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Abstract

The lasso has been studied extensively as a tool for estimating the coefficient vector in
the high-dimensional linear model; however, considerably less is known about estimating
the error variance in this context. In this paper, we propose the natural lasso estimator
for the error variance, which maximizes a penalized likelihood objective. A key aspect of
the natural lasso is that the likelihood is expressed in terms of the natural parameterization
of the multiparameter exponential family of a Gaussian with unknown mean and variance.
The result is a remarkably simple estimator of the error variance with provably good per-
formance in terms of mean squared error. These theoretical results do not require placing
any assumptions on the design matrix or the true regression coefficients. We also propose a
companion estimator, called the organic lasso, which theoretically does not require tuning of
the regularization parameter. Both estimators do well empirically compared to preexisting
methods, especially in settings where successful recovery of the true support of the coefficient
vector is hard. Finally, we show that existing methods can do well under fewer assumptions
than previously known, thus providing a fuller story about the problem of estimating the
error variance in high-dimensional linear models.

1 Introduction
The linear model
y=Xp"+e¢ 5NN(0702IH)7 (1)

is one of the most fundamental models in statistics. It describes the relationship between a
response vector y € R™ and a fixed design matrix X € R™P. When p > n, estimating the
coefficient vector 5* is a challenging, well-studied problem. Perhaps the most common method
in this setting is the lasso (Tibshirani 1996), which assumes that 5* is sparse and solves the
following convex optimization problem:

R /1
B\ € arg min ( ||y—XﬁH§+2)\||5||1) ) (2)
BeRP n

Over the past decade, an extensive literature has emerged studying the properties of BAA from
both computational (e.g., Hastie et al. 2015) and theoretical (e.g., Biihlmann & Van De Geer
2011) perspectives.

Compared to the vast amount of work on estimating 3*, relatively little attention has been
paid to the problem of estimating o2, which captures the noise level or extent to which y
cannot be predicted from X. Nonetheless, reliable estimation of o2 is important for quantifying
the uncertainty in estimating 8*. A series of recent advances in high-dimensional inference
(Biihlmann 2013, Zhang & Zhang 2014, Van de Geer et al. 2014, Lockhart et al. 2014, Javanmard
& Montanari 2014, Lee et al. 2016, Tibshirani et al. 2016, Taylor & Tibshirani 2017, Ning &
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Liu 2017, etc.) may very well be the determining factor for the widespread adoption of the
lasso and related methods in fields where p-values and confidence intervals are required. Thus,
estimating o2 reliably in finite samples is crucial.

If B* were known, then the optimal estimator for o would of course be n=!|ly — X3*||3 =
n~Y|e||2. Thus, a naive estimator for 62 based on an estimator 3 of * would be

. 1 5
0121aive = E”y_XBH% (3)

However, a simple calculation in the classical n > p setting shows that such an estimator is
biased downward: a least-squares oracle with knowledge of the true support S = {j : B; # 0}
scales this to give an unbiased estimator,
1
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Ooracle — m”y*XSXSyH% (4)
where Xg is a sub-matrix of X with columns indexed by S and X; is its pseudoinverse.
Many papers in this area discuss the difficulty of estimating o2 and warn of the perils of
underestimating it: if o2 is underestimated then one gets anti-conservative confidence intervals,
which are highly undesirable (Tibshirani et al. 2018).

Reid et al. (2016) carry out an extensive review and simulation study of several estimators

of 0% (Fan et al. 2012, Sun & Zhang 2012, Dicker 2014), and they devote special attention to
studying the estimator

0h = ly — XBall3, (5)

n—=_§ by
where B \ is as in (2), with A selected using a cross-validation procedure, and §y is the number
of nonzero elements in BA- They show that (5) has promising performance in a wide range of
simulation settings and provide an asymptotic theoretical understanding of the estimator in the
special case where X is an orthogonal matrix.

While intuition from (4) suggests that (5) is a quite reasonable estimator when S can be
well recovered, it also points to the question of how well the estimator will perform when S is
not well recovered by the lasso. The conditions required for the lasso to recover S are much
stricter than the conditions needed for it to do well in prediction (e.g., Van de Geer & Biithlmann
2009). The scale factor (n — 3,)~! used in 6% means that this approach depends not just on
the predicted values of the lasso, X B» but on the magnitude of the set of nonzero elements in
3 - Indeed, we find that in situations where recovering S is challenging, &% tends to yield less
favorable empirical performance. The theoretical development in Reid et al. (2016) sidesteps this
complication by working in an asymptotic regime in which 6% behaves like the naive estimator
(3). To understand the finite-sample performance of 6% would require considering the behavior
of the random variable §y. Clearly, when §) &~ n, even small fluctuations in §) can lead to large
fluctuations in &}2%. Finally, from a practical standpoint, computing §y is a numerically sensitive
operation in that it requires the choice of a threshold size for calling a value numerically zero,
and the assurance that one has solved the problem to sufficient precision.

Based on these observations, we propose in this paper a completely different approach to
estimating o2. The basic premise of our framework is that when both 8* and ¢? are unknown,
it is convenient to formulate the penalized log-likelihood problem in terms of
1 9 B
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the natural parameters of the Gaussian multiparameter exponential family with unknown mean
and variance. The negative Gaussian log-likelihood is not jointly convex in the ((,0) pa-
rameterization. In fact, even with § fixed, it is nonconvex in o. However, in the natural
parameterization the negative log-likelihood is jointly convex in (¢, #).



We penalize this negative log-likelihood with an ¢;-norm on the natural parameter 6 and
call this new estimator the natural lasso. We show in Section 3 that the resulting error variance
estimator can in fact be very simply expressed as the minimizing value of the regular lasso
problem (2):

1
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oy = min (n ly = X5l + 22 ||ﬂ||1> : (7)

Observing that the first term is 5121aive, we directly see that the natural lasso counters the naive
method’s downward bias through an additive correction; this is in contrast to [712%’5 reliance on a
multiplicative correction that sometimes may be unstable. Computing (7) is clearly no harder
than solving a lasso and, unlike 612%, does not require determining a threshold for deciding which
coefficient estimates are numerically zero. Furthermore, we establish finite-sample bounds
on the mean squared error that hold without making any assumptions on the design matrix
X. Our theoretical analysis suggests a second approach that is also based on the natural
parameterization. The theory that we develop for this method, which we call the organic
lasso, relies on weaker assumptions. We find that both methods have competitive empirical
performance relative to 6}2% and show particular strength in settings in which support recovery
is known to be challenging.

Our final contribution is to show that existing methods can also attain high-dimensional
consistency under no assumptions on X. In particular, we provide finite-sample bounds for
62.:, With 3 in (3) taken to be the standard lasso or the square-root/scaled lasso estimator
(Belloni et al. 2011, Sun & Zhang 2012). Previous results about 62, . have placed strong
assumptions on X. Thus, our work provides a fuller story about the problem of estimating the
error variance in high-dimensional linear models.

2 Natural parameterization

The negative log-likelihood function in (1) is, up to a constant,

ly = X515

n
L(B,0%|X,y) = §logcr2+ 5,2

When o2 is known, the ¢ dependence can be ignored, leading to the standard least-squares
criterion; however, when ¢ is unknown, performing a full minimization of the penalized negative
log-likelihood amounts to solving a nonconvex optimization problem even with a convex penalty.

The nonconvexity of the Gaussian negative log-likelihood in its variance, or more generally,
covariance matrix, is a well-known difficulty (Bien & Tibshirani 2011). In this context, working
instead with the inverse covariance matrix is common (Yuan & Lin 2007, Banerjee et al. 2008,
Friedman et al. 2008). We take an analogous approach when estimation of ¢ is of interest,
considering the natural parameterization (6) of the Gaussian multiparameter exponential family
with unknown variance,
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n ||?JH2 T ||X9||2
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L(¢70,67"|X,y) = —Tlog g + 50 Hy - X5
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Observing that attaining sparsity in 6 is equivalent to attaining sparsity in 3, we propose the
following penalized maximum log-likelihood estimator:

A2 : 1 lyll; 1 7 X035
<9>\,<Z>>\) Ea;gg;n{—210g¢+¢%—ny X0+ o + AQ(0, ¢) (8)

for a convex penalty Q(6,¢) that induces sparsity in 0. We will focus on Q(6,¢) = ||6]|; in
Section 3 and Q(6, ¢) = ¢ 1(|0||? in Section 4. This problem is jointly convex in (6, ). While



this is a general property of exponential families due to the convexity of the cumulant generating
function, we can see it in this special case because of the convexity of —log and the convexity
of the quadratic-over-linear function (Boyd & Vandenberghe 2004, Rockafellar 2015). Given a
solution to (8), we can reverse (6) to get estimators for o2 and 3*:

1 -
~9 A
Oy = =, B)\ = =. (9)
(03 (03

Before proceeding with an analysis of the estimator (9) with specific choices of Q(0, @), we
point out a similarity between our method and that of Stadler et al. (2010), who consider a
different convexifying reparameterization of the Gaussian log-likelihood, using p = o' and
v = o~ 'B. They put an ¢;-norm penalty on 7, which has the same sparsity pattern as 3, and
solve

1 2
in (—1 — - X A . 10
gag( 0gp+ 5oy = Xl + H’YH1> (10)
Sun & Zhang (2010) give an asymptotic analysis of the solution to (10) under a compatibility
condition. A modification of this problem (Antoniadis 2010) gives the scaled lasso (Sun & Zhang
2012), which is known to be equivalent to the square-root lasso (Belloni et al. 2011):

_ 1 1 _ 2
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BsQRT aIEGIRHPID (\/n ly — X B, + Hﬂ\h) OSqrr = - ||¥ X BSQRT ) (11)

With the same parameterization (p,~), Dalalyan & Chen (2012) propose the scaled Dantzig
selector under the assumption of fused sparsity. Under the restricted eigenvalue condition, they
establish the same rate of convergence in estimating the error variance as the fast prediction
error rate of the standard lasso (Hebiri & Lederer 2013, Lederer et al. 2016, Dalalyan et al.
2017).

3 The natural lasso estimator of error variance

We first propose the natural lasso, which is the solution to (8) with Q(0,¢) = ||f||;. One
might think that solving the natural lasso would involve a specialized algorithm. The following
proposition shows, remarkably, that this is not the case.

Proposition 1. The natural lasso estimator (By,53) defined in (9), where (0, d) is a solution
to (8) with (6, ¢) = ||0||1, satisfies the following properties:

1. BA = BA; a solution to the standard lasso (2);
2. 63 = 63, the standard lasso’s optimal value (7).
Furthermore, 53 = n~!(||y|3 — || X BxlI3)-

The proof of this proposition and all theoretical results that follow can be found in the
Appendices. Thus, to get the natural lasso estimator of (3*, 02), one simply solves the standard
lasso (2) and returns a solution and the minimal value.

An attractive property of the natural lasso estimator 63\ is the relative ease with which one
can prove bounds about its performance. Since [7/2\ is the optimal value of the lasso problem,
the objective value at any vector 5 provides an upper bound on 63. Likewise, any dual feasible
vector provides a lower bound on &i. These considerations are used to prove the following
lemma, which shows that for a suitably chosen A, the natural lasso variance estimator gets close

to the oracle estimator of o2.



Lemma 2. If A > n Y| XTe||o, then |63 —n=te]3] < 2X|8%|1.

The result above is deterministic in that it does not rely on any statistical assumptions or
arguments. The next result adds such considerations to give a mean squared error bound for
the natural lasso.

Theorem 3. Suppose that each column X; of the matrix X € R™ P has been scaled so that
|X;13 = n for all j = 1,...,p, and assume that & ~ N(O,O‘2In). Then, for any constant

M > 1, the natural lasso estimator (7) with A = o(2Mn~'logp)'/? satisfies the following
relative mean squared error bound:

. 2 _ 1/2 | s 2
L S U N e N [ T T AN A
o2 - log p o n n ’

Corollary 4.
~2 * 1 1/2
e ’:O{Hﬂ Iy <ogp> | 12)
(o2 o n

Proof. This follows from Jensen’s inequality. 0

Remark 5. Theorem 3 can be easily generalized to the case where the independently and iden-
tically distributed zero-mean error e; with variance o2 is sub-Gaussian or sub-exponential. A
high probability bound can be obtained for e; with bounded polynomial moments. In particular,
for any m > 3, if E(le;|™) < (m!)712K™=2 for some K > 0, and if each column X; is scaled
so that Y X =mn forj=1,...,p, then with A = 4Kon~Y2(log p)'/? we have that

1 1/2
o {ouﬁ*nl (<22) }

holds with probability greater than 1 — p~ L.

2
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To put Theorem 3 in context, we devote the remainder of this section to considering what
bounds are available for other methods for estimating o?. Bayati et al. (2013) propose an
estimator of o based on estimating the mean squared error of the lasso. They show that their
estimator of o2 is asymptotically consistent with fixed p as n — oo. In contrast, we provide
finite sample results and these include the p > n case. Also, the consistency result in Bayati
et al. (2013) is based on the assumption of independent Gaussian features, and in extending
this to the case of correlated Gaussian features, the authors invoke a conjecture. In comparison,
(12) is essentially free of assumptions on the design matrix.

The natural lasso also compares favorably to the method-of-moments-based estimator of
Dicker (2014) in terms of mean squared error bounds. In particular, Dicker (2014) establishes a
Op[(0727% + 1){n"%(p + n)}/?] relative mean squared error rate, where 72 = || ~1/24*||3 and
3} is the covariance of features X. This rate can be much slower for large p.

Notably, the mean squared error bound in Theorem 3 does not put any assumption on X,
B*, or 0. In this sense, the result is analogous to a slow rate bound (Rigollet & Tsybakov
2011, Dalalyan et al. 2017), which appears in the lasso prediction consistency context. While
it is well known (Sun & Zhang 2012) or can be easily verified that under stronger conditions,
i.e., compatibility or restricted eigenvalue conditions, the naive estimator (3) based on the lasso
and 6§QRT in (11) attain a faster rate, O(|S|n"'logp), it is natural to ask whether these two
estimators also attain a rate bound as in (12) when the conditions on X are not assumed. The
following two results give an affirmative answer to this question.



Proposition 6. Under the conditions of Theorem 3, the naive estimator (3) based on the lasso
estimator ﬁA with A = 4o(n 1logp)1/2 has the following bound with probability greater than
1-— p_1

o el
naive

logp 1/2
< 1oa)5l (52 (13)

Relatedly, Chatterjee & Jafarov (2015) also consider a setting with no assumptions on X

and derive an error bound O{Hﬁ*”l/2 ~Logp)'/4} for (3) for a lasso estimator 3y with \ in
(2) selected using a cross-validation procedure.

Lederer et al. (2016) derive a slow rate bound for the prediction error of the square root
lasso. They show, in Lemma 2.1, that there exists a value of A for which A = 3n™1/2|| X ¢|| o |ly —
X Psqrrllz and bound || X Bsqrr — XB*[|3 at this value. The following result establishes the
high-dimensional consistency of 5§QRT under no assumptions on X.

Proposition 7. Under the conditions of Theorem 3, the square—foot/scaled lasso estimator
5§QRT in (11) based on Bsqrr with A = 3n"2| XT¢||wolly — XBsqrrlly has the following
bound with probability greater than 1 — p~!

lell3

. logp 1/2
B~ 92| < 120, () (1)
We see the rate of the natural lasso in (12) matches, up to a constant factor, the rates (13)
and (14). The values of A used in Propositions 6 and 7 are larger than would be necessary
for standard prediction error bounds; we learned of this technique from Irina Gaynanova (Gay-
nanova 2018), and it is key to the proofs of the two propositions. Although the same rate is
obtained in Theorem 3, Proposition 6, and Proposition 7, we have not established that this is
the best possible rate obtainable in this setting that makes no assumption on X.

4 The organic lasso estimate of error variance

4.1 Method formulation

In practice, the value of the regularization parameter A in (7) may be chosen via cross-validation;
however, Theorem 3 has a regrettable theoretical shortcoming: it requires using a value of A
that itself depends on o, the very quantity that we are trying to estimate! This is a well-known
theoretical limitation of the lasso and related methods that motivated the square-root/scaled
lasso. In this section, we propose a second new method, which retains the natural parameter-
ization, but remedies the natural lasso’s theoretical shortcoming by using a modified penalty.

We define the organic lasso as a solution to (8) with Q(0,¢) = ¢~ 10|13, i.e.,
S 1 X0|3 0|7
$>0, 0 n 2ng 10)

We observe that the penalty ¢~1||0]|? is jointly convex in (¢,6) since it can be expressed as
g(h(0), ¢) where h(0) = ||0||1 is convex and g(x,¢) = ¢~ '2? is a jointly convex function that is
strictly increasing in = for x > 0 (Boyd & Vandenberghe 2004, Rockafellar 2015).

Given a solution to the above problem, we can reverse (6) to give the organic lasso estimators
of (B*,02),1.e., By = qB;léA, 53 = gb)\l Furthermore, ¢ 1|2 still induces sparsity in 6, and thus
the final estimate (3 is sparse. In direct analogy to the natural lasso, the following proposition
shows that we can find 33 and () without actually solving (15).



Proposition 8. The organic lasso estimators (BA,5§) correspond to the solution and minimal
value of an (3-penalized least-squares problem:

. /1
By = argmin < lly — X815 + 2 ||B|f> ; (16)
BERP n
1
.92 . 2 2
= “ly-X 22 : 17
X /ggﬁg(n\ly Bllz + IIBI1> (17)

Thus, to compute the organic lasso estimator, one simply solves a penalized least squares
problem, where the penalty is the square of the £; norm. This can be thought of as the exclusive
lasso with a single group (Zhou et al. 2010, Campbell et al. 2017). We show in the next section
that solving this problem is no harder than solving a standard lasso problem.

One readily sees the connection of the organic lasso to the square-root lasso (11): to get
(17), one takes squares of both the loss and the ¢; penalty of (11). However, their origins are
actually different in nature: the organic lasso is a maximum of the Gaussian log-likelihood with
a scale-equivariant sparsity inducing penalty under parameterization (6), while (11) minimizes
the ¢;-penalized Huber concomitant loss function (Antoniadis 2010, Sun & Zhang 2012).

4.2 Algorithm

Coordinate descent is easy to implement and has steadily maintained its place as a start—of-the-art
approach for solving lasso-related problems (Friedman et al. 2007). For coordinate descent to
work, one typically verifies separability in the non-smooth part of the objective function (Tseng
2001). However, the £? penalty in (16) is not separable in the coordinates of 3. Lorbert et al.
(2010) propose a coordinate descent algorithm to solve the Pairwise Elastic Net (PEN) problem,

a generalization of (16), and a proof of the convergence of the algorithm is given in Lorbert
(2012). In Algorithm 1, we give a coordinate descent algorithm specific to solving (16). The R
package natural (Yu 2017) provides a C implementation of Algorithm 1.

Algorithm 1 A coordinate descent algorithm to solve (16)

Require: Initial estimate 39 € RP, X € R"*P, y € R™, and \ > 0.

Set B+ O and r +y— Xp3

for j=1,...,p;1,...,p;... (until convergence) do
B1v — (2A+ L 12) LS (X e+ X1 85,2718 1)
r$<1r+ Xjﬁj — Xj/@;}ew
B; + Bre

end for

return j.

Each coordinate update requires O(n) operations. In Algorithm 1, S(a,b) = sgn(a)(|a| —b)+
is the soft-threshold operator. Empirically Algorithm 1 is as fast as solving a lasso problem.
Theorem C.3.9 in Lorbert (2012) shows that, for any initial estimate 8(0) € RP, every limit
point of Algorithm 1 is an optimal point of the objective function of (16). This implies that
the ¢2 penalty, although not separable, is well enough behaved that any point that is minimum
in every coordinate of the objective function in (16) is indeed a global minimum.

4.3 Theoretical results

A first indication that the organic lasso may succeed where the natural lasso falls short is
in terms of scale equivariance. As the design X is usually standardized to be unitless, scale
equivariance in this context refers to the effect of scaling y.



Proposition 9. The organic lasso is scale equivariant, i.e., for any t > 0,

Bx (ty) = tBx (y) . ax(ty) = tox (v) -

Scale equivariance is a property associated with the ability to prove results in which the
tuning parameter A does not depend on o. For example, the square-root/scaled lasso (11) is
scale equivariant while the lasso, and thus the natural lasso, is not. In particular, B)\(ty) =+
tBx(y), and 65 (ty) # t&(y) for some ¢ > 0.

In Lemma 2, we saw how expressing an estimator as the optimal value of a convex opti-
mization problem allows us to take full advantage of convex duality in order to derive bounds
on the estimator. We therefore start our analysis of (17) by characterizing its dual problem.
Lemma 10. The dual problem of (17) is

T 2
ma 3~ (il — lly —ull3) — 5~ |52 ¢
ueR® | n 2 2 2M |l

Similar arguments as in Lemma 2 give a bound expressing &?\’s closeness to the oracle

estimator of 2.

Lemma 11. If A\ >n~! HXT(J_ls)HOO, then

By 1 L e 2
—2\0? 15 1Y ¢ 52 1 <2M 8|5 .
o (101 3) < a8 - L1l < 2ol

Comparing with Lemma 2, we see that the condition on A depends only on a quantity
o~le ~ N(0,1,) that is independent of o2. Indeed, this leads to a mean squared error bound

with the desired property of A not depending on o.

Theorem 12. Suppose that each column X; of the matriz X € R™*P has been scaled so that
|1X;[3 =n forallj =1,....,p, and € ~ N(0,0'an). Then, for any constant M > 1, the
organic lasso estimator (17) with X = (2Mn~'logp)'/? satisfies the following relative mean
squared error bound:

. 2 — 1/2 * * 2
D s SR N P R e S 4 5 o A PR A WA T AR A
o - logp o2 o 4 n n )

(18)

Compared with Theorem 3, the organic lasso estimator of o2 retains the same rate in terms
of n and p but has a slower rate in terms of o~1[|3*||;. Importantly, though, the value of A
attaining (18) does not depend on o. This tuning-insensitive property is also enjoyed by the
square-root /scaled lasso estimate of o2, as shown in Proposition 7. As in Remark 5, similar
high-probability bounds can be obtained for € with bounded polynomial moments.

Although not central to our main purpose, the organic lasso estimator (16) of 5* is interesting
in its own right. The following theorem gives a slow rate bound in prediction error.

Theorem 13. For any L > 0, the solution to (16) with A = {2n"'(logp + L)}'/? has the
following bound on the prediction error with probability greater than 1 — e L

1 . w2 N 2logp+ 2L 1/2
Ll - x < (o ang) (2R ERE) T
n n

In Appendix J, we provide mappings between the path of the natural lasso, {8y : A > 0},
and the path of the organic lasso {f) : A > 0}. We also include a fast-rate prediction error
bound of (16) under a compatibility condition in Appendix K.



5 Simulation studies

5.1 Simulation settings

Reid et al. (2016) carry out an extensive simulation study to compare many error variance
estimators. We have matched their simulation settings fairly closely, so that the performance
comparison with various other methods mentioned in Reid et al. (2016) can be inferred. Specif-
ically, all simulations are run with p = 500 and n = 100. Each row of the design X is generated
from a multivariate N(0,X), with ¥;; = p € (0,1) for i # j and ¥;; = 1. To generate §*, we
randomly select the indices of [n%]| nonzero elements out of p variables where a € (0,1), and
each of the nonzero elements has a value that is randomly drawn from a Laplace distribution
with rate 1. The error variance is generated using o2 = 77 18*TS3* for 7 > 0. Finally, y is
generated following (1).

Each model is indexed by a triplet (p, «, 7), where p captures the correlation among features,
« determines the sparsity of 8%, and 7 characterizes the signal-to-noise ratio. We vary p,a €
{0.1,0.3,0.5,0.7,0.9} and 7 € {0.3,1,3}. We compute a Monte Carlo estimate of both the
mean squared error E{(c7'45 —1)?} and E(67'5) as the measure of performance. The methods
in comparison include (a) the naive estimator (3) with 8y in (2), (b) the degrees of freedom
adjusted estimator 6% in (5) (Reid et al. 2016), (c) the square-root/scaled lasso (Belloni et al.
2011, Sun & Zhang 2013), (d) the natural lasso (7), and (e) the organic lasso (17). As a
benchmark, we also include the oracle n~![|¢]|3. The simulator R package (Bien 2016) was
used for all simulations.

5.2 Methods with regularization parameter selected by cross-validation

We carry out two sets of simulations. In the first set, we compare the performance of the
aforementioned methods with regularization parameter selected in a data-adaptive way. In
particular, five-fold cross-validation is used to select the tuning parameter for each method.

Due to space constraints, we present a subset of the results in Fig 1. Additional results
are presented in Appendix L. The result for the square-root/scaled lasso is averaged over 100
repetitions due to the large computational time. For all other methods, the results are averaged
over 1000 repetitions. Overall, the natural lasso does well in adjusting the downward bias of
the naive estimator, while other methods tend to produce under-estimates. In each panel, we
fix signal-to-noise ratio (7) and correlations among features (p), and vary model sparsity («).
All estimates get worse with growing o, except for the natural lasso, which improves as the true
B* gets denser. In particular, both the natural lasso and the organic lasso gain performance
advantage over other methods when the underlying models do not satisfy conditions for the
support recovery of the lasso solution. From left to right, Fig 1 illustrates the effect of increasing
p. As observed in Reid et al. (2016), high correlations can be helpful: All curves approach the
oracle as p increases. Finally, we find that the organic lasso is uniformly better or equivalent to
52,

Paired t-tests and Wilcoxon signed-rank tests show that the differences in mean squared
errors of different methods are significant at the 5% level for almost all points shown in Fig 1.

Results in Appendix L also show the natural lasso estimator doing well when the signal-to-noise
ratio is low: the performances of all methods degrade as 7 gets large. This is expected from
Theorem 3 and Theorem 12, and is also observed in Reid et al. (2016).

5.3 Methods with fixed choice of regularization parameter

Although solving (17) is fast enough for one to use cross-validation with the organic lasso,
Theorem 12 implies that Ao = (2n~! log p)l/ 2 is a theoretically sound choice of regularization
parameter. We also conjecture that a sharper rate may be obtainable at A\ > n=2||X7T¢||2,
where € ~ N(0,1). With high probability, n=2||XT¢e||%, ~ n~!log(p). Thus, we also show the
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Figure 1: Simulation results of methods using cross-validation. From left to right, columns show
Monte Carlo estimates of the mean squared error, in the top panel, and E(c~14), in the bottom
panel, of various methods in three simulation settings. Line styles and their corresponding
methods: + for naive, * for [7%27 for the square-root/scaled lasso, * for the natural lasso,

- for the organic lasso, *- for the oracle.

performance of the organic lasso with tuning parameter values equal to Ay = n~'log(p), and
A3, which is a Monte Carlo estimate of E(n~2||X7T¢||%,), where the expectation is with respect
to e~ N(0,1).

We compare the organic lasso at these three fixed values of tuning parameter to the
square-root /scaled lasso estimator (11) of error variance, which is another method whose the-
oretical choice of A does not depend on o. Sun & Zhang (2012) find that Ao works very well
for (11), which we denote by scaled(1), and Sun & Zhang (2013) propose a refined choice of A,
which is proved to attain a sharper rate, denoted by scaled(2). The results of all the methods
are averaged over 1000 repetitions.

Fig 2 shows similar patterns as Fig 1. Specifically, large value of p helps all methods,
while performance generally degrades for denser 5*. Although not shown here, all methods
struggle as 7 increases. The theoretically justified tuning parameter Ay for the organic lasso
appears in practice to overshrink the estimate of 8* and thus to overestimate o2, leading to
poor performance; however, the organic lasso with the smaller tuning parameter values Ao and
A3 do quite well, generally outperforming the square-root/scaled lasso based methods.

6 Error estimation for Million Song dataset

We apply our error variance estimators to the Million Song dataset.! The data consist of
information about 463715 songs, and the primary goal is to model the release year of a song
using p = 90 of its timbre features. The dataset has a very large sample size so that we
can reliably estimate the ground truth of the target of estimation on a very large set of held

out data. In particular, we randomly select half of the songs for this purpose and use 62 =

'The whole data set can be obtained at https://labrosa.ee.columbia.edu/millionsong/. We consider a subset
of the whole data, which is available at https://archive.ics.uci.edu/ml/datasets/yearpredictionmsd.
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Figure 2: Simulation results of methods using pre-specified regularization parameter values.
From left to right, columns show Monte Carlo estimates of the mean squared error, in the top
panel, and E(c~'4), in the bottom panel, of various methods in three simulation settings. Line
styles and their corresponding methods: + for organic (\g), = for organic (A2), -+ for organic
(A3), - for scaled(1), .7 for scaled (2), *- for the oracle.

(n—p)~Yy—-X B Ls||3 to form our ground truth, where BLg is the least-squares estimator of
B*. In practice, model (1) may rarely hold, which alters the interpretation of error variance
estimation. Suppose the response vector y has mean p and covariance matrix ¥.. Then &2 can

be thought of as an estimator of the population quantity

1 1 1
min B (|ly — XB3) =~ tx(2) + | (7 = Xx7) ull3.

In the special case where ¥ = 021, and u = X 3%, as in (1), then &2 reduces to the linear model
noise variance 2.

From the remaining data that was not previously used to yield 52, we randomly form training
datasets of size n and compare the performance of various error variance estimators. We vary
n in {20, 40, 60, 80, 100, 120} to gauge the performance of these methods in situations in which
n < p and n = p. For each n, we repeat the data selection and error variance estimation on
1000 disjoint training sets, and report estimates of the mean squared error E{(¢7 6 — 1)?} in
Table 1 and estimates of F(5~!6) in Appendix L.

All methods produce a substantial performance improvement over the naive estimator for a
wide range of values of n. The natural and organic lassos with cross validation perform either
better or comparably to 6%% and are in some, but not all, cases outperformed by scaled(2).
When n gets large, the natural lasso shows some upward bias, which as we noted before is less
problematic than downward bias. The organic lasso with the fixed choices Ao or A3 performs
extremely well for all n.

Future research directions include the analysis of the proposed methods with smaller val-
ues of A\, and extending the natural parameterization to penalized non-parametric regression.
Finally, an R (R Core Team 2017) package, named natural (Yu 2017), is available on the
Comprehensive R Archive Network, implementing our estimators.
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Table 1: Mean squared error of noise variance estimation for Million Song dataset

n 20 40 60 80 100 120

naive 17.02 (0.68) 8.48 (0.41) 5.28 (0.26) 3.80 (0.17) 3.03 (0.13) 2.43 (0.10)
52, 10.74 (0.45) 5.92 (0.29) 3.57 (0.17) 2.57 (0.11) 2.23 (0.10) 1.75 (0.08)
natural(cv)  8.82 (0.38) 5.23 (0.27) 3.47 (0.16) 2.61 (0.12) 2.39 (0.11) 2.01 (0.09)
organic(cv)  8.08 (0.32) 4.23 (0.20) 2.59 (0.12) 2.00 (0.08) 1.72 (0.08) 1.54 (0.07)
scaled(1) 7.43 (0.37) 4.92 (0.25) 3.84 (0.17) 3.08 (0.13) 2.94 (0.12) 2.75 (0.11)
scaled(2) 7.11 (0.28) 3.36 (0.15) 2.23 (0.10) 2.57 (0.83) 1.61 (0.07) 1.46 (0.07)
organic(\2)  5.87 (0.24) 3.17 (0.14) 1.93 (0.09) 1.40 (0.06) 1.20 (0.05) 1.02 (0.05)
organic(\3)  5.72 (0.24) 3.15 (0.14) 1.99 (0.09) 1.45 (0.07) 1.28 (0.05) 1.12 (0.05)

Mean and standard errors, over 1000 replications, of the squared error of various methods. Each
entry is multiplied by 100 to convey information more compactly.
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Appendices

A  Proof of Lemma 2

From (2) in the paper, it follows that

~ 1 * (|2 * 1 2 *
53 < o lly = XB7My + 2M 187 = llellz + 271157, -

By introducing the dual variable 2n~'u € R®,

1 1 2
~92 . 2 . 2 I
s =min | — |ly — XG5 + 2\ (|8 = minmax<{ — ||y — + — — XB)+ 2|8
A 51 ( Hy Hz H Hl) B,lz 3 { Hy 2”2 u (Z ) H Hl}

.1 2, 2 p
> —_ — — — 2)\
mgxmﬁm{n lly — 2|5 + nu (z — XpB) + ||BH1}

)

1 2 1 2 . T
_ < .
= max (n llyll5 - ly — u||5, subject to HX uH nA
By assumption, ¢ is dual feasible, which means that

N 1 2 1 2 1 2 2 * 1 2 *
63> —lyll3 — — lly — <l > ~ llell3 + Ze"X8" > — Jlell3 — 278",

where in the last step we applied Holder’s inequality.

B Proof of Propositions 1 and 8

We prove in this section that both the natural lasso and the organic lasso estimates of error vari-
ance can be simply expressed as the minimizing values of certain convex optimization problems.
To do so, we exploit the first order optimality condition of each convex program.

We start with proving that the natural lasso estimate of o2 is the minimal value of a lasso
problem (2). The following lemma characterizes the conditions for which (fy, ¢,) is a solution
to (8) with Q(6,¢) = |10]:.

Lemma 14 (Optimality condition of the natural lasso). For any A > 0, (0x,$») is a solution
to (8) with (0, ¢) = ||0||1 if and only if

~ 112
R L g
—— 4yl -2 =0,  —XTy+ XX 4+nrg=0
(b/\ n n(b)\ (b)\

where § € 8(H0A>\H1)

Given (é,\, qg,\), we reverse the natural parameterization to get B/\ = é;lé)\ and 63\ = &;1
From Lemma 14,

X 1 N2 N ~ 112 N
(R R NI S P e
Note that

~ 112 9 ~ 112 A2TA 9 ~ 112 A
5 i 2 ([ ) i = oo 5],
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We have
1 .12 1 .12 )
A2 2
o= (”yHQ H B 2) |t B ,t B .

We show that the organic lasso estimate of o2 is the minimal value of the (2-penalized
least squares problem. As the natural lasso, we start with studying the following optimality
condition:

Lemma 15 (Optimality condition of the organic lasso). For any A > 0, (é,\, (;VSA) is a solution
to (15) if and only if

1 2 H‘-wv)\ ‘; HéA ﬁ T T éA Hék‘ 1
+ — — - — 2— =0, X' y+ X" X2 4 2n— =0
n lyll5 nqﬁ?\ ¢?\ Y o n N g

b
)

where § € 9(]|]]1).

So following the natural parameterization, we have that By = 9;1 Py and 63\ = [);1, and

7 = (I3~ X2~ 207 |37
0= —BTX"y +[|XBa; + 207 [} -
Note that
lw = X1 = 3 + 1 XA )12 — 267 X By
= Iyl = | XAl +2 (I XBAll; — v x5)
= llyl3 = [[XBx; = 4n ]}
We have

1 . : 1 3 3
55 = - (Il = 1%l —20M|A]1T) = = v = XBall3 + 22 a7

C Proof of Lemma 10: the dual problem of the /?-penalized
least squares

The primal problem of the ¢2-penalized least squares (16) in the paper can be written as an
equality constrained minimization problem:

/1 ) ) 2 2
— |y — 2 b —z2=-Xp]).
win (5l = <18+ 20181 s 25— 2x5)

The Lagrange dual function is

(w) i {22082 + 22— xp)
u) = min — — Z — (2 —
g BERP,zeR™ | N y 2 1 n

T
: 1 2 2 T . 2 XTU
= min ( = ||y - = min ¢ 2 |18} — 2 .
min (n ly = 2ll3 + —u z) +6€g},{ 1817 ( — ) B

The minimization of wu is

(1 2, 27 \_2 7 1, 0
i (2l = 218 + 2ut ) = 2ty — 2l =

2 2
(g1l =ty = ll3) .

S
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where the minimum is attained at
Z=y—u.

The minimization problem of 8 can be written as

. XTu\ " XTu\"
glélng{%\lﬁlﬁ—Q(;) 5};2%%{( ) ﬂ—nﬁn%}.

Observe that the maximum is the Fenchel conjugate function of ||-||3, evaluated at (An) ' XTu.
By Boyd & Vandenberghe (2004, Example 3.27, pp. 92-93),

2 2

XTu\" 9 2 || X T 1| XTu
—9) s I __2 _ A
gé?e)é{< An ) b Hﬁ”l} 4 ‘ AN || o 2\ ' N
So
=2 (1ol - ai2) - & X7
g\ = n Yl vl 2A n |l

D Proof of Lemma 11

A direct upper bound is

. 1 2 2 1, o 2
o3 < —lly = X815 + 218711 = - llell; + 2118713
To get a lower bound of 42, note that the dual problem in Lemma 10 and the strong duality
imply that
2
1)

X1y
n

1 1 1 1
L2 . 2 2 2 2
X 22118 — max — — I
Oy = Il’lll'zl) (n ||y 5”2 H ||1> - R <TL ”yHQ n ||y ZLHQ 22

2

2
P | 5, 1 ]|XTe 1L, 2 21 1 || XTe
> = — -l =] == ZTXp - — || =—
> Lol - 3=l - g5 | 5| = 5 te 2erwe - 5 |5
2
1 2 XTe 1 || XTe 1 2 o (1187l | 1
> = —2|| == - = [ 2—] >= —2 0% (L4 =
e e R e IR R G
where the last inequality holds for
| X7e|
A >l
no

E Proof of Theorem 3 and Theorem 12

We present in this section the proof of Theorem 12. The proof of Theorem 3 follows the
same set of arguments. First we use the following lemma to characterize the event that A >
n~to7Y|XTe||« is true, so that we can use Lemma 11 to prove a high probability bound.

Lemma 16 (Corollary 4.3, Giraud (2014)). Assume that each column X; of the design matriz
X € R™P satisfies || X;||3=mn forallj=1,...,p, and e ~ N (0,021'”). Then for any L > 0,

pr{HXTEHw > <210gp+2L)1/2} <e L

no n
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Lemma 16 implies that a good choice of the value of A would be {n='(2logp + 2L)}'/2,
which does not depend on any parameter of the underlying model. The following corollary
shows that with this value of A, the organic lasso estimate of o2 is close to the oracle estimator
with high probability.

Corollary 17. Assume that each column X; of the design matriz X € R™*P satisfies | X;||3 = n
forallj=1,....p, ande ~ N (O,JZIn). Then for any L > 0, the organic lasso with

n

\ <210gp+2L>1/2

has the following bound

. 1 o) |2 187l 1\ logp+ L
(- 21et) < smax {02 (121 4 )1 oer e

n

with probability greater than 1 — e~ L.

In general, a high probability bound does not necessarily imply an expectation bound.
However, when the probability bound holds with an exponential tail, it implies an expectation
bound with essentially the same rate.

Theorem 18. Assume that each column X; of the design matriz X € R™*P satisfies ||XJ||§ =n
forallj=1,....p, and e ~ N (O,O'ZIn). Then, for any constant M > 1, the organic lasso
estimate with

N 2M logp 1/2
- n

satisfies the following bound in expectation:

5 1 ’ pM % B* 1 2logp
E{(Gi—anH%) }§8<M+ 10gp>max{||ﬁ 12,02 <W+4>} EP,

Proof. For any M > 1, take L = (M — 1)logp in Corollary 17. Denote X,, = (53 — n™'[|e||?)?,
and 1, = 8max(HB*||% o ||B*]l; +4710?)?n "t logp. Then we have

pr (X, > Mr,) < e~ (M-1)logp,

So
X, * X, Morx, © X,
E()z/ pr(>t>dt:/ pr<>t>dt—|—/ pr<>t>dt
Tn 0 Tn 0 Tn M Tn
00 1-M
<M +/ e(=Dlosrgy — pp 4 P
- M log p
and the expectation bound follows. ]

Now we are ready to present the proof of Theorem 12. Since o2 ||e||3 ~ x2(n), we have

1 .9 9 1 .9 204
E(- - - -
(n Hs\z) o’ var (n H6H2> .
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Therefore,

1 .9\°
=E! (52 - =
{(U)\ nH€H2>
1 2
<E o 1 2
> {(UA nH5H2>

1 2
o 2
<E (oi us||2)

1 2 1 1
} (2 1el - o) } 2e{ (-1 1e) (3 1el3- o)}
1/2
} v (2 ef3) +2 fvar (03 2 el3) var (313 }
1 1 2 1 2
} (5 0el) +2 E{(éi—nue@) } (; ||e||3)]
2 1217
1 1
E{(éi—nnen%) } + v (11612}
r LM~ N 1/2 . 1/2 1/272
[l e (2 D)0

where the last inequality holds from Theorem 18.

n

1/2

F Proof of Remark 5

For the independent zero-mean noise €; with variance o2 and bounded m-th order moment
(m=3,4,...)

|
E|€’L|m < %KW—Q

for some constant K > 0, a Bernstein’s type inequality (Bithlmann & Van De Geer 2011, Lemma
14.13) implies that

1
pr | max | X e >

2K logp 49 {log(2p) }1/2
n n

1
< -

p
Then the proof of Corollary 17 goes through.

G Proof of Proposition 6 and Proposition 7

The following lemma gives a general result on the estimation error of 62 of the form (3) in the
paper based on :

Lemma 19.

< ~||xB - x|+ 21Xl (18°1 + 1310 )

1
2 Ly
62— el

Proof. First by definition

1 21 21 1 - 2 2 A
52 = —Hy—XﬂH :—H5+XB*—X/BH - —HaH%—FfHX,B—XB* +2Tx (5—5*).
n 2 n 2 n n 2 n

Note that
"X (B=87)| < 1XTelocllB = 51l

and the result follows. O
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G.1 Slow rate bound for the naive estimator of o2

We now give the proof of Proposition 6. From the basic inequality

1 5 112 A 1 * *
== XA, + 20183l < — iy = X871 + 270181,

which implies that

IA
SIo3

10 . 112 .
- HX5A - Xp ) + 2|8l

X ()
X<l |3 - 5

We thank Irina Gaynanova (Gaynanova 2018) for showing us the technique of taking A to be
twice its usual size. For A > 2n7!|| X7¢| », we have that

+ 206"l

<

+ 2B

1 A * 2 A A * * A *
=[x = x8||] + 2218301 < NGy = 811+ 2X18* < Ml + 3N 1,

so Y| X By — XB*|I3 + M|Balli < 3M||B*]l1. So by Lemma 19 we have

. 1
Uﬁaive - EHSH%

IN
S|I—= 3

R 2 9 R
|83 = x|+ = 1 xell., (181 + 1811

A 2 N
< = || By = X8|+ A8+ Al < 47187

Finally, taking A = 20{n~1(2logp + 2L)}'/? with L = log p, the result follows from Lemma 16.

G.2 Slow rate bound for the square-root/scaled lasso estimator of o?

As shown in Lederer et al. (2016) (proof of Lemma A.3), we note that with probability 1,
ly — X Bsqrrll2 > 0 for A > 0. So the first order optimality condition of the square-root/scaled
lasso is

. (y - XBSQRT)
172

~

+Ag=0

- o],
for some § € aHBSQRTHl- Taking an inner product with BSQRT — B* on both sides, we have

1 <BSQRT - ﬁ*>TXT (y - XBSQRT)
Cpl/2

: + 29" (Bsqrr — 87) =0,
o~ ],

which implies that
_ 2 R T .
HX (5* - /BSQRT) H2 (ﬁSQRT - 5*> X'e

oy, 7 o~ ¥

< A" (8"~ Bsarr) < N8l = AlBsorr 1.

and thus
"% (8~ Bsaur )| < e (Bsamr — 8|+ oo |u— XBsam], (18711 — Bscrerls)
- SQRT ) ||, < SQRT 2 ||V SQRT ||, 1 sqrrlh
1 ~ A ~ -

= | XTel| H/BSQRT - 5*H1 i Hy - X/BSQRTHz (Hﬂ*Hl - ||5SQRT||1)

1

~ . A B . ~
< [[x7<|l (IBsarrll + 18°10) + ~7 |lv = XBsarer|, (18" = 1 Bsquerly)

IN

1 A ~ 1 A ~ ~
(3 17l o = X, ) 171+ (5 17l = =55 = X, ) DBl
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Taking A = 3n~'/2||y — X Bsqrr |5 | X T¢]|oo, Which is 3 times what is suggested in Lederer et al.
(2016), we have

1 . 5 2 4| xTe i} 21 xTe _
Lx (- fque) | & A o gy, - 2T ello 5y,

n
By Lemma 19

1 ~ L1202 . ~
< [eBsane = 57|+ 21Xl (1871 + 1 Bsarels)

. 1
U%QRT - 5H5||%

<

Slo

1 el 1871

The result then follows from Lemma 16 by taking L = logp.

H Proof of Proposition 9: scale-equivariance of the organic
lasso

Proof. Suppose () (y) is a solution to the organic lasso, where we write out explicitly the
dependence of the solution on the response y. Then using notation from previous section,

L (B (y) Ity, A) = % [ty — tX B (v)|[2 + 22 [[tBx ()|

This implies that ¢£) (y) is a solution to the problem with response ty, i.e., B (ty) = t5 (y).
Consequently,

o3 (ty) = min L (Blty, )
=L (tB)\ (y7 )‘) ’ty? >\) = t2L (/B)\ (yv )\) ’yv A) = t26—§\ (ya )‘) )

which establishes the theorem. O

I Proof of Theorem 13

Proof. We start from the basic inequality

1 - . 1
g = XA+ 2 AR < - lly — X803+ 2 018°)3,

which leads to

1, xTe\" . .
Llxs - xes <2 (55) (-0 22 (118 - 1))
Xt “ .
<2 2| 18- a4 22 (1718 - ).
If .
2 oo
n o0
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then

% X8y = X8| < 20|18 = B, + 22 (118713 = |31}
<At M3 - 812 + 2 (18715 — A1)
<A+ A (1Al + 18711 +23 (181 — 14 17)
< a2 (A1 +18°02) + 23 (1812 ~ 14 1)
— o+ 4|82,

The result then holds from Lemma 16. OJ

J Mapping between the paths of the natural and organic lasso

In this section, we draw a connection between the natural lasso and the organic lasso estimates
of 5*.

Theorem 20. Letting BS and By denote the lasso and organic lasso estimates of 5* with tuning
parameters s and t,

Pr=Bapgn-v B =Baa), (19)

This result implies that one can start with a lasso solution BA with tuning parameter A,
and then report a solution to the organic lasso with tuning parameter (2/|8]/1)"*A. Likewise,
an organic lasso solution (3, is equivalent to a standard lasso solution with tuning parameter
2v||B,||1. This equivalence is also observed in Lorbert et al. (2010) that considers a more general
penalty.

Although the methods’ paths are the same, this does not imply that the cross-validated
methods will be the same. In K-fold cross-validation, the natural lasso estimator is evaluated
on K differing datasets for a fixed value of A. A fixed tuning parameter A for the natural lasso
over multiple datasets corresponds to running the organic lasso with a different A on each fold.
Thus, the two methods in fact have different cross-validation performance.

Proof. Let 3y be a solution to (2) with tuning parameter A, and B, be a solution to (16) with
tuning parameter v, then they satisfy optimality conditions

—%XT (y—XBA) +X=0  where §€8<HB>\

‘1) ’ (20)
1) : (21)

If Bx = By, then simply comparing (20) and (21) we have that A = 2v||3, |1, and v =
SRS A A

Now for [ that satisfies (20), by plugging A = 2v||5\||1, we have that () satisfies (21),
i.e., B, = Bx where A = 2v||fx|l;. Following the same argument, for £, that satisfies (21),
we take v = (218, ]11)" 1A, and find that j3, satisfies (20). This implies that 8y = B,, where
v = 2B~ 0

By

—%XT (y—XBy>+2U) By

g=20 where ge@(‘

1

K Fast rate in prediction error of the squared lasso

Recall the squared lasso estimate of 5*:

y 1
B € argmin — ||y — X 5|5+ 2X 18I} - (22)
BeRrp T
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It is well known that the fast rate is built on the compatibility condition of the lasso problem. Let
S = supp(B*), i.e., the support of the true regression coefficient 8*, the compatibility condition
of the squared lasso problem requires that for all 4 € RP such that ||use|1 — o < 3||usl1,

1 | X pell
sl + 5o < |S|VY2Em2, (23)
4 nl/2¢q

The following theorem establishes that the fast rate prediction error and an estimation error
rate of § in (22) can be attained with a value of A that does not depend on any unknown
parameters.

Theorem 21. Suppose that each column X; of the matrizx X € R"*P has been scaled so that
|1X;[3=mn forall j=1,...,p, and e ~ N (O,U2In). If compatibility condition (23) holds, then
for any L > 0, the solution 3 in (22) with tuning parameter

\ <210gp+2L>1/2

i (24)

attains the following estimation error rate and fast rate bound in prediction with probability

greater than 1 — e~ L

64max (|8, )* S| (logp+ L)
on ’

16 max (||6*]l; ,0) S| (2logp + 2L /2
P n |

Proof. First by the optimality of 3, we have

|6

1 A *
5 1XB = X85 <

16*— 58

L S

2
242

1 o) 2 1 * *
~ly- x5 LS S lly— X815+ 278711

which implies that
1 % 2 3
~xB - xprly < 2 (- 57) " XTe+ 201871 — 27|13l (25)

The following proof is considered in two cases:
(1). When ||5*||; > o: Note that HH? is convex and by chain rule, for any g € 9(||5*|,),

112 2 o
Bl = 18°1IF = 2181, 9" (5 - 5%)-
For j € S, we have that g; = sign(ﬂ;‘). For any j € S, we let

g; = sign (B] - 5]*) = sign (B]) )

Then g is still a valid sub-differential of ||5*||,. Moreover, conditional on the event

1
7= {1 el <20}
n

from (25) we have

Nixg-xp i< 2@ 8) X" rax ), 6" (8 - B)
= 2 (5= 57)" X e+ N8l F (8% — Bs) + A 18°]1 o (B3 — fse)
= 2 (5 5)" X<+ 4X180, 05 (85 — Bs) — 18" (185 — Bsell,
< 2 (B 57)" XTe+ ax 8"l 1185 — Bsll, — 418, (185 — Bsell,
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Since o < ||8*|l1 and T holds, we have that n~! HXT£HOO < Ao < A||B*|y, and thus

1 . .
=[x - X875 < 278", |87 = B, +4x 1871, 1|85 - Bs
=2) (6%, (31185 — Bs

;4 184 H/BEC - BSCH1
|, = [185¢ = Bsell,) -

This first implies that 3 Hﬁ; — BSHl > HB}C — Bgcﬂl, and that

1 . - .
1IXB = X875+ 271871 [185e — Bsell, < 6X 1871 1185 — Bsll, -

Then by compatibility condition,

1 - .
118 = x|+ 2x 1871 187 - Bl

1 - . .
=Ly - x84 20181 1185 - Bl + 2718, 135e — Bsell,

8A18*II, IS[V2 || X 8" — X 3],
n1/2¢0

Lon a2, 3208715 A28
<o - [[XB = X5, e

(2). When ||8*||; < o: We define v* € R? as

<8\ [18°1l, |85 — Bs|, <

(26)

L oolEl ,
% hmf 50
v = =l if g5 <0
0 if B = 0.

It is easy to check that ||v*|; = 0. Also (25) implies that
1 2 x||2 2 - T * * * 512
~||XB - X8y < = (B=8)" xTe+2x (18717 = 101 + ™0 = IBII7) -
Then we have that
> 112 * * o) *
1817 = 717 = 217" [l g (B =)
holds for all g € 9(]|7*||1), and it further implies that
* 5012 * * 2 * 2 * *
1T =181 < 217l 9" (v = B) = 209" (8" = B) + 209" (v* = 57).
Note that any g € 9(||7*||1) is also a valid sub-differential of ||5*||1, and
g (=B =08,

Thus we have

%Hxﬁ-gxwuggg(ﬁ 8" XTe + 22 (181 — 0 + 2097 (8° = B) + 207 20 | 8"Il )
= 235" X7+ axog” (5~ ) + 20 (0 — |57,
S%(B ﬁ) XTe 4 4hog” (ﬁ B)+2)\02
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Since v* and B* have the same support, we can again choose g; = sign(Bj) for j € §¢. Condi-
tional on the event T, it follows that

1 < < . .
X5 = X875 < 220 (|5~ 57, + Ao [|Bs — B3I, — 470 || Bse — B[], + 2207

— 6her||As — B3], — 270 | se — 85

.t 2)\o2.

This implies that 3| 8s — B%|| + 0 > ||Bse — B%.||. And then by the compatibility condition (23),

1. . 1o
ClIXB = X8l 200 | 5 = X5 - X8+ 200
< 8\o HBS - 5;”1 + 2\o?

1/2HX (B_/B*)HQ

< 8\o|S] g,

1 . )
< o |1X5 - x8°|2 +

Bs = Bs|l, +2xa || Bse — B5

1

32)202|S|
¢
By the proof of Corollary 4.3 in Giraud (2014), we have

1/2
pl“{luXTgHOO >O-<210gp+2L) } §6_L.
n n

Thus taking A in (24), we have that
c 1 T —L
pr(7°) =pr EHX €Hm>)\a <e .

And the results follow from (26) and (27). O

L  Additional results in numerical studies

We include in this section some additional results in the numerical studies in Section 5 and Sec-
tion 6. In particular, Fig 3 and Fig 4 present the complementary results (in different simulation
regimes) to Fig 1 and Fig 2 in the paper respectively, and Table 2 shows the p-values of the
paired t-tests and the Wilcoxon signed-rank tests of the difference of various methods outputs
in Fig 1 in the paper. Finally, Table 3 presents the mean and standard errors of E(6/0) of
various estimators in the real data example.
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Figure 3: Simulation results of various methods with regularization parameter selected using
cross-validation. From left to right, column show the average (over 1000 repetitions) of the mean
squared error (top panel) and E(c~'6) (bottom panel) of various methods in three simulation
settings. In each setting, we fix model sparsity () and correlations among features (p), and let
signal-to-noise ratio(as expressed in 7) change. Line styles and their corresponding methods:
+ for naive, * for [712;{, 7 for the square-root/scaled lasso, ™ for the natural lasso, -* for the
organic lasso, > for the oracle.

Table 2: p-values for testing the difference of various methods outputs

natural vs. organic 6% vs. organic 6122 vs. natural

a=01,p=037=1 0.00 (0.00) 0.07 (0.00) 0.00 (0.00)
a=03,p=037=1 0.00 (0.00) 0.19 (0.25) 0.00 (0.00)
a=05,=0371=1 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
a=07,p=037=1 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
a=09,=037=1 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
a=01,p=067=1 0.00 (0.00) 0.08 (0.01) 0.00 (0.00)
a=03,p=067=1 0.00 (0.00) 0.00 (0.14) 0.00 (0.00)
a=05,p=067=1 0.05 (0.10) 0.01 (0.00) 0.00 (0.00)
a=07,p=067=1 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
a=09,p=067=1 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
a=01,p=09r=1 0.06 (0.32) 0.00 (0.03) 0.00 (0.12)
a=03,p=0971=1 0.96 (0.02) 0.00 (0.07) 0.00 (0.00)
a=05,=097r=1 0.03 (0.00) 0.00 (0.00) 0.00 (0.00)
a=07,p=097r=1 0.44 (0.00) 0.00 (0.00) 0.00 (0.00)
a=09,p=097r=1 0.20 (0.00) 0.00 (0.01) 0.00 (0.00)

In each simulation setting, as characterized by a («, p, 7) triplet, we report p-values of the (two-
sided) paired t-tests and the Wilcoxon signed-rank tests (shown in parentheses) for testing the
null hypothesis that the output of each pair of methods are the same.
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Figure 4: Simulation results of various methods with pre-specified regularization parameter
values. From left to right, column show the average (over 1000 repetitions) of the mean squared
error (top panel) and E(c~16) (bottom panel) of various methods in three simulation settings.
In each setting, we fix model sparsity () and correlations among features (p), and let signal-
to-noise ratio(as expressed in 7) change. Line styles and their corresponding methods: + for
organic (Ag), = for organic (\2), -* for organic (A3), "+ for scaled(1), .7 for scaled (2), * for the
oracle.

Table 3: E(c~'6) in MSD dataset

n 20 40 60 80 100 120
naive 80.1 (1.1) 942(0.9) 958 (0.7) 964 (0.6) 97.9(0.5) 96.7 (0.5)
52, 90.0 (1.0) 100.4 (0.8) 101.7 (0.6) 102.3 (0.5) 103.3 (0.5) 102.4 (0.4)
natural 94.0 (0.9) 103.3 (0.7) 105.5 (0.6) 106.0 (0.5) 107.0 (0.4) 106.6 (0.4)
organic 86.8 (0.8)  97.6 (0.6)  99.9 (0.5) 100.9 (0.4) 101.7 (0.4) 101.8 (0.4)
scaled(1)  106.1 (0.8) 109.3 (0.6) 111.2 (0.5) 111.2 (0.4) 111.7 (0.4) 111.8 (0.4)
scaled(2) 88.5 (0.8)  99.0 (0.6) 102.9 (0.5) 104.4 (0.5) 105.1 (0.4) 105.5 (0.3)
organic(Ag)  89.7 (0.7)  94.7 (0.5)  97.6 (0.4)  98.3 (0.4)  99.2 (0.3)  99.7 (0.3)
organic(As)  92.0 (0.7)  97.3 (0.6) 100.1 (0.4) 100.7 (0.4) 101.6 (0.4) 102.0 (0.3)

Mean and standard errors (over 1000 replications) of E(o~14) of various methods we considered
in Section 5. Each entry of the method output is multiplied by 100 to convey information more
compactly.
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