
Are Clusterings of Multiple Data Views Independent?

Lucy L. Gao ∗1, Jacob Bien2, and Daniela Witten3

1Department of Biostatistics, University of Washington
2Department of Data Sciences and Operations, University of Southern California

3Departments of Statistics and Biostatistics, University of Washington

January 15, 2019

Abstract

In the Pioneer 100 (P100) Wellness Project (Price and others , 2017), multiple types
of data are collected on a single set of healthy participants at multiple timepoints
in order to characterize and optimize wellness. One way to do this is to identify
clusters, or subgroups, among the participants, and then to tailor personalized health
recommendations to each subgroup. It is tempting to cluster the participants using all
of the data types and timepoints, in order to fully exploit the available information.
However, clustering the participants based on multiple data views implicitly assumes
that a single underlying clustering of the participants is shared across all data views.
If this assumption does not hold, then clustering the participants using multiple data
views may lead to spurious results. In this paper, we seek to evaluate the assumption
that there is some underlying relationship among the clusterings from the different
data views, by asking the question: are the clusters within each data view dependent

or independent? We develop a new test for answering this question, which we then
apply to clinical, proteomic, and metabolomic data, across two distinct timepoints,
from the P100 study. We find that while the subgroups of the participants defined
with respect to any single data type seem to be dependent across time, the clustering
among the participants based on one data type (e.g. proteomic data) appears not to
be associated with the clustering based on another data type (e.g. clinical data). Data
integration; Hypothesis testing; Model-based clustering; Multiple-view data.

1 Introduction

Complex biological systems consist of diverse components with dynamics that may vary over
time, and so these sytems often cannot be fully characterized by any single type of data,
or at any single snapshot in time. Consequently, it has become increasingly common for
researchers to collect multiple data sets, or views, for a single set of observations. In the
machine learning literature, this is known as the multiple-view or multi-view data setting.
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Multiple-view data has been applied extensively to characterize disease, such as in The
Cancer Genome Atlas Project (Cancer Genome Atlas Research Network, 2008). In contrast,
The Pioneer 100 (P100) Wellness Project (Price and others , 2017) collected multiple-view
data from healthy participants to characterize wellness, and to optimize wellness of the par-
ticipants through personalized healthcare recommendations. One way to do this is to identify
subgroups of similar participants using cluster analysis, and then tailor recommendations to
each subgroup.

In recent years, many papers have proposed clustering methods in the multiple-view data
setting (Bickel and Scheffer, 2004; Shen and others , 2009; Kumar and others , 2011; Kirk and
others , 2012; Lock and Dunson, 2013; Gabasova and others , 2017). The vast majority of
these methods “borrow strength” across the data views to obtain a more accurate clustering
of the observations than would be possible based on a single data view. Implicitly, these
methods assume that there is a single consensus clustering shared by all data views.

The P100 data contains many data views; multiple data types (e.g. clinical data and
proteomic data) are available at multiple timepoints. Thus, it is tempting to apply consensus
clustering methods to identify subgroups of the P100 participants. However, before doing
so, it is important to check the assumption that there exists a single consensus clustering. If
instead different views reflect unrelated aspects of the participants, then there is no “strength
to be borrowed” across the views, and it would be better to perform a separate clustering
of the observations in each view. Before attempting cluster analysis of the P100 data, it is
critical that we determine which combinations of views have “strength to be borrowed”, and
which combinations do not.

This raises the natural question of how associated the underlying clusterings are in each
view. Suppose we cluster the P100 participants twice, once using their baseline clinical data,
and once using their baseline proteomic data. Can we tell from the data whether the two
views’ underlying clusterings are related or unrelated? Answering this question provides
useful information:

Case 1: If the underlying clusterings appear related, then this increases confidence that
the clusterings are scientifically meaningful, and offers some support for performing
a consensus clustering of the P100 participants that integrates baseline clinical and
proteomic views.

Case 2: If the underlying clusterings appear unrelated, we must consider two explana-
tions.

1. Perhaps clinical and proteomic views measure different properties about the par-
ticipants, and therefore identify complementary (or “orthogonal”) clusterings. If
so, then a consensus clustering is unlikely to provide meaningful results, and may
cause us to lose valuable information about the subgroups underlying the indi-
vidual data views.

2. Perhaps the subgroups underlying the data views are indeed related, but they
appear unrelated due to noise. If so, then we might be skeptical of any results
obtained on these very noisy data, whether from consensus clustering or another
approach.

2



In Case 2, it would not be appropriate to perform consensus clustering.
To determine from the data whether the two views’ clusterings are related or unrelated,

it is tempting to apply a clustering procedure (e.g. k-means) to each view, then apply well-
studied tests of independence of categorical variables (e.g. the χ2-test for independence,
the G-test for independence, or Fisher’s exact test) to the estimated cluster assignments.
However, such an approach relies on an assumption that the estimated cluster assignments
are independent and identically distributed samples from the joint distribution of the cluster
membership variables, which is not satisfied in practice. Thus, there is a need for an approach
which takes into account the fact that the clusterings are estimated from the data.

The rest of this paper is organized as follows. In Section 2, we propose a mixture model
for two-view data. In Section 3, we use this model to develop a test of the null hypothesis
that clusterings on two views of a single set of observations are independent. We explore
the performance of our proposed hypothesis test via numerical simulation in Section 4. In
Section 5, we connect and compare our proposed hypothesis test to the aforementioned
approach of applying the G-test for independence to the estimated cluster assignments, and
draw connections between this approach and the mutual information statistic (Meilă, 2007).
In Section 6, we apply our method to the clinical, proteomic, and metabolomic datasets from
the P100 study. In Section 7, we provide a discussion, which includes the extension to more
than two views.

2 A Mixture Model for Multiple-View Data

2.1 Model Specification

In what follows, we consider the case of two data views. We will discuss the extension to
more than two views in Section 7.

Suppose we have p1 and p2 features in the first and second data view, respectively. For a
single observation, let X(1) ∈ R

p1 and X(2) ∈ R
p2 denote the random vectors corresponding

to the two data views and let Z(1) ∈ {1, . . . , K(1)} and Z(2) ∈ {1, . . . , K(2)} be unobserved
random variables, indicating the latent group memberships of this observation in the two
data views. Here, K(1) and K(2) represent the number of clusters in the two data views,
which we assume for now to be known (we will consider the case in which they are unknown
in Section 2.4). We assume that X(1) and X(2) are conditionally independent given the pair
of cluster memberships, (Z(1), Z(2)); this assumption is common in the multi-view clustering
literature (see e.g. Bickel and Scheffer 2004, Rogers and others 2008, Kumar and others
2011, Lock and Dunson 2013, Gabasova and others 2017). Further, suppose that

f(X(l) | Z(l) = k) = φ(l)
(

X(l); θ
(l)
k

)

for 1 ≤ k ≤ K(l), 1 ≤ l ≤ 2, (2.1)

P (Z(1) = k, Z(2) = k′) = Πkk′ for 1 ≤ k ≤ K(1), 1 ≤ k′ ≤ K(2), (2.2)

where φ(l)(·; θ) denotes a density function with parameter θ, and Π ∈ ∆K(1)×K(2) ≡ {S ∈

R
K(1)×K(2)

: Skk′ ≥ 0,
K(1)
∑

k=1

K(2)
∑

k′=1

Skk′ = 1}. Equations (2.1)–(2.2) are an extension of the finite

mixture model (McLachlan and Peel, 2000) to the case of two data views. We further assume

3



that each cluster has positive probability, i.e. P (Z(1) = k) > 0 and P (Z(2) = k′) > 0, and so

Π1K(2) ∈ ∆K(1)

+ and ΠT1K(1) ∈ ∆K(2)

+ , where ∆K
+ ≡ {s ∈ R

K : sk > 0,
K
∑

k=1

sk = 1}.

Let θ(1) ≡ (θ
(1)
1 , . . . , θ

(1)

K(1)) and θ(2) ≡ (θ
(2)
1 , . . . , θ

(2)

K(2)). The joint density of X(1) and X(2)

is

f(X(1), X(2); θ(1), θ(2),Π) =
∑

k,k′

Πkk′f(X
(1), X(2) | Z(1) = k, Z(2) = k′)

=
∑

k,k′

Πkk′f(X
(1) | Z(1) = k)f(X(2) | Z(2) = k′)

=
∑

k,k′

Πkk′φ
(1)
(

X(1); θ
(1)
k

)

φ(2)
(

X(2); θ
(2)
k′

)

, (2.3)

where the second equality follows from conditional independence of X(1) and X(2) given Z(1)

and Z(2), and the last equality follows from (2.1).
The matrix Π governs the statistical dependence between the two data views. It will

be useful for us to parameterize Π in terms of a triplet (π(1), π(2), C) that separates the
single-view information from the cross-view information.

Proposition 1. Suppose π(1) ∈ ∆K(1)

+ and π(2) ∈ ∆K(2)

+ . Then,

{

Π ∈ ∆K(1)×K(2)

: Π1K(2) = π(1), ΠT1K(1) = π(2)
}

=
{

diag(π(1))Cdiag(π(2)) : C ∈ Cπ(1),π(2)

}

,

where Cπ(1),π(2) = {C ∈ R
K(1)×K(2)

: Ckk′ ≥ 0, Cπ(2) = 1K(1) , CTπ(1) = 1K(2)}.

A proof of Proposition 1 is given in Appendix A.1 of the Supplementary Materials.
Proposition 1 indicates that any matrix Π ∈ ∆K(1)×K(2)

with Π1K(2) ∈ ∆K(1)

+ and ΠT1K(1) ∈
∆K(2)

+ can be written as the product of its row sums π(1), its column sums π(2), and a matrix
C. Therefore, we can rewrite the joint probability density (2.3) as follows:

f(X(1), X(2); θ(1), θ(2),Π) =
∑

k,k′

π
(1)
k Ckk′π

(2)
k′ φ

(1)
(

X(1); θ
(1)
k

)

φ(2)
(

X(2); θ
(2)
k′

)

≡ f(X(1), X(2); θ(1), θ(2), π(1), π(2), C). (2.4)

In what follows, we will parametrize the density ofX(1) andX(2) in terms of θ(1), θ(2), π(1), π(2),
and C, rather than in terms of θ(1), θ(2), and Π.

The following proposition characterizes the marginal distributions of X(1) and X(2).

Proposition 2. Suppose X(1) and X(2) have joint distribution (2.4). Then for l = 1, 2, X(l)

has marginal density given by

f(X(l); θ(l), π(l)) =
K(l)
∑

k=1

π
(l)
k φ

(l)
k

(

X(l); θ
(l)
k

)

. (2.5)
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Proposition 2 follows from (2.1) – (2.2). Proposition 2 shows that for l = 1, 2, X(l)

marginally follows a mixture model with parameters θ(l) and cluster membership probabilities
π(l). Note that the marginal density of X(1) does not depend on θ(2), π(2), and C, and
similarly, the marginal density of X(2) does not depend on θ(1), π(1), and C; this fact will be
critical to our approach to parameter estimation in Section 2.3.

The model described in this section is closely related to several multiple-view mixture
models proposed in the literature: see e.g. Rogers and others (2008), Kirk and others
(2012), Lock and Dunson (2013), and Gabasova and others (2017). However, the focus
of those papers is cluster estimation: they do not provide a statistical test of association,
and for the most part, impose additional structure on the probability matrix Π in order to
encourage similarity between the clusters estimated in each data view. By constrast, the
focus of this paper is inference: testing for dependence between the clusterings in different
data views. The model described in this section is a step towards that goal.

2.2 Interpreting Π

In Figures 1(i)–(iii), n = 15 independent pairs {(X(1)
i , X

(2)
i )}ni=1 are drawn from the model

(2.1)–(2.2), for three choices of Π. The left-hand panel represents the p1 = 2 features in the
first data view, and the right-hand panel represents the p2 = 2 features in the second data
view. For l = 1, 2, the observations {X(l)

i }ni=1 in the lth data view belong to two clusters,

where the latent variables {Z(l)
i }ni=1 characterize cluster membership in the lth data view.

Light and dark gray represent the clusters in the first view, and circles and triangles represent
the clusters in the second view.

Figures 1(i)–(ii) correspond to two special cases of Π that are easily interpretable. In
Figure 1(i), Π has rank one, i.e. Π = π(1)[π(2)]T , so that the clusterings in the two data
views are independent. Thus, whether an observation is light or dark appears to be roughly
independent of whether it is a circle or a triangle. In Figure 1(ii), K(1) = K(2) and Π is
diagonal (up to a permutation of the rows), so that the clusterings in the two data views
are identical. Thus, all of the circles are light and all of the triangles are dark. Another
special case is when Π is block diagonal (up to a permutation) with KB blocks. Then, the
clusterings of the two data views agree about the presence of KB “meta-clusters” in the data.
For example, one clustering might be a refinement of the other, or if one view has clusters
A,B,C,D, and the other has clusters a, b, c, d, it could be that A∪B = a and C = b∪ c and
D = d.

In general, Π will be neither exactly rank one nor exactly (block) diagonal; Figure 1(iii)
provides such an example. Furthermore, Π̂ (an estimator for Π) almost certainly will be
neither. Nonetheless, examination of Π̂ can provide insight into the relationships between
the two clusterings. For example, if Π̂ is far from rank one, then this suggests that the
clusterings in the two data views may be dependent. We will formalize this intuition in
Section 3.
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2.3 Estimation

2.3.1 Estimation Procedure and Algorithm

Given n independent pairs (X
(1)
1 , X

(2)
1 ), . . . , (X

(1)
n , X

(2)
n ) drawn from the model (2.1)–(2.2),

the log-likelihood takes the form

ℓ(θ(1), θ(2), π(1), π(2), C) =
n
∑

i=1

log f(X
(1)
i , X

(2)
i ; θ(1), θ(2), π(1), π(2), C), (2.6)

where f(·, ·; θ(1), θ(2), π(1), π(2), C) is defined in (2.4). A custom expectation-maximization
(EM; Dempster and others 1977; McLachlan and Krishnan 2007) algorithm could be devel-
oped to solve (2.6) for a local optimum (a global optimum is typically unattainable, as (2.6)
is non-concave). We instead take a simpler approach. Proposition 2 implies that for l = 1, 2,
we can estimate θ(l) and π(l) by maximizing the marginal likelihood for the lth data view,
given by

ℓ(θ(l), π(l)) =
n
∑

i=1

log f(X
(l)
i ; θ(l), π(l)), (2.7)

where f(·; θ(l), π(l)) is defined in (2.5). Each of these maximizations can be performed
using standard EM-based software for model-based clustering of a single data view. Let
θ̂(1), π̂(1), θ̂(2), and π̂(2) denote the maximizers of (2.7). Next, to estimate C, we maximize
the joint log-likelihood (2.6) evaluated at θ̂(1), π̂(1), θ̂(2), and π̂(2), subject to the constraints
imposed by Proposition 1:

Ĉ ≡ argmin
C∈C

π̂(1),π̂(2)

[

−ℓ(θ̂(1), θ̂(2), π̂(1), π̂(2), C)
]

, (2.8)

where Cπ̂(1),π̂(2) = {C ∈ R
K(1)×K(2)

: Ckk′ ≥ 0, Cπ̂(2) = 1K(1) , CT π̂(1) = 1K(2)}. Equation
2.8 is a convex optimization problem, which we solve using a combination of exponentiated
gradient descent (Kivinen and Warmuth, 1997) and the Sinkhorn-Knopp algorithm (Franklin
and Lorenz, 1989), as detailed in Appendix B of the Supplementary Materials. Details of
our approach for fitting the model (2.1)–(2.2) are given in Algorithm 1.

2.3.2 Justification of Estimation Procedure

The estimation procedure in Section 2.3.1 does not maximize the joint likelihood (2.6);
nonetheless, we will argue that it is an attractive approach.

To begin, in Step 1 of Algorithm 1, we estimate θ(1) and π(1) by maximizing the marginal
likelihood (2.7). This decision leads to computational advantages, as it enables us to make
use of efficient software for clustering a single data view, such as the mclust package (Scrucca
and others , 2016) in R. We can further justify this decision using conditional inference theory.
Equation 3.6 in Reid (1995) extends the definition of ancillary statistics to a setting with
nuisance parameters. We show that X(2) is ancillary (in the extended sense of Reid 1995)

6



Algorithm 1 Procedure for fitting the model (2.1)–(2.2)

1. Maximize the marginal likelihoods (2.7) in order to obtain the marginal MLEs θ̂(1), π̂(1)

and θ̂(2), π̂(2). This can be done using standard software for model-based clustering.

2. Define matrices φ̂(1) ∈ R
n×K(1)

and φ̂(2) ∈ R
n×K(2)

with elements

φ̂
(1)
ik = φ(1)

(

X
(1)
i ; θ̂

(1)
k

)

and φ̂
(2)
ik′ = φ(2)

(

X
(2)
i ; θ̂

(2)
k′

)

. (2.9)

3. Fix a step size s > 0. Theorem 5.3 from Kivinen and Warmuth (1997) gives conditions
on s that guarantee convergence.

4. Let Ĉ1 = 1K(1)1T
K(2) . For t = 1, 2, . . . until convergence:

(a) Define Mkk′ = Ĉt
kk′ exp{sGkk′ − 1}, where Gkk′ =

∑n

i=1

φ̂
(1)
ik

φ̂
(2)

ik′

[φ̂
(1)
i ]T diag(π̂(1))Ĉtdiag(π̂(2))φ̂

(2)
i

.

(b) Let u0 = 1K(2) and v0 = 1K(1) . For t′ = 1, 2, . . ., until convergence:

i. ut′ =
1
K(2)

MT diag(π̂(1))vt′−1 , vt
′

=
1
K(1)

Mdiag(π̂(2))ut′
,

where the fractions denote element-wise vector division.

(c) Let u and v be the vectors to which ut′ and vt
′

converge. Let Ĉt+1
kk′ = ukMkk′vk′ .

5. Let Ĉ denote the matrix to which Ĉt converges, and let Π̂ = diag(π̂(1))Ĉdiag(π̂(2)).
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for θ(1), π(1), and C by using the definition of conditional densities, and Proposition 2, to
rewrite (2.4) as

f(X(1), X(2); θ(1), θ(2), π(1), π(2), C) = f(X(1) | X(2); θ(1), θ(2), π(1), π(2), C)f(X(2); θ(2), π(2)).

Thus, Reid (1995) argues that we should use only X(2), and not X(1), to estimate θ(2) and
π(2). In Step 1 of Algorithm 1, we are doing exactly this.

In Steps 3–5 of Algorithm 1, we maximize ℓ(θ̂(1), θ̂(2), π̂(1), π̂(2), ·), giving Ĉ, which is a
pseudo maximum likelihood estimator for C in the sense of Gong and Samaniego (1981).
This decision also leads to computational advantages, as it enables us to make use of efficient
convex optimization algorithms in estimating C. Results in Gong and Samaniego (1981)
suggest that when θ̂(1), θ̂(2), π̂(1), and π̂(2) are good estimates, Ĉ is so as well.

2.4 Selection of the Number of Clusters

In Sections 2 and 3, our discussion assumed that K(1) and K(2) are known. However, this is
rarely the case in practice. Recall that we estimate θ(1) and π(1) by maximizing the marginal
likelihood (2.7), which amounts to performing model-based clustering of X(1) only. Thus,
to select the number of clusters K(1), we can make use of an extensive literature (reviewed
in e.g. Mirkin 2011) on choosing the number of clusters when clustering a single data view.
For example, we can use AIC or BIC to select K(1) and K(2).

3 Testing Whether Two Clusterings are Independent

3.1 A Brief Review of Pseudo Likelihood Ratio Tests

Let ℓ(α, β, γ) be the log-likelihood function for a random sample, where A is the parameter
space of α. Given a null hypothesis H0 : α = α0 for some α0 ∈ A, an alternative hypothesis
H1 : α 6= α0, and an estimator γ̂, the pseudo likelihood ratio statistic (Self and Liang, 1987)
is defined to be log Λ̃ ≡ sup

α,β

ℓ(α, β, γ̂)− sup
β

ℓ(α0, β, γ̂). Let α
∗ be the true parameter value

for α. If α∗ is an interior point of A, then under some regularity conditions, if H0 holds,

then 2 log Λ̃
d−→ χ2

r, where r is the dimension of A (Chen and Liang, 2010).

3.2 A Pseudo Likelihood Ratio Test for Independence

In this subsection, we develop a test for the null hypothesis that H0 : C = 1K(1)1T
K(2) ,

or equivalently, that H0 : Π = π(1)(π(2))T : that is, we test whether Z(1) and Z(2) are
independent, i.e. whether the cluster memberships in the two data views are independent.
We could use a likelihood ratio test statistic to test H0,

log Λ ≡ sup
θ(1),θ(2),π(1),π(2),C

ℓ(θ(1), θ(2), π(1), π(2), C)− sup
θ(1),θ(2),π(1),π(2)

ℓ(θ(1), θ(2), π(1), π(2), 1K(1)1TK(2))

= sup
θ(1),θ(2),π(1),π(2),C

ℓ(θ(1), θ(2), π(1), π(2), C)− [ℓ(θ̂(1), π̂(1)) + ℓ(θ̂(2), π̂(2))], (3.10)
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where the second equality follows from noticing that substituting C = 1K(1)1T
K(2) into (2.6)

yields

ℓ(θ(1), θ(2), π(1), π(2), C) = ℓ(θ(1), π(1)) + ℓ(θ(2), π(2)), (3.11)

where ℓ(θ(l), π(l)) for l = 1, 2 are defined in (2.7), and recalling the definition of θ̂(1), π̂(1), θ̂(2),
and π̂(2) as the maximizers of (2.7). However, (3.10) requires maximizing ℓ(θ(1), θ(2), π(1), π(2), C),
which would require a custom EM algorithm; furthermore, the resulting test statistic will
typically involve the difference between two local maxima (since each term in (3.10) requires
fitting an EM algorithm). This leads to erratic behavior, such as negative values of log Λ.

Therefore, instead of taking the approach in (3.10), we develop a pseudo likelihood ra-
tio test, as in Section 3.1. We use the marginal MLEs, θ̂(1), π̂(1), and θ̂(2), π̂(2), instead of
performing the joint optimization in (3.10). This leads to the test statistic

log Λ̃ ≡ sup
C∈C

π̂(1),π̂(2)

ℓ(θ̂(1), θ̂(2), π̂(1), π̂(2), C)− ℓ(θ̂(1), θ̂(2), π̂(1), π̂(2), 1K(1)1TK(2))

= ℓ(θ̂(1), θ̂(2), π̂(1), π̂(2), Ĉ)− [ℓ(θ̂(1), π̂(1)) + ℓ(θ̂(2), π̂(2))] (3.12)

=
n
∑

i=1

log

[

(φ̂
(1)
i )Tdiag(π̂(1))Ĉdiag(π̂(2))φ̂

(2)
i

(φ̂
(1)
i )T π̂(1)(π̂(2))T φ̂

(2)
i

]

. (3.13)

where Ĉ in (3.12) is defined in (2.8), Cπ̂(1),π̂(2) is defined in Proposition 1, φ̂(1) and φ̂(2) are
defined in (2.9), and the last equality follows from (2.6), (2.7), and (2.9). In addition to taking
advantage of the computationally efficient estimation procedure described in Section 2.3.1,
the pseudo likelihood ratio test statistic does not exhibit the erratic behavior exhibited by
the likelihood ratio test statistic. This stability comes from all three terms in (3.12) involving
the same local maxima (as opposed to different local maxima).

3.3 Approximating the Null Distribution of log Λ̃

The discussion in Section 3.1 suggests that under H0 : C = 1K(1)1T
K(2) , one might expect that

2 log Λ̃
d−→ χ2

r, where r = (K(1) − 1)(K(2) − 1) is the dimension of Cπ(1),π(2) . However, this
approximation performs poorly in practice, due to violations of the regularity conditions in
Chen and Liang (2010). Furthermore, we will often be interested in data applications in
which n is relatively small. Hence, we propose a permutation approach. We observe from
(3.11) that under H0, the log-likelihood is identical under any permutation of the order of

the samples in each view. Hence, we take B random permutations of the samples X
(2)
i from

the second view, and compare the observed value of log Λ̃ to its empirical distribution in
these permutation samples. Details are given in Algorithm 2. Since φ̂(1), φ̂(2), π̂(1), and π̂(2)

are invariant to permutation, for each permutation we need only to estimate C. This is
another advantage of our test over the likelihood ratio test discussed in Section 3.2, which
would require repeating the EM algorithm in every permutation. Even when we reject the
null hypothesis, the clusters could be only weakly dependent; thus, it is helpful to measure
the strength of association between the views. Recalling from Section 2.2 that rank(Π) = 1
implies independence of the clusterings in the two data views, we propose to calculate the
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Algorithm 2 A Permutation Approach for Testing H0 : C = 1K(1)1T
K(2)

1. Compute log Λ̃ according to (3.13) using the original data, X(1) and X(2).

2. For b = 1, . . . , B, where B is the number of permutations:

(a) Permute the observations in X(2) to obtain X(2,∗b).

(b) Compute log Λ̃∗b according to (3.13) based on X(1) and X(2,∗b).

3. The p-value for testing H0 : C = 1K(1)1T
K(2) is given by 1

B

∑B

b=1 1{log Λ̃≤log Λ̃∗b}.

effective rank (Vershynin, 2012) of Π̂, defined in Algorithm 1 – the ratio of the sum of the
singular values of Π̂, and the largest singular value of Π̂. The effective rank of a matrix is
bounded between 1 and its rank, and the matrix is far from rank-1 when its effective rank is
far from 1. For example, in Figure 1(iii), the effective rank of Π is 1.5, and is upper bounded
by 2. Thus, the effective rank of Π̂ is bounded between 1 and min{K(1), K(2)}, and Π̂ is far
from rank-1 when its effective rank is far from 1.

4 Simulation Results

To investigate the Type I error and power of our test, we generate data from (2.1)–(2.2),
with

Π =
1− δ

K2
1K1

T
K +

δ

K
IK , (4.14)

for K = 6 and for a range of values of δ ∈ [0, 1], where δ = 0 corresponds to independent
clusterings, and δ = 1 corresponds to identical clusterings. We draw the observations in
the lth data view from a Gaussian mixture model, for which the kth mixture component
is a Np(µ

(l)
k ,Σ(l)) distribution, with p = 10, and with µ

(l)
k given in Appendix C.1 of the

Supplementary Materials.
We simulate 2000 data sets for Σ(1) = Σ(2) = σ2Ip for a range of values of σ and n,

and evaluate the power of the pseudo likelihood ratio test of H0 : C = 1K11
T
K2

described in
Section 3.2 at nominal significance level α = 0.05, when the number of clusters is correctly
and incorrectly specified. To perform Step 1 of Algorithm 1, we use the package mclust in R

to fit Gaussian mixture models with a common σ2Ip covariance matrix (the “EII” covariance
structure in mclust). We use B = 200 permutation samples in Step 2 of Algorithm 2.
Simulations in this paper were conducted using the simulator package (Bien, 2016) in R.
Results are shown in Figure 2.

The pseudo likelihood ratio test controls the Type I error close to the nominal α = 0.05
level, even when the number of clusters is misspecified. Power tends to increase as δ (defined
in (4.14)) increases, and tends to decrease as σ increases. Compared to using the correct
number of clusters, using too many clusters yields lower power, but using too few clusters
can sometimes yield higher power (e.g. in the middle panel of Figure 2). This is because,
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when the signal-to-noise ratio is low, the true clusters are not accurately estimated; thus,
combining several true clusters into a single “meta-cluster” can sometimes, but not always,
lead to improved agreement between clusterings across the two data views. We explore the
impact of the choice of K on the performance of the pseudo likelihood ratio test in Appendix
C.2.1 of the Supplementary Materials.

Additional values of K and p are investigated in Appendix C.2.2.

5 Connection to the G-test for Independence and Mu-

tual Information

Let M̂ (1) = (M̂
(1)
1 , . . . , M̂

(1)
n ) and M̂ (2) = (M̂

(2)
1 , . . . , M̂

(2)
n ) denote the results of applying a

clustering procedure to X(1) and X(2) respectively. In this notation, M̂
(1)
i ∈ {1, . . . , K(1)}

and M̂
(2)
i ∈ {1, . . . , K(2)} denote the estimated cluster assignment for the ith observation in

the two views. To test whether Z(1) and Z(2) are independent, we could naively apply tests
on M̂ (1) and M̂ (2) for whether two categorical variables are independent. For instance, we
could use the G-test statistic for independence (Chapter 3.2, Agresti 2003), given by

G2(M̂ (1), M̂ (2)) = 2
K(1)
∑

k=1

K(2)
∑

k′=1

N̂kk′ log
[

(nN̂kk′)/(N̂k.N̂.k′)
]

, (5.15)

where N̂kk′ = |{i ∈ {1, . . . , n} : M̂
(1)
i = k, M̂

(2)
i = k′}|, N̂.k′ =

∑

k

N̂kk′ , and N̂k. =
∑

k′
N̂kk′ .

Under the model N̂kk′
ind∼ Poisson (µkk′), log µkk′ = αk + βk′ + γkk′ , the G-test statistic

for independence (5.15) is a likelihood ratio test statistic for testing the null hypothesis of
independence, i.e. for testing H0: γkk′ = 0 for all k, k′. Thus, under H0: γkk′ = 0,

G2(M̂ (1), M̂ (2))
d→ χ2

(K(1)−1)(K(2)−1). (5.16)

The G-test statistic for independence (5.15) relies on an assumption which is violated

in our setting, namely that {(M̂ (1)
i , M̂

(2)
i )}ni=1 are independent and identically distributed

samples from the distribution of (Z(1), Z(2)). It is nonetheless a natural approach to the
problem of comparing two views’ clusterings. In fact, the mutual information of Meilă
(2007) for measuring the similarity between two clusterings of a single n × p dataset can
be written as a scaled version of the G-test statistic; when applied to instead measure the
similarity between M̂ (1) and M̂ (2), the mutual information I(M̂ (1), M̂ (2)) is given by

I(M̂ (1), M̂ (2)) = G2(M̂ (1), M̂ (2))/2n. (5.17)

While the proposed pseudo likelihood ratio test statistic (3.13) for testing independence of
Z(1) and Z(2) does not resemble the simple G-test statistic for independence in (5.15), we
show here that they are in fact quite related.

Let r̂
(1)
i =

φ̂
(1)
i

1T
K(1)

φ̂
(1)
i

and r̂
(2)
i =

φ̂
(2)
i

1T
K(2)

φ̂
(2)
i

be the vectors giving the soft-clustering assignment

weights (or “responsibilities”) for the ith observation in the two views, where φ̂i is defined
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in (2.9). We rewrite the pseudo likelihood ratio test statistic (3.13) as

log Λ̃
(

Π̂, {r̂(1)i , r̂
(2)
i }ni=1

)

=
n
∑

i=1

log

[

(r̂
(1)
i )T Π̂r̂

(2)
i

(r̂
(1)
i )T (Π̂1K(2))(1T

K(1)Π̂)r̂
(2)
i

]

, (5.18)

where Π̂ is defined in Algorithm 1. In the following proposition, we consider replacing the
“soft” cluster assignments r̂

(1)
i and r̂

(2)
i with “hard” cluster assignments, and replacing the

estimate Π̂ derived from the “soft” cluster assignments with an estimate derived from “hard”
cluster assignments, in (5.18). In what follows,

M̂
(1)
i ≡ arg max

k∈{1,2,...,K(1)}

r̂
(1)
ik , M̂

(2)
i ≡ arg max

k′∈{1,2,...,K(2)}

r̂
(2)
ik′ . (5.19)

Proposition 3. Let M̂ (1) and M̂ (2) be the estimated model-based cluster assignments in each
data view defined by (5.19). Let N̂ be the matrix with entries N̂kk′ containing the number of
observations assigned to cluster k in view 1 and cluster k′ in view 2. Then,

log Λ̃(N̂/n, {e
M̂

(1)
i

, e
M̂

(2)
i

}ni=1) = nI(M̂ (1), M̂ (2)) = G2(M̂ (1), M̂ (2))/2, (5.20)

where log Λ̃(·, ·) is defined in (5.18), and et is the unit vector that contains a 1 in the tth
element.

Proposition 3 follows by algebra, and says that replacing the soft cluster assignments in
the pseudo likelihood ratio test statistic of Section 3 with hard cluster assignments yields
exactly the G-test statistic for independence (5.15) (and the mutual information given in
(5.17))! In fact, in the special case of fitting multiple-view Gaussian mixtures with common
covariance matrix σ2Ip1 in the first view and σ2Ip2 in the second view, we will show that as
σ → 0, and the soft cluster assignments converge to hard cluster assignments, the pseudo
likelihood ratio test statistic converges to the G-test for independence. In what follows,

log Λ̃ ≡ log Λ̃
(

Π̂, {r̂(1)i , r̂
(2)
i }ni=1

)

, as in (3.13) and (5.18).

Proposition 4. Let σ2 > 0. Suppose that to compute log Λ̃, we fit the model (2.1)–(2.2),
for φ(1) and φ(2) densities of Gaussian distributions with covariance matrices σ2Ip1 and σ2Ip2
respectively. Let M̃ (1) and M̃ (2) denote the results of applying k-means clustering on the two
data views. Then, as σ2 → 0, log Λ̃ → nI(M̃ (1), M̃ (2)) = G2(M̃ (1), M̃ (2))/2.

Proposition 4 is proven in Appendix A.2 of the Supplementary Materials. When σ2 > 0,
the pseudo likelihood ratio test statistic, the G-test statistic, and the mutual information are
not equivalent. We can thus think of the pseudo likelihood ratio test statistic as reflecting the
uncertainty associated with the clusterings obtained on the two views, and theG-test statistic
and the mutual information as ignoring the uncertainty associated with the clusterings.
This suggests that the pseudo likelihood ratio test of Section 3.2 outperforms the G-test for
independence when the sample size is small and/or there is little separation between the
clusters.

To confirm this intuition, we return to the simulation set-up described in Section 4,
and compare the performances of the pseudo likelihood ratio test (3.13) and the G-test
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for independence (5.15) for testing H0 : C = 1K(1)1T
K(2) . We obtain p-values for (5.15)

using the χ2 approximation from (5.16), and using a permutation approach, where we take
B permutations of the elements of M̂ (2), and compare the observed value of (5.15) to its
empirical distribution in these permutation samples. The results are shown in Figure 3;
we see that the two tests yield similar power when the sample size is larger and/or the
value of σ is smaller, and that the pseudo likelihood ratio test yields higher power than the
G-test for independence when the sample size is smaller and/or the value of σ is larger.
We note that the χ2 approximation for the G-test from (5.16) does not control the Type
I error. Additional values of p and K, additional values of Σ(l), and non-Gaussian finite
mixture models are investigated in Appendices C.3.1, C.3.2, and C.3.3 of the Supplementary
Materials, respectively; the results are similar to those described in this section.

6 Application to the Pioneer 100 Wellness Project (Price

and others, 2017)

6.1 Introduction to the Scientific Problem

In the P100 Wellness Project (Price and others , 2017), multiple biological data types were
collected at multiple timepoints for 108 healthy participants. For each participant, whole
genome sequences were measured, activity tracking data were collected daily over nine
months, and clinical laboratory tests, metabolomes, proteomes, and microbiomes were mea-
sured at three-month, six-month, and nine-month timepoints. The P100 study aims to
optimize wellness of the participants through personalized healthcare recommendations. In
particular, clinical biomarkers measured at baseline were used to make personalized health
recommendations.

As an alternative approach, we could identify subgroups of individuals with similar clin-
ical profiles using cluster analysis, and then develop interventions tailored to each subgroup.
It is tempting to identify these subgroups using not just clinical data at baseline, but also
other types of data (e.g. proteomic data) at other timepoints. We could do this by apply-
ing a multi-view consensus clustering method (e.g. Shen and others 2009). However, such
an approach assumes that there is a single true clustering underlying all data types at all
timepoints. Therefore, before applying a consensus clustering approach, we should deter-
mine whether there is any evidence that the clusterings underlying the data types and/or
timepoints are at all related (in which case consensus clustering may lead to improved esti-
mation of the clusters) or whether the clusterings are completely unrelated (in which case
one would be better off simply performing a separate clustering of the observations in each
view). In what follows, we will use the hypothesis test developed in Section 3 to determine
whether clusterings of P100 participants based on clinical, proteomic, and genomic data are
dependent across timepoints, and across data types.

6.2 Data Analysis

At each of the three timepoints, 207 clinical measurements, 268 proteomic measurements, and
642 metabolomic measurements were available for n = 108 observations. In the following, we
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define a data view to be a single data type at a single timepoint. In each view, we removed
features missing in more than 25% of participants, and removed participants missing more
than 25% of features. Next, features in each view with standard deviation 0 were removed.
The remaining missing data were imputed using nearest neighbors imputation in the impute
package in R (Hastie and others , 2017). Features in each view were then adjusted for gender
using linear regression. Finally, the remaining features were scaled to have standard deviation
1. As in Section 4, we consider the model (2.1)–(2.2) under the assumption that each
component in the mixture is drawn from a Gaussian distribution. For each data view, we fit
the model using the mclust package in R, with a common σ2I covariance matrix (the “EII”
covariance structure in mclust). To test H0 : C = 1K(1)1T

K(2) , we compute p-values using the
permutation approximation discussed in Section 3.3 with B = 105. Based on the results in
Appendix C.2.1 of the Supplementary Materials, we choose the number of clusters in each
view by BIC under the constraint that the number of clusters is greater than one.

We now compare the clusterings in the clinical data at the first and third timepoints,
the clustering in the proteomic data at the first and third timepoints, and the clusterings
in the metabolomic data at the first and third timepoints. The sample sizes and results are
reported in Table 1. For each data type, the clusters found at each timepoint are displayed
in Figure 4.

We find strong evidence that for each data type, the clusterings at the first and third
timepoints are not independent. We further measure the strength of dependence through the
effective rank of Π̂, as described in Section 3.3. For the clusterings in the clinical data, the
effective rank of Π̂ is 1.63, and is upper bounded by 2. For the clusterings in the proteomic
data, the effective rank of Π̂ is 1.90, and is upper bounded by 5. For the clusterings in the
metabolomic data, the effective rank of Π̂ is 1.2, and is upper bounded by 3. These results
suggest that the strengths of association for the clusterings estimated on the clinical data,
the proteomic data, and the metabolomic data, are strong, moderate, and weak respectively.
The fact that the clusterings estimated on some data types are strongly dependent over
time provides evidence that they are scientifically meaningful. Furthermore, it suggests that
performing consensus clustering on some data types (e.g. clinical data and proteomic data)
across timepoints may be reasonable.

We now focus on comparing clusterings in the clinical, proteomic, and metabolomic data
at a single timepoint. The sample sizes and results are reported in Table 1.

The results provide modest evidence that proteomic and metabolomic data at a given
timepoint are dependent, and provide weak evidence that clinical and metabolomic data are
dependent. However, on balance, the evidence that the clusterings are dependent across data
types is weaker than we might expect. This suggests to us that the underlying subgroups
defined by the three data types are in fact quite different, and that we should be very wary of
performing a consensus clustering type approach across data types, or any analysis strategy
that assumes that all three data types are getting at the same set of underlying clusters.

7 Discussion

Most existing work on multiple-view clustering has focused on the problem of estimation:
namely, on exploiting the availability of multiple data views in order to cluster the observa-
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tions more accurately. In this paper, we have instead focused on the relatively unexplored
problem of inference: we have proposed a hypothesis test to determine whether clusterings
based on multiple data views are independent or associated.

In Section 6, we applied our test to the P100 Wellness Study (Price and others , 2017).
We found strong evidence that clusterings based on clinical data and proteomic data persist
over time, i.e. that the subgroups defined by the clinical data and the proteomic data
are similar at different timepoints. This suggests that if we wish to identify participant
subgroups based on (say) clinical data, then it may be worthwhile to apply a consensus
clustering approach to the clinical data from multiple timepoints. However, we found only
modest evidence that clusterings based on different data types are dependent! This suggests
that we should be cautious about identifying participant subgroups by applying consensus
clustering across multiple data types, as the clusterings underlying the distinct data types
may be quite different.

Throughout this paper, we compared clusterings on L = 2 data views. We may also wish
to compare clusterings across L > 2 views. Let X(l) ∈ R

pl for 1 ≤ l ≤ L be the random
vectors corresponding to the L views. Suppose X(l) are generated according to (2.1) for 1 ≤
l ≤ L, where (Z(1), . . . , Z(L)) are unobserved multinomial random variables with probabilities
given by P (Z(1) = k1, . . . , Z

(L) = kL) = Πk1...kL , for 1 ≤ kl ≤ K(l) and 1 ≤ l ≤ L, where
the sum of Π over all indices is 1 and Πk1...kL ≥ 0. Results analogous to Propositions 1 and
2 hold in this setting. Thus, we can estimate the parameters in the extended model much
as we did in Section 2.3.1, replacing the Sinkhorn-Knopp algorithm for matrix balancing
with a tensor balancing algorithm (see e.g. Sugiyama and others 2017). To test the null
hypothesis that Z(1), . . . , Z(L) are mutually independent, we can develop a pseudo likelihood
ratio test much as we did in Section 3, where instead of permuting the observations in X(2) in
Step 2(a) of Algorithm 2, we permute the observations in X(2), . . . , X(L). Alternatively, one
can simply test for pairwise independence between clusterings, instead of testing for mutual
independence between clusterings on all views, as we did in Section 6.

An R package titled multiviewtest is available online at https://github.com/lucylgao/
multiviewtest and is forthcoming on CRAN. Code to reproduce the data analysis in Sec-
tion 6, and to reproduce the simulations in Sections 4 and 5 and in Appendix C, are available
online at https://github.com/lucylgao/independent-clusterings-code.

Acknowledgments

We thank Nathan Price and John Earls for responding to inquiries about the P100 data,
and Will Fithian for a useful conversation. Lucy L. Gao received funding from the Natural
Sciences and Engineering Research Council of Canada. Daniela Witten and Jacob Bien
were supported by NIH Grant R01GM123993. Jacob Bien was supported by NSF CAREER
Award DMS-1653017. Daniela Witten was supported by NIH Grant DP5OD009145, NSF
CAREER Award DMS-1252624, and Simons Investigator Award No. 560585. Conflict of
Interest: None declared.

15





α =  0.050.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Dependence between views

P
o
w

e
r 

a
t 
n
o
m

in
a
l 
5
%

 s
ig

n
if
ic

a
n
c
e
 l
e
ve

l
σ =  2.4

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Dependence between views

σ =  4.8

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Dependence between views

σ =  9.6

Methods Pseudo LRT G−test (Chi squared) G−test (Permutation)   n 25 50 100 250 500

Figure 3: For the simulation study described in Section 5, power of the pseudo likelihood
ratio test and the G-test of independence for p = 10, K = 6 and σ ∈ {2.4, 4.8, 9.6}, with δ,
defined in (4.14), on the x-axis and power on the y-axis.
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Figure 4: For three different data types, a comparison of the clustering at the first timepoint
(represented with colors) with the clustering at the third timepoint (represented with shapes).
In each data type, there is strong evidence of dependence (p-value < 0.0001). The data
types are (i) clinical measurements, (ii) proteomic measurements, and (iii) metabolomic
measurements.
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View 1 View 2 n p1 p2 p-value
Clinical at Timepoint 1 Clinical at Timepoint 3 83 204 198 < 0.0001

Proteomic at Timepoint 1 Proteomic at Timepoint 3 66 249 257 < 0.0001
Metabolomic at Timepoint 1 Metabolomic at Timepoint 3 88 641 640 < 0.0001

Clinical at Timepoint 1 Proteomic at Timepoint 1 70 204 249 0.236
Clinical at Timepoint 2 Proteomic at Timepoint 2 60 205 254 0.091
Clinical at Timepoint 3 Proteomic at Timepoint 3 66 198 257 0.950
Clinical at Timepoint 1 Metabolomic at Timepoint 1 98 204 641 0.034
Clinical at Timepoint 2 Metabolomic at Timepoint 2 89 205 641 0.073
Clinical at Timepoint 3 Metabolomic at Timepoint 3 81 198 640 0.328

Proteomic at Timepoint 1 Metabolomic at Timepoint 1 72 249 641 0.402
Proteomic at Timepoint 2 Metabolomic at Timepoint 2 67 254 641 0.004
Proteomic at Timepoint 3 Metabolomic at Timepoint 3 73 257 640 0.020

Table 1: Results from the test of H0 : C = 1K(1)1T
K(2) developed in Section 3.1 applied to

clinical, proteomic, and metabolomic data at the first and third timepoints, and applied to
pairs of data views defined by different data types. Sample sizes n, dimensions in each view
p1 and p2, and p-values obtained using the permutation approximation from Section 3.3 are
reported.
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Supplementary Materials

A Proofs

A.1 Proof of Proposition 1

Suppose π(1) ∈ ∆K(1)

+ and π(2) ∈ ∆K(2)

+ , where ∆K
+ ≡ {s ∈ R

K : sk > 0,
K
∑

k=1

sk = 1}. Let

Cπ(1),π(2) = {C ∈ R
K(1)×K(2)

: Ckk′ ≥ 0, Cπ(2) = 1K(1) , CTπ(1) = 1K(2)}. First, we show that
{

Π ∈ ∆K(1)×K(2)

: Π1K(2) = π(1), ΠT1K(1) = π(2)
}

⊆
{

diag(π(1))Cdiag(π(2)) : C ∈ Cπ(1),π(2)

}

.

Suppose Π ∈ ∆K(1)×K(2)
= {S ∈ R

K(1)×K(2)
: Skk′ ≥ 0,

K(1)
∑

k=1

K(2)
∑

k′=1

Skk′ = 1} such that Π · 1K(2) =

π(1) and ΠT · 1K(1) . Define C ∈ R
K(1)×K(2)

+ by Ckk′ =
Πkk′

π
(1)
k

π
(2)

k′

. The denominator is nonzero

because π(1) ∈ ∆K(1)

+ and π(2) ∈ ∆K(2)

+ . Further, Ckk′ ≥ 0 and Π = diag(π(1))Cdiag(π(2)).
Now,

Cπ(2) =











∑

k′
C1k′π

(2)
k′

...
∑

k′
CK(1)k′π

(2)
k′











=











∑

k′

Π1k′

π
(1)
1

...
∑

k′

Π
K(1)k′

π
(1)

K(1)











= 1K(1)

since Π1K(2) = π(1) implies that
∑

k′
Πkk′ = π

(1)
k . Similarly, we can show CTπ(1) = 1K(2) .

Next, we show that
{

Π ∈ ∆K(1)×K(2)

: Π1K(2) = π(1), ΠT1K(1) = π(2)
}

⊇
{

diag(π(1))Cdiag(π(2)) : C ∈ Cπ(1),π(2)

}

.

Suppose C ∈ R
K(1)×K(2)

such that Ckk′ ≥ 0, Cπ(2) = 1K(1) and CTπ(1) = 1K(2) . Define

Π = diag(π(1))Cdiag(π(2)).

Then Πkk′ = π
(1)
k Ckk′π

(2)
k′ . Since π

(1)
k > 0, Ckk′ ≥ 0 and π

(2)
k′ > 0, it follows that Πkk′ ≥ 0.

Now,

Π1K(2) = diag(π(1))Cdiag(π(2))1K(2)

= diag(π(1))Cπ(2)

= diag(π(1))1K(1) = π(1).

Similarly, we can show ΠT1K(1) = π(2). Further, since π(1) ∈ ∆K(1)

+ ,
∑

kk′
Πkk′ = 1T

K(1)Π1K(2) =

1T
K(1)π

(1) = 1, so Π ∈ ∆K(1)×K(2)
.

Hence, we have proved Proposition 1.
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A.2 Proof of Proposition 4

Let σ2 > 0. Suppose throughout that we fit the model (2.1)–(2.2), for φ(1)(·; θ) the density of
a Np1(θ, σ

2Ip1) random variable and φ(2)(·; θ) the density of a Np2(θ, σ
2Ip2) random variable.

This amounts to applying Gaussian mixture model-based clustering with common covariance
matrix σ2I to each view.

Let π̂(1), π̂(2), θ̂(1), and θ̂(2) denote the maximizers of (2.7), and let

r̂
(1)
i =

φ̂
(1)
i

1T φ̂
(1)
i

, r̂
(2)
i =

φ̂
(2)
i

1T φ̂
(2)
i

, (A.1)

where φ̂(1) and φ̂(2) are defined in (2.9).
Since Gaussian mixture model-based clustering with common covariance matrix ν2I con-

verges to k-means clustering in each view as ν2 → 0 (see Section 14.3.7 in Friedman and
others (2001) for details), as σ2 → 0,

r̂
(1)
ik → 1{M̃ (1)

i = k}, r̂
(2)
ik′ → 1{M̃ (2)

i = k′}, π̂
(1)
k → Ñk.

n
, π̂

(2)
k′ → Ñ.k′

n
, (A.2)

where M̃
(1)
i and M̃

(2)
i are the estimated k-means cluster assignments of the ith observation in

each view, Ñk. =
∑

k′
Ñkk′ , and Ñ.k′ =

∑

k

Ñkk′ , for Ñkk′ = |{i ∈ {1, . . . , n} : M̃
(1)
i = k, M̃

(2)
i =

k′}|.
We now rewrite (2.8) as

Ĉ = arg min
C∈C

π̂(1),π̂(2)



−
n
∑

i=1

log





K(1)
∑

k=1

K(2)
∑

k′=1

π̂
(1)
k Ckk′ π̂

(2)
k′ φ̂

(1)
ik φ̂

(2)
ik′









= arg min
C∈C

π̂(1),π̂(2)



−
n
∑

i=1

log





K(1)
∑

k=1

K(2)
∑

k′=1

π̂
(1)
k Ckk′ π̂

(2)
k′ φ̂

(1)
ik φ̂

(2)
ik′



−
n
∑

i=1

log
(

1T φ̂
(1)
i 1T φ̂

(2)
i

)





= arg min
C∈C

π̂(1),π̂(2)



−
n
∑

i=1

log





K(1)
∑

k=1

K(2)
∑

k′=1

π̂
(1)
k Ckk′ π̂

(2)
k′ r̂

(1)
ik r̂

(2)
ik′







 ,

where the second equality holds because the quantities φ̂
(1)
i and φ̂

(2)
i defined in (2.9) do not

depend on C, and the third equality follows from the definition of r̂
(1)
i and r̂

(2)
i in (A.1). It

follows that

Ĉ = arg min
C∈C

π̂(1),π̂(2)

gσ(C), (A.3)

where

gσ(C) ≡ −
n
∑

i=1

log





K(1)
∑

k=1

K(2)
∑

k′=1

π̂
(1)
k Ckk′ π̂

(2)
k′ r̂

(1)
ik r̂

(2)
ik′



 .
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By (A.2), as σ2 → 0, gσ converges pointwise to g, where

g(C) ≡ −
n
∑

i=1

log





K(1)
∑

k=1

K(2)
∑

k′=1

Ñk.

n
Ckk′

Ñ.k′

n
1{M̃ (1)

i = k}1{M̃ (2)
i = k′}





= −
n
∑

i=1

K(1)
∑

k=1

K(2)
∑

k′=1

1{M̃ (1)
i = k}1{M̃ (2)

i = k′} log
(

Ñk.

n
Ckk′

Ñ.k′

n

)

= −
K(1)
∑

k=1

K(2)
∑

k=1

Ñkk′ log

(

Ñk.

n
Ckk′

Ñ.k′

n

)

.

Applying the method of Lagrange multipliers, we find that C̃ ≡ arg min
C∈C

π̂(1),π̂(2)

g(C) satisfies

C̃kk′ =
nÑkk′

Ñk.Ñ.k′

. (A.4)

By Exercise 7.23(c) in Rockafellar and Wets (1998), {gσ(C)}{σ>0} is essentially bounded. By
Theorem 7.17 in Rockafellar and Wets (1998), the epigraphical limit of gσ is g. Finally, gσ

and g are continuous and proper. Hence, by Theorem 7.33 in Rockafellar and Wets (1998),

C̃ = arg min
C∈C

π̂(1),π̂(2)

g(C) = lim
σ→0

arg min
C∈C

π̂(1),π̂(2)

gσ(C). (A.5)

By (A.3), (A.4) and (A.5), as σ2 → 0 we have

Ĉkk′ → C̃kk′ =
nÑkk′

Ñk.Ñ.k′

. (A.6)

By (A.2) and (A.6), and the definition of Π̂ in Algorithm 1,

Π̂kk′ →
Ñkk′

n
. (A.7)

Applying (A.2) and (A.7) to (5.18) yields the result.

B Exponentiated gradient descent for solving (2.8)

After a transformation of the optimization problem, (2.8) can be efficiently solved using
exponentiated gradient descent (Kivinen and Warmuth, 1997), a first-order method specially
designed for optimization over the simplex. This is a form of mirror descent, with provable
convergence results (Beck and Teboulle, 2003). While there is no analytic solution for the
update performed at each iteration of the exponentiated gradient descent, each update can
be performed by applying the Sinkhorn-Knopp algorithm, a matrix balancing algorithm with
provable convergence results and linear convergence rates (Franklin and Lorenz, 1989).
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Define

ℓ(θ(1), θ(2),Π) =
n
∑

i=1

log f(X
(1)
i , X

(2)
i ; θ(1), θ(2),Π)

where f(·, ·; θ(1), θ(2),Π) is defined in (2.3). Consider the following optimization problem:

minimize
Π

− ℓ(θ̂(1), θ̂(2),Π)

subject to Π1K(2) = π̂(1)

ΠT1K(1) = π̂(2)

Πkk′ ≥ 0.

(B.1)

By Proposition 1, we can equivalently write (B.1) as follows:

minimize
C

− ℓ(θ̂(1), θ̂(2), π̂(1), π̂(2), C)

subject to diag(π̂(1))Cdiag(π̂(2))1K(2) = π̂(1)

diag(π̂(2))CTdiag(π̂(1))1K(1) = π̂(2)

Ckk′ ≥ 0

which is equivalent to

minimize
C

− ℓ(θ̂(1), θ̂(2), π̂(1), π̂(2), C)

subject to diag(π̂(1))Cπ̂(2) = π̂(1)

diag(π̂(2))CT π̂(1) = π̂(2)

Ckk′ ≥ 0

which is in turn equivalent to

minimize
C

− l(θ̂(1), θ̂(2), π̂(1), π̂(2), C)

subject to Cπ̂(2) = 1K(1)

CT π̂(1) = 1K(2)

Ckk′ ≥ 0,

which is (2.8), the optimization problem we must solve to estimate Ĉ. Hence, to find Ĉ, we
can solve (B.1); let Π̂ be the minimizer of (B.1). Then, Ĉ can be found by

Ĉkk′ =
Π̂kk′

π̂
(1)
k π̂

(2)
k′

. (B.2)

The motivation for this transformation of (2.8) is that the transformed problem (B.1) can
be efficiently solved using an algorithm described in Cuturi (2013).
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We will describe the exponentiated gradient algorithm to solve the general problem

minimize
Π

g(Π)

subject to
∑

k′

Πkk′ = π̂
(1)
k

∑

k

Πkk′ = π̂
(2)
k′

Πkk′ ≥ 0

. (B.3)

To solve (B.3), we apply the update

Π̂t+1 =







































arg min
Π

g(Π̂t) + 〈∇g(Π̂t),Π− Π̂t〉+ 1

s

∑

kk′

Πkk′ log(Πkk′/Π̂
t
kk′)

subject to
∑

k′

Πkk′ = π̂
(1)
k

∑

k

Πkk′ = π̂
(2)
k′

Πkk′ ≥ 0.

(B.4)

This is similar to the proximal gradient method, but instead of ‖Π− Π̂t‖2F/(2s) we use the
Bregman divergence,

1

s

∑

kk′

Πkk′ log(Πkk′/Π̂
t
kk′).

An advantage of this choice is that the positivity constraint is automatically enforced. For
more on this, see Beck and Teboulle (2003). The optimality conditions for the problem (B.4)
are

[∇g(Π̂t)]kk′ + [1 + log(Π̂t+1
kk′ /Π̂

t
kk′)]/s+ λk + ηk′ = 0, (B.5)

for 1 ≤ k ≤ K(1), 1 ≤ k′ ≤ K(2), where λk and ηk′ are Lagrange multipliers for the row sum
and column sum constraints, respectively. This implies that

Π̂t+1
kk′ = Π̂t

kk′ exp{−sλk − sηk′ − s[∇g(Π̂t)]kk′ − 1}.

The gradient is given by

∇g(Π) = −
n
∑

i=1

φ̂
(2)
i [φ̂

(1)
i ]T

[φ̂
(1)
i ]TΠφ̂

(2)
i

. (B.6)

In the special case of (B.1), writing Gkk′ = [∇g(Π̂t)]kk′ , the update

Π̂t+1
kk′ = Π̂t

kk′ exp{sGkk′ − 1} exp{−sλk} exp{−sηk′}

can be written as

Π̂t+1 = diag(v)Mdiag(u),
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Algorithm S1 Exponentiated Gradient Descent for Solving (B.1)

1. Choose a fixed step size s and compute φ̂(1) and φ̂(2) according to (2.9).

2. For t = 1, 2, . . ., until convergence,

(a) Define
Mkk′ = Π̂t

kk′ exp{sGkk′ − 1}
where

Gkk′ =
n
∑

i=1

φ̂
(1)
ik φ̂

(2)
ik′

[φ̂
(1)
i ]T Π̂tφ̂

(2)
i

.

(b) (Sinkhorn-Knopp algorithm) Let u0 = 1K(2) and v0 = 1K(1) . For t′ = 1, 2, . . .,
until convergence,

• ut′ = π̂(2)

(Π̂t+1)T vt
′
−1
, where the fraction denotes element-wise vector division

• vt
′

= π̂(1)

Π̂t+1ut′
, where the fraction denotes element-wise vector division

(c) Let u and v denote the vectors to which ut′ and vt
′

converge. Update

Π̂t+1
kk′ = ukMkk′vk′ .

where uk = exp{−sλk}, vk′ = exp{−sηk′}, and Mkk′ = Π̂t
kk′ exp{sGkk′ − 1}.

Since Π̂t+1 must satisfy the row and column sum constraints, u and v must be chosen
accordingly. As in Cuturi (2013), we can apply the Sinkhorn Theorem and Sinkhorn-Knopp
algorithm to find u and v. By the Sinkhorn Theorem, u and v are unique modulo scalar
multiplication of u with a positive number and scalar division of v by that same positive
number. The Sinkhorn-Knopp algorithm (alternatively rescaling the columns so that the
rows sum to π̂(1) then rescaling the rows so that the columns sum to π̂(2)) can be applied to
Mkk′ to find u and v. Hence, to perform the update, we simply multiply Π̂t

kk′ by exp{sGkk′ −
1} and then apply the Sinkhorn-Knopp algorithm to the updated matrix so that the row and
column sum constraints are satisfied. Algorithm S1 provides the details. Using Proposition
(1), we can then use our bijection between Π to C (B.2) to obtain Algorithm 1 from Algorithm
S1.

C Simulations

C.1 Mean matrices for simulations in Section 4

In the simulations described in Section 4, data are generated from (2.1)–(2.2) with

Π =
1− δ

K2
1K1

T
K +

δ

K
IK (C.1)
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for K = 6. In the lth data view, the observations are drawn from a multivariate Gaussian
mixture model, for which the kth component in the mixture (corresponding to the kth

cluster) is a Np(µ
(l)
k , σ2Ip) distribution, with p = 10. The p ×K mean matrices for the two

data views are of the form

µ(1) =

[

2 · 15 05 2 · 15 −2 · 15 05 −2 · 15
05 2 · 15 −2 · 15 05 −2 · 15 2 · 15

]

,

µ(2) =

[

−2 · 16 06 −2 · 16 2 · 16 04 2 · 14
04 −2 · 14 2 · 14 04 2 · 16 −2 · 16

]

.

C.2 Supplementary simulations to Section 4

C.2.1 Selection of the number of clusters

Recall from Section 4 that using too few clusters in the pseudo likelihood ratio test sometimes
yields better power than using the correct number of clusters. In this section, we demonstrate
that using too few clusters can either increase or decrease the power, depending on the
situation.

We generate data from (2.1)–(2.2) with Π = 1−δ
K2 1K1

T
K + δ

K
IK for K = 6. In the lth

data view, the observations are drawn from a bivariate Gaussian mixture model, for which
the kth component in the mixture (corresponding to the kth cluster) is a N2(µ

(l)
k , 0.42Ip)

distribution. We simulate 2000 datasets for a range of values of n, and for two choices of
µ(l):

Choice 1:

µ(1) =

[

2 2 −2 −2
−2 −1 1 2

]

, µ(2) =

[

−2 −2 2 2
−2 −1 1 2

]

, (C.2)

Choice 2:

µ(1) =

[

2 2 −2 −2
−2 −1 1 2

]

, µ(2) =

[

2 −2 −2 2
2 −2 −1 1

]

. (C.3)

We evaluate the power of the pseudo likelihood ratio test of H0 : C = 1K11
T
K2

at nominal
significance level α = 0.05, when the number of clusters is incorrectly and correctly specified.
Results are displayed in Figure S1.

Observe from the left panel of Figure S1 that when µ(l) is given in (C.2), using too few
clusters (K = 2) yields higher power than the correct number of clusters (K = 4). This
is because under (C.2), the clusterings on each view contain two natural “meta-clusters”,
formed by combining clusters whose means are close; see Figure S2(i) for an illustration.
Because the clusters on each view are not well-separated, it is easier to instead cluster the
data into the two “meta-clusters”, which are highly in agreement when the four clusters
are in agreement. For example, when Π = I4/4, the Π matrix corresponding to the “meta-
clustering” is given by I2/2. Thus, testing for independence assuming just two clusters yields
better power than correctly assuming four clusters.
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By contrast, observe from the right panel of Figure S1 that when µ(l) is given in (C.3),
using too few clusters (K = 2) yields much lower power than the correct number of clusters
(K = 4). Again, under (C.3), the clusterings on each view contain two natural “meta-
clusters” (see Figure S2(ii)), and it is easier to cluster the data into the two “meta-clusters”.
However, under (C.3), even when the four clusters are highly in agreement, the meta-clusters
are not highly in agreement. For example, when Π = I4/4, the Π matrix corresponding to
the “meta-clustering” is given by 121

T
2 /4. Thus, testing for independence assuming just two

clusters yields worse power than correctly assuming four clusters.
We also observe in both panels of Figure S1 that using too many clusters yields slightly

lower power than using the correct number of clusters under both (C.2) and (C.3); this result
is similar to the results from the simulation setting described in Section 4 and Appendix
C.2.2. Furthermore, in both panels of Figure S1, corresponding to the two choices of µ(l),
choosing the clusters using BIC on each view yields slightly lower power than using the
correct number of clusters in small and moderate sample sizes, and performs as well as using
the correct number of clusters when the sample size is large.

C.2.2 Additional values of K and p

We simulate two data views with p1 = p2 = p = 10, and K(1) = K(2) = K = 3. In the
lth data view, the observations are drawn from a multivariate Gaussian mixture model, for
which the kth component in the mixture (corresponding to the kth cluster) is a Np(µ

(l)
k , σ2Ip)

distribution.
The means of the components in the mixture model, written as a p×K matrix, are

µ(1) =

[

2 · 15 05 2 · 15
05 2 · 15 −2 · 15

]

, µ(2) =

[

−2 · 16 06 −2 · 16
04 −2 · 14 2 · 14

]

.

Additionally, we simulate two data views with p1 = p2 = p = 100, and K(1) = K(2) = K,
for K = 3 and K = 6. In the lth data view, the observations are drawn from a multivariate
Gaussian mixture model, for which the kth component in the mixture (corresponding to the

kth cluster) is a Np(µ
(l)
k , σ2Ip) distribution. For K = 3, the means of the components in the

mixture model, written as a p×K matrix, are

µ(1) =

[

2 · 150 050 2 · 150
050 2 · 150 −2 · 150

]

,

µ(2) =

[

−2 · 160 060 −2 · 160
040 −2 · 140 2 · 140

]

.

For K = 6, the means are

µ(1) =

[

2 · 150 050 2 · 150 −2 · 150 050 −2 · 150
050 2 · 150 −2 · 150 050 −2 · 150 2 · 150

]

,

µ(2) =

[

−2 · 160 060 −2 · 160 2 · 160 040 2 · 140
040 −2 · 140 2 · 140 040 2 · 160 −2 · 160

]

.

To investigate the type I error and power of our test, we generate data according to
(2.1)–(2.2), with a range of Π defined in (C.1).
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We simulate 2000 datasets for a range of values of n and σ, and evaluate the power of the
pseudo likelihood ratio test of H0 : C = 1K11

T
K2

at nominal significance level α = 0.05, when
the number of clusters is correctly and incorrectly specified. Results are shown in Figures S3,
S4, and S5.

Results are similar to the simulation study described in Section 4.

C.3 Supplementary simulations to Section 5

In this section, we consider the G-test for independence in Section 5 using M̂ (1) and M̂ (2)

defined in (5.19). As in Section 5, we perform a simulation study in order to compare the
performances of the pseudo likelihood ratio test for testing the null hypothesis H0 : C =
1K(1)1T

K(2) and the G-test for independence. We obtain p-values for G2(M̂ (1), M̂ (2)) (5.15)
using the χ2 approximation from (5.16), as well as a permutation approach, where we take
B permutations of the elements of M̂ (2), and compare the observed value of G2(M̂ (1), M̂ (2))
to its empirical distribution in these permutation samples.

C.3.1 Additional values of p and K

We return to the simulation set-up described in Section 4 and Appendix C.1, with Σ(1) =
Σ(2) = σ2Ip, and investigate a range of values of p and K. In addition to the G-test for
independence and the pseudo likelihood ratio test, we also compute the adjusted Rand Index
(ARI) of Hubert and Arabie (1985) in order to compare the results of model-based clustering
(implemented as in Sections 2.3 and 3) on each view; p-values for the ARI are obtained using
a permutation approach. We compare the performance of the pseudo likelihood ratio test,
the G-test for independence, and the ARI for testing the null hypothesis H0 : C = 1K(1)1T

K(2) .
The results are in Figures S6, S7, and S8. Results are similar to results from the K = 6
and p = 10 setting in Figure 3; we note that the ARI performs similarly to the G-test for
independence in all cases.

C.3.2 Additional values of Σ(1) and Σ(2)

We return to the simulation set-up described in Section 4 with K = 3, µ(l) given by

µ(1) =

[

0 0
√
12

2 −2 0

]

, µ(2) =

[

−2 0 2

0
√
12 0

]

, (C.4)

and for two choices of Σ(l):

Choice 1: Σ(1) = Σ(2) =

(

2.25 0.5
0.5 2.25

)

,

Choice 2: Σ(1) =

(

2.25 0.5
0.5 2.25

)

and Σ(2) = diag(2.25, 4).

To perform Step 1 of Algorithm 1, we use the package mclust (Scrucca and others , 2016) to
fit Gaussian mixture models with a common dense covariance matrix (the “EEE” covariance
structure in mclust) for Σ(l) given by choice 1 above, and to fit Gaussian mixture models
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with a common diagonal covariance matrix (the “EEI” covariance structure in mclust) for
Σ(l) given by choice 2 above. We compare the performance of the pseudo likelihood ratio test
of H0 : C = 1K(1)1T

K(2) at nominal significance level α = 0.05 to the G-test for independence
for testing the null hypothesis H0 : C = 1K(1)1T

K(2) . The results are in Figure S9(i) and
Figure S9(ii). Results are similar to results from the K = 6 and p = 10 setting with σ = 4.8
in Figure 3.

C.3.3 Model misspecification

We consider a simulation set-up which compares the performance of the pseudo likelihood
ratio test under model misspecification. We generate data from model (2.1) – (2.2), with
Π = 1−δ

K2 1K1
T
K + δ

K
IK for K = 3. In the lth data view, the observations are drawn from

a finite mixture model for which the kth component in the mixture (corresponding to the

kth cluster) is a bivariate Student’s t-distribution with location parameter µ
(l)
k and scale

matrix Σ =

(

2.25 0.5
0.5 2.25

)

, where the mean matrices for the two data views are of the

form (C.4). We fit Gaussian mixture models with a common covariance matrix (the “EEE”
covariance structure in mclust), and again use B = 200 permutation samples. The results
are in Figure S9(iii). We compare the performance of the pseudo likelihood ratio test of
H0 : C = 1K(1)1T

K(2) at nominal significance level α = 0.05 to the G-test for independence for
testing the null hypothesis H0 : C = 1K(1)1T

K(2) , with p-values obtained with a permutation
approach. Results remain similar to results from the K = 6 and p = 10 setting with σ = 4.8
in Figure 3.
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Methods PLRT with K = 2 PLRT with K = 4 PLRT with K = 6 PLRT with K chosen with BIC n 500 250 100 50 25

Figure S1: Power of the pseudo likelihood ratio test of H0 : C = 1K11
T
K2

with p = 2, K = 4,
and σ = 0.4 in the two simulation settings described in Appendix C.2.1. The x-axis displays
δ, defined in (C.1), and the y-axis displays the power.
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Figure S3: Power of the pseudo likelihood ratio test of H0 : C = 1K11
T
K2

with p = 10, K = 3
and σ ∈ {2.4, 4.8, 9.6} in the simulation setting described in Appendix C.2.2. The x-axis
displays δ, defined in (C.1), and the y-axis displays the power.
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Figure S4: Power of the pseudo likelihood ratio test of H0 : C = 1K11
T
K2

with p = 100,
K = 3 and σ ∈ {4.8, 9.6, 19.2} in the simulation setting described in Appendix C.2.2. The
x-axis displays δ, defined in (C.1), and the y-axis displays the power.
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Figure S5: Power of the pseudo likelihood ratio test of H0 : C = 1K11
T
K2

with p = 100,
K = 6 and σ ∈ {4.8, 9.6, 19.2} in the simulation setting described in Appendix C.2.2. The
x-axis displays δ, defined in (C.1), and the y-axis displays the power.
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Figure S6: For the simulation study described in Appendix C.3.1, power of the pseudo
likelihood ratio test, the G-test for independence, and the adjusted Rand Index (ARI) for
p = 10, K = 3 and σ ∈ {2.4, 4.8, 9.6}, with δ, defined in (C.1) on the x-axis and power on
the y-axis.
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Figure S7: For the simulation study described in Appendix C.3.1, power of the pseudo
likelihood ratio test, the G-test for independence, and the adjusted Rand Index (ARI) for
p = 100, K = 3 and σ ∈ {4.8, 9.6, 19.2}, with δ, defined in (C.1), on the x-axis, and power
on the y-axis.

α =  0.050.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Dependence between views

P
o
w

e
r 

a
t 

n
o
m

in
a
l 
5
%

 s
ig

n
if
ic

a
n
c
e
 l
e
ve

l

σ =  4.8

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Dependence between views

σ =  9.6

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Dependence between views

σ =  19.2

  n 25 50 100 250 500 Methods Pseudo LRT G−test (Chi squared) G−test (Permutation) ARI (Permutation)

Figure S8: For the simulation study described in Appendix C.3.1, power of the pseudo
likelihood ratio test, the G-test for independence, and the adjusted Rand Index (ARI) for
p = 100, K = 6 and σ ∈ {4.8, 9.6, 19.2}, with δ, defined in (C.1), on the x-axis, and power
on the y-axis.
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Figure S9: The x-axis displays δ, defined in (C.1), and the y-axis displays power. Power
of the pseudo likelihood ratio test and the G-test for independence for (i) Σ(1) = Σ(2) =
( 2.25 0.5

0.5 2.25 ), and Gaussian mixture components, (ii) Σ(1) = ( 2.25 0.5
0.5 2.25 ), Σ

(2) = diag(2.25, 4), and
Gaussian mixture components, (iii) bivariate Student’s t-distributions as mixture compo-
nents. Details for (i) and (ii) are in Appendix C.3.2, and details for (iii) are in Appendix
C.3.3.
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