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Abstract
We introduce a multiclass single-server queueing system in which the arrival rates
depend on the current job in service. The system is characterized by a matrix of arrival
rates in lieu of a vector of arrival rates. Our proposed model departs from existing
state-dependent queueing models in which the parameters depend primarily on the
number of jobs in the system rather than on the job in service. We formulate the
queueing model and its corresponding fluid model and proceed to obtain necessary
and sufficient conditions for stability via fluid models. Utilizing the natural connection
with the multitype Galton–Watson processes, the Laplace–Stieltjes transform of busy
periods in the system is given. We conclude with tail asymptotics for the busy period
for heavy-tailed service time distributions for the regularly varying case.
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1 Introduction

We introduce a multiclass single-server queueing system in which the arrival rates
depend on the current job in service. The system is characterized by a matrix of arrival
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Queueing Systems

rates instead of a vector of arrival rates. The proposed model departs from existing
state-dependent models in the literature in which the parameters depend primarily on
the number of jobs in the system (see Bekker et al. [3], Cruz and Smith [6], Jain and
Smith [12], Miller [14], Perry et al. [17] and Yuhaski and Smith [21], among other
sources) rather than the job in service.

Our model is motivated by two practical queueing considerations. The first is a
multiclass queueing system in which the arriving customer can observe only the class
of the customer in service and no other characteristics of the queue. This information
informs the customer’s decision to either join or leave the queue. The second concerns
local area networks with a central server in which K clients generate requests at indi-
vidual Poisson rates μi . Often, a client does not generate requests when a previous
request is being handled by the server. Further, it is conceivable that groups of clients
working together may influence each other’s Poisson rate. To the best of our knowl-
edge, this simple yet potentially very useful queueing model has never appeared in
the literature. This serves as our primary motivation for the manuscript.

The remainder of the work is structured as follows. We formulate the queueing
model in Sect. 2 and its corresponding fluid model in Sect. 3. In Sect. 4, we obtain
necessary and sufficient conditions for stability via fluid models. Through the natural
connection with multitype Galton–Watson processes, we characterize the Laplace–
Stieltjes transform of busy periods in the system in Sects. 5 and 6.1. Section 6.2
concerns tail asymptotics of the busy period in the case of heavy-tailed service time
distributions. Section 7 offers a brief conclusion and presents ideas for future work.

2 The queueingmodel

Consider amulticlass single-server queuewith K classes of jobs, each arriving accord-
ing to independent counting processes. We assume that only one job may be serviced
at a time. Let the arrival rate depend on the class of the job in service. If the server
is serving a job of class i , the arrival rate of class j jobs is λi j , i, j = 1, . . . , K . The
matrix of arrival rates is defined as � = (λi j ), i, j = 1, . . . , K . If there is no job
in service, then the arrival rate of class j jobs is defined as λ0 j , j = 1, . . . , K . The
arrival mechanism is described more precisely with dynamical equations in Sect. 3.

Weproceed to set notation. Let λ̄i = ∑K
j=1 λi j for each i = 1, . . . , K . Service times

for class i jobs are assumed to be i.i.d. with distribution function Fi , i = 1, . . . , K . Let
Si be a generic service time for class i jobs, withE[Si ] = mi = μ−1

i , i = 1, . . . , K and
G = diag(μ1, μ2, . . . , μK ). We define the “mean offspring matrix” to beM = G−1�

(here, the i j th element λi jmi is the mean number of arriving class j customers during
service of a class i customer). By definition, all the elements of M are nonnegative,
and this is enough to ensure that the dominant eigenvalue ρ(M) is real and positive, cf.
[10]. For some results, more restrictive conditions on M will be required. Further, let
ψi denote the Laplace–Stieltjes transform (LST) of Si , i = 1, . . . , K , respectively, that
is, ψi (s) = E[e−sSi ] = ∫ ∞

0 e−stdFi (s) for s > 0. We let Qi denote the steady-state
number of class i jobs in the system, i = 1, . . . , K , and letQ = (Q1, . . . , QK ). Each
state of the system takes nonnegative integer values, that is, x = (x1, . . . , xK ) ∈ Z

K+ .
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The service disciplines we consider are nonidling, i.e., jobs must be served using
the full capacity of the server whenever there are jobs in the system. Our results on
stability and the busy period are independent of the particular (nonidling) scheduling
policy employed in the system.

3 Queueing and fluid dynamics

3.1 Queueing dynamical equations

We now precisely define the arrival mechanism. For i ∈ {1, . . . , K } and t ≥ 0, Qi (t)
denotes the number of class i jobs in the system at time t , whether in service or in the
queue. Similarly, let Ti (t) denote the amount of time that has been devoted to serving
class i jobs in [0, t]. Further, let Ai (t) and Di (t) be, respectively, the total number of
class i jobs that have arrived and departed from the system in [0, t]. We then have the
following input–output equation for each class i:

Qi (t) = Qi (0) + Ai (t) − Di (t). (3.1)

For each class i , the counting process E j
i (t) is the number of class i jobs that arrive

during the first t time units devoted to processing class j . E0
i (t) counts the number of

class i arrivals during the first t time units that no job is being processed at the server.
The total number of class i arrivals in [0, t] is then given by

Ai (t) = E0
i

(
T0(t)

) +
N∑

j=1

E j
i

(
Tj (t)

)
, (3.2)

where the counting processes E j
i for i = 1, . . . , K and j = 0, . . . , K are assumed to

be mutually independent.
As for the service processes, for each i , 1 ≤ i ≤ K , and positive integer n, we let

Vi (n) denote the total service requirement for the first n class i jobs. Assuming an HL
service discipline, we have that

Vi (Di (t)) ≤ Ti (t) ≤ Vi (Di (t) + 1) (3.3)

for each t ≥ 0 and 1 ≤ i ≤ N .
We define the workload in the system at time t to be

W (t) =
K∑

i=1

Vi (Ai (t) + Qi (0)) −
K∑

i=1

Ti (t), (3.4)

and the cumulative idle time process to be

Y (t) = t −
K∑

i=1

Ti (t). (3.5)
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It is important to note that Y is a nondecreasing function.We assume that the queueing
policy is nonidling, which specificallymeans that Y can increase onlywhenW (t) = 0.
More precisely,

∫ ∞

0
W (t) dY (t) = 0.

3.2 Fluidmodel

For purposes of determining the stability conditions of a more general version of our
model, we formulate a fluid network version of the model. For references to important
definitions and results in the fluid model literature, we refer the reader to Bramson [5]
and Gamarnik [9].

For i ∈ {1, . . . , K } and t ≥ 0, let Qi (t) denote the amount of fluid of class i in the
system at time t . Similarly, let Ti (t) denote the amount of time that has been devoted
to serving class i fluid in [0, t]. We also define Ai (t) and Di (t)which are, respectively,
the total amount of class i fluid that has arrived and departed from the system in [0, t].
We then have the following standard equation:

Qi (t) = Qi (0) + Ai (t) − Di (t), (3.6)

for each i ∈ {1, . . . , K } and t ≥ 0. The departure processes in this system also obey
the standard relation Di (t) = μi Ti (t) for all t ≥ 0.

The unusual feature of our model lies in the arrival process, which is dependent on
the current class in service. In the queueing model, processor sharing is not allowed.
Hence, there is (at most) one class in service at any given time and “the customer
in service” is defined unambiguously. Here, we provide a more general formulation
that reduces to the queueing model presented in earlier sections, under appropriate
restrictions on the allowable queueing disciplines. First, we recall the usual condition

N∑

i=1

Ṫi (t) ≤ 1, (3.7)

which simply indicates that the server cannot devote more than 100% of its time to
serving fluids of all classes. Since we assume that the queueing discipline is nonidling,∑N

i=1 Ṫi (t) = 1 whenever there is a positive amount of fluid in the system. We also
define the idle time in [0, t] to be

Y (t) = t −
N∑

i=1

Ti (t).

Note that the current arrival rate of class j fluid is given by Ȧ j (t). In the queueing
model, if a job of class i is in service then the arrival rate of class j jobs is λi j .
Let λ j be the column vector (λ1 j , . . . , λN j )

⊥ and let Ṫ(t) be the column vector
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(
Ṫ1(t), . . . , ṪN (t)

)⊥, where ⊥ means transposition. We define the fluid arrival rate of
class j to be

Ȧ j (t) = λ0 j Ẏ (t) + λ⊥
j Ṫ(t). (3.8)

In particular, when there is fluid in the system, the class j arrival rate is a convex
combination of the elements of λ j . If we restrict to policies in which only one class
can be served at any time, then Eq. (3.8) assigns an arrival rate of λi j to class j
fluid when class i fluid is in service. Note that this concurs with the queueing model
formulation. Combining the above, we have

Q j (t) = Q j (0) +
∫ t

0
(λ0 j Ẏ (u) + λ⊥

j Ṫ(u)) du − μ j Tj (t) (3.9)

= Q j (0) + λ0 j Y (t) + λ⊥
j T(t) − μ j Tj (t). (3.10)

Writing equations (3.9) and (3.10) in matrix form yields

Q(t) = Q(0) + (M⊥ − I)D(t) + Y (t)λ0. (3.11)

We define the vector of fluid work in the system at time t to be

W(t) = G−1Q(t). (3.12)

3.2.1 Fluid limits

Thus far we have described a fluid model, but it remains to show that the fluid limits of
the queueing model satisfy the fluid model equations. In this subsection only, we use
a bar to denote a fluid limit. As usual, we define the fluid limits of the queue-length
processes to be

Q̄i (t) = lim
n→∞

Qi (nt)

n
,

with other fluid limits defined in an analogousmanner.Wemake the usual assumptions
on the stochastic primitives and initial conditions, i.e., for all i and j

lim
n→∞

E j
i (nt)

n
= λ j i t, (3.13)

lim
n→∞

E0
i (nt)

n
= λ0i t, (3.14)

lim
n→∞

Vi (n)

n
= mi , (3.15)

lim
n→∞

Qi (0)

n
= Q̄i (0), (3.16)

where the convergence is almost surely, uniformly on compact sets. Under these
assumptions, the fluid model equations can be derived in a straightforward way from
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the queueing dynamical equations, since all but the arrival rate process is identical to
the standard multiclass queueing network model. For the arrival process, we have

Āi (t) = lim
n→∞

Ai (nt)

n
= lim

n→∞
E0
i (T0(nt))

n
+ lim

n→∞

N∑

j=1

E j
i (Tj (nt))

n

= λ0i Ȳ (t) + λ⊥
i T̄(t).

The last equality follows from assumptions (3.13) and (3.14) and similar arguments
as found in Proposition 4.12 in [5]. Finally, the connection between fluid stability
and queueing network stability follows from straightforward modification of existing
stability results, under the usual assumptions that the interarrival times for all job
classes are unbounded and spread out. We refer the reader to Chapter 4 of Bramson
[5] for full details.

4 Stability results for fluidmodel

In this section, we prove a number of results regarding the stability, or instability, of
the fluid model. The proofs rely on the following two observations:

1. Ti (·) is Lipschitz continuous for each i and hence so is any linear function f of
(T1, . . . , TK ). Thus, f is absolutely continuous and its derivative exists almost
everywhere.

2. If ḟ (t) exists for t > 0, t is called a regular point.

We define e = (1, . . . , 1)⊥ and assume this column vector is of size K . Finally, we
set H = GMG−1.

Theorem 1 If ρ(M) < 1, then f (t) = e⊥(I−H⊥)−1G−1Q(t) is a Lyapunov function
for the fluid model.

Proof Note that ρ(H) = ρ(M) < 1. Hence, I − H is an M-matrix. Therefore I − H
is invertible with a nonnegative inverse.

Let us assume that the fluid system starts from a nonempty state, i.e.,Q(0) �= 0. By
the continuity ofQ,Q(t) �= 0 for all t in some interval [0, s). Then, we have Y (t) = 0
for all t ∈ [0, s). Using Eqs. (3.11) and (3.12) we have

W(t) = W(0) − (I − H⊥)T(t),

for t ∈ [0, s). Multiplying by e⊥(I − H⊥)−1 yields

e⊥(I − H⊥)−1W(t) = e⊥(I − H⊥)−1W(0) − e⊥T(t).

As in the statement of the theorem, set

f (t) = e⊥(I − H⊥)−1G−1Q(t),
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and note that f (t) = 0 if and only if Q(t) = 0. Then, we have

f (t) = e⊥(I − H⊥)−1W(t) (4.1)

= e⊥(I − H⊥)−1W(0) − e⊥T(t). (4.2)

Taking derivatives, we obtain

ḟ (t) = −e⊥Ṫ(t) = −1,

for any t ∈ [0, s) and regular point t . Therefore, the draining time of the system under
any feasible policy is

f (0) = e⊥(I − H⊥)−1W(0),

which can be interpreted as the initial unfinished “potential” work, defined as the work
due to the current workload and work generated in the future by the initial workload’s
“offspring.” The above argument implies that ḟ (t) = −1 whenever W(t) �= 0 and
thus the system stays drained once Q(t) = 0. This completes the proof. 	

The corollary below now immediately follows.

Corollary 1 The fluid model is globally stable if ρ(M) < 1.

4.1 Weak instability

Next we show that the fluid model is weakly unstable if ρ(M) > 1. We begin by
introducing the following lemma.

Lemma 1 Suppose ρ(M) = ρ(H) > 1 and that each row ofM has at least one strictly
positive element. Then, for all nonnegative vectors T(t) > 0, V(t) = (I − H)T(t)
must have some component Vi (t) < 0 for some i ∈ {1, ..., K }.
Proof Weargue to the contrary. Note that each rowofH has at least one strictly positive
element, by the same assumption on M. Also, for some α ∈ (0, 1), ρ(αH) = 1. For
the sake of contradiction, assume that there exists a nonnegative vector T(t) > 0 s.t.
V(t) = (I − H)T(t) ≥ 0. Further, define V

′
(t) = (I − αH)T(t). We now consider

V(t) − V
′
(t) = (I − H)T(t) − (I − αH)T(t) = (αH − H)T(t) < 0.

The above equations imply thatV
′
(t) > V(t) and that there exists someT(t) > 0 with

(I− αH)T(t) > 0. Thus, (I− αH) is semipositive, and by condition I27 in Chapter 6
of Berman and Plemmons [4], (I− αH) is a nonsingularM-matrix. This implies that
ρ(αH) < 1, yielding a contradiction. 	


We are now ready to prove Theorem 2, the main result of this subsection.

Theorem 2 The fluid model is weakly unstable if ρ(M) > 1 and each row of M has
at least one strictly positive element.
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Proof Assume Q(0) = W(0) = 0. Then, for any t > 0 we have by (3.11) and (3.12)
that

W(t) ≥ W(0) − (I − H⊥)T(t) = (H⊥ − I)T(t).

By Lemma 1, there exists some component of W(t) s.t. Wi (t) > 0. This implies that
Q(t) �= 0 for all t > 0. Thus, the fluid model is weakly unstable.

	


4.2 Weak stability

Theorem 3 Suppose thatM is an irreducible nonnegative matrix. Then the fluid model
is weakly stable if ρ(M) ≤ 1.

Proof It suffices to show the result for the case ρ(M) = 1, since we have already
shown that the fluid model is “strongly” stable when ρ(M) < 1.

LetQ(0) = 0.We argue to the contrary. For the sake of contradiction, let us assume
that Q(t) �= 0 for some t > 0. Then, since Q is continuous, there must be an interval
(t1, t2), with t2 > t1, for which ‖Q(t)‖ > 0 for all t ∈ (t1, t2), Q(t1) = 0 and
‖Q(t2)‖ > 0. In particular, we may set t1 = inf{t : Q(t) �= 0}. Now, recall that

Q(t) = (M⊥ − I)D(t) + Y (t)λ0. (4.3)

Since M is a positive matrix, it follows by the Perron–Frobenius Theorem that there
exists a positive left (row) eigenvector w of M with wM = w, wi > 0 for i ∈
{1, ..., K }. Multiplying both sides of (4.3) by w we obtain

wQ(t) = w
[
(M⊥ − I)D(t) + Y (t)λ0

] = wY (t)λ0,

for all t ≥ 0. Recalling Q(t1) = 0 and ‖Q(t2)‖ > 0 we have

w
(
Y (t2) − Y (t1)

)
λ0 = w

(
Q(t2) − Q(t1)

)
> 0.

This implies Y (t2) > Y (t1) and thus there is positive idle time in (t1, t2). However,
since the fluid level is positive in this entire interval, this violates the nonidling condi-
tion. Thus such a fluid solution is not feasible. A contradiction has been reached. This
concludes the proof.

	


5 Branching process connection

In the remainder of the paper, we investigate a special case of the multiclass model
discussed so far. In particular, we now assume that arrivals to each class form a Pois-
son process, i.e., the model is an M/G/1 multiclass queue, rather than a GI/G/1
queue. Although more general stability conditions for the GI/G/1 case were proven

123



Queueing Systems

in Sect. 4, we begin by reproving them in the Poisson setting, by making a connection
to branching processes. There are two reasons to do this. First, the stability results
arise in a somewhat more intuitive manner using this methodology. Secondly, we find
the connection to branching processes illuminating and useful in later sections.

A classical tool for the simple M/G/1 queue and related systems is to interpret
customers as individuals in a branching process, such that the children of a customer
are the customers arriving during his or her service. This is useful because the sta-
bility condition for the queueing system is the same as the condition for almost sure
extinction. Carrying out the same idea for our multiclass systems leads to a K -type

Crump–Mode–Jagers branching process
{
Zn = (

Z (1)
n , . . . , Z (K )

n
) : n ≥ 1

}
, such that

the lifetime of an individual of type j has the same distribution as S j . In the results
below, we consider a branching process with a single ancestor of type i . Whenever Ei

and Pi are used, they are with reference to the probability measure induced by such a
single ancestor. The offspring mechanism is then described by the probabilities

pi j (k) = Pi
(
Z ( j)
1 = k

) = P
(
Pois(λi j S j ) = k

) =
∫ ∞

0

(λi j s)ke−λi j s

k! dFj (s) . (5.1)

The offspring matrixM = (Mi j )i, j=1,...,K is given by Mi j = Ei
[
Z ( j)
1

] = λi j/μi and
is assumed irreducible. Thus, Perron–Frobenius theory applies to M and, as before,
ρ = ρ(M) the largest eigenvalue. Note that the i j th element of the matrix

∑∞
n=0 M

n

gives the expected number of type j progeny of an individual of type i ; of course,
when ρ < 1, we have

∑∞
n=0 M

n = (I − M)−1.

5.1 Stability conditions

Let |Zn| = ∑K
j=1 Z

( j)
n denote the total number of individuals in the nth generation

and T ∗ the extinction time. Let Pi (T ∗ < ∞) be the extinction probability of type i of
the branching process. Then, by classical results, we have the following theorem.

Theorem 4

Pi (T
∗ < ∞) = 1, i = 1, . . . , K , if and only if ρ ≤ 1. (5.2)

Proof By the classical result for the extinction timeof branchingprocesses [11,Chap II.
Theorem7.1], if and only ifρ ≤ 1, the total number of generations for each type is finite
with probability 1 and thus

∑ |Zn| < ∞, which further implies Pi (T ∗ < ∞) = 1 for
every i . 	

Consider K = 2. Straightforward algebra gives that ρ ≤ 1 is equivalent to

λ11
μ1

+ λ22
μ2

+
√(

λ11
μ1

− λ22
μ2

)2 + 4λ12λ21
μ1μ2

2
≤ 1. (5.3)

Theorem 5 Ei T ∗ < ∞ for all i if and only if ρ < 1.
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Proof For a simple proof of sufficiency, assume ρ < 1 and let S j (m; n) denote the
lifetime of the mth individual of type j in the nth generation, μ = minK1 μ j . Then

Ei T
∗ = Ei

∞∑

n=0

K∑

j=1

Z ( j)
n∑

m=1

S j (m; n) = Ei

∞∑

n=0

K∑

j=1

Z ( j)
n

μ j

≤ μ−1
Ei

∞∑

n=0

K∑

j=1

Z ( j)
n = μ−1

∞∑

n=0

K∑

j=1

Mn
i j < ∞,

where the second step above uses that S j (m; n) is independent of Z0, . . . ,Zn (but not
Zn+1,Zn+2, . . .). Further, the strict inequality

∞∑

n=0

K∑

j=1

Mn
i j < ∞ (5.4)

follows from ρ < 1. To prove the necessity, let μ̄ = maxK1 μ j . Then, by the same
reasoning we get Ei T ∗ ≥ μ̄−1 ∑∞

n=0
∑K

j=1 M
n
i j = ∞ for ρ ≥ 1 (see Berman and

Plemmons [4]). Hence, Ei T ∗ < ∞ is also necessary for ρ < 1. 	


We now have the following corollary to Theorem 4.

Corollary 2 The busy period T < ∞ w.p.1 if and only if the matrix M given by

Mi j = λi j

μi
, i, j = 1, . . . , K ,

has largest eigenvalue ρ(M) ≤ 1.

Similarly, a corollary to Theorem 5 is stated below.

Corollary 3 For the busy period T , ET < ∞ if and only if ρ < 1.

5.2 Further applications

Let Bi;z denote the length of the busy period initiated by a class i customerwith service
requirement z (Bi is that of the standard busy period initiated by a class i customer,
that is, taking z = Si ). Let further
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τ j = Ei

∞∑

n=0

Z ( j)
n∑

m=1

S j (m; n) (5.5)

be the expected total time in [0, Bj ) where the customer being served is of class i . As
before, G is a diagonal matrix with the μi on the diagonal.

Lemma 2 Assume ρ < 1. Then:

(i) (Eiτ j )i, j=1,...,K = (I − M)−1G−1 ; (ii) EBi = e�
i (I − M)−1G−1e ;

(iii) EBi;z = zβi , where βi = e�
i �(I − M)−1G−1e ;

(iv) Bi;z/z → βi in probability as z → ∞.

Proof (i) follows immediately since the i j th element of (I − M)−1G−1 is

∞∑

n=0

Mn
i j/μ j = Ei

∞∑

n=0

Z ( j)
n /μ j = Eτi ,

and (ii) follows from (i) by summing over j . For (iii) and (iv), we may (by work
conservation) assume that the discipline is preemptive resume. The workload process
during service of a class i customer evolves as a standard compound Poisson process
with arrival rate λ̄i = ∑N

j=1 λi j and with cumulative distribution function

K∑

j=1

λi j

λ̄i
P(Bj ≤ x)

for the jumps. For this system, the rate of arriving work is λ̄i
∑K

j=1 λi j/λ̄
i
EBj , which

is the same as βi . Now we may simply appeal to standard compound Poisson results
to obtain (iii) and (iv). This concludes the proof. 	


6 Busy period results

In this section, we begin by assuming ρ(M) ≤ 1. Let Bx denote the busy period
when the system starts from the state x ∈ Z

K+ , that is, the time period until the system
becomes empty. In particular, when x consists of a single customer of class i , we
denote the busy period as Bi , and Bi,s is the busy period when his remaining service
is s. Define gx to be the LST of Bx, i.e., gx(θ) = Ex[e−θBx ] for x ∈ Z

K+ , and similarly
for gi , gi,s .

6.1 The busy period Laplace transform

For the M/G/1 queue, when K = 1, it is well known that the LST of the busy period
B is given by

g(θ) = ψ(θ + λ − λg(θ)), (6.1)
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where ψ is the LST of the service time and λ is the arrival rate. See, for example,
Neuts [15] or Wolff [20]. We shall use the branching process connection to derive a
similar fixed point equation for our model.

We first observe that the busy period of the system corresponding to an arbitrary
initial state x = (x1, . . . , xK ) ∈ Z

K+ is the independent sum of busy periods, each
of which corresponds to the branching process starting with a single customer. This
gives immediately that

gx(θ) = gx11 (θ) · · · gxKK (θ) when x = (x1, . . . , xK ) ∈ Z
K+ . (6.2)

Hence, it is sufficient to calculate gi , gi,s . Recall that ψi is the LST of the service time
distribution Fi of a class i customer.

Theorem 6 For θ ≥ 0,

gi,s(θ) = exp

⎧
⎨

⎩
−s

⎛

⎝θ + λ̄i −
K∑

j=1

λi j g j (θ)

⎞

⎠

⎫
⎬

⎭
. (6.3)

Further,

gi (θ) = ψi

⎛

⎝θ + λ̄i −
K∑

j=1

λi j g j (θ)

⎞

⎠ , i = 1, . . . , K , (6.4)

and the vector
(
g1(θ), . . . , gK (θ)

)
is the minimal nonnegative and nonincreasing

solution of this system of equations.

Proof Clearly, Bi,s is the service time s plus the busy periods of all customers arriv-
ing during service. But the number of such customers of class j is Poisson(λi j s)
and so their busy periods add up to a compound Poisson random variable with LST
exp

{
λi j s

(
g j (θ) − 1

)}
. The independence for different j then gives

gi,s(θ) = e−θs
K∏

j=1

exp
{
λi j s

(
g j (θ) − 1

)}
,

which is the same as (6.3). Integrating with respect to Fi (ds) then gives (6.4).
Now consider another nonnegative solution

(
g̃1(θ), . . . , g̃K (θ)

)
of (6.4). Define the

depth D of the multitype Galton–Watson family tree as D = max
{
n ≥ 0 : Zn �= 0

}

and let g(n)
i (θ) = E[e−θBi ; D ≤ n]. Here D = 0 means no arrivals during service.

This occurs with probability e−λ̄i Si given Si , and so g(0)
i (θ) = ψi (θ + λ̄i ). The

assumptions on g̃ j (θ) then give g̃i (θ) ≥ g(0)
i (θ). Further, the same reasoning as that

leading to (6.4) gives

g(n+1)
i (θ) = ψi

⎛

⎝θ + λ̄i −
K∑

j=1

λi j g
(n)
j (θ)

⎞

⎠ .
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By induction starting from g(0)
i (θ) ≤ g̃i (θ) we then get g(n)

i (θ) ≤ g̃i (θ) for all n.
The proof is completed by observing that ρ(M) ≤ 1 implies D < ∞ and hence
g(n)
i (θ) ↑ gi (θ). 	


Example 1 Consider a network with K = 2 users, λ11 = λ22 = 0 and Fi
exponential(μi ). Then, (6.4) has the form

g1 = μ1

μ1 + θ + λ12 − λ12g2
, g2 = μ2

μ2 + θ + λ21 − λ21g1
,

where, for brevity, gi means gi (θ). This gives

g1 = μ1λ21 − μ2λ12 + (μ1 + θ + λ12)(μ2 + θ + λ21) − √
Δ

2λ21(μ1 + θ + λ12)
,

g2 = −μ1λ21 + μ2λ12 + (μ1 + θ + λ12)(μ2 + θ + λ21) − √
Δ

2λ12(μ2 + θ + λ21)
,

where

Δ = [μ1μ2 + λ12λ21 + θ2 + θ(μ1 + μ2 + λ12 + λ21)]2 − 4μ1μ2λ12λ21.

6.2 Busy period asymptotics

In this section, we offer some observations on the tail asymptotics of the busy period
in the case of heavy-tailed service time distributions. For light-tailed service time
distributions, we refer the reader to the recent work of Palmowski and Rolski [16].
For the current case of heavy tails, we refer the reader to Zwart [22], Jelenković and
Momcilović [13] and Denisov and Shneer [7].

The key idea in both Jelenković andMomcilović [13] and in Zwart [22] (as in many
other instances of heavy-tailed behavior) is the principle of one big jump. For busy
periods, this leads us to expect a large busy period to occur as consequence of one
large service time. For concreteness, consider the standard M/G/1 queue with ρ < 1
and suppose there is a single large service time of size S = z. The workload after
the large jump is u + z for some small or moderate u. The workload then decreases
at the rate 1 − ρ until it reaches 0 and the busy period terminates. By the Law of
Large Numbers (LLN), the time of termination is approximately (z + u)/(1 − ρ).
Since the time before the big jump can be neglected, we have B > x if and only if
z > (1 − ρ)x . Both Asmussen [2] and Foss and Zachary [8] show the probability of
this large jump is asymptotically equal to P

(
S > (1− ρ)x

)
Eσ for large x , where σ is

the number of customers served in a busy period. But Eσ = ∑∞
n=0 ρn = 1/(1 − ρ).

Indeed, 1 corresponds to the customer initiating the busy period, ρ is the number
of customers arriving while he is in service (the first generation), ρ2 is the number
of customers arriving while they are in service, and so forth. In the framework of
branching processes, ρn is the number of individuals in the nth generation. These
considerations lead to
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P(B > x) ∼ 1

1 − ρ
P
(
S > (1 − ρ)x

)
, (6.5)

which Jelenković and Momcilović [13] show to be the correct asymptotics if the
service time distribution is subexponential and square root insensitive, i.e., with a
heavier tail than e−√

x .
Generalizing this approach to our multiclass system, we recall that βi =∑K
j=1 λi jEBj and we introduce a subexponential and square root insensitive ref-

erence distribution F for which the individual service time distributions are related
as

Fi
(
x/(1 + βi )

) ∼ ci F(x). (6.6)

In practice, one chooses F(x) as supi Fi
(
x/(1+βi )

)
. This is common in heavy-tailed

studies involving distributionswith different degrees of heavy-tailedness. In particular,
it allows some Fj to be light-tailed (c j = 0).

Recalling the interpretation ofβi as the rate of arrivingworkwhile a class i customer
is in service, a big service time Si of a class i customer will lead to Bi > x precisely
when Si (1+βi ) > x . Using the same reasoning as for (6.5), we first note that (Mn)i j is
the number of type j progeny of a type i ancestor. Hence, if ρ(M) < 1, the probability
that one of these large service times occur in [0, Bi ) is approximately

∞∑

n=0

K∑

j=1

(Mn)i j F j
(
x/(1 + β j )

) ∼ di F(x),

where

di =
∞∑

n=0

K∑

j=1

(Mn)i j c j =
K∑

j=1

(I − M)−1
i j c j .

Equivalently, the di solve

di = ci +
K∑

j=1

mi jd j . (6.7)

As for the standard M/G/1 queue, it is straightforward to verify that this is an
asymptotic lower bound.

Proposition 1 Assume that F in (6.6) is subexponential with finitemean, so that ck > 0
for some k and ρ(M) < 1. Then, for each i = 1, . . . , K,

lim inf
x→∞

P(Bi > x)

F(x)
≥ di . (6.8)
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Remark 1 Square root insensitivity of F is not needed for Proposition 1. The assump-
tion

Fi (x) ∼ c̃i F0(x) (6.9)

may apriori be more appealing than (6.6) since it does not involve evaluation of the
βi . However, it is closely related. The reason is that if F is regularly varying with
F(x) = L(x)/xα , then (6.6) and (6.9) with F0 = F are equivalent, with the constants
related by ci = c̃i (1+βi )

α . For F0 lognormal orWeibull with tail e−xδ
(where δ < 1/2

in the square root insensitive case), one has, for γ1 > γ2, F0(γ1x) = o
(
F0(γ2x)

)
.

Hence, if (6.9) holds, wemay defineβ∗ = maxK1 β j and take F(x) = F0
(
x/(1+β∗)

)
,

where c j = 1 if β j = β∗ and c j = 0 if β j < β∗.
TheM/G/1 literature leads to the conjecture that further contributions toP(Bi > x)

can be neglected, i.e., that P(Bi > x) ∼ di F(x) in the square root insensitive case.
However, the upper bound is much more difficult (even in the single-class M/G/1
setting) and follows in the regular varying case from more general results recently
established in Asmussen & Foss [1]:

Theorem 7 Assume, in addition to the conditions of Proposition 1, that F is regularly
varying. Then, P(Bi > x) ∼ di F(x) for each i = 1, . . . , K.

In the proof, we need:

Lemma 3 Let S be subexponential and let the conditional distribution of N given
S = s be Poisson(λs). Then, P(S + N > x) ∼ P

(
S(1+ λ) > x

)
as x → ∞. Further,

the conditional distribution of (S, N )/(S + N ) given S + N > x converges to the
one-point distribution at ((1/1 + λ), λ/(1 + λ)).

Proof The argument is standard, with the key intuition being that the variation in S
dominates that of the Poisson distribution, so that N can be replaced by its conditional
expectation λS given S. Firstly, note that if x is so large that x − x1/2 > 2λx1/2 and
N (x1/2) is Poisson(λx1/2), then

P(S + N > x, S < x1/2) ≤ P
(
x1/2 + N (x1/2) > x

) ≤ P
(
N (x1/2) > 2λx1/2

)
,

which (by large deviations theory) tends to zero faster than e−δx1/2 for some δ > 0,
and hence faster than P

(
S(1+λ) > x

)
. Secondly, N/S → λ as y → ∞ given S > y

and so

P(S + N > x, S ≥ x1/2) ∼ P
(
S(1 + λ) > x, S ≥ x1/2

)
,

the latter equaling P
(
S(1 + λ) > x

)
for large x . This proves the first statement, and

the second follows since (asymptotically) only large values of S contribute to large
values of S + N , and in this regime N/S ∼ λ. 	


The setup of [1] is a set of random variables (B1, . . . , BK ) satisfying

Bi
D= Si +

K∑

j=1

N j;i∑

m=1

Bm; j . (6.10)
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The assumptions for (6.10) are that all Bm; j are independent of the vector

(Si , N1;i , . . . , NK ;i ), that they are mutually independent, and that Bm; j
D= Bj . Fur-

ther, all random variables are nonnegative. In our multiclass queue, Bi is the length of
the busy period initiated by a class i customer, Si is the service time, and N j;i is the
number of class j customers arriving during his service. In the following, we omit the
index i and instead express the dependence on i in terms of a governing probability
measure Pi .

Proof of Theorem 7 To apply the results of [1], we first need to verify a condition on
multivariate regular variation (see [18] for background) of the vector (S, N1, . . . , NK ).
Its first part is thatP(S+N1+· · ·+NK > x) ∼ bi F(x) for some bi . This is immediate
from Lemma 3 by taking N = N1 + · · · + NK , λ = λi , bi = c̃i (1 + λi )

α . A minor
extension of the proof of Lemma 3 further yields that, given S+ N1 +· · ·+ NK > x ,

1

S + N1 + · · · + NK

(
S, N1, . . . , NK ) → 1

1 + λi

(
1, λi1, . . . , λi K

)
, (6.11)

where the limit is taken as x → ∞. This establishes the second part, namely the
existence of the so-called angular measure (in this case a one-point distribution at the
right-hand side of (6.11)).

It now follows from [1] that P(Bi > x) ∼ d∗
i F(x), where the d∗

i solve the set of
linear equations

d∗
i = c∗

i +
K∑

j=1

mi jd j , (6.12)

and

c∗
i = lim

x→∞
1

F(x)
Pi (S + N1r1 + · · · + NKrK > x), with r j = E j B.

Comparing with (6.7), we see that we need only check that c∗
i = ci . By similar

arguments to those above,

Pi (S + N1r1 + · · · + NKrK > x) ∼ P(S(1 + λi1r1 + · · · + λi K r K ) > x)

= P(S(1 + βi ) > x) ∼ c̃i (1 + βi )
αF(x) = ci F(x),

where parts (ii) and (iii) of Lemma 2 are employed in the second step. 	


Remark 2 The general subexponential case seemsmuchmore difficult. One obstacle is
that theory and applications of multivariate subexponentiality are much less developed
than for the regular varying case. See, however, Samorodnitsky and Sun [19] for a
recent contribution and for further references.
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7 Conclusion

We have introduced a multiclass single-server queueing model in which the arrival
rates depend on the current job in service. The model departs from existing state-
dependent models in the literature in which the parameters depend primarily on the
number of jobs in the system rather than the job in service.

The main contributions of this paper can be summarized as follows. Firstly, we
formulate the multiclass queueing model and its corresponding fluid model and pro-
vide motivation for its practical importance. The necessary and sufficient conditions
for stability of the queueing system are obtained via the corresponding fluid model.
Secondly, by appealing to the natural connection with multitype Galton–Watson pro-
cesses, we utilize Laplace–Stieltjes transforms to characterize the busy period of the
queueing system. Thirdly, we present a preliminary study of busy period tail asymp-
totics for heavy-tailed service time distributions and give a complete set of results
for the regularly varying case, using recent results of Asmussen and Foss [1]. Tail
asymptotics in our multiclass setting for nonregularly varying heavy-tailed service
time distributions, as well as for light-tailed service time distributions, are much more
difficult and will be attempted in a separate manuscript.
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