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Abstract

We study rates of convergence in central limit theorems for partial sums of polynomial functionals of
general stationary and asymptotically stationary Gaussian sequences, using tools from analysis on Wiener
space. In the quadratic case, thanks to newly developed optimal tools, we derive sharp results, i.e. upper
and lower bounds of the same order, where the convergence rates are given explicitly in the Wasserstein
distance via an analysis of the functionals’ absolute third moments. These results are tailored to the question
of parameter estimation, which introduces a need to control variance convergence rates. We apply our result
to study drift parameter estimation problems for some stochastic differential equations driven by fractional
Brownian motion with fixed-time-step observations.
c⃝ 2018 Elsevier B.V. All rights reserved.
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1. Introduction

While statistical inference for Itô-type diffusions has a long history, statistical estimation for
equations driven by fractional Brownian motion (fBm) is much more recent, partly because the
development of stochastic calculus with respect to fBm, which provides tools to study such
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models, is itself a recent and ongoing endeavor, and partly because these tools can themselves
be unwieldy in comparison with the convenience and power of martingale methods and the
Markov property which accompany Itô models. Our purpose in this article is to show how the
analysis on Wiener space, particularly via tools recently developed to study the convergence-in-
law properties in Wiener chaos, can be brought to bear on parameter estimation questions for
fBm-driven models, and more generally for arbitrary stationary Gaussian models.

There are several approaches to estimating drift parameters in fBm-driven models, which
have been developed over the course of the past 15 years. The approaches we mention below are
related to the methods in this article.

• The MLE approach in [18,30]. In general the techniques used to construct maximum
likelihood estimators (MLE) for drift parameters are based on Girsanov transforms for
fBm and depend on the properties of the deterministic fractional operators (determined by
the Hurst parameter) related to the fBm. Typically, the MLE is not easily computable. In
particular, it relies on being able to compute stochastic integrals with respect to fBm. This
is difficult or hopeless for most models since approximating pathwise integrals w.r.t. fBm,
when they exist, is challenging, while Skorohod-type integrals cannot be computed based
on the data except in special cases. The work in [30] is the only one in which a strongly
consistent discretization of the MLE was based on long-horizon asymptotics without also
requiring an in-fill (small time step) condition, though it did not establish any asymptotic
distribution.

• A least-squares (LS) approach was proposed in [15]. The study of the asymptotic
properties of the estimator is based on certain criteria formulated in terms of the Malliavin
calculus (see [23]). It should be noted that in [15], the full LS estimator relies on an
unobservable Skorohod integral, and the authors proposed a modified version of this
estimator which can be computed based on in-fill asymptotics; however, this modified
estimator bears no immediate relation to an LS one (see [14] for examples of what
constitutes a discretization of an LS estimator for fBm models, and for a comparison with
MLE methods, which coincide with LS methods if and only if H = 1/2). In the ergodic
case, the statistical inference for several fractional Ornstein–Uhlenbeck (fOU) models via
LS methods was recently developed in the papers [15,1,2,14,16,7,21,8]. The case of non-
ergodic fOU process of the first kind and of the second kind can be found in [3,12] and [13]
respectively.

We bring new techniques to statistical inference for stochastic differential equations (SDEs)
related to stationary Gaussian processes. Some of these ideas can be summarized as follows:

• Since the theory of inference for these fBm-driven SDEs is still near its inception, and most
authors are concerned with linear problems, whose solutions are Gaussian, this Gaussian
property should be exploited to its fullest extent, given the best tools currently available.

– Therefore we choose to consider polynomial variations of these processes, which
then necessarily live in a finite sum of Wiener chaoses, whose properties are now
well understood thanks to new Malliavin-calculus advances which were initiated by
Nourdin and Peccati in 2008; in particular, we rely a general observation and their
so-called optimal 4th moment theorem, in [24].

– As a consequence, we are able to compute upper bounds in the total variation (TV)
norm for the rate of normal convergence of our estimator. In particular, for the
quadratic case, we prove a Berry–Esséen theorem (speed on the order of 1/

√
n) for
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this TV norm which we show is sharp in some cases by finding a lower bound with
the same speed. No authors as far as we know have ever provided such quantitative
estimates of the speed of asymptotic normality for any drift estimators for any fBm-
driven model, let alone shown that they are sharp.

• Rather than starting from the continuous-time setting of SDEs, and then attempt to
discretize resulting LS estimators, as was done in many of the aforementioned works
including our own [14], we work from discretely observed data from the continuous-time
SDEs, and design estimators based on such Gaussian sequences. In fact, we show that one
can develop estimators valid for any Gaussian sequence, with suitable conditions on the
sequence’s auto-correlation function, and then apply them to fBm-driven SDEs of interest.
In this way, we are able to provide estimators for many other models, while the models
studied in [16,1,2,14] become particular cases in our approach.

• Since our method relies on conditions which need only be checked intrinsically on the
auto-correlation function, it can apply equally well to in-fill situations and increasing-
horizon situations.

– It turns out that, as an artefact of trying to discretize estimators based on continuous
paths, prior works were never able to avoid an in-fill assumption on the data (and
sometimes even required both in-fill and increasing-horizon assumptions). In this
paper, we illustrate our methods by showing that in-fill assumptions are never needed
for the examples we cover.

– Essentially, as explained in more detail further below, if a Gaussian stochastic process
has a memory correlation length which is bounded above by that of a fBm with Hurst
parameter H < 5/8, then our polynomial variations estimator based on discrete data
(fixed time step) is asymptotically normal as the number of observations n increases,
with a TV speed as good as 1/

√
n, as mentioned above. In the case of quadratic

variations, we can say more: the TV speed remains 1/
√

n up to H < 2/3, and
then slows down as H ranges from 2/3 to 3/4 (in fact, the power of n in this speed
interpolates linearly from −1/2 to 0: for H = 3/4, one obtains a logarithmic speed),
and these rates are optimal. In the general case, the rates are not known to be optimal,
but our results do also imply power rates for H between 5/8 and 3/4.

• Finally, we provide a systematic study of how to go from stationary observations, to ob-
servations coming from a Gaussian process which may not be stationary, by implementing
a fully quantitative strategy to control the contribution of the non-stationarity to the TV
convergence speeds. In the examples we cover, which are those of recent interest in the
literature, the non-stationarity term vanishes exponentially fast, which is more than enough
for our generic condition to hold, but slower power convergences would yield the same
results, for summable powers.

Our article is structured as follows. Section 2 provides some basic elements of analysis on
Wiener space which are helpful for some of the arguments we use. Section 3 provides the
general theory of polynomial variation for general Gaussian sequences, covering the stationary
case (Section 3.4, with examples in Section 3.5), non-stationary cases (Section 4), which include
optimality in the quadratic case even under non-stationarity (Section 4.2) and a strategy of how
to access a specific parameter other than the polynomial’s variance (Section 4.3). Finally, three
sets of examples based on fractional Ornstein–Uhlenbeck constructions are given in Sections 5
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and 6. Some of the technical results used in various proofs, including the proof of the basic
Berry–Esséen theorem in the stationary case, are in the Appendix.

The authors thank I. Nourdin for helpful discussions which resulted in the material herein at
the ends of Sections 4.1 and 4.2, and in Corollary 17.

2. Elements of analysis on Wiener space

Here we summarize a few essential facts from the analysis on Wiener space and the Malliavin
calculus. Though these facts and notation are essential underpinnings of the tools and results
of this paper, most of our results and arguments can be understood without knowledge of the
elements in this section. The interested reader can find more details in [27, Chapter 1] and
[23, Chapter 2].

Let (Ω ,F , P) be a standard Wiener space, its standard Wiener process W , where for a
deterministic function h ∈ L2 (R+) =: H, the Wiener integral

∫
R+

h (s) dW (s) is also denoted
by W (h). The inner product

∫
R+

f (s) g (s) ds will be denoted by ⟨ f, g⟩H. For every q ⩾ 1,
let Hq be the qth Wiener chaos of W , that is, the closed linear subspace of L2(Ω ) generated by
the random variables {Hq (W (h)), h ∈ H, ∥h∥H = 1} where Hq is the qth Hermite polynomial.
The mapping Iq (h⊗q ) := q!Hq (W (h)) provides a linear isometry between the symmetric tensor
product H⊙q (equipped with the modified norm ∥.∥H⊙q =

1
√

q!
∥.∥H⊗q ) and Hq . It also turns out

that Iq (h⊗q ) is the multiple Wiener integral of h⊗q w.r.t. W . For every f, g ∈ H⊙q the following
product formula holds

E
(
Iq ( f )Iq (g)

)
= q!⟨ f, g⟩H⊗q .

For h ∈ H⊗q , the multiple Wiener integrals Iq (h), which exhaust the set Hq , satisfy a
hypercontractivity property (equivalence in Hq of all L p norms for all p ⩾ 2), which implies
that for any F ∈ ⊕

q
l=1Hl , we have(

E
[
|F |

p])1/p
⩽ cp,q

(
E
[
|F |

2])1/2
for any p ⩾ 2. (1)

Though we will not insist on their use in the main body of the paper, leaving associated
technicalities to the proof of one of our main theorems in the Appendix, the Malliavin derivative
operator D on L2 (Ω) plays a fundamental role in evaluating distances between random variables
therein. For any function Φ ∈ C1 (R) with bounded derivative, and any h ∈ H, we define the
Malliavin derivative of the random variable X := Φ (W (h)) to be consistent with the following
chain rule:

DX : X ↦→ Dr X := Φ ′ (W (h)) h (r) ∈ L2 (Ω × R+) .

A similar chain rule holds for multivariate Φ. One then extends D to the so-called Gross–Sobolev
subset D1,2 & L2 (Ω) by closing D inside L2 (Ω) under the norm defined by

∥X∥
2
1,2 = E

[
X2]

+ E
[∫

R+

|Dr X |
2dr

]
.

Now recall that, if X, Y are two real-valued random variables, then the total variation distance
between the law of X and the law of Y is given by

dT V (X, Y ) = sup
A∈B(R)

|P [X ∈ A] − P [Y ∈ A]| .
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If X, Y are two real-valued integrable random variables, then the Wasserstein distance between
the law of X and the law of Y is given by

dW (X, Y ) = sup
f ∈Lip(1)

|E f (X ) − E f (Y )|

where Lip(1) indicates the collection of all Lipschitz functions with Lipschitz constant ⩽ 1. Let
N denote the standard normal law. All Wiener chaos random variable are in the domain D1,2

of D, and are orthogonal in L2 (Ω). The so-called Wiener chaos expansion is the fact that any
X ∈ D1,2 can be written as X = E X +

∑
∞

q=1 Xq where Xq ∈ Hq . We define a linear operator L
which is diagonalizable under the Hq ’s by saying that Hq is the eigenspace of L with eigenvalue
−q, i.e. for any X ∈ Hq , L X = −q X . The kernel of L is the constants. The operator −L−1 is
the negative pseudo-inverse of L , so that for any X ∈ Hq , −L−1 X = q−1 X . Since the variables
we will be dealing with in this article are finite sums of elements of Hq , the operator −L−1 is
easy to manipulate thereon.

Two key estimates linking total variation distance and the Malliavin calculus are the following.

• Let X ∈ D1,2 with E [X ] = 0. Then (see [24, Proposition 2.4]),

dT V (X, N ) ⩽ 2E
⏐⏐1 −

⟨
DX, −DL−1 X

⟩
H

⏐⏐ . (2)

• Let (Xn)n⩾1 be a sequence of random variables in a fixed Wiener chaos of order q ⩾ 2
such that V ar [Xn] = 1 , and assume Xn converges to a normal law in distribution,
which is equivalent to limn E

[
X4

n

]
= 3 (this equivalence, proved originally in [28], is

known as the fourth moment theorem). Then we have the following optimal estimate for
dT V (Xn, N ), known as the optimal 4th moment theorem, proved in [24]: there exist two
constants c, C > 0 depending only on the sequence (Xn)n⩾1 but not on n, such that

c max
{

E
[
X4

n

]
− 3,

⏐⏐E [X3
n

]⏐⏐} ⩽ dT V (Xn, N ) ⩽ C max
{

E
[
X4

n

]
− 3,

⏐⏐E [X3
n

]⏐⏐} .

We recall that the fourth cumulant of a standardized random variable X is κ4 (X) :=

E
[
X4
]
− 3.

3. Parameter estimation for stationary Gaussian processes

3.1. Berry–Esséen bound of finite sum of multiple integrals

We work with a centered stationary Gaussian process (sequence) Z = (Zk)k∈Z with
covariance

rZ (k) := E(Z0 Zk) for every k ∈ Z such that rZ (0) > 0.

For any centered Gaussian sequence Z indexed by Z, stationary or not, it is always possible to
represent the entirely family of Zn’s jointly as Wiener integrals using a corresponding family of
functions εn ∈ H as

Zn/
√

rZ (0) = I1(εn)

in the notation of Section 2. In all that follows, we will use this representation.
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Theorem 1. Let F =
∑q

k=2 Ik(gk) with q ⩾ 2 is a positive integer and gk ∈ H⊙k , k = 2, . . . , q.
Denote N ∼ N (0, 1). Then there exists a constant Cq depending only on q such that

dT V

⎛⎝ F√
E
[
F2
] , N

⎞⎠ ⩽
Cq

E
[
F2
] max

2⩽k⩽q
∥gk∥H⊗k max

1⩽s⩽k
2⩽k⩽q

∥gk ⊗
s

gk∥
1
2
H⊗2k−2s . (3)

In addition, if gk =
dk√

n

∑n−1
i=0 ε⊗k

i where εi are given above and dk are constants, and σ > 0,
then

dT V

(
F
σ

, N
)
⩽

Cq

σ 2

√
V ar (I2(g2))

√
κ4(I2(g2)) + 2E

⏐⏐⏐⏐1 −
E[F2]

σ 2

⏐⏐⏐⏐ , (4)

where Cq is a constant which depends only on q and dk, k = 2, . . . , q. Moreover,

κ4(I2(g2)) = O

⎛⎜⎝
(∑

| j |<n |rZ ( j)|4/3
)3

n

⎞⎟⎠ . (5)

Proof. See Appendix. ■

3.2. Notation and basic question

Fix a polynomial function fq of degree q where q ⩾ 2 is an even integer such that
fq (x) = f̃q (x2), where f̃q is a polynomial. Since polynomials of x2 can be expressed in the
sub-basis of even-rank Hermite polynomials, fq possesses the following decomposition

fq (x) :=

q/2∑
k=0

d fq ,2k H2k

(
x

√
rZ (0)

)
(6)

where for every k = 1, . . . ,
q
2 , d fq ,2k ∈ R with d fq ,q ̸= 0. For simplicity, we will assume that

fq is normalized so that the coefficient of highest order d fq ,q = r
q
2
Z (0). From Section 2, we can

write for every i ⩾ 0

fq (Z i ) =

q/2∑
k=0

d fq ,2k H2k

(
Z i

√
rZ (0)

)
=

q/2∑
k=0

d fq ,2k I2k
(
ε⊗2k

i

)
(7)

with Z i /
√

rZ (0) = I1(εi ). Define the following partial sum

Q fq ,n(Z ) :=
1
n

n−1∑
i=0

fq (Z i ) and λ fq (Z ) := E
[

fq (Z0)
]
.

The polynomial variation Q fq ,n(Z ), as an empirical mean, should converge to λ fq (Z ). Our aim
in this section is to estimate the parameter λ fq (Z ) by computing the speed of convergence of
Q fq ,n(Z ) to it. The “quadratic” case q = 2 is of special importance. In this case, the quadratic
function f2 will typically be taken as

f2 (x) = x2
= rZ (0) + rZ (0) H2

(
x

√
rZ (0)

)
, (8)
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and may also be taken as H2 (x) = x2
−1 when convenient. We will see in Theorem 1 that certain

functionals related to the quadratic case control the estimator’s asymptotics no matter what q is.
We will also provide an optimal treatment in the case q = 2 itself in Section 4.2.

3.3. Consistency

Theorem 2. Suppose that there exist ε > 0 and C > 0 such that for every n ⩾ 0
n−1∑
k=0

rZ ( j)2 ⩽ Cn1−ε. (9)

Then Q fq ,n(Z ) is a consistent estimator of λ fq (Z ), i.e. almost surely, limn→∞ Q fq ,n(Z ) =

λ fq (Z ).

Proof. It follows from (7) that

E
[(

Q fq ,n(Z ) − λ fq (Z )
)2
]

= E

⎡⎢⎣
⎛⎝1

n

n−1∑
j=0

fq (Z j ) − E fq (Z j )

⎞⎠2
⎤⎥⎦

=

q/2∑
k=1

d2
fq ,2k

(2k)!
n2

n−1∑
i, j=0

(
E(Z i Z j )

rZ (0)

)2k

=

q/2∑
k=1

d2
fq ,2k

(2k)!
n2

n−1∑
i, j=0

(
rZ (i − j)

rZ (0)

)2k

=

q/2∑
k=1

d2
fq ,2k

(2k)!
n

×

⎛⎝1 +
2
n

n−1∑
j=1

(n − j)
(

rZ ( j)
rZ (0)

)2k
⎞⎠

=

q/2∑
k=1

d2
fq ,2k

(2k)!
n

⎛⎝1 + 2
n−1∑
j=1

(
rZ ( j)
rZ (0)

)2k

−
2
n

n−1∑
j=1

j
(

rZ ( j)
rZ (0)

)2k
⎞⎠ . (10)

Now, using (10), (9), (1) and Lemma 33 in the Appendix, the claim follows. ■

Remark 3. If Z is ergodic, the convergence in Theorem 2 is immediate.

3.4. Asymptotic distribution

Consider the following renormalized partial sum

U fq ,n(Z ) =
√

n
(
Q fq ,n(Z ) − λ fq (Z )

)
. (11)

Then, by (7) we can write

U fq ,n(Z ) =

q/2∑
k=1

I2k(g2k,n) (12)
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where

g2k,n := d fq ,2k
1

√
n

n−1∑
i=0

ε⊗2k
i .

The following condition will play an important role in our analysis:

u f2 (Z) := 2
∑
j∈Z

rZ ( j)2 < ∞. (13)

Under this condition, we can pursue the analysis further: since rZ ( j)2 converges to 0 as | j | → ∞,
hence for any k, rZ ( j)2k is dominated by rZ ( j)2 for large | j |, and the last term in (10) can be
estimated as follows. We first fix an ε ∈ (0, 1) and write for any n ⩾ 2

1
n

n−1∑
j=1

j ·

(
rZ ( j)
rZ (0)

)2k

=
1
n

[εn]−1∑
j=1

j ·

(
rZ ( j)
rZ (0)

)2k

+
1
n

n−1∑
j=[εn]

j ·

(
rZ ( j)
rZ (0)

)2k

⩽
εn
n

[εn]−1∑
j=1

(
rZ ( j)
rZ (0)

)2k

+
n
n

n∑
j=[εn]

(
rZ ( j)
rZ (0)

)2k

⩽
ε

2rZ (0)2 u f2 (Z) +

∞∑
j=[εn]

(
rZ ( j)
rZ (0)

)2

.

By Condition (13), with ε fixed, one can choose n so large that
∑

∞

j=[εn]rZ ( j)2 < ε. Thus the last
term in (10) can be made arbitrarily small. This immediately implies the following useful result.

Lemma 4. Under Condition (13), for every even q ⩾ 2,

u fq (Z ) := lim
n→∞

E
[
U 2

fq ,n(Z )
]

=

q/2∑
k=1

d2
fq ,2k(2k)!

∑
j∈Z

(
rZ ( j)
rZ (0)

)2k

< ∞. (14)

The following notation will be convenient.

F fq ,n(Z ) :=
U fq ,n(Z )√

E
[
U 2

fq ,n(Z )
] . (15)

In the next corollary, we look at two examples, one under Condition (13) and one when it fails

but normality still holds. In the former case, we replace the normalization term
√

E
[
U 2

fq ,n(Z )
]

which is an unobservable sequence because it depends on the parameter-dependent sequence rZ ,
by the constant

√
u fq (Z ). While this constant also depends on the parameter λ fq (Z ), it allows one

to measure the total variation distance of the data-based estimator U fq ,n(Z ) itself to the fixed law
N
(
0, u fq (Z )

)
, consistent with common methodological practice. This change of normalization

results in an additional term to reflect the speed of convergence of
√

E
[
U 2

fq ,n(Z )
]

to
√

u fq (Z ).

Corollary 5. (1) If rZ (k) ∼ ck−
1
2 ,then

E
[
U 2

fq ,n(Z )
]

∼ 4c2d2
q,2(Z ) log(n). (16)

and the upper bound on dT V
(
F fq ,n(Z ), N

)
from Theorem 1 holds with

κ4(F f2,n(Z )) = O
(
log−2(n)

)
. (17)
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(2) Under Condition (13), i.e. if
∑

j∈Z|rZ ( j)|2 < ∞, we have

dT V
(
U fq ,n(Z ),N

(
0, u fq (Z )

))
⩽ Cq (Z ) 4

√
κ4(U f2,n(Z ))⏐⏐u fq (Z )

⏐⏐2 + 2

⏐⏐⏐⏐⏐⏐1 −

E
[
U 2

fq ,n(Z )
]

u fq (Z )

⏐⏐⏐⏐⏐⏐ . (18)

(3) Under the additional assumption that rZ is asymptotically of constant sign and monotone,
the expressions in (18) converge to 0.

Proof. The estimate (16) is a direct consequence of (10). Also, by (16) and (5) we obtain (17).
The result of point (1) is established.

Next, we prove the estimate (18). We first note that dT V
(
U fq ,n(Z ),

√
u fq (Z )N

)
is identical

to dT V
(
U fq ,n(Z )/

√
u fq (Z ), N

)
. By the expression in (10), the ratio E

[
U 2

fq ,n(Z )
]
/u fq (Z ) is in

(0, 1). Therefore the estimate (18) is an elementary consequence of (4).
To prove the corollary’s final claim in point (3), we first note that by Lemma 4, the term⏐⏐⏐1 − E

[
U 2

fq ,n(Z )
]
/u fq (Z )

⏐⏐⏐ tends to 0. Thus we only need to show that under Condition (13) and

the additional monotonicity assumption on rZ , κ4(U f2,n(Z )) also tends to 0. By the conclusion
of Theorem 1 and the finiteness of u f2 (Z), we have

κ4(U f2,n(Z )) = O

⎛⎜⎝n−1

⎛⎝∑
| j |<n

|rZ ( j)|4/3

⎞⎠3
⎞⎟⎠ =: K4 (n) . (19)

Next, we borrow from [22, Proposition 1] that, under the additional assumptions on rZ in the last
statement of the theorem, and using the finiteness of u f2 (Z),

K4 (n) = O

⎛⎜⎝n−1/3

⎛⎜⎝n−1/2

⎛⎝∑
| j |<n

|rZ ( j)|3/2

⎞⎠2
⎞⎟⎠

4/3⎞⎟⎠ .

From Jensen’s inequality and Lemma 4 we get

n−1/2

⎛⎝∑
| j |<n

|rZ ( j)|3/2

⎞⎠2

⩽ 4n3/2

⎛⎝ 1
2n

∑
| j |<n

|rZ ( j)|2

⎞⎠3/2

⩽
√

2u f2 (Z) < ∞.

Thus by (19), κ4(U f2,n(Z )) = O
(
n−1/3

)
, which finishes the proof of the corollary. ■

Corollary 6. Under the notation of Corollary 5, assume that for some H < 5/8,

|rZ (k)| ⩽ ck2H−2.

Then Condition (13) holds and for some constant C depending only on q and rZ (0) ,

dT V
(
U fq ,n(Z ),N

(
0, u fq (Z )

))
⩽ Cn−1/4.

Remark 7. In most cases where Condition (13) fails, the series’ divergence occurs so fast that
U fq ,n(Z )’s asymptotics are not normal. Under certain special circumstances, namely a slowly
modulated (2H − 2)-self-similarity assumption on rZ , classical tools such as in [11] can be used
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to show that U fq ,n(Z ) tends to a so-called (scaled) Rosenblatt law G(H)
∞ . A now classical result

of Davydov and Martinova [10] was revived in recent years in [6,22] to estimate total-variation
distances to G(H)

∞ . This can be achieved in our context as well, though for the sake of conciseness,
we omit this study, only stating two basic results here, whose proofs would proceed as in [22]
and [6] respectively.

1. Assume that for some H ∈ (3/4, 1) and some β > 0, asymptotically

(1 + o (1)) log−β (|k|) |k|
2H−2 ⩽ |rZ (k)| /rZ (0) ⩽ (1 + o (1)) logβ (|k|) |k|

2H−2,

then for some constant C depending on r and H ,

dT V

⎛⎜⎝ U f2,n(Z )
2
∑

|k|>n rZ (k)2 ,
1
2

√ 4H − 3

2Γ (2 − 2H ) cos
(

(2−2H )π
2

)G(H)
∞

⎞⎟⎠ ⩽
C√
log n

.

2. If β = 0, then f2 can be replaced above by fq for any even q, and 3/4 can be replaced by
1 − 1/(2q), and

√
log n by nH−1+1/(2q).

The law of G(H)
∞ can be represented under a standard white noise measure W on C as

G(H)
∞

=

∫ ∫
R2

ei(x+y) ei(x+y)
− 1

i(x + y)
|xy|

1/2−H W (dx)W (dy).

3.5. Examples

3.5.1. Hermite variation
Let q ⩾ 2 be an even integer. Then the qth Hermite polynomial Hq can be written as in (6).

Indeed, it follows from the fact that for q even, Hq (x) =
∑ q

2
k=0

q!(−1)k

k!(q−2k)!2k xq−2k . Then we can
write,

Hq (x) = E Hq (Z0) +

q/2∑
k=1

dHq ,2k (Z) H2k

(
x

√
rZ (0)

)
where for any k ∈ {1, . . . ,

q
2 − 1}

dHq ,q−2k(Z ) = (−1)k
(

r
q
2
Z (0) − r

q
2 −1
Z (0)

)
aq

q−2aq−2
q−4 . . . aq−2k+2

q−2k

+ (−1)k−1
(

r
q
2
Z (0) − r

q
2 −2
Z (0)

)
aq

q−4aq−4
q−6 . . . aq−2k+2

q−2k

+ . . .

+ (−1)1
(

r
q
2
Z (0) − r

q
2 −k
Z (0)

)
aq

q−2k

and dHq ,q (Z ) = r
q
2
Z (0), where for every p even, the constants

a p
p−2k =

p!(−1)k

k!(p − 2k)!2k
k = 0, . . . , p/2

are the ones which satisfy

Hp(x) =

p/2∑
k=0

a p
p−2k x p−2k .
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Consequently, the Hermite variation

Q Hq ,n(Z ) :=
1
n

n−1∑
k=0

Hq (Zk)

satisfies the results given in Sections 3.3 and 3.4. Moreover the parameter λHq (Z ) has the
following explicit expression

λHq (Z ) = E
[
Hq (Z0)

]
=

q
2∑

k=0

q!(−1)k

k!(q − 2k)!2k
E
(

Zq−2k
0

)

=
q!

2q/2

q
2∑

k=0

(−1)k

k!( q
2 − k)!

[
E
(
Z2

0

)] q
2 −k

=
q!

( q
2 )!2q/2

(
E
(
Z2

0

)
− 1

)q/2
. (20)

Thus the results of the previous sections provide explicit means for computing total variation
speeds of convergence in a generalized method of moments based on Hermite polynomials for
estimating the variance parameter E

(
Z2

0

)
= rZ (0). Because of the simple form of (20) as a

function of rZ (0), for any sequence satisfying Condition (13), one can immediately test the
hypothesis of whether rZ (0) equals a specific value σ 2, using Corollary 5 to account precisely
for the error term due to non-infinite sample size. Since the corollary provides the error in total
variation distance, this error is uniform over σ 2 by definition.

3.5.2. Power variation
Let q ⩾ 2 be an even integer. Let cq,2k =

1
(2k)!

∫
∞

−∞

e−x2/2
√

2π
xq H2k(x) dx be the coefficients of

the monomial φq (x) := xq expanded in the basis of Hermite polynomials :

xq
=

q/2∑
k=0

cq,2k H2k(x).

It is known (see [29, Formula 18.18.20]) that

cq,2k =
q!

2
q
2 −k ( q

2 − k
)
! (2k) !

.

Thus, by relying directly on the results we just saw in the case of Hermite polynomials, the
polynomial function φq can be written as in (6). As a consequence, the power variation

Qφq ,n(Z ) =
1
n

n−1∑
i=0

(Z i )q

satisfies the results given in Sections 3.3 and 3.4. In this case, the parameter λφq (Z ) has the
following explicit expression

λφq (Z ) = E
[
(Z0)q]

=
q!

( q
2 )!2q/2

[
E
(
Z2

0

)]q/2
. (21)

4. Parameter estimation for non-stationary Gaussian processes

In practice, it is often the case that the data comes from a sequence which has visibly not yet
reached a stationary regime. This is a typical situation for the solution of a stochastic system
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which initiates from a point mass rather than the system’s stationary distribution; we will see
examples of this in Sections 5 and 6. The rate at which stationarity is reached heavily affects
other rates of convergence, including the total variation speeds in the central limit theorem. To
illustrate this phenomenon more broadly than in the two aforementioned sections, in this section
we consider a general class of models which can be written as the sum of a stationary model and
a non-stationary nuisance term which vanishes asymptotically.

4.1. General case

Let q ⩾ 2 be an even integer. For a polynomial fq of the form (6), and a random sequence X ,
recall the polynomial variation notation introduced in Section 3.2:

Q fq ,n(X ) :=
1
n

n−1∑
i=0

fq (X i ).

Let (Zk)k∈Z be a centered stationary Gaussian process and let (Yk)k∈Z be a process such that the
following condition holds: there exists a constant γ > 0 such that for every p ⩾ 1 and for all
n ∈ N,Q fq ,n(Z + Y ) − Q fq ,n(Z )


L p(Ω) = O

(
n−γ

)
. (22)

Combining (22), Lemma 33 in the Appendix, and Theorem 2 we get the following result.

Theorem 8. Assume that the conditions (22) and (9) hold. Then

Q fq ,n(Z + Y ) −→ λ fq (Z )

almost surely as n → ∞.

In Corollary 5, we handled a discrepancy at the level of deterministic normalizing constants,
while retaining statements with the total variation distance. In this section, our discrepancy comes
at a slightly higher price because it is stochastic. We use instead the Wasserstein distance dW , in
order to rely on the following elementary lemma whose proof is obvious.

Lemma 9. Let Y and Z be random variables defined on the same probability space. Then

dW (Y + Z , N ) ⩽ dW (Z , N ) + ∥Y∥L1(Ω) .

Another lemma, proved for instance in [23, Theorem 5.1.3], relates the Wasserstein distance
to a connection between Stein’s method and the Malliavin calculus.

Lemma 10. If F has mean 0, variance 1, and a square-integrable Malliavin derivative, then

dW (F,N (0, 1)) ⩽

√
2
π

E
[⏐⏐1 −

⟨
DF, −DL−1 F

⟩⏐⏐] .
By combining these two lemmas (the second one applies because variables with finite chaos

expansions are infinitely Malliavin-differentiable with finite moments of all orders) and the proof
of Theorem 1, by (22) we immediately obtain the following upper bounds.
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Theorem 11. Under hypothesis (22) and the assumptions of Theorem 1, for some constant C
depending on the relation in (22),

dW

⎛⎜⎜⎝ U fq ,n(Z + Y )√
E
[
U 2

fq ,n(Z )
] , N

⎞⎟⎟⎠ ⩽ C
n

1
2 −γ√

E
[
U 2

fq ,n(Z )
] +

Cq (Z)
√

2
√

π
4
√

κ4(F f2,n(Z )).

In addition, under Condition (13), i.e. if
∑

j∈Z|rZ ( j)|2 < ∞,

dW

(
U fq ,n(Z + Y )√

u fq (Z )
, N

)
⩽ C

n
1
2 −γ√

u fq (Z )
+

Cq (Z)
√

2
√

π
4

√
κ4(U f2,n(Z ))

u fq (Z )2

+

√
8
π

⏐⏐⏐⏐⏐⏐1 −

E
[
U 2

fq ,n(Z )
]

u fq (Z )

⏐⏐⏐⏐⏐⏐ . (23)

One might hope to use the aforementioned result [10] of Davydov and Martynova to obtain
bounds similar to those in the theorem above in the total variation distance instead of the
Wasserstein metric. Unfortunately, [10] states that one can bound the total variation distance
between two variables in the same chaos by the square root of their standard deviation, rather
than the standard deviation itself. In other words, when working in a specific chaos, a version of
Lemma 9 exists for the TV distance, except that the term ∥Y∥L1(Ω) must be replaced by ∥Y∥

1/2
L2(Ω)

.
This creates an inefficiency whereby, in the conclusion of Theorem 11, the term n1/2−γ would
have to be replaced by the larger n1/4−γ /2, which may switch the dominant term in the theorem’s
upper bound from

[
κ4(U f2,n(Z ))

]1/4 to n1/4−γ /2. Another problem in applying this strategy is
that one must work in a fixed chaos, which limits its application to Hermite variations. A further
issue stems from the recent realization that the proof in [10] is sufficiently elliptic that one is not
entirely sure that the result is strictly correct. A new proof was obtained in [26] by which the
aforementioned ∥Y∥

1/2
L2(Ω)

must be replaced by ∥Y∥
1/4
L2(Ω)

, and a recent paper [5] appears to reach
nearly the original statement in [10] modulo a logarithmic correction; also see [31]. We do not
discuss the possible extension to the TV distance further here; the situation is more promising in
the quadratic case, which we take up in the next subsection.

4.2. Quadratic case

In this subsection we assume that q = 2. In this special case, consistent with the notation
in (8), without loss of generality up to deterministic shifting and scaling, the only relevant
polynomial of interest is f2 (x) = x2. Thus the question introduced in Section 3.2 is to estimate
the variance rZ (0) = E

[
(Z0)

2] where Z is our stationary Gaussian process. Using the notation
introduced in that section, we thus have the following expression for our normalized partial sum

U f2,n(Z ) =
rZ (0)
√

n

n−1∑
k=0

H2

(
Zk

√
rZ (0)

)
= I2

(
rZ (0)
√

n

n−1∑
k=0

ε⊗2
k

)
,

where again εk is defined by Zk /
√

rZ (0) = I1 (εk). Using the notation in Section 3.4, the
standardized version of U f2,n(Z ) is thus

F f2,n (Z) =
U f2,n(Z )√

E
[
U 2

f2,n(Z )
] .



K. Es-Sebaiy and F.G. Viens / Stochastic Processes and their Applications 129 (2019) 3018–3054 3031

Define the third cumulant κ3
(
F f2,n(Z )

)
:= E

[
F f2,n(Z )3

]
. We will apply the sharp asymptotics

established in [24] (see bullet points in Section 2), by which a sequence of variance-one random
variables Fn in a fixed Wiener chaos which converges in law to the normal has total variation
distance to the normal commensurate with the maximum of its third and fourth cumulant. We
will also apply an explicit version of this theorem, due to [22], tailored to quadratic variations
of stationary Gaussian processes. For positive-valued sequences a and b, we will use the
commensurability notation

an ≍ bn ⇐⇒ 0 < c := inf
n

an

bn
⩽ sup

n

an

bn
=: C < ∞

where the extrema may be over all positive integers, or all integers exceeding a value n0. Our
first result is the following.

Proposition 12. (1) With f2 (x) = x2, assume that κ4(F f2,n(Z )) −→ 0. Then

dT V
(
F f2,n(Z ), N

)
≍ max

{
κ4
(
F f2,n(Z )

)
,
⏐⏐κ3
(
F f2,n(Z )

)⏐⏐} . (24)

(2) If rZ is asymptotically of constant sign and monotone, then κ4(F f2,n(Z )) −→ 0 if and only
if κ3(F f2,n(Z )) −→ 0, and in this case,

dT V
(
F f2,n(Z ), N

)
≍
⏐⏐κ3
(
F f2,n(Z )

)⏐⏐ =
⏐⏐E ((F f2,n(Z ))3)⏐⏐ , (25)

and moreover,

⏐⏐E ((F f2,n(Z ))3)⏐⏐ ≍

(∑
|k|<n |rZ (k)|3/2

)2

(∑
|k|<n |rZ (k)|2

)3/2√
n
.

Proof. The result (24) in Point (1) is a direct consequence of the main result in [24] (see also [4]).
The statements in point (2) come directly from [22, Theorem 3]. ■

The methods used to prove Corollary 5 and Theorem 11 immediately lead from the upper
bound statements in Proposition 12 to the following corollary.

Corollary 13. If the hypothesis (22) holds, under the assumptions in part (2) of Proposition 12,
for some constant C > 0,

dW

⎛⎜⎜⎝ U f2,n(Z + Y )√
E
[
U 2

f2,n(Z )
] , N

⎞⎟⎟⎠ ⩽ C

⎛⎜⎜⎝ n
1
2 −γ√

E
[
U 2

f2,n(Z )
] +

⏐⏐E ((F f2,n(Z ))3)⏐⏐
⎞⎟⎟⎠ .

In addition, if Condition (13) holds, i.e.
∑

j∈Z|rZ ( j)|2 < ∞, then

dW

(
U f2,n(Z + Y )√

u f2 (Z )
, N

)

⩽ C

(
n

1
2 −γ√

u f2 (Z )
+
⏐⏐E ((F f2,n(Z ))3)⏐⏐)+ C

∑
| j |>n |rZ ( j)|2

u f2 (Z )
. (26)

Unfortunately, these techniques say nothing about how to obtain lower bounds when one
adds discrepancies corresponding to the speed of convergence of the series

∑
j |rZ ( j)|2, and to a
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non-stationary term. We now investigate some slight strengthening of Conditions (13) and (22)
which allow for such lower-bound statements, starting with some elementary considerations.

From (25) and the remainder of Point (2) in Proposition 12, there exists a constant c1 (Z)

depending only on the law of Z such that

c1 (Z)

(∑
|k|<n |rZ (k)|3/2

)2

(∑
|k|<n |rZ (k)|2

)3/2√
n

⩽ dT V
(
F f2,n(Z ), N

)

⩽ C1 (Z)

(∑
|k|<n |rZ (k)|3/2

)2

(∑
|k|<n |rZ (k)|2

)3/2√
n
. (27)

Now assume merely that (13) holds:
∑

j |rZ ( j)|2 converges. Thus, for some constant c′

2 (Z)

depending only on the law of Z ,

dT V
(
F f2,n(Z ), N

)
⩾

c′

2 (Z)
√

n
. (28)

In cases where
∑

|rZ (k)|3/2 diverges, we evidently get a larger lower bound than (28), which
would make the rest of the analysis easier. To keep track of multiplicative constants as best we
can, we define

L (Z) := lim
n→∞

(∑
|k|<n |rZ (k)|3/2

)2

(∑
|k|<n |rZ (k)|2

)3/2 , (29)

which exists and is positive under condition (13), with the understanding that when L (Z) is +∞,
one may replace it by an arbitrarily large constant for n large enough. See Corollary 16.

Thus in (28), we may take c′

2 (Z) = c1 (Z) L (Z) where c1 (Z) is the lower bound constant
from (25), i.e. as defined in (27) . Finally, we relate (28) to the Wasserstein distance through the
following lemma, proved in the Appendix.

Lemma 14. Lower bound statements in Proposition 12 hold for dW with an additional factor 2.

Thus, under Condition (13), by the previous development and Lemma 14, with

c2 (Z) := 2c1 (Z) L (Z) , (30)

we finally get

dW
(
F f2,n(Z ), N

)
⩾

c2 (Z)
√

n
, (31)

and we are ready to state and prove our lower bound theorem in the quadratic case under a
sharpening of condition (22) and a quantitative version of Condition (13).

Theorem 15. Assume the following two conditions.

• Let (Yk)k∈Z be a process such that for all n ∈ N, for some finite constant c3 > 0,Q f2,n(Z + Y ) − Q f2,n(Z )


L1(Ω) ⩽
c3
√

u f2 (Z)

n
. (32)
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• Condition (13) holds and for some finite constant c4 > 0⏐⏐⏐u f2 (Z) − E
[
U 2

f2,n(Z )
]⏐⏐⏐ ⩽ 2 c4 u f2 (Z)

√
n

. (33)

With the positive constants c1 (Z) , C1 (Z) , and L (Z) defined via (27), (29), and c2 =

2c1 (Z) L (Z)(30), which exist by Proposition 12, if c3 + c4 < c2, with ε > 0 such that
(c3 + c4) (1 + ε) < c2, then there exists n0 large enough that for all n > n0,

2c1 (Z) L (Z) − (c3 + c4) (1 + ε)
√

n
⩽ dW

(
U f2,n (Y + Z)√

u f2 (Z)
, N

)
⩽

C1 (Z) L (Z) + c3 + c4
√

n
.

Proof. By using Lemma 9, the lower bound (31) implies

c2
√

n
⩽ dW

⎛⎝ U f2,n (Y + Z)√
E
[
U f2,n(Z)2] , N

⎞⎠+
1√

E
[
U f2,n(Z)2] E

[⏐⏐U f2,n (Y + Z) − U f2,n (Z)
⏐⏐] .

Then by assumption (32),

c2
√

n
⩽ dW

⎛⎝ U f2,n (Y + Z)√
E
[
U f2,n(Z)2] , N

⎞⎠+

√
u f2 (Z)√

E
[
U f2,n(Z)2] c3

√
n
.

Now using the trivial consequence of Lemma 9 by which, for any random variable Z and
constants a, b, dW (aZ , N ) ⩽ dW (bZ , N ) + |a − b| ∥Z∥L1(Ω), we get

c2
√

n
⩽ dW

(
U f2,n (Y + Z)√

u f2 (Z)
, N

)
+

⏐⏐⏐u f2(Z)−1/2
− E

[
U f2,n(Z)2]−1/2

⏐⏐⏐ E
[⏐⏐U f2,n (Z + Y )

⏐⏐]
+

√
u f2 (Z)√

E
[
U f2,n(Z)2] c3

√
n
. (34)

Regarding the middle term in the right-hand side above, we claim the following: for any ε > 0
and for n large enough,⏐⏐⏐u f2(Z)−1/2

− E
[
U f2,n(Z)2]−1/2

⏐⏐⏐ E
[⏐⏐U f2,n (Z + Y )

⏐⏐] ⩽ c4n−1/2 (1 + ε) . (35)

Let us prove (35). To lighten the notation, we drop the subscripts. By assumption (32), we have⏐⏐⏐u(Z)−1/2
− E

[
U (Z)2]−1/2

⏐⏐⏐ E [|U (Z + Y )|]

⩽
√

n
⏐⏐⏐u(Z)−1/2

− E
[
U (Z)2]−1/2

⏐⏐⏐ (E [|Q (Z) − λ (Z)|] + E [|Q (Z + Y ) − Q (Z)|])

⩽
⏐⏐⏐u(Z)−1/2

− E
[
U (Z)2]−1/2

⏐⏐⏐ (√E
[
U (Z)2]

+ c3n−1/2
√

u (Z)

)
.
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Since E
[
U (Z)2]

→ u (Z), after some simple algebra, for any fixed ε > 0 and n large enough,⏐⏐⏐u(Z)−1/2
− E

[
U (Z)2]−1/2

⏐⏐⏐ E [|U (Z + Y )|] ⩽
⏐⏐⏐u(Z)−1/2

− E
[
U (Z)2]−1/2

⏐⏐⏐
× (1 + ε)

√
u (Z)

⩽
1 + ε

2u (Z)

⏐⏐u (Z) − E
[
U (Z)2]⏐⏐ .

Thus (35) follows immediately from assumption (33). Combining (35) with (34), and again using
E
[
U f2,n(Z)2]

→ u f2 (Z) , we finally obtain that for any ε > 0 and for n large enough

c2
√

n
⩽ dW

(
U f2,n (Y + Z)√

u f2 (Z)
, N

)
+

(c3 + c4) (1 + ε)
√

n
.

Since, c4 + c4 < c2, ε > 0 exists such that c2 − (1 + ε) (c3 + c4) > 0, which finishes the lower
bound of the theorem. The upper bound is easier to prove, and follows from the same estimates
as for the lower bound. Details are omitted. ■

The following corollary, which takes advantage of the slower convergence of dW
(
F f2,n(Z ), N

)
when L (Z) = +∞, is an immediate consequence of the proof of the theorem. It shows that
optimality holds for all normal convergence rates in the Wasserstein metric.

Corollary 16. Under the hypotheses of Theorem 15, if L (Z) = +∞, i.e. if
∑

∞

k=0|rZ (k)|3/2
=

+∞, then for all c3 and c4,

c1 (Z)(
2−1u f2 (Z)

)3/2

(∑
|k|<n |rZ (k)|3/2

)2

√
n

⩽ dW

(
U f2,n (Y + Z)√

u f2 (Z)
, N

)

⩽
C1 (Z)(

2−1u f2 (Z)
)3/2

(∑
|k|<n |rZ (k)|3/2

)2

√
n

.

The above conclusion also holds, with appropriately modified constants to replace c1 and C1,
under weaker versions of the assumptions (32) and (33) where the term n−1/2 is multiplied by(∑

|k|<n|rZ (k)|3/2
)2

, under the same resulting restriction on c3 and c4 as in Theorem 15.

In order to state an optimal result for the TV distance nonetheless, we base the next corollary
on the validity of [10], with an understanding that logarithmic corrections could be required
based on the results in [5] (see the discussion at the end of Section 4.1). We record this result
here, whose extension along the lines of Corollary 16 is left to the reader.

Corollary 17. Assume Z is stationary, condition (13) holds, and for some finite constant c4 > 0⏐⏐⏐u f2 (Z) − E
[
U 2

f2,n(Z )
]⏐⏐⏐ ⩽ 2 c4 u f2 (Z)

n
. (36)

This assumption holds for instance if rZ (k) ⩽ ck−α for some α ⩾ 1. With the positive constants
c1 (Z) , C1 (Z), L (Z) and c2 as in Theorem 15, if there exists ε > 0 such that c4 (1 + ε) < c2,
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then there exists n0 large enough that for all n > n0,

2c1 (Z) L (Z) − c4 (1 + ε)
√

n
⩽ dT V

(
U f2,n (Z)√

u f2 (Z)
, N

)
⩽

C1 (Z) L (Z) + c4
√

n
.

Remark 18. The non-central limit theorem in Remark 7 part (1) also holds if Z is replaced by
Z + Y under assumption (22) if γ > 1/2 ; and similarly for part (2) if γ > H − (q − 1) /2q.
These results’ proofs, which are omitted, follow the results in Remark 7 and from the tools in
this section and those in [22] and [6].

4.3. Towards a Berry–Esséen theorem for parameter estimators

In the previous two sections, we saw how to prove asymptotically normality for the empirical
sums of the form U fq ,n (Z) (or U fq ,n (Y + Z) where Y is a non-stationary correction process),
with convergence speed theorems in total variation and Wasserstein distances. These apply to
parameter estimation if the quantity one is after is the expected value λ fq (Z ) := E

[
fq (Z0)

]
. In

this section we evaluate the same question if the parameter one seeks is implicit in λ fq (Z ).
Thus assume that one is looking for the unknown parameter θ > 0 and that there is a

homeomorphism g such that

λ fq (Z ) = g−1(θ ) := θ∗.

As stated, so far, for a degree-q polynomial fq of the form (6) we have studied the “estimator”

θ̂n = Q fq ,n(Z ) =
1
n

n−1∑
i=0

fq (Z i ).

We have proved the following in Section 3 (see for instance Theorems 2 and 1, Corollaries 5 and
6): θ̂n −→ θ∗ almost surely and

dW

(
√

nE
[
U 2

fq ,n(Z )
]−1/2 (

θ̂n − θ∗
)
,N (0, 1)

)
⩽ ϕ(n)

where

U fq ,n(Z ) =
√

n
(
Q fq ,n(Z ) − λ fq (Z )

)
= θ̂n − θ∗.

and where ϕ (n) tends to 0 as n → ∞ at various speeds which can be determined thanks to
the precise statements in Corollary 5, for instance ϕ (n) = 1/

√
n in Corollary 6, which is the

classical Berry–Esséen speed. By using the relation between θ and λ, we naturally define the
estimator of θ by

θ̌n := g
(
θ̂n
)
.

This is a consistent estimator by Theorem 2 since g is continuous by assumption: θ̌n −→ θ

almost surely. Now assume g is a diffeomorphism. By the mean-value theorem we can write(
θ̌n − θ

)
= g′(ξn)

(
θ̂n − θ∗

)
,
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where ξn is a random variable which belongs to [|θ̂n, θ
∗
|]. We can write

dW

⎛⎜⎜⎝ √
n

g′(θ∗)
√

E
[
U 2

fq ,n(Z )
] (θ̌n − θ

)
,N (0, 1)

⎞⎟⎟⎠

⩽ dW

⎛⎜⎜⎝ √
n

g′(θ∗)
√

E
[
U 2

fq ,n(Z )
] (θ̌n − θ

)
,

√
n√

E
[
U 2

fq ,n(Z )
] (θ̂n − θ∗

)⎞⎟⎟⎠

+ dW

⎛⎜⎜⎝ √
n√

E
[
U 2

fq ,n(Z )
] (θ̂n − θ∗

)
,N (0, 1)

⎞⎟⎟⎠ .

The last term above is controlled by ϕ (n) as mentioned. Now assume that g is twice continuously
differentiable. Then by the mean-value theorem again, for ζn some random variable which
belongs to [|ξn, θ

∗
|] ⊂ [|θ̂n, θ

∗
|], the other term above is controlled as follows

dW

⎛⎜⎜⎝ √
n

g′(θ∗)
√

E
[
U 2

fq ,n(Z )
] (θ̌n − θ

)
,

√
n√

E
[
U 2

fq ,n(Z )
] (θ̂n − θ∗

)⎞⎟⎟⎠
·|g′(θ∗)|

√
E
[
U 2

fq ,n(Z )
]

⩽ E
⏐⏐√n

(
θ̂n − θ∗

) (
g′(ξn) − g′(θ∗)

)⏐⏐ = E
⏐⏐√n

(
θ̂n − θ∗

)
g′′(ζn)

(
ξn − θ∗

)⏐⏐
⩽ E

⏐⏐⏐√n
(
θ̂n − θ∗

)2g′′(ζn)
⏐⏐⏐

⩽
√

n
[

E
((

θ̂n − θ∗
)2p
)]1/p[

E
(

g′′(ζn)p′
)]1/p′

,

where p and p′ are conjugate reals greater than 1, i.e. 1/p + 1/p′
= 1. Moreover, by (1),

√
n
[

E
((

θ̂n − θ∗
)2p
)]1/p

⩽ cp
√

nE
((

θ̂n − θ∗
)2
)

= O(
1

√
n

).

Therefore the only question left to transfer the quantitative results of Section 3 to θ̌n is whether
one can prove, for instance, that g′′(ζn) has a bounded moment of order greater than 1. We will
see several examples in Section 5 where this is easy to check. More generally, we advocate
checking this on a case-by-case basis when the function g can be identified. In the meantime, we
summarize this discussion with the following general principle, which follows from the above
discussion.

Theorem 19. Consider the setup from Corollary 5, in which θ̂n = Q fq ,n(Z ) :=
1
n

∑n−1
i=0 fq (Z i )

and θ∗
= E

[
fq (Z0)

]
, with ϕ (n) an upper bound for the expression in (18) which converges to

0. Assume that there exist a twice-differentiable invertible function g and a value θ such that

g−1(θ ) := θ∗.
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If g′′
(
θ̂n
)

has a moment of order greater than 1 which is bounded in n, the expression

θ̌n := g
(
θ̂n
)

is a strongly consistent and asymptotically normal estimator of θ and

dW

⎛⎜⎜⎝ √
n

g′(θ∗)
√

E
[
U 2

fq ,n(Z )
] (θ̌n − θ

)
,N (0, 1)

⎞⎟⎟⎠ ⩽ C
1

√
n

+ ϕ (n) ,

where ϕ (n) is the speed of convergence in Corollary 5.

5. Applications to Ornstein–Uhlenbeck processes: the scalar case

5.1. Fractional Ornstein–Uhlenbeck process: general case

Consider an Ornstein–Uhlenbeck process X = {X t , t ⩾ 0} driven by a fractional Brownian
motion B H

=
{

B H
t , t ⩾ 0

}
of Hurst index H ∈ (0, 1). That is, X is the solution of the following

linear stochastic differential equation

X0 = 0; d X t = −θ X t dt + d B H
t , t ⩾ 0, (37)

whereas θ > 0 is considered as unknown parameter. The solution X of (37) has the following
explicit expression:

X t =

∫ t

0
e−θ (t−s)d B H

s . (38)

Thus, we can write

X t = Z θ
t − e−θ t Z θ

0 (39)

where

Z θ
t =

∫ t

−∞

e−θ (t−s)d B H
s . (40)

Moreover, it is known that Z θ is an ergodic stationary Gaussian process. It is the stationary
solution of Eq. (37). We are thus in the setup of Section 4 with Z = Z θ and Y = −e−θ t Z θ

0 .
Consequently, to apply the results of that section, we only need to check that Condition (22)
holds. It does, according to the following result.

Lemma 20. Let X and Z θ be the processes given in (37) and (40) respectively. Then for every
p ⩾ 1 and for all n ∈ N,Q fq ,n(X ) − Q fq ,n(Z θ )


L p(Ω) = O

(
n−1) .

Proof. By (39) and (6) we haveQ fq ,n(X ) − Q fq ,n(Z θ )


L p(Ω) ⩽
1
n

n−1∑
i=0

q/2∑
k=0

d fq ,2k

×

H2k

(
X i

√
rZ (0)

)
− H2k

(
Z θ

i
√

rZ (0)

)
L p(Ω)

.
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Combining this and the fact that

H2k

(
X i

√
rZ (0)

)
− H2k

(
Z θ

i
√

rZ (0)

)
=

k∑
l=0

(2k)!(−1)l

l!(2k − 2l)!2l

×

2k−2l∑
j=1

(−1) j (2k−2l
j )e−θ i j

r k−l
Z (0)

(Z θ
0 ) j (Z θ

i )2k−2l− j .

we deduce that there exists a constant c(θ, fq ) depending on fq and θ such that

Q fq ,n(X ) − Q fq ,n(Z θ )


L p(Ω) ⩽ c(θ, fq )
1
n

n−1∑
i=0

e−iθ .

Thus the lemma is obtained. ■

As a consequence, by using Z θ ergodic, Lemma 20 and Theorem 8, we conclude that

Q fq ,n(X ) −→ λ fq (Z θ )

almost surely as n → ∞. Moreover, by the Gaussian property of Z θ and Lemma 35 in the
Appendix, we can write

λ fq (Z θ ) := µ fq (θ )

where µ fq is a univariate function of θ determined by the polynomial fq . Hence, in the case
when the function µ fq is invertible, we obtain the following estimator for θ

θ̌ fq ,n := µ−1
fq

[
Q fq ,n(X )

]
. (41)

These considerations allow us to state and prove the following strong consistency and asymp-
totic normality of θ̌ fq ,n . For asymptotic normality, we assume that µ fq is a diffeomorphism.
Examples of this situation are given in Section 5.2.

Proposition 21. Assume H ∈ (0, 1) and µ fq is a homomorphism. Let θ̂ fq ,n be the estimator
given in (41). Then, as n −→ ∞, almost surely, θ̌ fq ,n −→ θ .

Proposition 22. Denote N ∼ N (0, 1). Then

• If H ∈ (0, 5
8 ), for any q,

dW

⎛⎝ U fq ,n(X )√
u fq (Z θ )

, N

⎞⎠ ⩽
C

n1/4 .

• If H ∈ ( 5
8 , 3

4 ), for any q,

dW

⎛⎝ U fq ,n(X )√
u fq (Z θ )

, N

⎞⎠ ⩽
C

n(4H−3)/2 .

• In particular, in both cases, assuming µ fq is a diffeomorphism,

√
n
(
θ̌ fq ,n − θ

)
law
−→ N

(
0,

u fq (Z θ )
(µ′

fq (θ ))2

)
.
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• If H =
3
4 ,

dW

⎛⎜⎜⎝ U fq ,n(X )√
E
[
U 2

fq ,n(Z θ )
] , N

⎞⎟⎟⎠ ⩽ C log−
1
4 (n).

In particular,√
n

log(n)

(
θ̌ fq ,n − θ

)
law
−→ N

(
0,

9d2
q,2(Z )

16θ4(µ′

fq (θ ))2

)
.

Proof. In this proof, C represents a constant which may change from line to line. It was proved
in [22] (also see [4]) that, with rZ the covariance function of Z θ ,

κ4(U f2,n(Z θ )) ⩽ C

⎛⎝∑
|k|<n

|rZ (k)|4/3

⎞⎠3

while

E
[
U 2

fq ,n(Z θ )
]
⩽ C

∑
|k|<n

|rZ (k)|2.

Then by Lemma 35, for all H < 3/4, we easily get E
[
U 2

fq ,n(Z θ )
]
⩽ u fq (Z θ ) < ∞ and in

particular⏐⏐⏐⏐⏐⏐1 −

E
[
U 2

fq ,n(Z θ )
]

u fq (Z θ )

⏐⏐⏐⏐⏐⏐ ⩽ C
∑
|k|>n

|rZ (k)|2 ⩽ Cn4H−3. (42)

Also by Lemma 35, for H < 5/8,

κ4(U f2,n(Z θ )) ⩽ Cn−1

while for H > 5/8,

κ4(U f2,n(Z θ )) ⩽ Cn2(4H−3).

Then by Theorem 11 and by Lemma 20 which shows that γ = 1, we get

dW

(
U fq ,n(Z + Y )√

u fq (Z )
, N

)
⩽ Cn−1/2

+
4
√

κ4(U f2,n(Z θ )) + Cn4H−3

depending on whether H is larger or smaller than 5/8 we get the announced result, since n−1/4

and n(4H−3)/2 coming from 4
√

κ4(U f2,n(Z θ )) dominate the error terms n4H−3 and n−1/2.
Now, by assumption, µ fq has a continuously differentiable derivative. Thus, by the mean

value theorem, there exists a random variable ξ fq ,n between θ and θ̂ fq ,n such that
√

n
(
µ fq (θ̂q,n) − µ fq (θ )

)
= µ′

fq (ξ fq ,n)
√

n
(
θ̂q,n − θ

)
.

By the asymptotic normality of µ fq (θ̂q,n) − µ fq (θ ) and the a.-s. convergence of µ′

fq (ξ fq ,n) to
µ′

fq (θ), the theorem’s statement when H < 3/4 follows. The case of H = 3/4 is treated
similarly. ■
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5.2. Examples and a Berry–Esséen theorem for drift estimators

In the two following examples, the function µ fq is an explicit diffeomorphism except at θ = 0.

• Assume that fq = Hq . Using (20) and Lemma 35, we have

µHq (θ ) = λHq (Z θ ) =
q!

( q
2 )!2q/2

(
HΓ (2H )θ−2H

− 1
)q/2

.

In this case, the function µ is a diffeomorphism with bounded derivatives when the range
is restricted to R+. Since, by the previous strong consistency proposition, Q fq ,n(X ) ends
up in R+ almost surely, the estimator θ̌ fq ,n is asymptotically equivalent to the one in which
the function g = µ−1

fq is restricted to R+. This observation will be helpful below when
applying the results of Section 4.3.

• Assume that fq = φq with φq (x) = xq . From (21) and Lemma 35 we obtain

µφq (θ ) = λφq (Z θ ) =
q!

( q
2 )!2q/2

[
HΓ (2H )θ−2H ]q/2

.

The singularity of µ at θ = 0 poses some technical problems when one tries to translate
the consistency of Q fq ,n(X ) into that of θ̌ fq ,n thanks to Section 4.3, which we investigate
below.

We now show how the principle described in Section 4.3 can be used to estimate the speed of
convergence for the estimator θ̌ fq ,n itself. To work in a specific situation, we look at the above
two examples, assuming q = 2.

5.2.1. Berry–Esséen theorem for a Hermite-variations-based estimator for θ

In the notation of Section 4.3, using the convention of replacing Q H2,n (Z) by
⏐⏐Q H2,n (Z)

⏐⏐, in
the case of the Hermite polynomial H2 we have

µH2 (θ ) = λH2 (Z θ ) = HΓ (2H )|θ |
−2H

− 1 = g−1 (θ)

and thus

g (x) = gH2 (x) := (HΓ (2H ))−1/(2H )(1 + |x |)−1/(2H ), (43)

and g′′ (x) is proportional to (1 + |x |)−1/(2H )−2. This function is bounded on R+. Hence,
according to Theorem 19, using the speed of convergence from Proposition 12, we obtain the
following.

Proposition 23. For the stationary fractional Ornstein–Uhlenbeck Z θ in (40), with Q H2,n(
Z θ
)

=
1
n

∑n
k=1 Z θ (k)2

− 1 and g as in (43), we get

dW

⎛⎜⎜⎝ √
n

g′(θ∗)
√

E
[
U 2

H2,n(Z )
] (g (Q H2,n

(
Z θ
))

− θ
)
,N (0, 1)

⎞⎟⎟⎠ ⩽ C
1

√
n

+ ϕ (n)



K. Es-Sebaiy and F.G. Viens / Stochastic Processes and their Applications 129 (2019) 3018–3054 3041

where g (x) = (HΓ (2H ))−1/(2H )(1 + |x |)−1/(2H ) and θ∗
= g−1 (θ) and

ϕ (n) ≍

(∑
|k|<n |k|

3H−3
)2

(∑
|k|<n |k|

4H−4
)3/2√

n
.

In particular, for H < 2/3, ϕ (n) ≍ 1/
√

n.

Remark 24. Improvements to the above proposition which include the use of the asymptotic
variance u fq (Z θ ) and the nonstationary fractional OU process X in (38) also hold. These
are omitted here for the sake of conciseness; the reader will find these topics covered in
Section 5.3below.

5.2.2. Comments and strategy for θ estimators with singular variance function
For the power-2 function, in the notation of Section 4.3 we have

µφ2 (θ ) = λφ2 (Z θ ) = HΓ (2H )θ−2H
= g−1 (θ)

and thus g′′ (x) = cH x−1/(2H )−2 which has a singularity at 0 and thus is not bounded. A result can
be obtained immediately from the above proposition since g

(
Qφ2,n

(
Z θ
)
− 1

)
= g

(
Q H2,n

(
Z θ
))

is the estimator studied in that proposition. However, for illustrative purposes, we finish this
section by outlining a method for dealing with the singularity, since this works for any g such
that g′′ is asymptotically decreasing like a negative power, and any process that has an infinite
Karhunen–Loève expansion.

According to Theorem 19, we are asking whether for some p′ > 1,

sup
n

E
[⏐⏐θ̂n

⏐⏐−p′/(2H )−2p′
]

< ∞.

This condition is not entirely trivial, and can fail in some simple pathologically degenerate cases
such as if Z is constant, since then θ̂n = n−1∑n

k=1 Z(k)2
= Z(0)2 is a chi-squared variable with

one degree of freedom, which has no moments of negative order less than −1/2. This pathology
does not occur for the fOU process, though the argument is slightly involved, since the limit
law of the renormalized θ̂n is normal, which does not have higher negative moments either. We
decompose

E
[
g′′
(
θ̂n
)]

= E
[
g′′
(
θ̂n
)

1θ̂n<1/
√

n
]
+ E

[
g′′
(
θ̂n
)

1θ̂n⩾1/
√

n
]
.

By the asymptotic normality of
(
θ̂n − θ∗

)√
n, we get

E
[
g′′
(
θ̂n
)

1|θ̂n|⩾1/
√

n

]
∼

∫
∞

−
√

nθ∗+1

⏐⏐⏐⏐ z
√

n
+ θ∗

⏐⏐⏐⏐−p′(2+1/(2H ))

e−z2/2dz

=

∫
−

√
nθ∗/2

−
√

nθ∗+1

⏐⏐⏐⏐ z
√

n
+ θ∗

⏐⏐⏐⏐−p′(2+1/(2H ))

e−z2/2dz

+

∫
∞

−
√

nθ∗/2

⏐⏐⏐⏐ z
√

n
+ θ∗

⏐⏐⏐⏐−p′(2+1/(2H ))

e−z2/2dz

⩽ cst e−nθ∗/8n p′(2+1/(2H ))
+
(
θ∗/2

)−p′(2+1/(2H ))

which is bounded for all n.
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For the second piece, the normal approximation would not yield a finite bound, thus we must
return to the original expression of θ̂n as a 2nd chaos variable. It is known (see [20, page 522])
that Z θ (k) has a Karhunen–Loève expansion

∑
∞

m=0
√

λmem (k) Wm (where the Wm are i.i.d.
standard normal, and the em are orthonormal in L2 ([0, n]) ) such that λm ∼ cm2H−2. Thus, the
expansion of Z θ contains infinitely many independent terms. One also knows (see [23, Section
2.7.4]) that θ̂n , like any variable in the second chaos, can be expanded as

∑
∞

m=0µm W 2
m where

the µm are summable. One can check that the infinity of distinct terms in the expansion of Z y

implies that for any fixed n, the expansion of θ̂n also contains infinitely many terms, and that the
coefficients are positive. Therefore, for any fixed m0, there exists a positive constant cm0 such
that θ̂n ⩾ cm0

∑m0
m=0W 2

m =: Sm0 , which is a random variable with χ2 distribution with m0 degrees
of freedom. Hence the density of S at the origin is of the order z(m0−1)/2, which means it has
a negative moment of order −p′ (2 + 1/(2H )) as soon as m0 > p′ (2 + 1/(2H )) − 1. From
this it follows that E

[
g′′
(
θ̂n
)

1θ̂n<1/
√

n
]

is bounded. Thus g and θ̂ comply with the conditions
of Theorem 19. In fact, since p′ can be taken arbitrarily close to 1, we only need to be able to
choose m0 > 1 + 1/(2H ). For instance, if H > 1/2, this means that for Theorem 19 to work
with q = 2, one only needs to show that the second-chaos series decomposition of θ̂n contains 2
independent terms. This covers all Gaussian processes except for the trivial case of the constant
process.

5.3. Optimal Berry–Esséen theorem in the quadratic case

As in the previous sections, the convergence speed for general q has no reason to be optimal.
We illustrate this by studying the case q = 2, where we can improve the rate convergence
thanks to the optimal rates obtained in Section 4.2, and even obtain optimal two-sided bounds
when H < 5/8. Note that the results in this section deal with the fully realistic scenario
where observations come from the non-stationary process X in (38) and there is no reference
to normalizing constants other than finite asymptotic variances.

5.3.1. Setting up the rates of convergence
First assume that H ⩽ 3/4. We find that κ3(F f2,n(Z θ )) −→ 0 and more precisely (see [22])

that

⏐⏐E ((F f2,n(Z θ ))3)⏐⏐ ≍

(∑
|k|<n |rZ (k)|3/2

)2

(∑
|k|<n |rZ (k)|2

)3/2√
n

⩽ C ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−
1
2 , if 0 < H <

2
3

log2(n)n−
1
2 , if H =

2
3

n6H−
9
2 , if

2
3

< H <
3
4

log−3/2(n), if H =
3
4
.

(44)

By using Corollary 13, we see that we must compare the rates therein to the rates obtained in
(44). By (42) the rate which controls the convergence of the variances is n4H−3. This can be
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dominated by 1/
√

n if and only if n < 5/8. For H ∈ [2/3, 3/4), n4H−3 dominates the rates
in (44). The rate which controls the non-stationarity term is always of order 1/

√
n because of

Lemma 20, which is always the lowest-order term. Hence the improved rates in (44) only come
into play when H < 5/8 when normalizing by the asymptotic variance. In other words, we have
the following two estimates, where the second one avoids the use of non-empirical statistics.

Proposition 25. Denote N ∼ N (0, 1). If H ∈ (0, 3
4 ],

dW

⎛⎜⎜⎝ U f2,n(X )√
E
[
U 2

f2,n(Z θ )
] , N

⎞⎟⎟⎠ ⩽ C ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−
1
2 , if 0 < H <

2
3

log2(n)n−
1
2 , if H =

2
3

n6H−
9
2 , if

2
3

< H <
3
4

log−3/2(n), if H =
3
4

and

dW

(
U f2,n(X ),

√
u f2 (Z θ )N

)
⩽ C ×

⎧⎪⎨⎪⎩
n−

1
2 , if 0 < H <

5
8

n4H−3, if
5
8
⩽ H <

3
4
.

Next we obtain optimal rates of convergence in the Wasserstein distance when H < 5/8.

5.3.2. Applying the optimal theorem
To apply Theorem 15 we must check that conditions (32) and (33) are met. We just saw that

this is the case when H < 5/8. However, we must also check that the corresponding constants
c3 and c4 are sufficiently small. Since H < 5/8, by (42), the constant c4 can be made arbitrarily
small for n large enough. It remains to show that c3 can be chosen small. A direct application of
Lemma 20 is insufficient for this purpose. Therefore, we must modify our estimator slightly, by
discarding some of the first terms. We thus fix an integer i0 > 0 and define

Q̃ f2,n (X) :=
1
n

i0+n−1∑
i=i0

f2 (X i ) . (45)

It is easy to check that this is still a consistent and asymptotically normal estimator of rZ (0). By
the proof of Lemma 20, we see thatQ̃ f2,n (X) − Q̃ f2,n

(
Z θ
)

L p(Ω)
⩽ c (θ, f2)

1
n

i0+n−1∑
i=i0

e−iθ ⩽ c (θ, f2)
1
n

e−i0θ . (46)

Since θ > 0, we can make the last expression above as small as we want by choosing i0

sufficiently large. Thus Theorem 15 applies, and we have the following optimal Berry–Esséen
theorem for the variance estimator Q̃ f2,n (X), which, as we saw in Section 5.1, gives access to
estimators for θ .
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Proposition 26. If H ∈
(
0, 5

8

)
, then there exists an integer i0 > 0 such that the quadratic

variation Q̃ f2,n defined in (45) satisfies

dW

(√
n
[

Q̃ f2,n (X) − rZ (0)
]
,N (0, u f2 (Z θ ))

)
≍

1
√

n
.

Moreover, with g as in (43), we have

dW

(√
n
(

g
(

Q̃ H2,n (X)
)

− θ
)

,N (0, g′
(
θ∗
)2uH2 (Z θ ))

)
≍

1
√

n
.

Proof. The first result follows from the considerations immediately above. The second follows
from Theorem 19 exactly as did the result in Proposition 23; we omit the details. ■

6. Application to Ornstein–Uhlenbeck processes : multi-parameter examples

In the previous section, we provided a full study of univariate parameter estimation for a
fractional Ornstein–Uhlenbeck process, including all details of how to apply our general theory.
In this final section of our article, we give two more examples of applications of our methods.
For the sake of conciseness, we focus on the results, providing only a minimal amount of
computations and proofs, since these are all modeled on the arguments in Section 5.

6.1. OU driven by fractional Ornstein–Uhlenbeck process

In this section we assume that X = {X t , t ⩾ 0} is an Ornstein–Uhlenbeck process driven by
a fractional Ornstein–Uhlenbeck process V = {Vt , t ⩾ 0}. This is given by the following linear
stochastic differential equations{

X0 = 0; d X t = −θ X t dt + dVt , t ⩾ 0

V0 = 0; dVt = −ρVt dt + d B H
t , t ⩾ 0,

(47)

where B H
=
{

B H
t , t ⩾ 0

}
is a fractional Brownian motion of Hurst index H ∈ (0, 1), whereas

θ > 0 and ρ > 0 are two unknown parameters such that θ ̸= ρ.
Using the notation (40), the explicit solution to this linear system, noted for instance in [14],

implies the following decomposition of X t :

X t =
ρ

ρ − θ
Xρ

t +
θ

θ − ρ
X θ

t , (48)

where

X θ
t = Z θ

t − e−θ t Z θ
0 (49)

with

Z θ
t =

∫ t

−∞

e−θ (t−s)d B H
s . (50)

On the other hand, we can also write the system (47) as follows

d X t = − (θ + ρ) X t dt − ρθΣt dt + d B H
t , (51)

where for 0 ⩽ t ⩽ T

Σt =

∫ t

0
Xsds =

Vt − X t

θ
=

X θ
t − Xρ

t

ρ − θ
. (52)
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Moreover, the process
(

Z θ
t , Z θ ′

t

)
is an ergodic stationary Gaussian process. As consequence

X t =
ρ

ρ − θ
Zρ

t +
θ

θ − ρ
Z θ

t −

(
ρe−ρt

ρ − θ
Zρ

0 +
θe−θ t

θ − ρ
Z θ

0

)
:= Z θ,ρ

t −

(
ρe−ρt

ρ − θ
Zρ

0 +
θe−θ t

θ − ρ
Z θ

0

)
(53)

and

Σt =
Z θ

t − Zρ
t

ρ − θ
−

e−θ t Z θ
0 − e−ρt Zρ

0

ρ − θ
:= Σ

θ,ρ
t −

e−θ t Z θ
0 − e−ρt Zρ

0

ρ − θ
. (54)

Moreover, Z θ,ρ and Σ θ,ρ are ergodic stationary Gaussian processes.
Now, assume that the processes X and Σ are observed equidistantly in time with the step

size ∆n = 1. We will construct estimators for (θ, ρ). By using the ergodicity of Z θ,ρ and Σ θ,ρ ,
Lemma 20 and Theorem 8, we conclude that(

Q fq ,n(X ), Q fq ,n(Σ )
)

−→
(
λ fq (Z θ,ρ), λ fq (Σ θ,ρ)

)
almost surely as n → ∞.

Moreover, by the Gaussian property of Z θ,ρ and Σ θ,ρ , and the expressions ηX (θ, ρ) and
ηΣ (θ, ρ) for the variances of Z θ,ρ and Σ θ,ρ which are given respectively in (66) and (67) after
Lemma 36 in the Appendix, we can write(

λ fq (Z θ,ρ), λ fq (Σ θ,ρ)
)

= δ fq (θ, ρ)

where δ fq is a function which can be expressed via ηX (θ, ρ) and ηΣ (θ, ρ). Hence, in the case
when the function δ fq is invertible, we obtain the following estimator for θ

(θ̂ fq ,n, ρ̂ fq ,n) := δ−1
fq

[(
Q fq ,n(X ), Q fq ,n(Σ )

)]
. (55)

Proposition 27. Assume H ∈ (0, 1) and δ fq is a homomorphism. Let (θ̂ fq ,n, ρ̂ fq ,n) be the
estimator given in (55). Then, as n −→ ∞

(θ̂ fq ,n, ρ̂ fq ,n) −→ (θ, ρ) (56)

almost surely.

Examples. In the two following examples, the function δ fq is invertible and explicit, based on
the expressions for ηX (θ, ρ) and ηΣ (θ, ρ) given respectively in (66) and (67) in the Appendix.

• Suppose that fq = Hq . Using (20), (66) and (67), we have

δHq (θ, ρ) =
q!

( q
2 )!2q/2

(
(ηX (θ, ρ) − 1)q/2, (ηΣ (θ, ρ) − 1)q/2) .

• Suppose that fq = φq with φq (x) = xq . From (21), (66) and (67) we obtain

δφq (θ, ρ) =
q!

( q
2 )!2q/2

(
(ηX (θ, ρ))q/2, (ηΣ (θ, ρ))q/2) .

Theorem 28. Let H ∈
(
0, 3

4

)
. Define

Γ fq (θ, ρ) =

(
u fq (Z θ,ρ) u fq (Z θ,ρ,Σ θ,ρ)

u fq (Z θ,ρ,Σ θ,ρ) u fq (Σ θ,ρ)

)
(57)
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where

u fq (Z θ,ρ,Σ θ,ρ) =

q/2∑
k=0

d2
fq ,2k(2k)!

∑
j∈Z∗

⎛⎝ E
(

Z θ,ρ

0 Σ
θ,ρ

j

)
√

rZθ,ρ (0)rΣθ,ρ (0)

⎞⎠2k

.

Then

dW
((

U fq ,n(X ), U fq ,n(Σ )
)
;N

(
0,Γ fq (θ, ρ)

))
⩽

C
n1/4 . (58)

Hence, for any H ∈
(
0, 3

4

)
,

√
n
(
θ̂ fq ,n − θ, ρ̂ fq ,n − ρ

) L
−→ N

×

(
0, J

δ−1
fq

(ηX (θ, ρ), ηΣ (θ, ρ)) Γ fq (θ, ρ) J T
δ−1

fq
(ηX (θ, ρ), ηΣ (θ, ρ))

)
(59)

where J
δ−1

fq
is the Jacobian matrix of δ−1

fq .

Proof. Combining (53), (54), Lemma 36 and Theorem 11, we obtain (58). Applying Taylor’s
formula we can write

√
n
(
θ̂q,n − θ, ρ̂q,n − ρ

)
= J T

δ−1
fq

(
λ fq (Z θ,ρ), λ fq (Σ θ,ρ)

) (
U fq ,n(X ), U fq ,n(Σ )

)
+ dn,

where dn converges in distribution to zero, because

∥dn∥ ⩽ C
√

n
(Q fq ,n(X ) − λ fq (Z θ,ρ), Q fq ,n(Σ ) − λ fq (Σ θ,ρ)

)2
−→ 0

almost surely as n → ∞ by using (58). Thus the 2-d random vector in the left-hand side of (59)
is the sum of a term converging in law to 0 and another converging almost surely to 0; thus it
converges in law to 0, establishing (59). ■

Example. Here we assume that fq = φq and q = 2, and we can recompute the expression for
the function δφ2 : (0, +∞)2

↦→ (0, +∞)2 as

δφ2 (x, y) = (ηX (x, y), ηΣ (x, y))

= HΓ (2H ) ×

⎧⎨⎩
1

y2 − x2

(
y2−2H

− x2−2H , x−2H
− y−2H ) if x ̸= y(

(1 − H )x−2H , H x−2H−2) if y = x .

Since for every (x, y) ∈ (0, +∞)2 with x ̸= y the Jacobian of δφ2 computes as

Jδφ2
(x, y) = Γ (2H + 1)

×

⎛⎜⎜⎜⎜⎝
(1 − H) x1−2H

(
x2

− y2
)
− x

(
x2−2H

− y2−2H
)(

x2 − y2
)2

(1 − H) y1−2H
(
y2

− x2
)
− y

(
y2−2H

− x2−2H
)(

x2 − y2
)2

H x−2H−1
(
x2

− y2
)
+ x

(
x−2H

− y−2H
)(

x2 − y2
)2

H y−2H−1
(
y2

− x2
)
+ y

(
y−2H

− x−2H
)(

x2 − y2
)2

⎞⎟⎟⎟⎟⎠ ,
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which is non-zero in (0, +∞)2. So δφ2 is a diffeomorphism in (0, +∞)2 and its inverse δ−1
φ2

has
a Jacobian

J
δ−1
φ2

(a, b) =
Γ (2H + 1)

det JF2 (x, y)

×

⎛⎜⎜⎜⎜⎝
H y−2H−1

(
y2

− x2
)
+ y

(
y−2H

− x−2H
)(

x2 − y2
)2 −

(1 − H) y1−2H
(
y2

− x2
)
− y

(
y2−2H

− x2−2H
)(

x2 − y2
)2

−
H x−2H−1

(
x2

− y2
)
+ x

(
x−2H

− y−2H
)(

x2 − y2
)2

(1 − H) x1−2H
(
x2

− y2
)
− x

(
x2−2H

− y2−2H
)(

x2 − y2
)2

⎞⎟⎟⎟⎟⎠ ;

where (x, y) = δ−1
φ2

(a, b). Thus the asymptotic covariance matrix in (59) is explicit. Moreover,
similarly to the results obtained in Section 5, we can prove the following, all details being
omitted.

Proposition 29. Let (α, β) ∈ R2. Under the assumptions and notation of Theorem 28,

• if H ∈ (0, 5
8 ),

dW
(
αUφ2,n(X ) + βUφ2,n(Σ );N

(
0, (α, β)Γφ2 (θ, ρ)(α, β)T r))

≍
1

√
n
,

• if H ∈ ( 5
8 , 3

4 ),

dW
(
αUφ2,n(X ) + βUφ2,n(Σ );N

(
0, (α, β)Γφ2 (θ, ρ)(α, β)T r)) ⩽ C

n4H−3 .

6.2. Fractional Ornstein–Uhlenbeck process of the second kind

The last example we consider is the so-called fractional Ornstein–Uhlenbeck process of the
second kind, defined via the stochastic differential equation

S0 = 0, and d St = −αSt dt + dY (1)
t , t ⩾ 0, (60)

where Y (1)
t =

∫ t
0 e−sd B H

as
with as = He

s
H and B H

=
{

B H
t , t ⩾ 0

}
is a fractional Brownian

motion with Hurst parameter H ∈ ( 1
2 , 1), and where α > 0 is the unknown real parameter which

we would like to estimate. Eq. (60) admits an explicit solution

St = e−αt
∫ t

0
eαsdY (1)

s = H (1−α)H e−αt
∫ at

a0

r (α−1)H d B H
r .

Hence we can also write

St = Sα
t − e−αt Sα

0

where

Sα
t = H (1−α)H e−αt

∫ at

0
r (α−1)H d B H

r .

Using a similar argument to that in Lemma 20 we have for every p ⩾ 1 and for all n ∈ N,Q fq ,n(S) − Q fq ,n(Sα)


L p(Ω) = O
(
n−1) . (61)

As consequence, by using Sα ergodic and (61) we conclude that, almost surely as n → ∞,

Q fq ,n(S) −→ λ fq (Sα).
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Moreover, by the Gaussian property of Uα and (69) we can write

λ fq (Sα) := ν fq (α),

where ν fq is a function. Hence, in the case when the function ν fq is a homeomorphism, we obtain
the following strongly consistent estimator for α

α̂ fq ,n := ν−1
fq

[
Q fq ,n(S)

]
. (62)

Proposition 30. Assume H ∈
( 1

2 , 1
)

and ν fq is a homeomorphism. Let α̂ fq ,n be the estimator
given in (62). Then, almost surely as n −→ ∞

α̂ fq ,n −→ α.

Examples. In the two following examples, the function ν fq is homeomorphic and explicit.

• Suppose that fq = Hq . Using (20) and (69), we have

νHq (α) = λHq (Sα) =
q!

( q
2 )!2q/2

(
(2H − 1)H 2H

α
β(1 − H + αH, 2H − 1) − 1

)q/2

.

• Suppose that fq = φq with φq (x) = xq . From (21) and (69) we obtain νφq (α) = λφq (Sα) =

q!

( q
2 )!2q/2

[
(2H−1)H2H

α
β(1 − H + αH, 2H − 1)

]q/2
.

• The reader will check that in both cases above, the function α ↦→ v (α) is monotone
(decreasing) and convex from R+ to R+, and that the moment condition of Theorem 19 on(
v−1

)′′ is satisfied.

Now, we study the asymptotic distribution of α̂ fq ,n . By (70) which is established in Lemma 37
in the Appendix, we have for every H ∈ ( 1

2 , 1),
∑

j∈Z|rSα ( j)|2 < ∞ and κ4(U fq ,n(Sα)) = O( 1
n ).

Thus, applying (23) we deduce the following result.

Proposition 31. Suppose that H ∈ ( 1
2 , 1) and α > 0. Then

dW
(
u fq (Sα)−1/2U fq ,n(S), N

)
⩽ Cn−

1
4 .

In particular,

√
n
(̂
α fq ,n − α

) law
−→ N

(
0, u fq (Sα)

((
ν−1

fq

)′

(α)
)−2

)
.

Quadratic case. In this case we can improve the rate convergence of α̂ f2,n . By using Theorem 15,
the estimates κ4(U f2,n(Sα)) = O( 1

n ) and
⏐⏐E ((F f2,n(Sα))3

)⏐⏐ = O( 1
√

n ), and invoking the
properties of u f2 described in the examples (bullet points) above to invoke Theorem 19, we
get the following.

Proposition 32. Let H ∈
( 1

2 , 1
)
. Then

dW
(
u f2 (Sα)−1/2U f2,n(S), N

)
≍

1
√

n
,

and

dW

(
√

n
(̂
α f2,n − α

)
,N (0, u f2 (Sα))

((
ν−1

f2

)′

(α)
)−2

)
⩽

C
√

n
.
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Appendix

The following result is a well-known direct consequence of the Borel–Cantelli Lemma (see
e.g. [19]).

Lemma 33. Let γ > 0 and let (Zn)n∈N be a sequence of random variables. If for every p ⩾ 1
there exists a constant cp > 0 such that for all n ∈ N,

∥Zn∥L p(Ω) ⩽ cp · n−γ ,

then for all ε > 0 there exists a random variable ηε such that

|Zn| ⩽ ηε · n−γ+ε almost surely

for all n ∈ N. Moreover, E|ηε|
p < ∞ for all p ⩾ 1.

Proof of Theorem 1. Let us first prove (3). By (2) we have

dT V

⎛⎝ F√
E
[
F2
] , N

⎞⎠ ⩽
2

E
[
F2
] E

⏐⏐E [F2]
−
⟨
DF, −DL−1 F

⟩
H

⏐⏐ .
On the other hand, exploiting the fact that

E
[
E
[
(Ik(gk))2]

− ⟨DIk(gk), −DL−1 Ik(gk)⟩H
]

= 0, and

E (Ik(gk)Il(gl)) = 0 if k ̸= l,

we obtain

E
⏐⏐E [F2]

−
⟨
DF, −DL−1 F

⟩
H

⏐⏐ ⩽ q∑
k=2

√
V ar

(
1
k
∥DIk(gk)∥2

H

)
+

∑
2⩽k ̸=l⩽q

1
l

E |⟨DIk(gk), DIl(gl)⟩H| .

Moreover, by [25, Lemma 3.1] we have

V ar
(

1
k
∥DIk(gk)∥2

H

)
=

1
k2

k−1∑
j=1

j2 j !2
(k

j

)4
(2k − 2 j)!∥gk ⊗

j
gk∥

2
H⊗2k−2 j ,

and for k < l

E

[(
1
l
⟨DIk(gk), DIl(gl)⟩H

)2
]
⩽ (k)!

(l−1
k−1

)2
(l − k)!E

[
(Ik(gk))2]

∥gl ⊗
l−k

gl∥H⊗2k

+
k2

2

k−1∑
j=1

(l − 1)!2
(

k−1
j−1

)2(
l−1
j−1

)2
(k + l − 2 j)!

(
∥gk ⊗

k− j
gk∥

2
H⊗2 j + ∥gl ⊗

l− j
gl∥

2
H⊗2 j

)
.
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Therefore

E
⏐⏐E [F2]

−
⟨
DF, −DL−1 F

⟩
H

⏐⏐
⩽ Cq

√ max
2⩽k⩽q

∥gk∥
2
H⊗k

√
max

1⩽s⩽k
2⩽k⩽q

∥gk ⊗
s

gk∥
2
H⊗2k−2s + max

1⩽s⩽k
2⩽k⩽q

∥gk ⊗
s

gk∥
2
H⊗2k−2s .

Moreover, since ∥gk ⊗
s

gk∥H⊗2k−2s ⩽ ∥gk∥
2
H⊗k for all 1 ⩽ s ⩽ k, we get

E
⏐⏐E [F2]

−
⟨
DF, −DL−1 F

⟩
H

⏐⏐ ⩽ Cq max
2⩽k⩽q

∥gk∥H⊗k max
1⩽s⩽k
2⩽k⩽q

∥gk ⊗
s

gk∥
1
2
H⊗2k−2s , (63)

which implies (3).
Now, let us prove (4). Since, for any k ∈ Z, |rZ (k)| ⩽ rZ (0), we have

∥gk∥
2
H⊗k =

d2
k

n

n−1∑
i, j=0

(
rZ (i − j)

rZ (0)

)k

⩽
d2

k

n

n−1∑
i, j=0

(
rZ (i − j)

rZ (0)

)2

=
d2

k

d2
2
∥g2∥

2
H⊗2

=
d2

k

d2
2

V ar (I2(g2)).

On the other hand, for every 1 ⩽ s ⩽ k − 1 with k ∈ {2, . . . , q},

∥gk ⊗
s

gk∥
2
H⊗2k−2s

⩽ d4
k n−2

n−1∑
k1,k2,k3,k4=0

(
rZ (k1 − k2)

rZ (0)

)s(rZ (k3 − k4)
rZ (0)

)s(rZ (k1 − k3)
rZ (0)

)2k−s

×

(
rZ (k2 − k4)

rZ (0)

)2k−s

⩽ d4
k n−2rZ (0)−4

n−1∑
k1,k2,k3,k4=0

rZ (k1 − k2)rZ (k3 − k4)rZ (k1 − k3)rZ (k2 − k4)

=
d4

k

d4
2
κ4(I2(g2)).

Therefore, using (63),

E
⏐⏐E [F2]

−
⟨
DF, −DL−1 F

⟩
H

⏐⏐ ⩽ Cq

√
V ar (I2(g2))

√
κ4(I2(g2)).

Furthermore, by applying again (2) we can write

dT V

(
F
σ

, N
)

⩽
2
σ 2 E

⏐⏐σ 2
−
⟨
DF, −DL−1 F

⟩
H

⏐⏐
⩽

2
σ 2 E

⏐⏐E [F2]
−
⟨
DF, −DL−1 F

⟩
H

⏐⏐+ 2E
⏐⏐⏐⏐1 −

E[F2]
σ 2

⏐⏐⏐⏐ .
Thus the estimate (4) is obtained. The upper bound of the estimate (5) is proved in
[4, Proposition 6.4]. ■
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Proof of Lemma 14. An inspection of the proof of the main lower bound result in [24] shows
that their lower bound on dT V (Fn, N ) is in fact a lower bound on

1
2

max {|E (cos Fn) − E (cos N )| ; |E (sin Fn) − E (sin N )|} .

Since sin and cos are 1-Lipschitz functions, by definition of dW , this expression is also a lower
bound on 1

2 dW (Fn, N ). This proves the lemma. ■

Lemma 34. Let H ∈ (0, 1
2 ) ∪ ( 1

2 , 1] , m, m ′ > 0 and −∞ ⩽ a < b ⩽ c < d < ∞. Then

E
(∫ b

a
emsd B H (s)

∫ d

c
em′t d B H (t)

)
= H (2H − 1)

∫ b

a
dsems

∫ d

c
dtem′t (t − s)2H−2.

Proof. We use the same argument as in the proof of [9, Lemma 2.1]. ■

Lemma 35. Let H ∈ (0, 1
2 ) ∪ ( 1

2 , 1), m, m ′ > 0 and let Z θ be the process defined in (40). Then,

rZθ (0) = HΓ (2H )θ−2H and rZθ (t) ∼
H (2H − 1)

θ2 |t |2H−2

for large |t |.

Proof. see [9, Theorem 2.3] or Lemma 36. ■

Lemma 36. Let H ∈ (0, 1
2 ) ∪ ( 1

2 , 1), m, m ′ > 0 and let Zm be the process defined in (50). Then,

E
[

Zm
0 Zm′

0

]
=

HΓ (2H )
m + m ′

(
m1−2H

+ (m ′)1−2H ) (64)

and for large |t |

E
[

Zm
0 Zm′

t

]
∼

H (2H − 1)
mm ′

|t |2H−2. (65)

This implies that for H ∈ (0, 1
2 ) ∪ ( 1

2 , 1)

ηX (θ, ρ) := E
[(

Z θ,ρ

0

)2
]

=
HΓ (2H )
ρ2 − θ2 [ρ2−2H

− θ2−2H ], (66)

ηΣ (θ, ρ) := E
[(

Σ
θ,ρ

0

)2
]

=
HΓ (2H )
ρ2 − θ2 [θ−2H

− ρ−2H ], (67)

and for every t > 0

E
[(

Z θ,ρ
t Σ

θ,ρ
t

)]
= E

[(
Z θ,ρ

0 Σ
θ,ρ

0

)]
= 0. (68)

Proof. By using [9, Proposition A.1], we can write

E
[

Zm
0 Zm′

0

]
= mm ′

∫ 0

−∞

∫ 0

−∞

emuem′v E
(
B H

u B H
v

)
dudv

=
mm ′

2

∫
∞

0

∫
∞

0
emuem′v

(
u2H

+ v2H
− |v − u|

2H ) dudv

=
Γ (2H + 1)
2(m + m ′)

(
m1−2H

+ (m ′)1−2H ) .
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Thus the estimate (64) is proved. Now, let 0 < ε < 1

E
(

Zm
0 Zm′

t

)
= e−m′t E

(∫ 0

−∞

emud B H
u

∫ t

−∞

em′vd B H
v

)
= e−m′t E

(∫ 0

−∞

emud B H
u

∫ εt

−∞

em′vd B H
v

)
+e−m′t E

(∫ 0

−∞

emud B H
u

∫ t

εt
em′vd B H

v

)
:= A + B

where, using [9, Proposition A.1] it is easy to see that |A| = O
(

e−m′t
)

. On the other hand, by
Lemma 34 and integration by parts and linear changes of variables

B = H (2H − 1)e−m′t
∫ 0

−∞

du emu
∫ t

εt
dv em′v(v − u)2H−2

=
H (2H − 1)

m + m ′

(∫
∞

t
e−m(z−t)z2H−2dz +

∫ t

εt
e−m′(t−z)z2H−2dz

+e−m′t(1−ε)
∫

∞

εt
e−m(z−εt)z2H−2dz

)
=

H (2H − 1)
(m + m ′)

(
t2H−2

m
+

2H − 2
m

∫
∞

t
e−m(z−t)z2H−3dz +

t2H−2

m ′

−
(εt)2H−2

m ′
e−m′(1−ε)t

−
2H − 2

m ′

∫ t

εt
e−m′(t−z)z2H−3dz

+e−m′t(1−ε)
∫

∞

εt
e−m(z−εt)z2H−2dz

)
=

H (2H − 1)
mm ′

t2H−2
+ o

(
t2H−2) ,

the last inequality coming from the fact that∫
∞

t
e−m(z−t)z2H−3dz ⩽ t−1

∫
∞

0
e−mydy → 0, as t → ∞,

t2−2H
∫ t

εt
e−m′(t−z)z2H−3dz ⩽ ε2H−3t−1

∫ t

εt
e−m′(t−z)dz

= ε2H−3t−1
∫ (1−ε)t

0
e−m′ ydy → 0, as t → ∞,

and

t2−2H e−m′t(1−ε)
→ 0, as t → ∞.

So, we conclude that the estimate (65) is obtained. ■

Lemma 37. Let H ∈ ( 1
2 , 1). Then,

E
[(

Sα
0

)2
]

=
(2H − 1)H 2H

α
β(1 − H + αH, 2H − 1). (69)

and for large |t |

rSα (t) = E
[
Sα

0 Sα
t

]
= O

(
e− min{α, 1−H

H }t
)

. (70)
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Proof. We prove the first point (69). We have

E
[(

Sα
0

)2
]

= 2H (2H − 1)H 2(1−α)H
∫ a0

0
dyy(α−1)H

∫ y

0
dx x (α−1)H (y − x)2H−2

= 2H (2H − 1)H 2(1−α)H
∫ a0

0
dyy2αH−1

∫ 1

0
dz z(α−1)H (1 − z)2H−2

=
(2H − 1)H 2H

α
β(1 − H + αH, 2H − 1).

Thus (69) is obtained. For the point (70) see [17]. ■
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