible on the display at the start of
each question presentation. When participants pressed a “Start” button under the question
task, the network visualization and response fields appeared, and the internal timer began
for that question. We supported auto completion for questions that require entering the
name(s) of person(s). When participants entered and confirmed their response, the screen
cleared and then displayed the correctness of the previously answered question and the
current bonus payment, as well as the text of the next question. We instructed participants
to “go as fast as you can without making mistakes.” We did not impose time limits, but we
did allow participants to skip the current question if they could not determine the answer
by clicking a “Cannot Answer” button. We added this option to minimize participant
frustration and drop-outs.

Post-study Insight Questionnaire After completing the task questions, participants were
redirected to a post-study questionnaire, where they self-rated their performance and the
difficulty of the previous task. We also asked several implicit learning questions, listed
below, designed to assess participants’ learning and retention of general aspects of the
structure of the graph they had viewed. Participants had no foreknowledge of these ques-
tions during the previous set of tasks.

• (I1): How would you describe the distribution of connections in the network? (Choose
one from four descriptions)
• (I2): How would you describe the connections between and within towns? (Choose

one from three descriptions)
• (I3): Please rank these (four) people from the network you just saw in order of how

many direct connections they had. (Drag to rank)
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• (I4): Please rank which (of the four) locations had the most people. (Drag to rank)
• (I5): Please estimate how many people were in the network you just saw. (Enter a

number)

After completing this final questionnaire, participants received a completion code to be
entered on MTurk for payment.

5 Analysis of Results

Here we describe our procedures for analyzing the data collected in our study. We first
assess performance on the primary task using completion time and accuracy. We also
examine accuracy on the post-study insight questions, summarize participants’ self-ratings
of task difficulty as well as their performance, report overall completion rates across the
visualization conditions, and briefly explore differences in interface interaction across con-
ditions.

Participants’ task times were strongly positively skewed, which is typically the case
with response time data. To meet assumptions of normality, the log transform of task time
(Cohen et al., 2003) was used in all analyses. One participant had an accuracy of 0 and
mean response time under 3 seconds, indicating that the task was not genuinely attempted;
we excluded this participant.

5.1 Primary Task Performance: Task Time and Accuracy

We first assessed whether participants’ task time and accuracy were related measures
of performance on the primary task — namely, whether a speed/accuracy tradeoff was
present. We averaged task time and accuracy for each participant and conducted an ordi-
nary least squares regression on this data, ignoring condition. The association between task
time and accuracy approached zero, t = -1.748, p = 0.081, R2 = 0.005, see Figure 4. Because
of the high-powered design with a large sample size, the regression had a marginally signif-
icant p-value. However, the minuscule effect size indicates that task time and accuracy were
close to linearly independence. Thus, they represent two distinct measures of performance
for network understanding, and this justifies separate analysis of each measure.

Task Time

We conducted the analysis of task time with a Linear Mixed Effects (LME) Model in R
using the lme4 (Bates et al., 2015) package. An LME model was used instead of ANOVA
because task types were unbalanced; the number of questions in each category varied. In
addition, when possible, modeling the “stimuli” (task type) as a random effect permits
stronger inferences about the generalizability of the results (Baayen et al., 2008).

The formula of the model was the following:

log(TaskTime)∼ Visualization×Size×TaskType+(TaskType|ParticipantID)

Visualization, size, and task type were specified as fixed effects, and task type and
participant as random effects. The described model clearly had a better relative fit than
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Fig. 4. Ordinary least squares regression: log(TaskTime) ∼ Accuracy. Each dot
represents the average accuracy and (raw) task time for a participant. Three points above
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models with fewer parameters based on multiple fit indices, which penalize for the number
of parameters, see Burnham & Anderson (2003).

The absolute fit of the model was assessed using two pseudo-R2 values (Nakagawa &
Schielzeth, 2013). For only fixed effects, the marginal pseudo-R2 was 0.128. For fixed
and random effects, the conditional pseudo-R2 was 0.394. ANOVA (with the LME model)
results for the fixed effects are shown in Table 1.

We find a significant main effect of Visualization (Nodelink vs. MatrixGroup vs. Ma-
trixDegree) on task time (see Figure 5). A Tukey post-hoc test indicated that participants
responded more quickly in the Nodelink condition than in the MatrixGroup and Ma-
trixDegree conditions (taking 23% and 19% less time, respectively). We did not find any
significant difference between the two matrix conditions.

We also found a significant main effect of graph size on task time, with participants
generating longer task times in the large graph condition than in the small condition.
Interestingly, we also find a significant interaction between visualization type and graph
size upon task time. The advantage of node-link over the two matrix visualizations is more
pronounced when graph size is small than when it is large. It seems that the increased
difficulty associated with the large graph size attenuates the speed advantage of the node-
link visualization.

The within-subjects TaskType variable also had a significant effect on task time (see
bottom panel of Figure 5). Participants were slower to answer questions from the Common
Connection and Connectivity categories than those from the other three categories. We
did find a significant interaction between Visualization and TaskType, indicating that the
relative advantage of node-link depended on the type of question participants encountered.
In the two slowest task types, Common Connection and Connectivity, node-link greatly
outperformed the two matrix visualizations. This suggests that the matrix representation is
particularly difficult when used to perform these types of tasks.

In the other three task categories, the node-link advantage was smaller or even reversed.
In the Attribute category of questions, participants in the MatrixGroup condition (where



14 D. Ren et al.

nodes were sorted by attribute) actually responded slightly more quickly than those in the
Nodelink condition, but the effect was not significant (p = 0.358).

F p-value

Visualization 15.579 < 0.001 ***

Size 85.139 < 0.001 ***

TaskType 181.372 < 0.001 ***

Vis.:Size 6.274 0.002 **

Vis.:TaskType 13.694 < 0.001 ***

Size:TaskType 41.927 < 0.001 ***

Vis.:Size:TaskType 1.440 0.175

Table 1. Task Time: Type III Satterthwaite tests. Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’
0.05 ‘.’ 0.1 ‘ ’ 1.
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Fig. 5. Least-square means and 95% confidence intervals of log(TaskTime) (plotted with
a linear scale).

For most task types, there was no evidence of a meaningful difference in task time be-
tween the two matrix visualizations. However, participants in the MatrixDegree condition
do exhibit faster task times on Adjacency questions than those in the MatrixGroup condi-
tion (p = 0.004, MatrixGroup took 19% more time on average). MatrixGroup, however,
outperformed MatrixDegree within Attribute Questions (took 19% less time, p < 0.001).

Consequently, we examined task time from another perspective using an exploratory
analysis of a new variable: path search radius. We define path search radius as the number
of hops the participant has to search to complete the task. For attribute tasks, the radius is 0
for single nodes and 1 for connections between towns; for adjacency/common connection
tasks, the radius is 1; for accessibility tasks, the radius is 1, 2, or 3, depending on the
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number of hops the task asks; and for connectivity tasks, since the number of hops is not
specified, we consider the radius as “multiple”.

We conducted the analysis with a similiar linear mixed model: log(TaskTime)∼ Visualization×
Size×PathSearchRadius+(PathSearchRadius|ParticipantID). For only fixed ef-
fects, the marginal pseudo-R2 was 0.108. For fixed and random effects, the conditional
pseudo-R2 was 0.365.

We found a main effect of PathSearchRadius (F = 144.289, p < 0.001), an interaction
effect between PathSearchRadius and Visualization (F = 8.093, p < 0.001) as well as an
interaction between PathSearchRadius and Size (F = 21.857, p< 0.001). We found that the
node-link visualization outperformed the matrix visualizations more in tasks that involve
larger path search radii (see Figure 6 top).
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Fig. 6. PathSearchRadius: Least-square means and 95% confidence intervals of
Accuracy. Analyzed with an LME model: log(TaskTime) ∼ Visualization×Size×
PathSearchRadius+(1|ParticipantID) and a similar GLMM model.

Accuracy

We employed a generalized linear mixed model (GLMM) with the logistic function to
evaluate accuracy. A GLMM is conceptually similar to an LME model, but is better suited
for non-normal dependent measures such as binary outcomes (Bolker et al., 2009). The for-
mula used was IsCorrect∼ Visualization×Size×TaskType+(1|ParticipantID).
Note that TaskType was not specified as a random effect. This model was selected because
it clearly provided the best fit based on indices of relative model fit. For accuracy, there may
not have been sufficient variability in TaskType to specify it as a random effect.

The absolute fit of the accuracy model was assessed with the same methods performed
with the task time model. For only fixed effects, the marginal pseudo-R2 was 0.256; double
the value of the task time model. For fixed and random effects, the conditional pseudo-R2
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Task Time (s)

F p-value

Visualization 16.179 < 0.001 ***
Size 56.331 < 0.001 ***

PathSearchRadius 144.289 < 0.001 ***
Vis.:Size 3.794 0.023 *

Vis.:PathSearchRadius 8.093 < 0.001 ***
Size:PathSearchRadius 21.857 < 0.001 ***

Vis.:Size:PathSearchRadius 2.486 0.011 *

Accuracy

χ2 p-value

Visualization 9.3533 0.009 **
Size 1.3890 0.239

PathSearchRadius 16.8297 0.002 **
Vis.:Size 10.5002 0.005 **

Vis.:PathSearchRadius 119.5751 < 0.001 ***
Size:PathSearchRadius 51.6708 < 0.001 ***

Vis.:Size:PathSearchRadius 40.3748 < 0.001 ***

Table 2. Analysis with path search radius.

was 0.408, which was comparable to the task time model. Again, this indicates the selected
model accounted for a large amount of variability in the data. ANOVA results for the fixed
effects are shown in Table 3.

χ2 p-value

Visualization 10.560 0.005 **

Size 34.339 < 0.001 ***

TaskType 64.881 < 0.001 ***

Vis.:Size 10.688 0.005 **

Vis.:TaskType 95.936 < 0.001 ***

Size:TaskType 25.710 < 0.001 ***

Vis.:Size:TaskType 20.055 0.010 *

Table 3. Accuracy: Type III Wald chi-square tests. Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01
‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Comparing visualization and graph size, we found many effects on participants’ accu-
racy were similar to those on their task time. For example, participants exhibited signif-
icantly higher accuracy overall in node-link than matrix conditions, with no evidence of
accuracy differences between the two matrix visualizations (see Figure 7). Additionally,
participants were significantly more accurate when working with the small graph size than
with the large graph size. There was a significant interaction between Visualization and
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Size: the accuracy advantage of node-link was more pronounced when graph size was
small than when it was large (again in correspondence with the task time results).
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Fig. 7. Accuracy: Least-square means and 95% confidence intervals of Accuracy.

Accuracy was also significantly affected by TaskType, with higher accuracy in Adja-
cency and Attribute questions than the other three categories of question (see bottom panel
of Figure 7). This implies the Adjacency and Attribute questions were much easier than
the others, however, there was a significant interaction effect between Visualization and
TaskType on participants’ accuracy. In the three task types with the lowest accuracies (Ac-
cessibility, Common Connection, and Connectivity), the difference between node-link and
matrix was much larger than it was in the other two categories. These three challenging task
types caused a substantial decrement in accuracy in both MatrixDegree and MatrixGroup
conditions, but only small decrements in Nodelink. In other words, the matrix visualization
made the difficult TaskTypes even more difficult.

We also analyzed the path search radius in terms of accuracy. Similar to task time,
we found a main effect of PathSearchRadius (p < 0.001), an interaction effect between
PathSearchRadius and Visualization (p < 0.001), as well as an interaction between Path-
SearchRadius and Size (p < 0.001). We also found that the node-link visualization tended
to outperform the matrix visualizations more in tasks that involve larger path search ra-
diuses (see Figure 6 bottom).

5.2 Insight Bias

Participants completed five questions assessing insight in the post-study questionnaire,
during which the graph visualization was no longer visible. For the first four questions
(two multiple choice and two ranking-based questions) we did not find evidence for dif-
ferences in accuracy across the three visualization types. On question I5, which required
participants to estimate the size of the previously seen graph, we found that participants
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Fig. 8. (I5): Estimating the size of the graph using linear model: EstimationError ∼
Visualization× Size. Y-axis is estimation error (estimated size minus actual size).
Error bars are 95% confidence intervals.

tended to underestimate the size of the graph in all conditions (see Figure 8). The size of
the underestimation was affected by visualization type (F = 3.969, p = 0.019), with the
most severe underestimation occurring in the MatrixDegree condition (with NodeLink -
MatrixDegree = 5.9 nodes). When the matrix is ordered by degree, its edges are more
condensed towards the top-left corner, which may generate the illusion of a smaller net-
work.

5.3 Interaction and Annotations

We collected mouse interaction data and annotations drawn for each participant on each
task (see Figure 9 for an example). In this paper, we present an overall analysis of this
data; detailed analysis and prediction are left for future work. We conducted an analysis
on average mouse moving speed — total mouse trajectory length divided by total time the
mouse was moving. We performed an analysis using the following model: log(Speed) ∼
Visualization× Size+ (1|ParticipantID). We found a significant main effect of
visualization (F = 104.823, p < 0.001) and size (F = 37.929, p < 0.001). Details are
shown in Figure 10. The mouse movement speed for node-link was faster than both matrix
conditions (p < 0.001).

5.4 Learning Over Time

We assessed changes in task time and accuracy over the duration of the experiment to
determine if participants exhibited implicit learning, and if learning rates differed among
the three visualization types. Because questions were presented in a random order for
each participant, time was represented using Question Index (the order of questions). For
task time, we used the following model: log(TaskTime) ∼ Visualization× Size×
QuestionIndex+(1|ParticipantID), treating question index as a continuous variable.
We found a significant effect of QuestionIndex (p< 0.001), suggesting an overall reduction
in task time over time in all three visualizations. However, we also found a significant
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Fig. 9. Mouse trajectories and annotations for question CO2: “Which people lie along the
shortest path between Person CO2-A and Person CO2-B?” in the large graph. Blue/red:
trajectories of correct/incorrect answers.
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Fig. 10. Trajectory analysis. Participants move their mouse faster in the node-link
conditions.

interaction between QuestionIndex and Visualization (p = 0.043). As shown in Figure 11
(top), task times decreased more rapidly in the matrix visualizations than in node-link. The
large initial difference between node-link and the two matrix conditions diminished over
the experiment; time for all three visualizations was comparable at the end.
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Fig. 11. Implicit Learning for Task Time and Accuracy over the duration of the
experiment. Error bars represent 95% confidence intervals. The lines represent the fixed
or overall effects for learning based on individual learning curves.

Using the corresponding model for accuracy, we did not find a significant effect of
QuestionIndex for the three visualization types. Accuracy performance in node-link was
superior to the two matrix conditions throughout the experiment (see Figure 11 bottom).

This result suggests that the slower task times associated with the matrix visualizations,
when compared with node-link, may be overcome with practice. However, we did not
observe a similar improvement in accuracy over the course of the study.

5.5 Self-Ratings

The post-study questionnaire included three items that required participants to provide self-
ratings about the difficulty of the primary task, participants’ performance on the primary
task, and participants’ performance on the ambient learning questions. Participants used
a five-item Likert scale to record their responses to each of these items. We ran a linear
model for both performance and difficulty (see Table 4).

Self-assigned Difficulty and Performance Visualization type affected participants’ rat-
ings of both the difficulty of the task (F = 60.056, p < 0.001)—estimated means and
standard errors are shown in Table 4—and their performance on the task (F = 50.659, p <

0.001), with participants reporting less difficulty and better performance in the node-link
visualization than either of the matrix visualizations. Although visualization also had an
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Visualization Performance Difficulty AL Performance

Node-link 3.78 (0.06) 3.45 (0.07) 2.61 (0.06)

MatrixGroup 2.97 (0.06) 2.55 (0.07) 2.40 (0.06)

MatrixDegree 3.08 (0.06) 2.59 (0.07) 2.48 (0.06)

Table 4. Means and standard errors for self-ratings. Performance (1 = Very Poor), difficulty
(1 = Very Difficult), and ambient learning performance (1 = Very Poor).

influence on participants’ ratings of their performance on the ambient learning questions
(F = 3.186, p = 0.042), the size of the effect was much smaller.

Demographics Aligned with previous psychology research, task time (i.e., processing
speed) increases as age increases (Salthouse, 1996). However, we did not find a significant
impact of age on accuracy. We also did not find indications that age or gender interacts
with the visualization and graph size.

Self-reported Familiarity As suggested by previous psychology research, individuals can
be “unskilled and unaware” because less skilled individuals may be ignorant to their own
lack of knowledge (Kruger & Dunning, 1999). Consistent with this finding, for accuracy,
we found that people who reported “very familiar” with the visualizations performed worse
than those who reported “not familiar” (p = 0.019)

5.6 Completion Rate

Because MTurk participants have the option to exit the study before completing it, we
assessed completion rates across the different conditions to determine if there were any
differences and to guide the design of future studies. In the Nodelink condition, 243 partic-
ipants started the training (not counting multiple attempts from one participant), 98.8% of
them completed training and 94.2% of them completed the tasks. However, in the matrix
conditions, only 84.7% and 78.4% of the 589 participants who started training completed
the training and tasks, respectively. The difference in completion rate between the matrix
degree ordering and group ordering is less than 2%. Although the differences in attrition
for training and completion were modest to slight, its selectivity may have had effects
on the results. However, if anything, the lower self-selectivity in the matrix conditions
should have inflated performance. Details of completion rate are shown in Table 5. The
lower task completion rate on the matrix conditions aligns with our earlier findings that
participants had, on average, more difficulty with the task questions in the two matrix
visualizations than in the node-link visualization. The lower training completion rate in
the matrix conditions additionally indicates that participants had more difficulty with the
training material when it referenced a matrix view than when it referenced a node-link
view.
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Node-link MatrixGroup MatrixDegree

20 50 20 50 20 50

S. Training 243 299 290

C. Training 240 (99%) 251 (84%) 248 (86%)

S. Tasks 110 130 115 136 126 122

C. Tasks 107 122 112 120 116 114

C. Tasks % 97% 94% 97% 88% 92% 93%

Summary 229 (94%) 232 (78%) 230 (79%)

Table 5. Completion rate. Total number of participants in each condition who started
training, completed training, started tasks, completed tasks, and summary % (completed
tasks vs. started training).

6 Discussion

In this section, we discuss the results of our study and compare them with previous stud-
ies (Ghoniem et al., 2004, 2005; Henry & Fekete, 2007).

Our study suggests that node-link is good in terms of both time and accuracy for most
of the tasks we have tested. The only exceptions, where the matrix is better in terms of
time, are those specific to the sorting of the matrix: 1) When sorted by degree, the matrix
is better at finding the most connected node. In task AD3 (i.e., “mostConnected”), for the
V = 50 graph, MatrixDegree was significantly faster than both node-link and MatrixGroup
(p < 0.001 for both), and more accurate (p < 0.001,0.002, respectively), but we did not
find significant differences for the V = 20 graph. Node-link is more affected by the graph
size in this task, which aligns with Henry & Fekete (2007)’s finding on this task. 2)
When sorted by attribute (i.e., MatrixGroup), matrix is better for attribute-based tasks.
In AT1 (“countTown”), node-link performed worse in accuracy than the MatrixGroup and
MatrixDegree (p= 0.047,0.003, respectively) in for V = 20, but we did not find significant
differences for V = 50; however, in V = 50, MatrixGroup performed faster than node-
link (p < 0.001). Other than these specific tasks, we did not find the matrix conditions
superior to the node-link. The different results can be explained by the following reason:
We tested the visualizations on social graphs that typically arise from analytical tasks,
while Ghoniem et al. conducted their experiment on random graphs. The results on random
graphs do not necessarily generalize to the type of graphs we experimented with. This is
because social graphs typically have an unbalanced distribution of degrees (few nodes have
more connections, and most nodes have few connections), which can benefit the node-link
visualization.

While we did not experiment with “nodeCount” and “edgeCount” directly from the
study, we asked the participants to estimate the node count based on their impression
(i.e., in the post-study questionnaire without the visualization). We found that they tend
to underestimate the node count in all conditions, and more severely in the matrix with
degree sorting. This differs from Ghoniem et al.’s results, because in random graphs with
name sorting, the matrix looks like a square (see Figure 1B in Ghoniem et al. (2005), as
an example). In contrast, our matrix edges are more distributed towards the top. Therefore,
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the sorting of the matrix should be chosen carefully to avoid bias when the impression of
graph size is important.

We found a significantly higher mouse-movement speed with the node-link visualiza-
tion. Participants often followed edges in the node-link representation and annotated nodes,
whereas, for matrix, participants followed rows or columns and annotated node labels,
matrix cells (edges) and entire rows/columns (nodes). The higher speed could just be an
intrinsic result of these behavioral patterns, but could also indicate higher confidence in
navigation for the node-link case. This is left for future work to tease out.

Previous research has indicated that matrix visualizations have a higher learning curve.
In our analysis of performance over time, although we found that people become faster
with the matrix visualizations, we found no indication that they become more accurate. As
one might expect, the higher learning curve of the matrix visualization was reflected in our
insight measurements as an estimation error on the size of the graph. This effect is also
reflected as slightly decreased user confidence (Table 4).

7 Limitations

One potential concern with our methodology involves the higher dropout rates observed in
the matrix conditions as compared to the node-link condition. This introduces a possible
confound, in which our sample of participants that did not drop out in the two matrix
visualizations may have been, on average, more persistent, intelligent, and/or motivated
than the sample of participants in the node-link visualization. Additionally, we collected
our data on MTurk in multiple discrete batches, with random condition assignment. Over
the course of data collection, we adjusted the participant assignment probabilities based on
completion rates from previous batches. As a result, participants in the matrix conditions
were disproportionately gathered in later batches. To avoid this phenomenon in future
studies, we will use pilot studies to determine estimated completion rates across conditions,
and then use a fixed assignment probability in later data collection.

A second limitation of the study concerns the relatively small scale and static nature
of the graphs that were evaluated, compared against Ghoniem et al. (2005) and Henry
& Fekete (2007), for example. Our motivation for this design was multifaceted. First,
our aim was to use examples that were simulated, but were representative of real world
intelligence analysis scenarios, and were verified by expert analysts. Second, due to the
effort required to gather human interaction data at scale, we opted for a simpler data
set to allow for mining of meaningful interaction patterns and work-flows in the data
(see Figure 9, for example). We are conducting a follow-up analysis to apply machine
learning techniques over the corpus of interaction patterns and resulting performance data,
to gain a better understanding of efficient (and inefficient) tasks in the different graph
representations. We believe that the results of the analysis will contribute to training of
information analysts who use these views in a broad range of domains and applications.
However, to further generalize the results in this paper, we are also planning a follow-
up study using systematically varied graph size and density, with randomized layout and
connectivity.



24 D. Ren et al.

8 Conclusion

In this paper, we conducted a large-scale study (N = 600) to compare the node-link, matrix 
(ordered by degree), and matrix (ordered by group) representations. In these approximately 
one-hour-long studies, participants used one of the three graph representations to answer 
a broad range of questions covering a variety of graph tasks. Objective and subjective 
performance metrics were recorded for each, and a detailed statistical analysis was per-
formed, followed by a discussion of the key results. To summarize, results show that 
node-link representations produced a better implicit understanding of the data, with higher 
response accuracy and faster completion times than the matrix representations (23% and 
19% less time than MatrixDegree and MatrixGroup, respectively). This result is consistent 
with prior work (Henry & Fekete, 2007; Ghoniem et al., 2005). For the larger social 
network graph, the performance difference between matrix and node-link representations 
was reduced, with node-link still performing best overall. Participants had better overall 
performance in terms of speed and accuracy on the smaller graph. A statistical analysis did 
not reveal a significant relation between time spent on analysis and accuracy of responses. 
Our large sample size also allowed for comparison of learning rates across the duration of 
the experiment. Learning results indicate a large initial difference in task time between 
the node-link and matrix visualizations, with matrix performance steadily approaching 
that of the node-link visualization over the course of the experiment. We also collected 
information on participants’ mouse movements and annotations, and found that the node-
link representation led to significantly higher mouse movement speeds during question 
answering.

To conclude, our study results show that node-link representations are more efficient 
analysis tools than matrix representations for the majority of smaller-scale social network 
graph analysis tasks, with the exception of those that require explicit sorting of nodes.
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