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Abstract

Classical coupling constructions arrange for copies of the same Markov process started at two different
initial states to become equal as soon as possible. In this paper, we consider an alternative coupling
framework in which one seeks to arrange for two different Markov (or other stochastic) processes to remain
equal for as long as possible, when started in the same state. We refer to this “un-coupling” or “maximal
agreement” construction as MEXIT, standing for “maximal exit”. After highlighting the importance of
un-coupling arguments in a few key statistical and probabilistic settings, we develop an explicit MEXIT
construction for stochastic processes in discrete time with countable state-space. This construction is
generalized to random processes on general state-space running in continuous time, and then exemplified
by discussion of MEXIT for Brownian motions with two different constant drifts.
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1. Introduction

Coupling is a device commonly employed in probability theory for learning about distribu-
tions of certain random variables by means of judicious construction in ways which depend on
other random variables (Lindvall [15] and Thorisson [30]). Such coupling constructions are
often used to prove convergence of Markov processes to stationary distributions (Pitman [21]),
especially for Markov chain Monte Carlo (MCMC) algorithms (Roberts and Rosenthal [24], and
references therein), by seeking to build two different copies of the same Markov process started
at two different initial states in such a way that they become equal at a fast rate. Fastest possible
rates are achieved by the maximal coupling constructions which were introduced and studied
in Griffeath [11], Pitman [21], and Goldstein [10]. Our results and methods are closely related
to the work of Goldstein [10], who deals with rather general discrete-time random processes.
Our situation is related to a time-reversal of the situation studied by Goldstein [10]. However
our approach seems more direct.

In the current work, we consider what might be viewed as the dual problem where coupling
is used to try to construct two different Markov (or other stochastic) processes which remain
equal for as long as possible, when they are started in the same state. That is, we move from
consideration of the coupling time to focus on the un-coupling time at which the processes
diverge, and try to make that as large as possible. We refer to this as MEXIT (standing for
“maximal exit” time). While finalizing our current work, it came to our attention that this
construction is the same as the maximal agreement coupling time of the August 2016 work
of Völlering [31], who additionally derives a lower bound on MEXIT. Nonetheless, we believe
the current work complements Völlering [31] well. It offers an explicit treatment of discrete-
time countable-state-space, generalizes the continuous-time case, and discusses a number of
significant applications of MEXIT. We note that the work of Völlering [31] does not consider
the continuous-time case.

In addition to being a natural mathematical question, MEXIT has direct applications to many
key statistical and probabilistic settings (see Section 2). In particular, couplings which are
Markovian and faithful (Rosenthal [27], i.e. couplings which preserve the marginal update distri-
butions even when conditioning on both processes; alternatively “co-adapted” or “immersion”,
depending on the extent to which one wishes to emphasize the underlying filtration as in Burdzy
and Kendall [5] and Kendall [13]) are the most straightforward to construct, but often are not
maximal, while more complicated non-Markovian and non-faithful couplings lead to stronger
bounds. The same is true in the context of MEXIT.

2. Applications

To motivate the natural role of MEXIT in the existing literature, we first consider the role of
un-coupling arguments in a few statistical and probabilistic settings.

2.1. Bounds on accuracy for statistical tests

Un-coupling has an impact on the theory classical statistical testing. In Farrell [9], amongst
other sources, some function of the data (but not the data itself) is assumed to have been observed.
A statistical test is then constructed to enable detection of the distribution from which the
observed data have been sampled. For example, suppose that data X1, X2, . . . are generated as
a draw either from a multivariate probability distribution P1 or from a multivariate probability
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distribution P2. The goal is to determine whether the data was generated from P1 or from P2. For
some function h of the data, and some acceptance region A, the statistical test decides in favor
of P1 if h(X1, . . . , Xn) ∈ A and otherwise decides in favor of P2.

Suppose that there exists an un-coupling time T , such that if X1, X2, . . . are generated from
P1, and if Y1, Y2, . . . are generated from P2 then it is exactly the case that X i = Yi for all
1 ≤ i ≤ T (so that X i ̸= Yi for all i > T ). We use P to refer to the joint distribution (in fact, the
coupling) of P1 and P2.

The following proposition uses the un-coupling probabilities to recover a lower bound on the
accuracy of such statistical tests related to Farrell [9], Theorem 1.

Proposition 1. Under the above assumptions, the sum of the probabilities of Type-I and Type-II
errors of our statistical test is at least P [T > n].

Proof. We apply elementary arguments to the sum of the probabilities of Type-I and Type-II
errors:

P2[h(Y1, . . . , Yn) ∈ A] + P1[h(X1, . . . , Xn) ̸∈ A]

= P2[h(Y1, . . . , Yn) ∈ A] + 1 − P1[h(X1, . . . , Xn) ∈ A]

= 1 −

(
P1[h(Y1, . . . , Yn) ∈ A] − P2[h(X1, . . . , Xn) ∈ A]

)
≥ 1 − |P1[h(Y1, . . . , Yn] ∈ A] − P2[h(X1, . . . , Xn) ∈ A]|

≥ 1 − ∥LP1 (X1, . . . , Xn) − LP2 (Y1, . . . , Yn)∥

(definition of total variation distance)

≥ 1 − P [X i ̸= Yi for some 1 ≤ i ≤ n] (coupling inequality)

= 1 − (1 − P [X i = Yi for all 1 ≤ i ≤ n])

= P [X i = Yi for all 1 ≤ i ≤ n] = P [T > n] . □

2.2. Two independent coin flips

We now turn to the classical probabilistic paradigm of coin flips. Let X and Y represent two
different sequences of i.i.d. coin flips, with probabilities of landing on H (heads) to be q and r
respectively, where 0 ≤ r ≤ q ≤ 1/2. Suppose that we wish to maximize the length of the initial
segment for which coin flips agree:

S = max{t : X i = Yi for all 1 ≤ i ≤ t} .

For concreteness, we will set q = 0.5 and r = 0.4 throughout this section; the generalization to
other values is immediate.

2.2.1. Markovian faithful coupling for independent coin flips
The “greedy” (Markovian and faithful) coupling carries out the best “one-step minoriza-

tion” coupling possible, separately at each iteration. One-step minorization is essentially
maximal coupling for single random variables. In this case, that means that for each flip,
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P [X = Y = H ] = 0.4, P [X = Y = T ] = 0.5, and P [X = H, Y = T ] = 0.1. This preserves
the marginal distributions of X and Y , and yields P [X = Y ] = 0.9 at each step. Accordingly, the
probability of agreement continuing for at least n steps is given by P [X i = Yi for 1 ≤ i ≤ n] =

(0.9)n .

2.2.2. A look-ahead coupling for independent coin flips
Let a “look-ahead” coupling be a coupling which instead uses an n-step minorization couple

on the entire sequence of n coin tosses, so that for each sequence s of n different Heads and Tails,
it sets P [X = Y = s] = min(P [X = s] , P [Y = s]). Consequently, if s has m Heads and n − m
Tails, then

P [X = Y = s] = min{0.5n, 0.4m0.6n−m
}.

Elementary events for which X and Y disagree are assigned probabilities which preserve the
marginal distributions of X and of Y . The simplest way to implement this is to use “independent
residuals”, but other choices are also possible.

This look-ahead coupling leads to a larger probability that X = Y . Indeed, even in the case
n = 2, the probability of agreement over two coin flips under the greedy coupling is given by

P [X = Y ] = (0.9)2
= 0.81.

The look-ahead coupling delivers a strictly larger probability of agreement over two coin flips:

P [X = Y ] = min(0.52, 0.42) + min(0.52, 0.62) + 2 min(0.52, 0.4 · 0.6)

= 0.42
+ 0.52

+ 2 · 0.4 · 0.6 = 0.16 + 0.25 + 0.48 = 0.89 .

When n = 2, the matrix of joint probabilities for X and Y under the look-ahead coupling is
calculated to be:

Marginalizing this coupling on the initial coin flip (“projecting back” to the initial flip,
with n = 1), we see that P [X1 = Y1 = H ] = 0.16 + 0.24 = 0.4, and P [X1 = Y1 = T ] =

0.24 + 0.01 + 0.25 = 0.5, and P [X1 = H, Y1 = T ] = 0.09 + 0.01 = 0.1. The projection to the
initial flip yields the same agreement probability as would have been attained by maximizing the
probability of staying together for just one flip (n = 1). That is, the n = 2 look-ahead coupling
construction is compatible with the n = 1 construction.

Finally, it is worth noting that the n = 2 look-ahead coupling is certainly not faithful. For
example, P [X2 = H | X1 = Y1 = H ] = 0.4 ̸= 0.5, and P [X2 = H | X1 = H, Y1 = T ] =

0.9 ̸= 0.5, etc.
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2.3. A look-ahead coupling for independent coin flips: the case n = 3

The matrix of joint probabilities for X and Y under the look-ahead coupling for n = 3 is more
complicated, but can be calculated as:

With these probabilities, we compute that

P [X = Y ] = 0.064 + 3 × 0.096 + 4 × 0.125 = 0.852 .

This is greater than the agreement probability of 0.93
= 0.729 that would have been achieved

via the greedy coupling. It is natural to wonder whether or not it is possible always to ensure that
such a construction works not just for one fixed time but for all times. We further expound on
this point in Sections 3 and 4, where discussion of a much more general context shows that such
constructions always exist.

2.3.1. Optimal expectation
Until now, this section has focused on maximizing P [X i = Yi for all 1 ≤ i ≤ n], which is to

say, maximizing P [S ≥ n] with S being the time of first disagreement as above. We now consider
the related question of maximizing the expected value E [S] . Using the greedy coupling, clearly

E [S] =

∞∑
j=1

P [S ≥ j] =

∞∑
j=1

0.9 j
= 0.9/(1 − 0.9) = 9 .

If the different look-ahead couplings are chosen to be compatible, then this shows that E [S] is
the sum for r = 1, 2, . . . of the probabilities that the j th look-ahead coupling was successful.
The work of Sections 3 and 4 shows that such a choice is always feasible, even for very general
random processes indeed.

2.4. Adaptive MCMC

Un-coupling arguments play a natural role in the adaptive MCMC (Markov-chain Monte
Carlo) literature, highlighted in particular by the work of Roberts and Rosenthal [25]. Roberts
and Rosenthal [25] prove convergence of adaptive MCMC by comparing an adaptive process
to a process which “stops adapting” at some point, and then by showing that the two processes
have a high probability of remaining equal long enough such that the second process (and hence
also the first process) converge to stationarity. The authors accomplish this by considering a
sequence of adaptive Markov kernels PΓ1 , PΓ2 , . . . on a state space X , where {Pγ : γ ∈ Y}
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are a collection of Markov kernels each having the same stationary probability distribution π ,
and the Γi are Y-valued random variables which are “adaptive” (i.e., they depend on the previous
Markov chain values but not on future values). Under appropriate assumptions, the authors prove
that a Markov chain X which evolves via the adaptive Markov kernels will still converge to the
specified stationary distribution π . The key step in the proof of the central result [25, Theorem 5]
is an un-coupling approach, highlighted below.

Roberts and Rosenthal [25, Theorem 5] assume that, for any ε > 0, there is a non-negative
integer N = N (ε) such that

∥P N
γ (x, ·) − π (·)∥ TV ≤ ε

for all x ∈ X and γ ∈ Y (where ∥ · ∥TV denotes total variation norm of a signed measure).
Furthermore, there is a non-negative integer n∗

= n∗(ε) such that with probability at least
1 − ε/N ,

sup
x∈X

∥PΓn+1(x, ·) − PΓn (x,·)∥TV ≤ ε/N 2

for all n ≥ n∗.
These assumptions are used to prove, for any K ≥ n∗

+ N , the existence of a pair of processes
X and X ′ defined for K − N ≤ n ≤ K , such that X evolves via the adaptive transition kernels
PΓn , while X ′ evolves via the fixed kernel P ′

= PΓK−N . With probability at least 1 − 2ε, the
two processes remain equal for all times n with K − N ≤ n ≤ K . Hence, their un-coupling
probability over this time interval is bounded above by 2ε. Consequently, conditional on X K−N

and ΓK−N , the law of X K lies within 2ε (measured in total variation distance) of the law of X ′

K ,
which in turn lies within ε of the stationary distribution π . Hence, the law of X K is within 3ε of
π . Since this holds for any ε > 0 (for sufficiently large K = K (ε)), it follows that the law of
X K converges to π as K → ∞. Accordingly the adaptive process X is indeed a “valid” Monte
Carlo algorithm for approximately sampling from π ; namely it converges asymptotically to π .
The proof of a more general result (Roberts and Rosenthal [25], Theorem 13), is quite similar,
only requiring one additional ε.

3. MEXIT for discrete-time countable state-space

Having motivated the prominence of un-coupling arguments in key statistical and probabilistic
settings, we now turn to an explicit construction of MEXIT. We begin by considering two
discrete-time stochastic processes defined on the same countable discrete state-space, begun at
the same initial state s0. We extend the state-space by keeping track of the past trajectory of each
stochastic process (its “genealogy”). The state of one of these stochastic processes at time n will
thus be a sequence or genealogy s = (s0, s1, . . . , sn) of n+1 states, and these stochastic processes
are then time-inhomogeneous Markov chains governed at time n by transition probability kernels
p(s, b) and q(s, b), respectively. Let s ·a denote the sequence or genealogy s = (s0, s1, . . . , sn, a)
of n+2 states, corresponding to the chain moving to state a at time n+1. Note that if the original
processes were originally Markov chains then this notation is equivalent to working with path
probabilities p(s) = p(s0, s1)p(s1, s2) . . . p(sn−1, sn), q(s) = q(t0, t1)q(t1, t2) . . . q(tn−1, tn), with
p(s · a) = p(s)p(sn, a) et cetera.

We define a coupling between the two processes as a random process on the Cartesian product
of the (extended) state-space with itself, whose marginal distributions are those of the individual
processes.



P.A. Ernst, W.S. Kendall, G.O. Roberts et al. / Stochastic Processes and their Applications 129 (2019) 355–380 361

Definition 2 (Coupling of Two Discrete-Time Stochastic Processes). A coupling of two discrete-
time stochastic processes on a countable state space with genealogical probabilities p(s) and q(t)
respectively, is a random process (not necessarily Markov) with state (s, t) at time n given by a
pair of genealogies s and t each of length n, such that if the probability of seeing state (s, t) at
time n is equal to r (s, t), then∑

t

r (s, t) = p(s) (row-marginals) , (1)∑
s

r (s, t) = q(t) (column-marginals) . (2)

Moreover, probabilities at consecutive times are related by∑
a

∑
b

r (s · a, t · b) = r (s, t) (inheritance) . (3)

Remark 3. A coupling of two non-genealogical Markov chains can be converted into the above
form simply by keeping track of the genealogies.

Remark 4. We assume that both processes begin at the same fixed starting point s0, so
p((s0)) = q((s0)) = 1, and the processes initially have the same trajectory. MEXIT occurs
when first the trajectories split apart and disagree: the tree-like nature of genealogical state-space
means the genealogical processes will never recombine.

A MEXIT coupling is one which achieves the bound prescribed by the Aldous [1] coupling
inequality (Lemma 3.6 therein), thus (stochastically) maximizing the time at which the chains
split apart.

Definition 5 (MEXIT Coupling). Suppose that the following equation holds for all genealogical
states s:

r (s, s) = p(s) ∧ q(s) . (4)

Then the coupling is a maximal exit coupling (MEXIT coupling).

We now prove that MEXIT couplings always exist.

Theorem 6. Consider two discrete-time stochastic processes taking values in a given countable
state-space and started at the same initial state s0. A MEXIT coupling can always be constructed
such that the joint probability r (·, ·) satisfies the properties (1)–(4).

Proof. We claim a MEXIT coupling is given by the following recursive definition

r (s · a, t · b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p(s · a) ∧ q(s · a) if t = s, a = b,

π1(s · b)π2(s · a)
∑

c

d−(s · c) if t = s, p(s) ≤ q(s),

π1(s · b)π2(s · a)
∑

c

d+(s · c) if t = s, p(s) > q(s),

π1(t · b)π2(s · a)r (s, t) if t ̸= s,
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where

d+(s) = (q(s) − p(s)) ∨ 0, d−(s) = (p(s) − q(s)) ∨ 0

π1(t · b) =
d+(t · b)∑
c d+(t · c)

, π2(s · a) =
d−(s · a)∑
c d−(s · c)

.

We set π1 (or π2) to zero if the denominator appearing in the definition is zero. The initial joint
probability is given by r (s0, s0) = 1, which clearly satisfies (1)–(4).

Now we verify by induction this construction actually satisfies (1)–(4) at each time n. First,
the MEXIT equation (4) holds by construction. Second, if s ̸= t, we immediately have∑

a

∑
b

r (s · a, t · b) = r (s, t)

since
∑

cπ1(t · c) =
∑

cπ2(s · c) = 1. Observe that∑
c

d−(s · c) +

∑
c

(p(s · c) ∧ q(s · c)) =

∑
c

p(s · c) = p(s),

and d+(s · a)d−(s · a) = 0. Hence if p(s) ≤ q(s),∑
a

∑
b

r (s · a, s · b)

=

∑
c

(p(s · c) ∧ q(s · c)) +

(∑
c

d−(s · c)

)∑
b

∑
a ̸=b

π1(s · b)π2(s · a)

=

∑
c

(p(s · c) ∧ q(s · c)) +

(∑
c

d−(s · c)

) ∑
a
∑

b d+(s · a)d−(s · b)(∑
c d+(s · c)

) (∑
c d−(s · c)

)
=

∑
c

(p(s · c) ∧ q(s · c)) +

∑
c

d−(s · c) = p(s).

Similarly, if p(s) > q(s),∑
a

∑
b

r (s · a, s · b) = q(s).

Thus we conclude the inheritance property (3) holds. Intuitively, given r (s, t) at time n, we can
proceed to time n + 1 by first filling in the diagonals according to (4); then for each big cell
(s, t), the sum of r (s · a, t · b) must be equal to r (s, t) by (3) and we fill in all the remaining cells
proportionally by π1 and π2.

Now it remains to check the row/column marginal conditions. We shall only check that the row
marginal condition holds. If p(s) ≤ q(s), by the induction assumption, we have r (s, s) = p(s)
and r (s, t) = for any t ̸= s. Thus,∑

t

∑
b

r (s · a, t · b) =

∑
b

r (s · a, s · b)

= (p(s · a) ∧ q(s · a)) + π2(s · a)
∑

c

d−(s · c)
∑

b

π1(s · b)

= (p(s · a) ∧ q(s · a)) + d−(s · a) = p(s · a).
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If p(s) > q(s), observe that p(s) − q(s) + d+(s · c) = d−(s · c) and thus∑
t

∑
b

r (s · a, t · b) =

∑
t̸=s

∑
b

π1(t · b)π2(s · a)r (s, t) +

∑
b

r (s · a, s · b)

= π2(s · a)(p(s) − q(s)) + (p(s · a) ∧ q(s · a))

+ π2(s · a)
∑

c

d+(s · c)

= d−(s · a) + (p(s · a) ∧ q(s · a)) = p(s · a).

By symmetry, the column marginal condition holds. □

Remark 7. Note that the above theorem continues to hold if the common initial state s0 is itself
chosen randomly from some initial probability distribution.

Remark 8. MEXIT coupling is not unique in general. We can (over-)parametrize all possible
MEXIT couplings by replacing the assignations π1 and π2 using copulae (Nelsen [18]) to
parametrize the dependence between changes in the p-chain and the q-chain.

Recall the coin flip example. The table for n = 3 given in Section 2.3 does not satisfy the
inheritance principle. Using the construction provided in the proof above, one MEXIT coupling
is given by

It is easy to see that MEXIT is not unique. Assume all the cells are fixed except the upper-
right four cells, which can be seen as a 2 × 2 table. Then this 2 × 2 table only need satisfy three
constraints: the sum must be 0.9, the sum of the first row must be 0.061, and the sum of the first
column must be 0.0155. Hence there is still one degree of freedom.

Having proven the existence of MEXIT couplings, we now provide calculations of MEXIT
rate bounds (Section 3.1) and gain further insight into MEXIT by considering its connection
with the Radon–Nikodym derivative (Section 3.2). We finish Section 3 on an applied note with a
discussion of MEXIT times for MCMC algorithms (Section 3.3).

3.1. MEXIT rate bound

We now consider MEXIT rate bounds.

Proposition 9. Consider the context of Theorem 6. Suppose we know that there is some δ > 0
such that either:
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(a) for all s and a,
p(s · a)/p(s)
q(s · a)/q(s)

≥ 1 − δ

or
(b) for all s and a,

q(s · a)/q(s)
p(s · a)/p(s)

≥ 1 − δ.

Then

P[MEXIT at time n + 1 | no MEXIT by time n] ≤ δ.

Proof. Assume (a) (then (b) follows by symmetry). We obtain

P[no MEXIT by time n + 1 | no MEXIT by time n]

=

∑
s,a[p(s · a) ∧ q(s · a)]∑

s[p(s) ∧ q(s)]

≥

∑
s,a[(1 − δ)q(s · a) p(s)

q(s) ∧ q(s · a)]∑
s[p(s) ∧ q(s)]

=

∑
s,a

q(s·a)
q(s) [(1 − δ)p(s) ∧ q(s)]∑

s[p(s) ∧ q(s)]

=

∑
s[(1 − δ)p(s) ∧ q(s)]∑

s[p(s) ∧ q(s)]
≥ 1 − δ . □

The above is the discrete state-space version of a bound contained in Völlering [31]. It should
be noted that this bound applies equally well to faithful couplings, which typically degenerate in
continuous time (See Theorem 28 in the present work for an example of this in the context of
suitably regular diffusions.) Two corollaries of Proposition 9 follow immediately:

Corollary 10. Under the conditions of Proposition 9, P[ no MEXIT by time n] ≥ (1 − δ)n .

Corollary 11. Under the conditions of Proposition 9, E [MEXIT time] ≥ (1/δ).

3.2. A Radon–Nikodym perspective on MEXIT

In this section, we explore a simple and natural connection of MEXIT to the value of the
Radon–Nikodym derivative of q with respect to p.

In our discussion, it will suffice to consider MEXIT when the historical probability of
the current path under both p and q are close to being equal, rare big jumps excepting. It
follows from our MEXIT construction that the probability of not “MEXITing” by time n is
equal to

∑
s(p(s) ∧ q(s)), where the sum is over all length-n paths s. Hence, conditional on

having followed the path s up to time n and not “MEXITed,” the conditional probability of not
“MEXITing” at time n + 1 is equal to∑

a(p(s · a) ∧ q(s · a))
p(s) ∧ q(s)

.
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Thus, the probability of “MEXITing” at time n + 1 is

1 −

∑
a(p(s · a) ∧ q(s · a))

p(s) ∧ q(s)
=

(p(s) ∧ q(s)) −
∑

a(p(s · a) ∧ q(s · a))
p(s) ∧ q(s)

.

In particular, if p(s) > q(s) and p(s · a) > q(s · a) for all a, then the numerator is zero, so
the probability of “MEXITing” is zero. That is, “MEXITing” can only happen when the relative
ordering of (p(s), q(s)) and (p(s · a), q(s · a)) are different.

We now rephrase the above arguments in the language of Radon–Nikodym derivatives. Let
q(a|s) = q(s · a)/q(s), and R(s) = p(s)/q(s). Then the non-MEXIT probability is∑

a(p(s · a) ∧ q(s · a))
p(s) ∧ q(s)

= Eq(a|s)

[
R(s · a) ∧ 1

R(s) ∧ 1

]
= Ep(a|s)

[
R(s · a)−1

∧ 1
R(s)−1 ∧ 1

]
.

Note that Eq(a|s) [R(s · a)] = R(s). Thus, if we have either R(s) < 1 and R(s · a) < 1 for all
a, or R(s) > 1 and R(s · a) > 1 for all a, then this non-MEXIT probability is one and thus the
MEXIT probability is zero. That is, MEXIT can only occur when the Radon–Nikodym derivative
R changes from more than 1 to less than 1 or vice-versa.

3.2.1. An example: MEXIT for simple random walks
To further elucidate the connection of MEXIT with the Radon–Nikodym derivative, we

consider a concrete example: two simple random walks that both start at 0. Let “p” be simple
random walk with up probability η < 1/2 and down probability 1 − η. Similarly, let “q” be a
simple random walk with up probability 1 − η and down probability η. The Radon–Nikodym
derivative at time n can be computed as

R(s) =
p(s)
q(s)

=

(
η

1 − η

)xn+yn−n

,

where xn and yn denote the number of upward moves of chain “p” and “q” respectively. Hence
R(s) = 0 if and only if xn + yn = n. Before MEXIT , the two chains are coupled such that
xn = yn , which further implies that MEXIT only occurs at 0, i.e. xn = yn = n/2. Indeed, the
“pre-MEXIT ” process (i.e., the joint process, conditional on MEXIT not having yet occurred)
evolves with the following dynamics (for simplicity, we use P to denote the transition probability
of either chain conditional on that MEXIT has not occurred)

• For k > 0, P(k, k + 1) = η, and P(k, k − 1) = 1 − η.
• For k < 0, P(k, k + 1) = 1 − η, and P(k, k − 1) = η.
• P(0, 1) = P(0, −1) = η with MEXIT probability 1 − 2η when we are at 0.

For n = 2, the joint distribution of the two chains is given by
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Note that the chain P is defective at 0, but otherwise has a drift towards the MEXIT point 0.
Consider the joint process, with death when MEXIT occurs. Let Qt denote the number of times
this process hits 0 up to and including time t . Then

P[MEXIT by time t | Qt−1] = 1 − (2η)Qt−1 . (5)

Hence,

P[no MEXIT by time t | Qt−1] = (2η)Qt−1 .

In particular, since η < 1/2, and the joint process is recurrent conditional on not yet
“MEXITing”, eventual MEXIT is certain.

3.3. An application: noisy MCMC

The purpose of this section is to provide an application of MEXIT for discrete-time countable
state-spaces. We do so by comparing the MEXIT time τ of the penalty method MCMC algorithm
with the usual Metropolis–Hastings algorithm.

In the usual Metropolis–Hastings algorithm, starting at a state X , we propose a new state Y ,
and then accept it with probability 1 ∧ A(X, Y ), where A(X, Y ) is an appropriate acceptance
probability formula in order to make the resulting Markov chain reversible with respect to the
target density π . In noisy MCMC (specifically, the penalty method MCMC, see Ceperley and
Dewing [6]; Nicholls et al. [19]; Medina-Aguayo et al. [17]; Alquier et al. [2]) which is similar to
but different from the pseudo-marginal MCMC method of Andrieu and Roberts [3]), we accept
with probability α̂(X, Y ) := 1 ∧ ( Â(X, Y )), where Â(X, Y ) is an estimator of A(X, Y ) obtained
from some auxiliary random experiment.

Noisy Metropolis–Hastings is popular in situations where the target density π is either not
available or its pointwise evaluations are very computationally expensive. However replacing A
by Â interferes with detailed balance and therefore usually the invariant distribution of noisy
Metropolis–Hastings (if it even exists) is biased (i.e. different from π ). Quantifying the bias
is therefore an important theoretical question. It is not our intention to give a full analysis of
this here, as this is well-studied for example Medina-Aguayo et al. [17]. However a crucial
component in the argument used in that paper is the construction of a coupling between a standard
and a noisy Metropolis–Hastings chain in such a way that, with high probability, MEXIT occurs
at a time after both chains have more or less converged to equilibrium. Here therefore we shall
just focus on lower bounds for the MEXIT time.

For this example we shall assume that W = exp(N ) where N ∼ Normal(−σ 2/2, σ 2) for
some fixed σ > 0 (so that E [W ] = E

[
exp(N )

]
= 1), i.e. that α̂(X, Y ) := 1∧ (A(X, Y ) exp(N )).

We now show that the penalty method MCMC produces a Metropolis–Hastings algorithm with
sub-optimal acceptance probability.

Proposition 12. The penalty method MCMC produces a Metropolis–Hastings algorithm with
(sub-optimal) acceptance probability α̃(X, Y, σ ) := E [̃α(X, Y ) | X, Y ] given by

α̃(X, Y, σ ) = Φ

[
log A(X, Y )

σ
−

σ

2

]
+ A(X, Y )Φ

[
−

σ

2
−

log A(X, Y )
σ

]
.

Proof. We invoke Proposition 2.4 of Roberts et al. [23], which states that if B ∼ Normal(µ, σ 2),
then

E
[
1 ∧ eB]

= Φ
(µ

σ

)
+ exp(µ + σ 2/2)Φ

[
−σ −

µ

σ

]
.
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Note

α̃(X, Y, σ ) = E [̂α(X, Y )] = E
[
1 ∧ (A(X, Y )eN )

]
= E

[
1 ∧ eN (−σ 2/2+log A(X,Y ), σ 2)

]
.

After straightforward algebra, the right-hand side of the last equality simplifies to

Φ

[
log A(X, Y )

σ
−

σ

2

]
+ A(X, Y )Φ

[
−

σ

2
−

log A(X, Y )
σ

]
. □

Proposition 13. A(X, Y ) φ
[
−

σ
2 −

log A(X,Y )
σ

]
= φ

[
log A(X,Y )

σ
−

σ
2

]
.

Proof. We calculate

A(X, Y ) φ

[
−

σ

2
−

log A(X, Y )
σ

]
=

1
√

2π
exp

(
log A(X, Y ) −

1
2

(
−

σ

2
−

(
log A(X, Y )

σ

)2
))

=
1

√
2π

exp

(
−

1
2

(
log A(X, Y )

σ
−

σ

2

)2
)

= φ

(
log A(X, Y )

σ
−

σ

2

)
. □

Proposition 14. For any a, s > 0, we have that

1
a

φ

(
log a

s
−

s
2

)
≤

1
√

2π
. (6)

Proof. This follows from noting

1
a

φ

(
log a

s
−

s
2

)
=

1
√

2π
exp

(
− log a −

1
2

(
log a

s
−

s
2

)2
)

=
1

√
2π

exp

(
−

1
2

(
log a

s
+

s
2

)2
)

≤
1

√
2π

. □

Let r (X ) and r̃ (X ) be the probabilities of rejecting the proposal when starting at X for the
original Metropolis–Hastings algorithm and the penalty method MCMC, respectively. We now
proceed with Proposition 15.

Proposition 15. For all X, Y in the state space, and σ ≥ 0, the following seven statements hold
(1) α̃(X, Y ) ≤ α(X, Y ).
(2) r̃ (X ) ≥ r (X ).
(3) limσ↘0α̃(X, Y, σ ) = α(X, Y ).
(4) d

dσ
α̃(X, Y, σ ) = −φ

[
log A(X,Y )

σ
−

σ
2

]
.
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(5) 0 ≥
d

dσ
α̃(X, Y, σ ) ≥ −1/

√
2π .

(6) α̃(X, Y, σ ) ≥ α(X, Y ) − σ/
√

2π .
(7) α̃(X,Y,σ )

α(X,Y ) ≥ 1 − σ/
√

2π .

Proof. For statement (1), apply Jensen’s inequality. Note that

E [̃α(X, Y ) | X, Y ] = E
[
1 ∧ (A(X, Y )eN ) | X, Y

]
≤1 ∧ E

[
(A(X, Y )eN )

]
= 1 ∧ (A(X, Y )E

[
eN ]) =1 ∧ A(X, Y ) = α(X, Y ) .

Statement (2) follows immediately from statement (1) by taking the complements of the
expectations of the α(X, Y ) and α̃(X, Y ) with respect to Y .

For statement (3), note that if A(X, Y ) > 1 then limσ↘0α̃(X, Y, σ ) = Φ[+∞] +

A(X, Y )Φ[−∞] = 1, while if A(X, Y ) < 1 then limσ↘0α̃(X, Y, σ ) = Φ[−∞] + A(X, Y )
Φ[+∞] = 0 + A(X, Y ) 1 = A(X, Y ). Further, if A(X, Y ) = 1 then limσ↘0α̃(X, Y, σ ) =

Φ[0] + A(X, Y )Φ[0] = (1/2) + (1)(1/2) = 1. Thus, in all cases, limσ↘0α̃(X, Y, σ ) =

1 ∧ A(X, Y ) = α(X, Y ).
For statement (4), we use Proposition 13 to compute

d
dσ

α̃(X, Y, σ )

=
d

dσ

(
Φ

[
log A(X, Y )

σ
−

σ

2

]
+ A(X, Y )Φ

[
−

σ

2
−

log A(X, Y )
σ

])
= φ

[
log A(X, Y )

σ
−

σ

2

](
−

log A(X, Y )
σ 2 −

1
2

)
+ A(X, Y ) φ

[
−

σ

2
−

log A(X, Y )
σ

]
= −

1
2

+
log A(X, Y )

σ 2 = − φ

[
log A(X, Y )

σ
−

σ

2

]
.

Since 0 ≤ φ(·) ≤
1

√
2π

, statement (5) follows immediately. Statement (6) then follows by
integrating from 0 to σ . For statement (7), note that if A(X, Y ) ≥ 1 then α(X, Y ) = 1 and
the result then follows from statement (6). If instead A(X, Y ) < 1, then α(X, Y ) = A(X, Y ), and
we may invoke Proposition 14 to obtain

α̃(X, Y, σ )
α(X, Y )

= 1 −
α(X, Y ) − α̃(X, Y, σ )

α(X, Y )

= 1 −

∫ σ

u=0

1
α(X, Y )

d
du

α̃(X, Y, u)du

= 1 −

∫ σ

u=0

1
A(X, Y )

φ

[
log A(X, Y )

σ
−

σ

2

]
du

≥ 1 −

∫ σ

u=0

1
√

2π
du = 1 −

σ
√

2π
.

This concludes the proof. □

Let P be the law of a Metropolis–Hastings algorithm, and P̃ the law of a corresponding
noisy MCMC. We now prove Proposition 16, whose Corollary 17 uses MEXIT to control the
discrepancy between the Metropolis–Hastings algorithm and the noisy MCMC algorithm.

Proposition 16.
d P̃ t+1(s · a)
d P t+1(s · a)

≥
d P̃ t (s)
d P t (s)

(
1 −

σ
√

2π

)
.
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Proof. Note first that d P̃ t (s)
d P t (s) = γ1γ2 . . . γn where each γi equals either α̃(Xi−1,Xi )

α(Xi−1,Xi ) if the move from
X i−1 to X i is accepted and otherwise r̃ (X )

r (X ) if the move is rejected. Statement (2) of Proposition 15
tells us that, if we reject,

d P̃ t+1(s · a)
d P t+1(s · a)

≥
d P̃ t (s)
d P t (s)

≥
d P̃ t (s)
d P t (s)

(
1 −

σ
√

2π

)
.

However, if we accept, then by statement (7) in Proposition 15, d P̃ t+1(s·a)
d P t+1(s·a)

≥
d P̃ t (s)
d P t (s) (1 −

σ
√

2π
), as

claimed. □

The following corollary to Proposition 16 now follows immediately.

Corollary 17. d P̃ t (s)
d P t (s) ≥

(
1 −

σ
√

2π

)t
.

Applying Proposition 16 to Proposition 9 in Section 3.1, with δ =
σ

√
2π

, the following
corollary follows immediately.

Corollary 18. The MEXIT time τ of the above penalty method MCMC algorithm, compared to
the regular Metropolis–Hastings algorithm, satisfies the following two inequalities:

P[τ > n] ≥

(
1 −

σ
√

2π

)n

and

E [τ ] ≥
√

2π/σ.

Of course, unless σ is small, MEXIT will likely occur substantially before Markov chain
mixing, reflecting the fact that successful couplings usually have to bring chains together and
not just stop them from separating. Therefore these results are usually not useful for explicitly
estimating the bias of noisy Metropolis–Hastings. However they are particularly useful for
demonstrating robustness results for both noisy and pseudo-marginal chains as in Medina-
Aguayo et al. [17] and Andrieu and Roberts [3].

4. MEXIT for general random processes

The methods and results of Section 3 generalize to the case when the two processes are
general time-inhomogeneous random processes in discrete time with countable state-space:
such processes, with state augmented to include genealogy, become Markov chains. In fact the
methods and results extend to still more general processes: in this section we deal with the case
of random processes for which the state-space is a general Polish space (a σ -algebra arising from
a complete separable metric space).

4.1. Case of one time-step

To establish notation, we first review the simplest case of just one time-step. We require the
state-space to be Polish (we note that in principle one might be able to generalize a little beyond
this, but the prospective rewards of such a generalization seem to be not very substantial). In the
case of Polish space, the diagonal set ∆ = {(x, x) : x ∈ E} ⊂ E × E belongs to the product
σ -algebra E ∗ E (counterexamples for some more general spaces are provided in [28, Subsection
1.6]; in principle one could seek to exploit the fact that ∆ is in general analytic with respect to
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E ∗ E , but some kind of assumption about the state-space would still be required to take care of
further complications).

Consider two E-valued random variables X+

1 and X−

1 , measurable with respect to E on E ,
with distributions L

(
X+

1

)
= µ+

1 and L
(
X−

1

)
= µ−

1 on (E, E). We recall that the meet measure
µ̂1 = µ+

1 ∧µ−

1 of the probability measures µ+ and µ− in the lattice of non-negative measures on
(E, E1) can be described explicitly using the Hahn–Jordan decomposition (Halmos [12], § 28) as

µ+

1 − µ−

1 = ν+

1 − ν−

1 (7)

for unique non-negative measures ν+

1 and ν−

1 of disjoint support. The condition of disjoint
support implies that

µ̂1 = µ+

1 − ν+

1 = µ−

1 − ν−

1 (8)

is the maximal non-negative measure µ̃ such that

µ̃(D) ≤ min{µ+

1 (D), µ−

1 (D)} for all D ∈ E .

Lemma 19. Consider two random variables X+

1 and X−

1 taking values in the same measurable
space (E, E) which is required to be Polish. The simplest MEXIT problem is solved by maximal
coupling of the two marginal probability measures µ+

1 = L
(
X+

1

)
and µ−

1 = L
(
X−

1

)
using a

joint probability measure m1 on the product measure space (E × E, E ∗ E) such that

1. m1 has marginal distributions µ+

1 and µ−

1 on the two coordinates,
2. m1 ≥ ı∆∗

µ̂1, where the non-negative measure µ̂1 = µ+

1 ∧ µ−

1 is the meet measure for µ+

1
and µ−

1 , and ı∆∗
is the push-forward map corresponding to the (E : E ∗ E)-measurable

“diagonal injection” ı∆ : E → E × E given by ı∆ (x) = (x, x).

Proof. One possible explicit construction for m1 is

m1 = ı∆∗
µ̂1 +

1
ν+

1 (E)
ν+

1 ⊗ ν−

1 , (9)

where ν±

1 are defined by the Hahn–Jordan decomposition in (7) and ν+

1 ⊗ ν−

1 is the product
measure on (E × E, E ∗ E). It follows directly from (7) that ν+

1 (E) = ν−

1 (E). Maximality of
the coupling (which is to say, maximality of m1(∆) = µ̂1(E) compared to all other probability
measures with these marginals) follows from maximality of the meet measure µ̂. This completes
the proof. □

Given this construction, we can realize X+

1 and X−

1 as the coordinate maps for E × E : the
probability statements

P
[
X+

1 ∈ D ; X+

1 = X−

1

]
= µ̂1(D) for all D ∈ E (10)

hold for any maximal coupling of X+

1 and X−

1 .
It is convenient at this point to note a quick way to recognize when a given coupling is

maximal.

Lemma 20 (Recognition Lemma for Maximal Coupling). Suppose the measurable space (E, E)
is Polish. Given a coupling probability measure m∗ for (E, E)-valued random variables X+

1 and
X−

1 (with distributions L
(
X+

1

)
= µ+

1 and L
(
X−

1

)
= µ−

1 ), this coupling is maximal if the two
non-negative measures

ν
±,∗
1 : D ↦→ m∗[X±

1 ∈ D ; X+

1 ̸= X−

1 ] (11)
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(defined for D ∈ E) are supported by two disjoint E-measurable sets. Moreover in this case the
meet measure for the two probability distributions L

(
X+

1

)
and L

(
X−

1

)
is given by

µ̂1(D) = m∗[X+

1 ∈ D ; X+

1 = X−

1 ] for all D ∈ E . (12)

Proof. This follows immediately from the uniqueness of the non-negative measures ν±

1 of
disjoint support appearing in the Hahn–Jordan decomposition, since a sample-wise cancellation
of events shows that

µ+

1 − µ−

1 = L
(
X+

1

)
− L

(
X−

1

)
= ν

+,∗
1 − ν

−,∗
1 . □

4.2. Case of n time-steps

The next step is to consider the extent to which Theorem 6 generalizes to the case of
discrete-time random processes taking values in general Polish state-spaces. We first note that
the generalization beyond Polish spaces cannot always hold. Based on the work of Rigo and
Thorisson [22], and dating back to Doob [7, p. 624], Halmos [12, p. 210], and Billingsley
[4, Chapter 33], consider the following counterexample.

Consider the interval Ω = [0, 1] equipped with Lebesgue measure. There exists a set M ⊂ Ω
with outer measure 1 and inner measure 0, e.g. a Vitali set with outer measure 1. Let B be
the Borel σ -algebra on Ω and consider the σ -algebra σ (B, M). It can be shown that any set
A ∈ σ (B, M) can be written as

A = (M ∩ B1) ∪ (Mc
∩ B2), B1, B2 ∈ B.

The representation is not unique. However, using the identity Leb∗(M) = Leb∗(M ∩ B1) +

Leb∗(M ∩ Bc
1) (since B1 is Lebesgue measurable), we can show Leb∗(M ∩ B1) = Leb(B1) where

Leb∗ is the Lebesgue outer measure. Similarly, Leb∗(Mc
∩ B2) = Leb(B2). Hence if there is

another representation A = (M ∩ B3) ∪ (Mc
∩ B4) where B3 and B4 are Borel, we must have

Leb(B1) = Leb(B3) and Leb(B2) = Leb(B4). Now we can define the probability measures m±

on σ (B, M) by

m+(A) = Leb(B1), m−(A) = Leb(B2).

It is straightforward to verify that they are probability measures. Note that for any Borel set B,
we have m+(B) = m−(B) = Leb(B). Set E1 = B and E2 = σ (B, M). Consider two random
sequences (X+

1 , X+

2 ) and (X−

1 , X−

2 ). Let X±

2 (ω) = ω be random variables defined on (Ω , E2, m±).
Let X±

1 be defined on (Ω , E1) and set X±

1 = X±

2 (this is allowed because the function X (ω) = ω

is Borel measurable). Since for any B ∈ B,

P
[
X+

1 ∈ B
]

= P
[
X+

2 ∈ B
]

= m+(B) = Leb(B),

X±

1 have the same law (the Lebesgue measure) and thus any realization of MEXIT would have
to have P

[
X+

1 = X−

1

]
= 1, which further implies P

[
X+

2 = X−

2

]
= 1. On the other hand, since

m+(M) = 1 and m−(M) = 0, we have ∥m+
− m−

∥TV = 1 w.r.t E2. So for any coupling of
X±

2 , denoted by (Ω2, E2, µ), where E2 denotes the completion of E2 × E2 w.r.t. µ, we must have
µ({(ω, ω) : ω ∈ Ω}) = 0. This gives a contradiction.

However the existence of MEXIT follows easily in the case of Polish spaces, as also noted
by Völlering [31]. Here follows a proof by induction.
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Theorem 21. Consider two discrete-time random processes X+ and X−, begun at the same fixed
initial point, taking values in a measurable state-space (E, E) which is Polish, and run up to a
finite time n. Maximal MEXIT couplings exist.

Proof. The case n = 1 follows directly from the general state-space arguments of Lemma 19.
The countable product of Polish spaces is again Polish, so an inductive argument completes the
proof if we can establish the following.

Suppose X± are two random variables taking values in a measurable space (E, E2) which is
Polish, with laws µ±

2 . Suppose E1 ⊆ E2 is a sub-σ -algebra such that (E, E1) is also Polish, and
let µ±

1 be the laws of X± viewed as random variables taking values in the Polish space (E, E1).
Suppose m1 is a maximal coupling with marginals µ±

1 on (E × E, E1 ∗ E1). The claim is that
there then exists a maximal coupling m2 with marginals µ±

2 on (E × E, E2 ∗ E2) which equals
m1 when restricted to E1 ∗ E1.

To see this, first note from Lemma 19 that m1|∆ = ı∆∗
µ̂1, where µ̂1 is the sub-probability

measure given by µ̂1 = µ+

1 ∧ µ−

1 . Moreover, if µ̂2 is the sub-probability measure given by
µ̂2 = µ+

2 ∧ µ−

2 , then we can use the infimum characterization following (8) to show that
µ̂2 satisfies µ̂2(A) ≤ µ̂1(A) for all A ∈ E1. Write (1 − π1) d µ̂1 = d(µ̂2|E1 ) to define the
E1-measurable random variable π1 (with 0 ≤ π1 ≤ 1) as the conditional probability of MEXIT
immediately after time 1. Because (1 − π1) d µ̂1 and d µ̂2 agree on E1, and because we are
working with Polish spaces, we can construct a regular conditional probability kernel k̂12(x, B)
(a probability measure on E2 for each fixed x , and E1-measurable in x) such that

d µ̂2 = (1 − π1)k̂12 ∗ d µ̂1 . (13)

Similarly we can construct regular conditional probability kernels k±

12(x, B) such that

d µ±

2 = k±

12 ∗ d µ±

1 . (14)

Now (1 − π1)ı∆∗
(k̂12 ∗ d µ̂1) = ı∆∗

d µ̂2 defines a sub-probability measure on (E × E, E2 ∗ E2)
with marginals equal to each other and given by µ̂2 (as a consequence of (13)). The proof of
the claim will be completed if we can establish the existence of a sub-probability measure Γ2 on
(E × E, E2 ∗ E2) with marginals defined by µ±

2 − µ̂2, and agreeing on E1 ∗ E1 with the measure
defined by d m1 − (1 − π1)ı∆∗

d µ̂1. Consider

dΓ2 = (k+

12 ⊗ k−

12) ∗ ( d m1 − (1 − π1)ı∆∗
d µ̂1) ,

where (k+

12 ⊗ k−

12)((x+, x−), B+
× B−) = k+

12(x+, B+) × k−

12(x−, B−) and we use the theory
of product measure to extend to a kernel of product measures k+

12(x+, ·) ⊗ k−

12(x−, ·). Exactly
because (k+

12 ⊗ k−

12) is itself a regular conditional probability kernel, it follows that Γ2 agrees
on E1 ∗ E1 with the measure defined by d m1 − (1 − π1) d µ̂1. On the other hand, because Γ2
is built from appropriate product regular conditional probabilities, Γ2 has marginals defined by
k±

12 d µ±

1 − (1 − π1) d µ̂ = d µ±

2 − d µ̂2 as required.
In summary, the required maximal coupling at the level of E2 ∗ E2 is defined by

ı∆∗
d µ̂2 + dΓ2 = (1 − π1)ı∆∗

(k̂12 ∗ d µ̂1) + (k+

12 ⊗ k−

12)
∗ (d m1 − (1 − π1)ı∆∗

d µ̂1) . □ (15)

Remark 22. As in the n = 1 case of Lemma 19, we can generate a whole class of maximal
couplings by using measurable selections from Fréchet classes to replace the product regular
conditional probability kernel (k+

12 ⊗ k−

12) ∗ ( d m1 − (1 − π1)ı∆∗
d µ̂1). Equally, as in the n = 1

case of Lemma 19, this clearly does not exhaust all the possibilities.



P.A. Ernst, W.S. Kendall, G.O. Roberts et al. / Stochastic Processes and their Applications 129 (2019) 355–380 373

4.3. Unbounded and/or continuous time

MEXIT for all times (with no upper bound on time) follows easily so long as the Kolmogorov
Extension Theorem (Doob [8, § V.6]) can be applied. This is certainly the case if the state-space
is Polish; we state this formally as a corollary to Theorem 21 of the previous section. (For an
example of what can go wrong in a more general measure-theoretic context for the Kolmogorov
Extension Theorem, see Stoyanov [28, § 2.3].)

Corollary 23. Consider two discrete-time random processes X+ and X−, begun at the same
fixed initial point, taking values in a measurable state-space (E, E) which is Polish. MEXIT
couplings exist through all time.

Under the requirement of Polish state-space, it is also straightforward to establish a
continuous-time version of the MEXIT result for càdlàg processes. The result requires this
preliminary elementary properties about joint laws with given marginals.

Lemma 24. Suppose that {X+

i } and {X−

i } are two collections of random variables on the
probability space (Ω ,F ,P) taking values on a metric space (E, d). Suppose that {L

(
X+

i

)
} and

{L
(
X−

i

)
} are both tight. Then {L

(
X+

i , X−

i

)
} is tight on (E×E, d̃) where d̃ denotes the Euclidean

product measure d × d.

Proof. For any ϵ > 0, we can find compact sets S+, S− such that P(X+

i ∈ S+) > 1 − ϵ/2
and P(X−

i ∈ S−) > 1 − ϵ/2 for all i . But S+
× S− is d̃−compact and clearly P((X+

i , X−

i ) ∈

S+
× S−) > 1 − ϵ, so that {L

(
X+

i , X−

i

)
} is tight on (E × E, d̃). □

Theorem 25. Consider two continuous-time real-valued random processes X+ and X−, begun
at the same fixed initial point, with càdlàg paths. MEXIT couplings exist through all time.

Proof. We work first up to a fixed time T .
The space of càdlàg paths in a complete separable metric state-space over a fixed time

interval [0, T ] can be considered as a Polish space (Maisonneuve [16, Théorème 1]), using
a slight modification of the Skorokhod metric, namely the following Maisonneuve distance:
if τ (t) : [0, T ] → [0, T ] is a non-decreasing function determining a change of time, and if
|τ | = supt |τ (t) − t | + sups ̸=t log

(
τ (t)−τ (s)

t−s

)
, then the Maisonneuve distance is given by

distM (ω, ω̃) = inf
τ

{|τ | + distE ((ω ◦ τ ) − ω̃)} , (16)

where ω and ω̃ are two càdlàg paths [0, T ] → R. Denote this metric space, which is separable
and complete, by D.

Consider a sequence of discretizations σn (n = 1, 2, . . .) of time–space [0, T ] whose
meshes tend to zero, each discretization being a refinement of its predecessor. Note that by
“discretization” we mean an ordered sequence σ = (t1, t2, . . .) where 0 < t1 < t2 < · · · .
Let X±,n(t) = X±(sup{s ∈ σn : s ≤ t}) define discretized approximations of X± with respect
to the discretization σn . Invoking Theorem 21, we require X+,n , X−,n to be maximally coupled
as discrete-time random processes sampled only at the discretization σn: since they are constant
off σn , this extends to a maximal coupling of X+,n , X−,n viewed as piecewise-constant processes
defined over all continuous time.
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For a given càdlàg path ω, the discretization of ω by σn converges to ω in Maisonneuve
distance. This follows by observing that, for each fixed ε > 0, the time interval [0, T ] can be
covered by pointed open intervals t ∈ (t−, t+) such that |ω(s) − ω(t−)| < ε/2 if s ∈ (s−, t)
and |ω(s) − ω(t)| < ε/2 if s ∈ (t, s+). By compactness we can select a finite sub-cover. For
sufficiently fine discretizations σ we can then ensure the Maisonneuve distance between ω and
the resulting discretization is smaller than ε. Consequently, both sequences {L

(
X+,n

)
: n =

1, 2, . . .}, {L
(
X−,n

)
: n = 1, 2, . . .} are tight, and therefore by Lemma 24 we know that the

sequence of joint distributions {L
(
X+,n, X−,n

)
: n = 1, 2, . . .} is also tight in the product space

D × D.
Therefore (selecting a weakly convergent subsequence if necessary) we may suppose the joint

distribution (X+,n, X−,n) converges weakly in D × D to a limit which we denote by (X̃+, X̃−).
Since (X+,n, X−,n) has been constructed to satisfy MEXIT for t ∈ σn , and since (X+,n, X−,n) is
constant off σn , it follows for all t that

P[X+,n(s) = X−,n(s) for all s < t]
=
(
L
(
(X+,n(s) : s < t)

)
∧ L

(
(X−,n(s) : s < t)

))
(R) = mn(t) .

Let m∞(t) be defined analogously for X̃+ and X̃− and note that mn(t), m∞(t) are both decreasing
in t ; moreover

mn(t) ↓ m∞(t) for t ∈

⋃
m

σm ,

since the left-hand side corresponds to the less onerous “MEXIT on σn” requirement that X+,n

and X−,n be constructed to agree only on σn ∩ [0, t) (a set of time points increasing in n) rather
than all of [0, t). We require the discretizations σn to be augmented (modifying (X+,n, X−,n)
accordingly) so that the decreasing function m∞ is continuous off ∪nσn .

We now make a key observation: MEXIT questions can be re-expressed in terms of continuous
sample-path processes rather than càdlàg processes. For ϵ > 0, consider the smoothing operator
Sϵ acting on f ∈ D as follows

Sϵ( f )(t) =
1
ϵ

∫ t

t−ϵ

f (u) d u ,

where we take f (t) = f (0) for t ≤ 0. Then Sϵ : D → C([0, 1]) is continuous, where C([0, 1])
is the space of continuous real-valued functions on [0, 1], endowed with the supremum metric.
It therefore follows that in C([0, 1]) × C([0, 1]) = C([0, 1])2 we have(

Sϵ(X+,n), Sϵ(X−,n)
)

⇒

(
Sϵ(X̃+), Sϵ(X̃−)

)
.

On the other hand, for any t ∈ [0, 1] it follows by construction and the càdlàg property of
f and g that Sϵ( f )(s) = Sϵ(g)(s) for all s ≤ t if and only if f (s) = g(s) for all s < t .
Suppose time t belongs to one of the discretizations in the sub-sequence, and thus eventually
to all (since each discretization is a refinement of its predecessor). Consider the subspace of
D × D given by At = [MEXIT ≥ t]. Since [Sϵ(X+,n)(s) = Sϵ(X−,n)(s) for s ≤ t] and
[Sϵ(X̃+)(s) = Sϵ(X̃−)(s) for s ≤ t] can be viewed as corresponding to the same closed subset of
C([0, 1])2, by the Portmanteau Theorem of weak convergence (Billingsley [4, Theorem 2.1]),

lim sup
n→∞

P
[
(X+,n, X−,n) ∈ At

]
≤ P

[
(X̃+, X̃−) ∈ At

]
.

Considerations of total variation distance tell us that P[(X̃+, X̃−) ∈ At ] ≤ m∞(t); indeed
X̃+ and X̃− cannot disagree at a slower rate than that afforded by MEXIT. On the other hand,
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P[(X̃+, X̃−) ∈ At ] relates to total variation distance as above, so

lim sup
n→∞

mn(t) ≤ P[(X̃+, X̃−) ∈ At ] ≤ m∞(t) for all t .

But mn ↓ m∞ on σm , so P[(X̃+, X̃−) ∈ At ] = m∞(t) for all t ∈ ∪nσn . The càdlàg property
and the continuity of m∞ off ∪nσn then implies maximality of the limiting coupling for all times
t ≤ T . Hence (X̃+, X̃−) is a MEXIT construction as required. MEXIT for all time follows using
the Kolmogorov Extension Theorem as above. □

Remark 26. Sverchkov and Smirnov [29] prove a similar result for maximal couplings by means
of general martingale theory.

Remark 27. Note that Théorème 1 of Maisonneuve [16] can be viewed as justifying the notion
of the space of càdlàg paths: this space is the completion of the space of step functions under
the Maisonneuve distance distM . Thus in some sense Theorem 25 is a maximally practical result
concerning MEXIT!

5. MEXIT for diffusions

The results of Section 4 apply directly to diffusions, which therefore exhibit MEXIT. This
section discusses the solution of a MEXIT problem for Brownian motions, which can be viewed
as the limiting case for random walk MEXIT problems.

It is straightforward to show that MEXIT will generally have to involve constructions not
adapted to the shared filtration of the two diffusion in question. By “faithful” MEXIT we mean
a MEXIT construction which generates a coupling between the diffusions which is Markovian
with respect to the joint and individual filtrations (see Rosenthal [27] and Kendall [13] for
further background). We consider the case of elliptic diffusions X+ and X− with continuous
coefficients.

Theorem 28. Suppose X+ and X− are coupled elliptic diffusions, thus with continuous semi-
martingale characteristics given by their drift vectors and volatility (infinitesimal quadratic
variation) matrices, begun at the same point, with this initial point lying in the open set where
either or both of the drift and volatility characteristics disagree. Faithful MEXIT must happen
immediately.

Proof. Let T be the MEXIT time, which by faithfulness will be a stopping time with respect
to the common filtration. If X+ and X− are semimartingales agreeing up to the random time
T , then the localization theorems of stochastic calculus tell us that the integrated drifts and
quadratic variations of X+ and X− must also agree up to time T . It follows that X+ and X−

agree as diffusions up to time T . Were the faithful MEXIT stopping time to have positive chance
of being positive then the diffusions would have to agree on the range of the common diffusion
up to faithful MEXIT ; this would contradict our assertion that the initial point lies in the open
set where either or both of the drift and volatility characteristics disagree. □

By way of contrast, MEXIT can be described explicitly in the case of two real Brownian
motions X+ and X− with constant but differing drifts. Because of re-scaling arguments in time
and space, there is no loss of generality in supposing that both X+ and X− begin at 0, with X+

having drift +1 and X− having drift −1.
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Theorem 29. If X± is Brownian motion begun at 0 with drift ±1, then MEXIT between X+ and
X− exists and is almost surely positive.

Proof. The existence of MEXIT directly follows from Theorem 25. The almost surely positive-
ness will be shown in Section 5.2, through a limiting version of the random walk argument in
Section 3.2.1. Alternatively one can argue succinctly and directly using the excursion-theoretic
arguments of 32 celebrated path-decomposition of Brownian motion with constant drift (an
exposition in book form is given in Rogers and Williams [26]).

Calculation shows that the bounded positive excursions of X+ (respectively −X−) from 0 are
those of the positive excursions of a Brownian motion of negative drift −1, while the bounded
negative excursions of X+ (respectively −X−) from 0 are those of the negative excursions of a
Brownian motion of positive drift +1. (The unbounded excursion of X+ follows the law of the
distance from its starting point of Brownian motion in hyperbolic 3-space, while the unbounded
excursion of X− has the distribution of the mirror image of the unbounded excursion of X+.)

Viewing X± as generated by Poisson point processes of excursions indexed by local time, it
follows that we may couple X+ and X− to share the same bounded excursions, with unbounded
excursions being the reflection of each other in 0. Moreover the processes have disjoint support
once they become different. So the Recognition Lemma for Maximal Coupling (Lemma 20)
applies, and hence this is a MEXIT coupling. □

5.1. Explicit calculations for Brownian MEXIT

Let X+ and X− begin at 0, with X+ having drift +θ and X− having drift −θ with θ > 0. The
purpose of this section is to offer explicit calculations of MEXIT and MEXIT means.

Calculation 1. The meet of the distributions of X+
t and X−

t is the meet of N (θ t, t) and
N (−θ t, t), and the probability of MEXIT happening after time t is given by the total mass of
this meet sub-probability distribution. Therefore:

P [MEXIT ≥ t] = P [N (0, t) < −θ t] + P [N (0, t) > θ t]

= 2P [N (0, t) > θ t]

=
2

√
2π

∫
∞

θ
√

t
e−u2/2du.

Thus,

E [MEXIT] =
2

√
2π

∫
∞

0

∫
∞

θ
√

t
e−u2/2dudt = θ−2.

Remark 30. Excursion theoretic arguments can be used to confirm this is mean time to MEXIT
for the specific construction given in Theorem 29.
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Calculation 2. We now consider the expected amount of time T during which processes agree
before MEXIT happens.

E [T ] =

∫
∞

0
EW

[
min{eθWt −θ2t/2, e−θWt −θ2t/2

}

]
dt

= 2
∫

∞

0
EW

[
e−θWt −θ2t/2

; Wt > 0
]

dt

= 2
∫

∞

0

∫
∞

0

1
√

2π t
exp

(
−

(w + θ t)2

2t

)
dwdt

= θ−2.

5.2. An explicit construction for MEXIT for Brownian motions with drift

In this section, we continue the scenario of Calculation 2. We see that MEXIT should have the
complementary cumulative distribution function

P [MEXIT ≥ t] = 2Φ(−θ
√

t), (17)

where Φ(y) =
∫ y
−∞

(2π )−1/2e−u2/2du. A natural question to ask is as follows: how can one
explicitly construct and understand this MEXIT time in a way that relates to the random walk
constructions of Section 3.2.1? In this section we first deduce a candidate coupling and EXIT
time, and then we proceed to show by direct calculation that our construction indeed gives the
correct MEXIT time distribution above.

We note from the discrete constructions of Section 3 (in particular Section 3.2) that MEXIT
is only possible when the Radon–Nikodym derivative between the “p” and “q” processes moves
from being below 1 to above 1 or moves from being above 1 to below 1. Let P+, P− denote the
probability laws of X+, X− respectively. We have that

dP+

dP−
(W[0,T ]) = exp{2θWT },

which is continuous in time with probability 1 under both P+ and P−. By analogy to the
discrete case, the region in which MEXIT could possibly occur corresponds to the interface
dP+

dP− (W[0,T ]) = 1 (that is, where WT = 0).
Now we shall focus on the random walk example at the end of Section 3.2. We note that the

MEXIT distribution given in (5) can be constructed as the first time the occupation time of 0
exceeds a geometric random variable with “success” probability 1−2η. We aim to give a similar
interpretation for the Brownian motion case. To do this, we shall use a sequence of random walks
converging to the appropriate Brownian motions. To this end, let

ηn =
1
2

(
1 −

θ

n

)
,

and set Xn+ and Xn− to be the respective simple random walks with up probability 1 − ηn and
ηn and sped up by factor n2. We assume (unless otherwise stated) that all processes begin at 0 so
that we have that

Xn+(t) =

⌊n2t⌋∑
i=1

Zn+

i ,



378 P.A. Ernst, W.S. Kendall, G.O. Roberts et al. / Stochastic Processes and their Applications 129 (2019) 355–380

where {Xn+

i } denote dichotomous random variable taking the value +1 with probability 1 − ηn
and −1 with probability ηn . We define Xn− analogously.

Given this setup, we have the classical weak convergence results that the law of Xn+ converges
weakly to that of X+, and similarly Xn− converges weakly to X−. Moreover the joint pre-MEXIT
process described in Section 3.2 will have drift −sgn(X t )θ . The following holds for the MEXIT
probability in (5)

P [M E X I T > t] =

(
1 −

θ

n

)nℓn
t

−→ e−θℓn
t ,

where ℓn
t is the Local Time at 0 of the pre-MEXIT process for the nth approximation random

walk.
In the (formal) limit as n → ∞, this recovers the construction in Theorem 29 of Brownian

motion MEXIT time, as follows. Let X be the diffusion with drift − sgn(X )θ and unit diffusion
coefficient started at 0 and let ℓt denote its local time at level 0 and time t . Then set E to be an
exponential random variable with mean θ−1. Then the pre-MEXIT dynamics are described by X
until ℓt > E at which time MEXIT occurs. E > 0 w.p. 1 and hence MEXIT is positive a.s. since
the local time is a continuous process.

We shall now verify that this construction does indeed achieve the valid MEXIT probability
given in (17). By integrating out E we are required to show that

E
[
e−θℓt

]
= 2Φ(−θ

√
t) .

We proceed to do so. Firstly, we note that by symmetry, we may set ℓt to be the local time
at level 0 of Brownian motion with drift −θ reflected at 0. Note that by an extension of Lévy’s
Theorem (see Peskir [20]) that the law of ℓt is the same as that of the maximum of Brownian
motion with drift θ , i.e. that of X+. Now this law is well-known as the Bachelier–Lévy formula
(see for example Lerche [14]):

P [ℓt < a] = Φ

(
a
√

t
− θ

√
t
)

− e2aθΦ

(
−a
√

t
− θ

√
t
)

,

with density

fℓt (a) =
1

√
t

(
φ

(
a
√

t
− θ

√
t
)

+ e2aθφ

(
−a
√

t
− θ

√
t
)

− 2
√

tθe2aθΦ

(
−a
√

t
− θ

√
t
))

,

where φ is the standard normal density function φ(y) = (2π )−1/2e−y2/2. By direct manipulation
of the exponential quadratic in the second of the three terms above, it can readily be shown to
equal the first term. Thus

fℓt (a) =
1

√
t

(
2φ

(
a
√

t
− θ

√
t
)

− 2
√

tθe2aθΦ

(
−a
√

t
− θ

√
t
))

.

We now directly calculate the Laplace transform of this distribution to obtain (17).

E
[
e−θℓt

]
=

2
√

t

∫
∞

0
e−θa

(
φ

(
a
√

t
− θ

√
t
)

−
√

tθe2aθΦ

(
−a
√

t
− θ

√
t
))

da

=:
2

√
t
(T1 − T2) .

Using integration by parts, we easily work with T2 to obtain

T2 = T1 −
√

tΦ(−θ
√

t),

which implies the assertion in (17), as required.
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6. Conclusion

In this paper, we have studied an alternative coupling framework in which one seeks to arrange
for two different Markov processes to remain equal for as long as possible, when started in the
same state. We call this “un-coupling” or “maximal agreement” construction MEXIT , standing
for “maximal exit” time. MEXIT sharply differs from the more traditional maximal coupling
constructions studied in Griffeath [11], Pitman [21], and Goldstein [10] in which one seeks to
build two different copies of the same Markov process started at two different initial states in
such a way that they become equal as soon as possible.

This work begins with practical motivation for MEXIT by highlighting the importance of
un-coupling/maximal agreement arguments in a few key statistical and probabilistic settings.
With this motivation established, we develop an explicit MEXIT construction for Markov chains
in discrete time with countable state-space. We then generalize the construction of MEXIT to
random processes on Polish state-space in continuous time. We conclude with the solution of a
MEXIT problem for Brownian motions.

As noted in Remark 8, the approach that we have followed in the construction of MEXIT
introduces the role of copula theory in parametrizing varieties of maximal couplings for random
processes. Our future work will aim to establish a definitive role for MEXIT (as well as for
probabilistic coupling theory in general) in copula theory.
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