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SUMMARY

The seminal work of Morgan & Rubin (2012) considers rerandomization for all the units at one time.
In practice, however, experimenters may have to rerandomize units sequentially. For example, a clinician
studying a rare disease may be unable to wait to perform an experiment until all the experimental units are
recruited. Our work offers a mathematical framework for sequential rerandomization designs, where the
experimental units are enrolled in groups. We formulate an adaptive rerandomization procedure for balanc-
ing treatment/control assignments over some continuous or binary covariates, using Mahalanobis distance
as the imbalance measure. We prove in our key result that given the same number of rerandomizations,
in expected value, under certain mild assumptions, sequential rerandomization achieves better covariate
balance than rerandomization at one time.

Some key words: Experimental design; Mahalanobis distance; Noncentral chi-squared distribution; Sequential
enrolment.

1. INTRODUCTION

Rerandomization is a method for achieving balanced distributions of covariates across treatment
groups before conducting an experiment (Holschuh, 1980; Urbach, 1985; Imai et al., 2008; Morgan &
Rubin, 2012). Despite advocacy for rerandomization dating back to Sir Ronald Fisher (Savage, 1962,
p. 88), a solid mathematical foundation for rerandomization was only recently developed in the seminal
work of Morgan & Rubin (2012), which advises rerandomization only if ‘the decision to rerandomize
or not is based on a pre-specified criterion’ (Morgan & Rubin, 2012, p. 1265). This work has catal-
ysed a surge of research in rerandomization, both theoretical and applied in nature. For theoretical
contributions, see Li & Ding (2017) and Morgan & Rubin (2015). For more applied contributions,
see Athey & Imbens (2017), Delavande et al. (2016) and Xu & Kalbfleisch (2013).
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The main objective of this work is to balance treatment/control assignments over some continuous,
or binary, covariates by rerandomization. The majority of the traditional randomization procedures were
developed for discrete covariates only, and continuous covariates are simply discretized by binning. How-
ever, both the number and the boundaries of such bins are very difficult to choose, as discussed in Hu &
Hu (2012). Morgan & Rubin (2012) considered rerandomization for a finite sample where all units were
recruited at one time, using Mahalanobis distance as the imbalance measure; henceforth we refer to this
as Morgan—Rubin complete rerandomization. The theoretical advantages of using Mahalanobis distance
for continuous covariates are discussed in Rubin (1979) and Greevy et al. (2004). When the data contain
categorical covariates, as advocated by Morgan & Rubin (2012), one may combine blocking with reran-
domization by applying a stratified randomization procedure to the most important categorical covariates.
In practice, however, a researcher may be unable to wait to perform an experiment until all experimental
units can be recruited, and thus covariate-adaptive minimization methods (see Lin et al., 2015) might be
preferred. To solve this problem, in the present work we consider rerandomization for sequential enrolment
designs where participants arrive in groups, which we henceforth term sequential rerandomization. To the
best of our knowledge, a mathematical framework for sequential rerandomization has not been developed
previously. A unique advantage of sequential rerandomization is that while it is adaptive, it still allows for
rerandomization, and thus is much less liable to selection bias than are minimization procedures (Berger,
2010). For more discussion on the relationship between rerandomization and other methods, such as the
finite selection model, see Morgan & Rubin (2012, § 5).

Given the same number of rerandomizations, in expected value, a seemingly natural conjecture is that
the balance created by employing Morgan—Rubin complete rerandomization would, in expectation, be
superior to that created using sequential rerandomization, since Morgan—Rubin complete rerandomization
allows for all possible allocations of units. Under only mild asymptotic conditions, our main result in this
paper, Theorem 3, shows the opposite to be true; see § 4. The key mathematical implications for sequential
rerandomization and the results needed to prove Theorem 3 are provided in § 2 and § 3. In § 5 we extend
our results to more general settings and conclude with a discussion on optimal randomization procedures.
All proofs and the results of simulation studies are given in the Supplementary Material.

2. SEQUENTIAL RERANDOMIZATION

Consider a sequential trial in which 2N units are to be divided into K sequential groups, each group

containing 2ny, . . ., 2ng experimental units, where n; + - - - +ng = N. Let the matrix X = (X3,...,Xy) €
RP*CM) represent the p covariates for these 2V units, where X1, . . ., Xi are block matrices with correspond-
ing dimensions p x 2ny,...,p X 2ng; assume that Xi, . .., X} are observed sequentially. The matrix X will

be treated as fixed, and the sample covariance matrix of the kth group, which is denoted by cov(X}) and
has dimension p X p, is assumed to have rank equal to p.

Consider the following rerandomization procedure. For the first group of 27, units, we randomly assign
n) patients to the treatment group and the other », to the control group. We denote this randomization by
Wi = (Wy,..., W, )7, a vector of dimension 2n;, where Wy, = 1 if the ith patient of the first group
is assigned to treatment and W}, = 0 otherwise. Throughout this paper, a superscript * will denote results
from a tentative allocation, subject to being accepted or rerandomized based on a specific criterion, whereas
results without a superscript * correspond to the actual treatment administered. The Mahalanobis distance
between the treatment and control groups corresponding to W' is

L. % -1,y V ok
M = E(Xm — X&) cov(X)) I(XT*,I - X)),

where )_(T*,1 = n;'X, W} and X | = n; ' X (1 — W) are the p-dimensional mean vectors of the treatment,
T, and control, C, groups respectively. This expression is based on the observation that cov()_(T*’1 - )_(C’"l |
X1) = 2cov(X;)/n;; see the Supplementary Material for details. As in Morgan & Rubin (2012), we let
(1, a,) represent a prespecified rerandomization criterion such that ¢, (X;, W) = 1 if M} < a, and 0
otherwise, where ¢, = 1 indicates an acceptable rerandomization. If ¢, = 0, then W is not acceptable
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and the randomization is repeated; otherwise we set W, = W', M, = Ml*,)_(m = )_(T’il and)_(al = )_(c*,1 and
proceed to consider the second group of 2n, units. If K = 1, we simply stop and sequential rerandomization
reduces to Morgan—Rubin complete rerandomization.

The above procedure continues as follows. For the £th group of units, we randomize »; units to treatment
and 7, units to control and denote the tentative assignment by W'. It should be emphasized that sequential
rerandomization takes into account all the data and fixed assignments from the first £ — 1 groups, namely
Xigery = X, ..., X)) and Wiy = (W,..., W, )", in addition to the data from the kth group.
The total number of subjects used to assess the acceptability of W} for the kth group is 2n;,, where
Ny = Zj]le n;. The assignment of the first & groups using W;" is denoted by

Wie=Wh. . oW, wi,

which is a vector with 2n,,, components. The superscript * on the right-hand side occurs only at the kth
term because the assignment vectors of the first £ — 1 groups are already fixed. The mean vectors of the
first £ treatment and control groups are written as

_ 1 _ 1
Xig = EXI:k Wigs XCx = aXlzk(l = Wi,

with corresponding Mahalanobis distance for the first £ groups

g - - o -
M = > (X 1 — X ) Teov(Xig) VX e — XE ), (1)
where cov(X.;) is the sample covariance matrix of X;.;, which is assumed to be of full rank. Given a;, we

decide whether W} is acceptable by evaluating the prespecified rerandomization criterion

1, M} <a
X Wiy=1" k ’ 2
o X, W) 0, otherwise, @
where n, . .., ng must be large enough to ensure that an acceptable randomization can be realized. The
threshold @, can be chosen as a function of M, . .., M;_;, but as we will see shortly in § 3-2, M,,_, alone is

sufficient for choosing a; . After the experimenter has concluded the sequential allocations, the Mahalanobis
distance is calculated on the complete dataset X = Xj.x using the appropriate version of (1).

3. PROPERTIES OF SEQUENTIAL RERANDOMIZATION
3-1. Average treatment effect estimation

Now we present the key mathematical consequences of the sequential rerandomization framework
outlined in § 2. We begin with the estimation of the true average treatment effect for the entire sample.
Suppose that the potential outcome for unit i after treatment or control is y;(1) or y;(0), respectively,
according to the Rubin causal model (Rubin, 1974). Let the observed response be given by ¥; = y;(1) if
W; =1 and Y; = y;(0) otherwise. The average treatment effect is

Y v = Y2 3i(0)
- 2N :

The usual estimate of 7 is the difference between the treatment group and control group sample means:
|2 |2 1
t=Yr—Ye=—Y YiWi——)Y Y,(1-W)=—Y"QW —1), 3
t=tr—Yo= ; v ; (=W =V ) 3)

where Y is the vector of the outcomes. As expected, T is an unbiased estimator for 7.
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PROPOSITION 1. For our sequential rerandomization, E(T | X, =---=¢@g = 1) = 1.

Proof. See the Supplementary Material. In fact, for 7 to be unbiased, we only require that the reran-
domization criterion satisfy ¢ (X1, W7,) = ¢x(Xi4, 1 — W7,) for each k and that each group contain the
same number of treatment and control units. [l

Next consider the sampling variance of 7. Following the argument of Morgan & Rubin (2012), when
the treatment effect is an additive constant for all units, we decompose Y; as

YVi=Bo+ B X +tW,+& (i=1,...,2N), 4)

where By + BX; is the projection of y,;(0) onto the space spanned by (1,X7), and the error &; is the
projection of y;(0) onto the orthogonal complement of that space. Letting er and ec be the error means for
the treatment and control groups, respectively, by (3) and (4) we have

var(?) = var{B"(Xr — Xc) + &r — éc} = B cov(Xr — Xo)B + var(er — &), (5)

where X1 and X¢ are the covariate mean vectors of the treatment and control groups. A natural line of
enquiry is to find the reduction in cov(Xt — X¢ | X, ¢ = - -- = ¢ = 1) under sequential rerandomization
relative to cov(Xy — Xc | X) under complete randomization, which could be used to derive the reduction
in the variance of the estimation for . Recall that My is the Mahalanobis distance of the entire dataset
after all sequential randomized allocations have been conducted.

THEOREM 1. Letv =EMy | X,y = --- = px = 1)/p. We have
coviXt —Xc | X, 01 =+ =g = 1) = veov(Xr — X¢ | X).

Proofs of Theorem 1 and all the following theorems, lemmas and propositions can be found in the
Supplementary Material.

THEOREM 2. Let T be the estimator for t for complete randomization, and let T be the estimator for
for sequential rerandomization. Assuming that the treatment effect is additive, we have

var(T) —~Var(f) — (-,
var(7)

where R? is the squared multiple correlation between Y and X in either the treatment or the control group.

These results can be seen as extensions of those presented in Morgan & Rubin (2012). When K = 1,
the expression for v reduces to equation (9) in Morgan & Rubin (2012). Henceforth we shall write simply
EWM, | X) instead of E(M}, | X, ¢, = - -- = ¢ = 1), since the notation M, clearly implies that sequential
rerandomization has been conducted.

3.2, Asymptotic minimization of the expected Mahalanobis distance

Theorem 1 tells us that, under the additive treatment effect model, var(7) is minimized when E (My | X)
is minimized. In this section we propose an asymptotically optimal strategy that minimizes £ (Mx | X') and
thus makes the estimation of average treatment effect most precise. To this end, we first seek the distribution
of My, which is a truncated version of the distribution of M;". Recall that )X,, ..., Xk are treated as fixed
and the randomness comes only from the treatment/control assignment. We further assume that the data
are homogeneous so that cov(X}) ~ cov(Xj.); the heterogeneous case will be discussed in § 5-1. By (1),
the distribution of M, depends on the p-dimensional random variable

_ _ 1 1 - -
D =Xy = Xy = o MW, = =Xl = W) = 285, = 2% (6)
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As shown below in Lemma 1, when Dj is normally distributed, the distribution of M} is fully determined by
the value of M;_, which is a noncentral chi-squared distribution with noncentrality parameter proportional
to M;_,. Consequently, when choosing the threshold a; in (2), we only need to use M;_, since conditional
on M;_,, M} is independent of M, ..., M;_;.

LEMMA 1. Assume that Df | X ~ N0, Zn,:lcov(Xk)} and cov(X;) ~ cov(Xi.k). Let M;_ be the
Mahalanobis distance for the first k — 1 treatment and control groups after rerandomization with My = 0;
then

Ny Ny — N
M| X, My ~ — Xp2<—Mk1) , @)
Ny ny

where sz (1) denotes a noncentral chi-squared distribution with p degrees of freedom and noncentrality
parameter \.

Remark 1. For sufficiently large ny, ..., ng, the assumption that D} | X; ~ N{0, Zn;lcov(Xk)} holds
under very general settings (Li & Ding, 2017). According to our sequential rerandomization procedure,
the covariate mean of the kth treatment group, i.e., the term )_({ « 1n (6), can be viewed as the mean of
samples from a finite population without replacement. Under certain regularity conditions, the latter is
known to follow a normal distribution asymptotically (Wald & Wolfowitz, 1944). By Hoeffding (1951)
and Hajek (1961), a sufficient condition is as follows: the column vectors X, ..., X,y are independent
and identically distributed p-dimensional random vectors from a distribution with finite third absolute
moments and a positive-definite covariance matrix. Then, as n; — oo, /n; Dj converges in distribution
to N0, 2 cov(X;)}. This result will be used to compute E(My | X) and derive the optimal strategy for
sequential rerandomization.

Recall the sequential rerandomization criteria ¢y, . . ., @k defined in (2). We use the distribution given in
(7) to choose a; so that F’ M (ay) = ay, where F, M is the conditional distribution function of M}’ given M;_,
and «;, is the acceptance probability of each rerandomization. The number of randomizations required for
@y to evaluate to 1 is distributed as a geometric random variable with expectation s, = 1/«y. Hence, if we
know how to choose s, we can choose a; accordingly by the distribution of M} given in Lemma 1, and we
denote this by writing a;, = a;(M;_1, s;). It is reasonable to suppose that the experimenter, equipped with
modern computational resources, may perform rerandomization a very large number of times. We may
therefore assume that sy, . . ., sk are sufficiently large and M1, . . ., M are correspondingly small. Using an
asymptotic result for truncated noncentral chi-squared distributions, Lemma 2 below, we proceed to find
an asymptotic expression, in Lemma 3, for the expected value of M, conditional on M;_,.

LEMMA 2. Let M be a random variable that follows le (X), and let Fy, be its cumulative distribution
function. As a |, 0,

a’’? exp(—1/2)

EM | M <a)~ 2L
PAT(p/2+ 1)

F ~
M(a) p+2a

where ~ denotes asymptotic equivalence, i.e., for two positive functions f (x) and g(x) we write f ~ g as
x — xo if and only if lim,_,,, f (x)/g(x) = 1.

LeMMA 3. Suppose that M} (k = 1,...,K) follows the distribution given in Lemma 1 and pr(M} <
ay | X, Mi,_1) = 1/s;. Then, as s; 1 oo and M;_; | 0,

103 _ Ny — Nk
E(My | Xi, Mi_y) ~ —— Cps; " (1 + —Mk_l) ,
Ny pny

where C, = 2p{T'(p/2 + D}Y? /(p + 2).
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Let the expected total number of rerandomizations S = s, + - - - +sx be sufficiently large. Proposition 2
details the asymptotically optimal strategy for choosing si,...,sk, in which optimality is achieved by
asymptotically minimizing E(Mx | X) for fixed S.

PROPOSITION 2. Suppose that M} (k = 1, ...,K) follows the distribution given in Lemma 1. As S 1 0o,

in order to minimize E(My | X), one should choose s, . .., sk so that
C.ni_ r/(p+2) )
Sy~ ( o 1sk> . G= Lo+ ®)
)2 p+2

4. COMPARING SEQUENTIAL RERANDOMIZATION WITH MORGAN—RUBIN COMPLETE RERANDOMIZATION

In this section, we compare sequential rerandomization with Morgan—Rubin complete rerandomization.
We begin by recalling the Morgan—Rubin complete rerandomization algorithm; 2N units are assumed to be
enrolled when the rerandomization starts and randomizations are conducted until the Mahalanobis distance
M* is smaller than some prespecified threshold a, where

*_E_*__*T —loy* _ y*
M* = 2 (X = X eov ()™ (X - X0).

When the rerandomization stops, let M = M*. Asymptotically, the distribution of M is a truncated chi-
squared distribution with support (0, a). This statistic M represents the same quantity as the statistic M
in sequential rerandomization: namely, it is the Mahalanobis distance calculated on the entire sample after
all units have received treatment assignment. If, in expectation, the same number of rerandomizations are
conducted in Morgan—Rubin complete rerandomization and sequential rerandomization, it is tempting to
conjecture that £(M | X), which we define as the expected Mahalanobis distance from Morgan—Rubin
complete rerandomization, is smaller than E(My | X), since Morgan—Rubin complete rerandomization
considers all (2N)!/(N'!N!) possible allocations, whereas sequential rerandomization selects from a subset
of those that are allowed by the sequential design. Surprisingly, as we will now show in Theorem 3, under
certain asymptotic conditions the opposite is true.

THEOREM 3. Let ny,...,ng be given and let S € N be the expected total number of rerandomizations.
For Morgan—Rubin complete rerandomization, choose the threshold a such thatpr(M™* < a | X) = 1/S, for
sequential rerandomization, choose sy, . . . ,sx according to Proposition 2 under the constraint Z,K:l s;i =385,
and then choose thresholds ay such that pr(M} < ay | X¢, Mi—1) = 1/sy. Then, assuming that M;" given
M (k=1,...,K) follows the distribution given in Lemma 1, as S 1 00,

ng
EMg | X) ~ ﬁE(M | X).

COROLLARY 1. Under the assumptions of Theorem 3 and assuming ny = --- = ng, as S grows to
infinity, EMx | X) ~EM | X)/K.

Remark 2. We pause to offer some intuition for Theorem 3. The rerandomization of the last group
is the most important step, because any imbalance between the first K — 1 treatment and control groups
may be cancelled out, making the entire dataset balanced once again. Heuristically, an efficient sequential
rerandomization strategy need only ensure that the imbalance accumulated in the first K — 1 groups is
sufficiently small and then perform most rerandomizations for the last group. In fact, any strategy that
satisfies the following two conditions would make Theorem 3 hold: (i) as S 1 oo, every s; does so too;
(ii) S ~ sk. The first condition ensures that every M, will decrease to zero and so, by Lemma 1, Nng' M;:
will converge to a x[f random variable. The second condition guarantees that, asymptotically, Nuy' My and
M are equivalent, in expectation, because they are truncated at the same threshold.

The consequences of the results in this section can be significant for clinical trials research. If a large
number of individuals are enrolled simultaneously, Theorem 3 says that it is advantageous to use sequential
rerandomization in lieu of Morgan—Rubin complete rerandomization. In the Supplementary Material,
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we conduct multiple simulation studies using both simulated and real datasets to show that sequential
rerandomization achieves a smaller Mahalanobis distance in almost every practical setting.

5. DiIscussioN
5-1. Generalizations of our results

In practice, experimenters may prefer unequal allocation schemes where the numbers of treatment and
control units are not the same (Hey & Kimmelman, 2014). Let w be the proportion of treatment assignments.
If w is constant across all the groups, then as long as we use the correct version of Mahalanobis distance,
see the Supplementary Material, all our results still hold. More generally, our results can be extended to a
heterogeneous dataset where cov(X}) is very different across the groups. This happens when the clinical
trial has a large time span or the groups of samples are collected at different places. The key is to find an
appropriate form of Mahalanobis distance. In the Supplementary Material, we propose to standardize the
data separately for each group and then compute the Mahalanobis distance using the standardized variables
with proper weights. This can be viewed as a generalization of the Mahalanobis distance defined in (1),
and a corresponding generalized version of Lemma 1 is also proved; see Lemma A1 in the Supplementary
Material. Since Lemma 1 characterizes the conditional distribution of M and is the foundation of all the
subsequent results, our main results, Proposition 2 and Theorem 3, follow by the same argument.

When the data are heterogeneous, minimizing the overall imbalance may not be sufficient and thus the
strategy given in Proposition 2 becomes undesirable. For example, the effects of the covariates may change
between the groups, and each group may have a unique systematic effect on the outcome. In such cases,
one may want to achieve good balance within each group and choose a more uniform value for (s, . . ., sx).
We point out that, in terms of within-group balance, sequential rerandomization is still superior to Morgan—
Rubin complete rerandomization; see the Supplementary Material for details. Heuristically, this is because
even if we let the threshold a of Morgan—Rubin complete rerandomization go to zero, we are only enforcing
cancellation of the within-group imbalances, but their absolute values can be arbitrarily large.

5-2. Towards an optimal procedure

For classical dynamic randomization procedures, it is often assumed that the assignment of a unit
must be determined as soon as the individual is enrolled. In the seminal work of Atkinson (1982), a type
of Efron’s biased coin procedure (Efron, 1971) was proposed that achieves optimum performance when
the underlying model is linear (see also Smith, 1984). A natural avenue of enquiry would be to find the
optimal procedure for the case where the participants arrive in groups and the rerandomization technique
is employed. Such questions have to be formulated very carefully. Even if all the participants arrive at the
same time, the deterministic construction that minimizes the Mahalanobis distance is usually undesirable
for the following two reasons. Firstly, for large sample sizes, the construction is not practical since finding
the deterministic optimum is a nonconvex optimization problem. Secondly, we want the procedure to
possess a certain degree of randomness to avoid selection bias (Antognini & Zagoraiou, 2017). Qin et al.
(2016) introduced a procedure which can be applied when the participants arrive in pairs. For the kth pair,
they considered the two 1:1 assignment schemes and chose the one that gives a smaller Mahalanobis
distance of the first 2k units with probability ¢ € (1/2, 1). In the Supplementary Material we apply this
procedure to a real dataset. When ¢ = 0-75, the value suggested in Qin et al. (2016), the Mahalanobis
distance of the entire dataset is only sightly smaller than that of Morgan—Rubin complete rerandomization,
but it is greater than those of our sequential designs. For comparison, when ¢ = 1, which makes the whole
procedure deterministic, the Mahalanobis distance reduces dramatically. We believe that when the group
size of a sequential design is small, the covariate imbalance can only be efficiently minimized at the cost
of selection bias, i.e., the procedure being more deterministic. Kapelner & Krieger (2014) offered a more
complicated dynamic procedure which also uses Mahalanobis distance, but some participants may wait a
long time before being assigned. We believe that to find an optimal procedure, one needs to strike a balance
between the following factors: the covariate imbalance as measured by Mahalanobis distance, the group
size of the sequential enrolment design, and the randomness and computational cost of the procedure.
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