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Abstract

Ordinary least square (OLS) estimation of a linear regression model is well-known to be highly
sensitive to outliers. It is common practice to (1) identify and remove outliers by looking at the data
and (2) to fit OLS and form confidence intervals and p-values on the remaining data as if this were the
original data collected. This standard “detect-and-forget” approach has been shown to be problematic,
and in this paper we highlight the fact that it can lead to invalid inference and show how recently
developed tools in selective inference can be used to properly account for outlier detection and removal.
Our inferential procedures apply to a general class of outlier removal procedures that includes several
of the most commonly used approaches. We conduct simulations to corroborate the theoretical results,
and we apply our method to three real data sets to illustrate how our inferential results can differ from
the traditional detect-and-forget strategy. A companion R package, outference, implements these new
procedures with an interface that matches the functions commonly used for inference with lm in R.

Keywords: confidence intervals, linear regression, outlier, p-value, selective inference
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1 Introduction

Linear regression is routinely used in just about every field of science. In introductory statistics courses,

students are shown cautionary examples of how even a single outlier can wreak havoc in ordinary least

squares (OLS). Outliers can arise for a variety of reasons, including recording errors and the occurrence

of rare phenomena, and they often go unnoticed without careful inspection (see, e.g., Belsley et al., 2005).

Given this reality, one simple strategy adopted by practitioners is a two-step procedure which we will refer

to as detect-and-forget:

1. detect and then remove outliers;

2. fit OLS and perform inference on the remaining data as if this were the original data set.

While this simple approach is extremely common, there are two major problems (Welsh and Ronchetti,

2002). First, accurate detection of outliers can be challenging: In the presence of multiple outliers, classical

influence measures, such as OLS residuals, Cook’s distance (Cook, 1977), and DFFITS (Welsch and Kuh,

1977), can be misleading, leading potentially to missed outliers and falsely detected outliers (see, e.g., Hadi

and Simonoff, 1993, for more on “masking” and “swamping”). This first problem has received considerable

attention, leading to the development of robust regression methods, in which one uses methods that are less

sensitive to outliers (see, e.g., Maronna et al., 2006). A foundational method in this category is Huber’s

M-estimator (Huber and Ronchetti, 1981), where one minimizes Huber’s loss function:

min
β∈Rp

1

n

n∑

i=1

ρ(yi −Xi,·β, λ) where ρ(r, λ) =





1
2r

2 if |r| ≤ λ

λ|r| − 1
2λ

2 if |r| > λ,
(1)

where Xi,· is i-th row of the design matrix. The “vanilla” Huber’s estimator has been shown to be insuffi-

ciently robust (Rousseeuw, 1984; Zaman et al., 2001), but state-of-the-art robust methods do exist, such as

MM-estimation (Yohai, 1987).

This first problem with detect-and-forget has received much attention; the focus of this paper, however, is

on a second problem. In the second step of the detect-and-forget approach, in which one performs downstream

statistical inference based on the refitted OLS estimator, we show that the confidence intervals and hypothesis

tests have incorrect operating characteristics. This second issue is orthogonal to the first: whether or not

one is able to accurately identify outliers, if one chooses to search for and remove outliers, one must account

for this step when doing subsequent inference. We emphasize that our solution to this second problem does

not address the first problem of accurate outlier detection. Given the widespread continued use of classical

outlier detection methods, we develop a practical fix to this second problem, allowing for valid inference

after using the classical outlier detection methods (including OLS residuals, Cook’s distance and DFFITS)

or after using Huber’s estimator.

The inferential problem with detect-and-forget stems from its use of the same data twice. While the

term “outlier removal” might lead one to think of Step 1 as a clear-cut, essentially deterministic step, in

fact Step 1 should instead be thought of as “potential outlier removal,” an imperfect process in which one

has some probability of removing non-outliers, a process that can alter the distribution of the data. The
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act of searching for and removing potential outliers must be considered as part of the data-fitting procedure

and thus must be considered in Step 2 when inference is being performed. Similar concerns over “double

dipping” are well-known in prediction problems, in which sample splitting (into training and testing sets) is

a common remedy. However, such a strategy does not translate in an obvious way to the outlier problem:

suppose one splits the observations into two sets, searching for and removing potential outliers on the first

set and then performing inference on the second set of observations. In such a case, one is of course left

vulnerable to outliers in the second set throwing off the inference stage.

The idea of properly accounting for a previous look at the data is known as selective inference (Yekutieli,

2012; Taylor and Tibshirani, 2015). Much recent work is focused specifically on accounting for selection of

a set of variables before performing inference (Fithian et al., 2014; Loftus and Taylor, 2015; Lee et al., 2016;

Panigrahi et al., 2016). In our case, the selection is of observations rather than variables, but we show that

the machinery of Loftus and Taylor (2015); Lee et al. (2016), namely conditioning on a stochastic selection

event, can be naturally adapted to our context.

In fact, illustration of the problem with detect-and-forget has appeared in some literature. Berenguer-

Rico and Wilms (2018) showed how the White test for heteroscedasticity can fail using the detect-and-

forget approach under asymmetric errors; however, when the errors come from a symmetric distribution,

they show how the theory of Berenguer-Rico and Nielsen (2017) can lead to the detect-and-forget approach

being valid asymptotically and having good finite-sample performance.

We will now illustrate that even under symmetric errors, the detect-and-forget strategy can be problematic

when performing inference for each covariate. As a toy example, consider the situation shown in Figure 1, in

which there are 19 “normal” points (in black), and a single “outlier” point (in red) has been shifted upward

by different magnitudes. For this illustration, we use a well-known approach for outlier detection called

Cook’s distance (Cook, 1977):

Di =
ε̂2i
pσ̂2

hii

(1− hii)2
, (2)

where ε̂i is the i-th residual from OLS on the entire data set, σ̂2 := ‖ε̂‖22/(n−p) is the scaled sum of squares,

and hii is the i-th diagonal entry of the hat matrix X(XTX)−1XT . We declare the observation with the

largest Cook’s distance to be the outlier (indicated in the figure by an open black box) and then refit the

regression model with this point removed (black regression line). We then construct confidence intervals

for the regression surface in two different ways: first, using the traditional detect-and-forget strategy, which

ignores the outlier removal step, and second using corrected, a method we will introduce in this paper,

which properly corrects for the removal. When the outlier is obvious (leftmost panel), our method makes no

discernible correction. With such a pronounced separation between the outlier and non-outliers, Step 1 is

unlikely to have removed a non-outlier, and thus the distribution of the data for inference is likely unaltered.

However, when the outlier is less easily distinguished from the data, our corrected confidence intervals are

noticeably different from the classical ones. In particular, the corrected intervals are pulled in the direction

of the removed data point, thereby accounting for the possibility that the removed point may not in fact

have been an outlier.
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refer readers to Fithian et al. (2014) for more details.

We assume a standard regression setting, (y, X) ∈ R
n×R

n×p with y ∼ N(µ, σ2In), where µi = xT
i β

∗ for

i ∈ M∗ and xi is the i-th row ofX. HereM∗ is the set of non-outliers. IfM is the set of detected non-outliers,

then the detect-and-forget strategy forms the OLS estimator on the subset of observations in M , β̂
M

=

X+
M,·yM (where yM and XM,· are formed by taking rows indexed by M , and X+

M,· is the Moore-Penrose

pseudoinverse of XM,·), and then proceeds with inference assuming that β̂
M ∼ N(β∗, σ2[XT

M,·XM,·]−1).

However, the above assumes that M is non-random (or at least independent of y) and that M ⊆ M∗, i.e.

all true outliers have been successfully removed. However, in practice the set of declared non-outliers is in fact

a function of the data, M̂(y, X), and thus to perform inference would in principle require an understanding

of the distribution of the much more complicated random variable β̂
M̂(y,X)

= X+

M̂(y,X),·yM̂(y,X)
.

For general outlier removal procedures M̂(y, X), such as “make plots and inspect by eye”, the above

distribution may be completely unobtainable. However, in this paper we define a class of outlier removal

procedures for which the conditional distribution β̂
M̂(y,X) | M̂(y, X) can be precisely characterized. Access

to this conditional distribution will allow us to construct confidence intervals and p-values that are valid

conditional on the set of outliers selected.

For example, we will produce a procedure for forming outlier-removal-aware confidence intervals CM
j (y, X)

such that P(β∗
j ∈ CM

j (y, X) | M̂(y, X) = M) ≥ 1− α for all subsets M that do not include a true outlier.

If one could be certain that M̂(y, X) ⊆ M∗ (i.e., the procedure is adjusted to be sufficiently conservative

and outliers are known to be sufficiently large), then such conditional coverage statements can be translated

into a marginal (i.e., traditional) coverage statement: P(β∗
j ∈ C

M̂(y,X)
j (y, X)) ≥ 1− α.

However, in practice we do not know if all true outliers have been successfully removed. If M̂(y, X) 6⊆ M∗,

then OLS is no longer guaranteed to produce an unbiased estimate of β∗. OLS performed on the observations

in M instead estimates a parameter βM , which depends on both β∗ and on µM\M∗ , the mean of the true

outliers that were not detected:

βM := argmin
β∈Rp

E[‖yM −XM,·β‖
2
2] = X+

M,·µM . (3)

The goal of this paper is not to improve the performance of outlier removal procedures—certainly there

is already extensive work in the literature on outlier removal. Rather, our goal is to provide valid inferential

statements for someone who has chosen to use a particular outlier removal procedure, M̂(y, X). Thus, to

stay within the scope of this problem, we will simply acknowledge that if a procedure M̂(y, X) is prone to

failing to identify outliers, then one cannot hope to estimate β∗ but must instead focus on estimating and

performing inference for βM̂(y,X), which reflects more accurately than β∗ the relationship between X and

y in the data that is provided to us by M̂(y, X). For example, we will provide intervals with guaranteed

coverage of βM̂(y,X): P(β
M̂(y,X)
j ∈ C

M̂(y,X)
j (y, X)) ≥ 1 − α. We will likewise provide all the standard

confidence intervals and hypothesis tests for regression but focused on βM̂(y,X) in place of β∗.

This discussion emphasizes the inherently different effect of false positives (i.e., removing points that

are not true outliers) versus false negatives (i.e., failing to remove points that are true outliers). When all

true outliers are removed, βM̂ = β∗, and our machinery gives corrected inferential statements that account
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for the outlier removal step (including accounting for any false positives). By contrast, when true outliers

remain, βM̂ 6= β∗, both detect-and-forget and our procedure give inferential statements about βM̂ rather

than β∗; however, in the case of our method, these statements are at least valid.

The rest of the paper is organized as follows: in Section 2 we formulate the problem more precisely

and describe the class of outlier detection procedures over which our framework applies; Section 3 de-

scribes our methodology for forming confidence intervals and extracting p-values that are properly cor-

rected for outlier removal; Section 4 provides empirical comparisons of the naive detect-and-forget strategy

and our method, both through comprehensive simulations and a re-analysis of three real data sets; Sec-

tion 5 gives a discussion and possible next steps. A companion R package, outference, is available at

https://github.com/shuxiaoc/outference. For brevity, we collect proofs of most theoretical results,

some additional simulation results and the implementation details in the online supplementary material.

We conclude this section by introducing some notation that will be used throughout this paper. For

n ∈ N, we let [n] := {1, 2, . . . , n}. For a matrix X, we let C (X) be its column space and tr(X) be its trace.

We let XI,J be the submatrix formed by rows and columns indexed by I and J , respectively, and we let

XI,· be the submatrix formed by rows indexed by I. We let PX be the projection matrix onto C (X) and

P⊥
X := I − PX . For a submatrix XI,J , we write PI,J := PXI,J

when there is no ambiguity. We use ⊥⊥ to

denote statistical independence.

2 Problem Formulation

2.1 The General Setup

We elaborate on the framework described in the previous section, introducing some additional notation. We

assume y = µ+ ε, where y ∈ R
n, ε ∼ N(0, σ2In) and consider the mean-shift model,

µ = Xβ∗ + u∗, (4)

where β∗ ∈ R
p, and X is a non-random matrix of predictors. The set M∗ = [n] \ supp(u∗) is the index

set of true non-outliers; equivalently, M∗c is the index set of true outliers. By definition of M∗, u∗
M∗ = 0

and u∗
i 6= 0 for i ∈ M∗c. This setup assumes that all outliers considered are “vertical” in the sense that

they only contaminate the model in the y-direction. We denote a data-dependent outlier removal procedure,

M̂ : Rn → 2[n], as a function mapping the data y to the index set of detected non-outliers (for notational

ease, we suppress the dependence of M̂ on X since X is treated as non-random). We will assume throughout

that X
M̂(y),· has linearly independent columns.

For a fixed subset of the observations M ⊆ [n], the parameter XβM where βM is defined in (3) represents

the best linear approximation of µM using the p predictors in XM,·. In what follows, we will provide

hypothesis tests and confidence intervals for βM conditional on the event {M̂(y) = M}.
Combining (3) and (4) with the assumption that XM,· has linearly independent columns, we have

βM = X+
M,·(XM,·β

∗ + u∗
M ) = β∗ + X+

M,·u
∗
M . Since u∗

M∗ = 0, it follows that βM = β∗ when M ⊆ M∗.
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This result makes it clear that if one wishes to make statements about β∗, then one must ensure that the

procedure M̂ is screening out all outliers.

Our focus will be on performing inference on βM conditional on the event {M̂(y) = M}. Importantly,

such inferential procedures in fact provide asymptotically valid inferences for β∗ as long as one’s outlier

removal procedure asympotically detects all outliers. For example, the next proposition establishes that

confidence intervals providing conditional coverage of βM
j given {M̂(y) = M} do in fact achieve traditional

(i.e., unconditional) coverage of β∗
j asymptotically if one is using an outlier detection procedure that is

guaranteed to screen out all outliers as n → ∞.

Proposition 2.1. For y generated through the mean-shift model (4), consider intervals CM̂
j , satisfying

P(βM̂
j ∈ CM̂

j | M̂ = M) = 1− α. If the outlier detection procedure M̂ satisfies P(M̂ ⊆ M∗) → 1 as n → ∞,

then we have P(β∗
j ∈ CM̂

j ) → 1− α.

This proposition is based on two simple observations: first, that conditional coverage of βM̂ implies

unconditional coverage of βM̂ ; second, that M̂ ⊆ M∗ implies that βM̂ = β∗.

Such a screening property is reasonable to demand of an outlier detection procedure, and related results

exist in the literature (Zhao et al., 2013). For example, consider using Cook’s distance (2) to detect outliers:

M̂(y) = {i : Di < λ/n}, (5)

where λ is a prespecified cutoff. In Section 2 of the supplementary material, we provide conditions (based on

a result of Zhao et al. 2013) under which P(M̂ = M∗) → 1 for an appropriate choice of λ. While λ = 0 would

trivially satisfy the screening property, we of course need a procedure that leaves sufficient observations for

estimation and inference.

While the mean-shift model model is common in the outlier detection literature, it is by no means the

only reasonable one (see, e.g., Huber 1965; Thompson 1985; Huber 1992). We choose to focus on the mean-

shift model because it provides a simple yet practical working definition of an “outlier”, and it is relatively

easy to prove the effectiveness of the outlier detection procedure considered in this paper under this model

(e.g., Proposition S.1 in the supplementary material). However, our main results are, indeed, independent

of the choice of specific outlier model.

2.2 Quadratic Outlier Detection Procedures

In this section we define a general class of outlier detection procedures for which our methodology will apply.

We then show that this class includes several of the most famous outlier detection procedures.

Definition 2.2. We say an outlier detection procedure is quadratic if the event {M̂(y) = M} =: EM is

of the form X({EM,i}i∈IM ), where X denotes a general set operator that maps a finite family of sets to

a single set, IM is a finite index set, and EM,i := {y ∈ R
n : yTQM,iy + aTM,iy + bM,i ≥ 0}, for some

QM,i ∈ R
n×n,aM,i ∈ R

n, and bM,i ∈ R.

Generally, X should be thought of as taking finite unions, intersections, and complements. The above

definition is a direct generalization of Definition 1.1 of Loftus and Taylor (2015), in which X ≡ ⋂
. We will see
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that many outlier detection procedures are quadratic in the sense of Definition 2.2. While most of the time

the definition in Loftus and Taylor (2015) will apply, there are certain cases that require our generalization

(see Section 3.2 of the supplementary material for a specific example). The next proposition shows that

outlier detection using Cook’s distance is quadratic in the sense of Definition 2.2.

Proposition 2.3. Outlier detection using Cook’s distance (5) is quadratic with

EM =
⋂

i∈[n]

EM,i, (6)

EM,i =

{
y ∈ R

n : (−1)✶{i∈Mc}yT

(
λp

n
(1− hi)

2P⊥
X − (n− p)hiP

⊥
X eie

T
i P

⊥
X

)
y > 0

}
, (7)

where ei is i-th standard basis for R
n and hi = (PX)ii.

Proof. We may write Di =

(
yT (P⊥

X eie
T
i P

⊥
X )y

/
yTP⊥

Xy

)
·
(
(n−p)hi

/
p(1−hi)

2

)
. Plugging this expression

to M̂ = {i : Di < λ/n} and M̂ c = {i : Di ≥ λ/n} gives the desired result.

As a second example, we consider Huber’s M-estimator (1). Though it is a robust regression method, (as

observed in She and Owen 2011) its solution β̂λ can be equivalently expressed as the following lasso program

(Tibshirani, 1996) within the context of the mean-shift model:

(β̂λ, ûλ) = argmin
β∈Rp,u∈Rn

1

2n
‖y −Xβ − u‖22 + λ‖u‖1, (8)

which the authors refer to as the soft-IPOD method. The ℓ1-penalty induces sparsity in ûλ, and one takes

M̂(y) = {i : ûλ,i = 0} as the detected non-outliers. The outliers correspond to the elements whose residuals

are in the quadratic (rather than linear) region of Huber’s loss function. In Section 3 of the supplementary

material, this approach is shown to be a quadratic outlier detection procedure, which explains why our

framework can accommodate this foundational robust regression method. The DFFITS outlier detection

method (Welsch and Kuh, 1977) is described in Section 3 of the supplementary material, where it is shown

to be quadratic. Extending our framework to state-of-the-art outlier detection methods (e.g., examining the

residuals after MM-estimation) remains an open question.

3 Inference Corrected for Outlier Removal

In this section, we describe how the standard inferential tools of OLS can be corrected to account for

outlier removal. The only requirement is that the outlier detection procedure be quadratic (as defined in

the previous section). The inferential statements are made conditional on the event {M̂(y) = M} and are

about the parameter βM . As previously discussed, such statements translate to unconditional statements

about β∗ when M̂ ⊆ M∗, that is, when all true outliers are removed. Section 3.1 treats the case in which σ

is known. Section 3.2 provides procedures for the case when σ is unknown.
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3.1 Confidence Intervals and Hypothesis Tests When σ Is Known

In this section, we suppose that σ is known and provide confidence intervals and hypothesis tests. In the

classical setting, inference is based on the normal and χ2 distributions and typically involves individual

regression coefficients βM
j , the regression surface xT

0 β
M , or groups of regression coefficients βM

g . We begin

by observing that both βM
j and xT

0 β
M are of the form νTµ for some vector ν that depends on M : βM

j =

eTj X
+
M,·IM,·µ and xT

0 β
M = xT

0 X
+
M,·IM,·µ. The next theorem gives a unified treatment of these two cases

that will allow us to construct confidence intervals and p-values that properly account for outlier removal.

Theorem 3.1. Assume the outlier detection procedure {M̂ = M} is quadratic as in Definition 2.2. Let

ν ∈ R
n be a vector that may depend on M . Define

Z :=
νTy

σ‖ν‖2
, z := P⊥

ν y =

(
I − ννT

‖ν‖22

)
y.

We have

Z
∣∣∣∣
{
M̂ = M, z

}
∼ TN

(
νTµ

σ‖ν‖2
, 1;EM,z

)
, (9)

where the R.H.S is a N( νTµ
σ‖ν‖2

, 1) random variable truncated to the set EM,z. The truncation set is defined in

Section 4.2 of the supplementary material and can be computed by finding the roots of a finite set of quadratic

polynomials. Thus, letting FE
ξ,γ2 be the CDF of a TN(ξ, γ2;E) random variable, we have

1− F
EM,z

νT µ

σ‖ν‖2
,1
(Z)

∣∣∣∣ {M̂ = M} ∼ unif(0, 1). (10)

The classical analogue to the above theorem is the (much simpler!) statement that Z ∼ N(νTµ/[σ‖ν‖2], 1).
This theorem is essentially a generalization of Lee et al. (2016, Theorem 5.2) and a special case of Loftus

and Taylor (2015, Theorem 3.1); however, a key difference is that these works are focused on accounting for

variable selection rather than outlier removal (which, in essence, is “observation selection”).

3.1.1 Corrected Confidence Intervals

We begin by applying Theorem 3.1 to get confidence intervals corrected for outlier removal.

Corollary 3.2. Under the conditions and notation of Theorem 3.1, if we find L and U such that

L : F
EM,z

L
σ‖ν‖2

,1
(Z) = 1− α

2
, U : F

EM,z

U
σ‖ν‖2

,1
(Z) =

α

2
, (11)

then [L,U ] is a valid (1− α) selective confidence interval for νTµ. That is,

P(νTµ ∈ [L,U ] | M̂ = M) = 1− α. (12)

This result encompasses the two most common types of confidence intervals arising in regression: intervals

for the regression coefficients βM
j and intervals for the regression surface xT

0 β
M .
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Corollary 3.3. We write βM
j = νT

coef,jµ and xT
0 β

M = νT
surfµ, where νcoef,j = (eTj X

+
M,·IM,·)T and νsurf =

(xT
0 X

+
M,·IM,·)T . Then Theorem 3.1 and Corollary 3.2 apply.

A third type of interval common in regression is the prediction interval, intended to cover xT
0 β

M + ε0,

where x0 ∈ R
p is a new data point and ε0 ∼ N(0, σ2) is independent of ε. While νTy | {M̂ = M, z} is a

truncated normal random variable, νTy + ε0 | {M̂ = M, z} is not, so the strategy adopted in Theorem 3.1

does not directly apply to this case. Instead we employ a simple (but conservative) strategy.

Proposition 3.4. Let ε0 ∼ N(0, σ2) be the noise independent of y. For a given significance level α ∈ (0, 1),

let α̃ ∈ (0, α). Given x0 ∈ R
p, let [Lα̃, Uα̃] be the (1− α̃) selective confidence intervals for xT

0 β
M as defined

in (11). Then we have

P

(
Lα̃ − Φ−1(1− α− α̃

2
)σ ≤ xT

0 β
M + ε0 ≤ Uα̃ +Φ−1(1− α− α̃

2
)σ

∣∣∣∣ M̂ = M

)
≥ 1− α, (13)

where Φ is the CDF of a standard normal distribution.

In practice, we can optimize over α̃ so that the length of the interval is minimized.

3.1.2 Corrected Hypothesis Tests

Theorem 3.1 allows us to form selective hypothesis tests about the parameter νTµ where ν may depend on

the selected index set of observations M .

Corollary 3.5. Under the conditions and notation of Theorem 3.1, the quantity 1−F
EM,z

0,1 (Z) gives a valid

selective p-value for testing H0 : νTµ = 0.

The most common application of the above would be for testing whether a specific regression coefficient

is zero, conditional on M being the selected set of non-outliers: H0(M, j) : βM
j = 0 for j ∈ [p].

As a generalization, we next focus on testing H0(M, g) : βM
g = 0 for g ⊆ [p]. We begin with an alternative

characterization of H0(M, g).

Proposition 3.6. Set X̃M,g = (I|M | − PM,gc)XM,g, where PM,gc is the projection matrix onto C (XM,gc).

Let P̃M,g be the projection matrix onto C (X̃M,g). Then we have

βM
g = 0 ⇔ X̃+

M,gµM = 0 ⇔ P̃M,gµM = 0. (14)

Further, define qPM,g :=


 P̃M,g 0|M |×(n−|M |)

0(n−|M |)×|M | 0(n−|M |)×(n−|M |)


 . Then qPM,g is an orthogonal projection matrix

(it is symmetric and idempotent), and we have

βM
g = 0 ⇔ qPM,gµ = 0. (15)

This proposition characterizes H0(M, g) as testing the projection of µ. In the non-selective case, testing

Pµ = 0 for some projection matrix P can be done based on σ−2yTPy ∼ χ2
tr(P ) under Pµ = 0. We would

expect that in the selective case, such tests can be done based on a truncated χ2 distribution.
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Theorem 3.7. Assume the outlier detection procedure {M̂ = M} is quadratic as in Definition 2.2. Define

X :=
‖ qPM,gy‖2

σ
, w :=

qPM,gy

‖ qPM,gy‖2
=

qPM,gy

σX , z := qP⊥
M,gy. (16)

Under H0(M, g) : βM
g = 0, we have

X 2

∣∣∣∣ {M̂ = M,w, z} ∼ Tχ2
tr( qPM,g)

(EM,w,z), (17)

where the R.H.S is a central χ2 random variable with df = tr( qPM,g) truncated to the set EM,w,z. The

truncation set is defined in Section 4.5 of the supplementary material and can be computed by finding the

roots of a finite set of quadratic polynomials. Further, letting FE
df be the CDF of a Tχ2

df (E) random variable,

we have

1− F
EM,w,z

tr( qPM,g)
(X 2)

∣∣∣∣ {M̂ = M} ∼ unif(0, 1), (18)

which is a valid selective p-value for testing H0(M, g) : (βM )g = 0.

This theorem is adapted from Loftus and Taylor (2015, Theorem 3.1) to the outlier detection context.

In the special case where g = j is a single index, direct computation can show that qPM,j = Pνcoef,j
, so

that X 2 = (νT
coef,jy)

2/(σ‖νcoef,j‖2)2, w = sign(νT
coef,jy)νcoef,j , and z = P⊥

νcoef,j
y. Then this theorem nearly

reduces to Theorem 3.1, except that in this theorem, we need to condition on the sign of νT
coef,jy.

3.2 Extension to σ Unknown Case

In this section, we extend results in Section 3.1.2 to the σ unknown case. In the non-selective case, the

hypothesis H0 : β∗
g = 0 is equivalent to H0 : µ ∈ C (X·,gc). Hence under whichever H0, (P

⊥
·,gc − P⊥

X )y and

P⊥
Xy will both be centered normal random variables, and the test can be done based on F =

(
(‖P⊥

·,gcy‖22 −

‖P⊥
Xy‖22)/|g|

)/(
‖P⊥

Xy‖22/(n− p)

)
∼ F|g|,n−p. By analogy, we might expect H0(M, g) : βM

g = 0 to be

equivalent to H0 : µM ∈ C (XM,gc), which would suggest that the test should be done based on a truncated

F distribution; however, we will see in the rest of the section that this is only partially true.

Proposition 3.8. We have µM ∈ C (XM,gc) ⇒ βM
g = 0 but βM

g = 0 ; µM ∈ C (XM,gc). Moreover, if

M ⊆ M∗, then βM
g = 0 ⇒ µM ∈ C (XM,gc).

In order to form an F statistic, we need both the numerator and the denominator to be composed of

centered random variables. So it is necessary to assume µM ∈ C (XM,gc). Hence this proposition says that

testing H0 : µM ∈ C (XM,gc) is the best we can do. Our next result adapts a truncated F significance test

from Loftus and Taylor (2015) to our purposes.

Theorem 3.9. Assume the outlier detection procedure {M̂ = M} is quadratic as in Definition 2.2. Let R1 :=

P⊥
suby,R2 := P⊥

fully, where Psub :=


 PM,gc 0|M |×(n−|M |)

0(n−|M |)×|M | I(n−|M |)


 and Pfull :=


 PM,· 0|M |×(n−|M |)

0(n−|M |)×|M | I(n−|M |)


 .
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Define

F :=
(‖R1‖22 − ‖R2‖22)/|g|
‖R2‖22/(|M | − p)

, (19)

w∆ :=
R1 −R2

‖R1 −R2‖2
, w2 :=

R2

‖R2‖2
, z := Psuby, r := ‖R1‖2, (20)

g1(F) :=

√
|g|F/(|M | − p)

1 + |g|F/(|M | − p)
, g2(F) :=

√
1

1 + |g|F/(|M | − p)
. (21)

Under H0 : µM ∈ C (XM,gc), we have

F
∣∣∣∣ {M̂ = M,w∆,w2, z, r} ∼ TF|g|,|M |−p(EM,w∆,w2,z,r), (22)

where the R.H.S. is a central F random variable with df1 = |g|, df2 = |M |−p truncated to the set EM,w∆,w2,z,r.

The truncation set is defined in Section 4.7 of the supplementary material. Further, letting FE
df1,df2

be the

CDF of a TFdf1,df2(E) random variable, we have

1− F
EM,w∆,w2,z,r

|g|,|M |−p (F)

∣∣∣∣ {M̂ = M} ∼ unif(0, 1), (23)

which is a valid selective p-value for testing H0 : µM ∈ C (XM,gc).

Computing the truncation set in the σ unknown case is non-trivial since each slice is no longer a quadratic

function in F . We adopt the strategy suggested by Loftus and Taylor (2015, Section 4.1). For completeness,

we provide the details of their strategy (adapted to our notation) in the online supplementary material.

We conclude this section by noting that Theorem 3.9 does not give us a way to construct confidence

intervals for βM
j . In order to form confidence intervals for βM

j , one would need to be able to test for

H0 : βM
j = c0 for some non-zero constant c0. Under this null, F does not necessarily reduce to the square of

a truncated t distribution: First, µM ∈ C (XM,·) does not necessarily hold, and as a result, R2 may not even

be centered; second, the independence between F and (w∆,w2, z, r) may not hold. Hence the construction

of confidence intervals does not follow directly from Theorem 3.9 and is left as future work.

4 Empirical Examples

We provide simulations and real data examples in this section. We notice that our method requires eval-

uation of survival functions (equivalently, the CDFs) of truncated normal, χ2, t and F distributions. Our

implementations are greatly inspired by that of selectiveInference package (Tibshirani et al., 2017). We

refer readers to the online supplementary material for more details.

4.1 Simulations

In this section, we focus on the case where the outlier detection is done by Cook’s distance, and we assume

σ is unknown. We refer the readers to the supplementary materials for more detailed and comprehensive

simulations. We compare the performance of the following three inferential procedures:
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• detect-and-forget: After outlier detection, refit an OLS regression model using the remaining data

(yM , XM,·) and do inference based on the classical (non-selective) theory (we use t and F distributions

since σ is unknown);

• corrected-est: Do selective inference as developed in Section 3.1.1 and 3.1.2, with estimated σ, and the

estimation of σ is done by σ̂2
EST = 1

n−|SAUG|‖y − XAUGβ̂AUG‖22, where we fit a lasso regression of y

on XAUG = (X : In) to get β̂AUG ∈ R
p+n, and SAUG is the support of β̂AUG. Reid et al. (2013)

demonstrate that such a strategy gives a reasonably good estimate of σ2 in a wide range of situations.

• corrected-exact: Do selective inference assuming unknown σ as developed in Section 3.2 (note: this

method does not give confidence intervals).

We fix n = 100, p = 11. Our indexing of variables starts from 0 (i.e. β∗
0 corresponds to the intercept). The

first column of X is set to be 1 and the rest of the columns are generated from i.i.d. N(0, 1) and scaled to

have ℓ2 norm
√
n. We fix σ = 1.

To examine the coverage of confidence intervals for βM
1 , we let β∗ = (1, 2, 1, . . . , 1)T and M∗c =

{1, 2, 3, 4, 5}. We then fix u∗
M∗c = (s, s, s,−s,−s)T , and we vary s ∈ {2, 3, 4, 5, 6}. Outliers are then

detected using Cook’s distance with different cutoffs λ ∈ {1, 2, 3, 4} as introduced in Equation (5). For

each configuration, we do the following 2000 times: we generate the response y = Xβ∗ + u∗ + ε, where

ε ∼ N(0, σ2In); we then detect outliers and form confidence intervals. The detect-and-forget confidence

intervals are set to be [νT
coefy± σ̂REFIT‖νcoef‖2t1−α/2

|M |−p], where σ̂2
REFIT = ‖yM −XM,·β̂

M‖22/(|M | − p) (note

that σ̂REFIT is different from σ̂EST and, as noted in Fithian et al. 2014, is generally not considered a good

estimate of σ). Figure 3 shows the empirical coverage probability for βM
1 and β∗

1. As our theories predict,

corrected-est intervals give 95% coverage of βM
1 , while detect-and-forget intervals are off. Although without

theoretical guarantees, corrected-est intervals still achieve the desired coverage for β∗
1.

Figure 4 shows the length of both kinds of intervals. We see that the achievement of desired coverage

comes with a price: the length of corrected-est intervals is in general wider than detect-and-forget intervals.

We next examine the power of testing H0(M, 1) : βM
1 = 0 against H1(M, 1) : βM

1 6= 0. We let β∗
k = 1

for k = 0, 2, 3, . . . , 10, and we vary β∗
1 smoothly. We let s = 4 and the rest of the setup is the same as the

previous simulation. We run 2000 iterations. In each iteration, we generate the response, detect outliers, and

extract p-values. The detect-and-forget p-value is set to be 2F
|M |−p
t (−| νT

coef
y

σ̂REFIT‖νcoef‖2
|), where F df

t is the CDF

of a tdf distribution. For power considerations, corrected-est and corrected-exact p-values and are defined as

2min(1− pval, pval), where pval is the p-value calculated by directly applying Corollary 3.5 or Theorem 3.9.

By construction, we are actually examining the power of testing H0(∗, 1) : β∗
1 = 0 against H1(∗, 1) : β∗

1 6= 0.

Figure 5 shows the results: the two selective methods control the type I error down to 0.05 even though this

correspond to H0(∗, 1) (recall that our theory ensures control under H0(M, 1)), while detect-and-forgetdoes

not. Both corrected-est and corrected-exact suffer from a loss of power, although comparing to the power of

detect-and-forget is not meaningful since it does not control Type I error. The power for corrected-est seems

acceptable, while corrected-exact has quite a substantial loss in power, which may be the consequence of

conditioning on too much information.
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Table 1: Inference for each variable in Stack Loss data after outlier detection using Cook’s distance. The p-values in bold font

are the selective ones, while the other p-values are refitted ones.

Full Fit Cutoff = 4 Cutoff = 3 Cutoff = 2 Cutoff = 1

Outlier Detected None 21 1, 21 1, 3, 4, 21 1, 2, 3, 4, 7, 12, 17, 21

Adjusted R2 0.8983 0.9392 0.9171 0.9692 0.9057

Air.Flow: Estimate 0.7156 0.8891 0.8458 0.7977 0.6666

Air.Flow: p-value 5.8× 10−5
0.00403

1.31× 10−6

0.345

7.7× 10−6

3.18× 10
−4

2.48× 10−8

0.245

1.19× 10−4

Water.Temp: Estimate 1.2953 0.8166 0.8153 0.5773 0.6357

Water.Temp: p-value 0.00263
0.02309

0.02309

0.335

0.02431

0.00694

0.00408

0.792

0.01465

Acid.Conc: Estimate −0.1521 −0.1071 −0.0881 −0.0671 −0.0411

Acid.Conc: p-value 0.34405
0.40234

0.40234

0.376

0.49585

0.2961

0.2961

0.208

0.653

Table 2: Inference for each variable in Scottish Hill Races data after outlier detection using Cook’s distance. The p-values in

bold font are the selective ones, while the other p-values are refitted ones.

Full Fit Cutoff = 4 Cutoff = 3 Cutoff = 2 Cutoff = 1

Outlier Detected None 7, 11, 18 7, 11, 18 7, 11, 18, 31 7, 11, 18, 31, 33, 35

Adjusted R2 0.914 0.9721 0.9721 0.9723 0.9395

dist: Estimate 0.1036 0.1138 0.1138 0.1111 0.1034

dist: p-value 9.94× 10−12
1.76× 10

−6

6.80× 10−15

1.06× 10
−4

6.80× 10−15

0.1219

6.50× 10−14

6.99× 10
−9

2.13× 10−13

climb: Estimate 1.84× 10−4 1.28× 10−4 1.28× 10−4 1.42× 10−4 1.17× 10−4

climb: p-value 6.49× 10−6
0.05918

9.15× 10−6

0.02465

9.15× 10−6

0.06060

1.16× 10−5

7.02× 10
−4

1.53× 10−5

outlier detection literature (e.g., Atkinson, 1986; Hadi, 1990; Hoeting et al., 1996). The consensus is that

observation 7 and 18 are obvious outliers, while observation 33 is an outlier that is masked by the other two

outliers.

Again, we use Cook’s distance to detect outliers, then fit the model and extract p-values, assuming σ is

unknown. The results are shown in Table 2. We can see the increase in adjusted R2 as outliers are detected,

and the corrected-exact p-values differ from the detect-and-forget p-values in general. Observation 33 is not

detected until the cutoff is set to 1, and observation 11 is always detected as an outlier. Atkinson (1986)

reports that observations 7, 18, 11, 33, 35 are high-leverage points but argues that only 7, 11, 33 are actual

outliers, while the others are high-leverage points that agree with the bulk of the data. But we recall that

our intent is not to concern ourselves with the accurate detection of outliers but rather with the proper

adjustment to inference based on outlier detection and removal.
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5 Discussion

In this paper, we have introduced an inferential framework for properly accounting for the removal of outliers

from a data set. The commonplace approach, detect-and-forget, makes the incorrect assumption that outlier

removal does not affect the distribution of the data. Our work is based on recent developments in the

selective inference literature, which carries out inference that properly accounts for variable selection (Lee

et al., 2016; Loftus and Taylor, 2015). A key idea in that work is to characterize the event that a certain set

of variables is selected in terms of a simple to describe set of constraints on the response vector y. Doing

so makes it tractable to derive the conditional distribution of the estimator given this selection event. Our

work likewise relies on the fact that the most commonly used outlier detection procedures can be expressed

in a relatively simple form, namely a quadratic constraint on the response vector. Our results can be in

principle extended to “convex detection procedures”, where the event {M̂ = M} is characterized as a convex

constraint on the response, using the results from Harris et al. (2016).

Our target of inference is βM , where M is the selected set of non-outliers. By focusing on βM , we are

able to decouple the challenge of identifying outliers from the focus of our work, which is accounting for the

search and removal of potential outliers. When M excludes all true outliers, βM coincides with β∗. When

the true outliers are easily detected, then (via Proposition 2.1), our methodology translates to inference on

β∗. However, when there are true outliers that are undetected, our statements about βM may not translate

well to statements on β∗. In some cases, an outlier may not be too severe and therefore go undetected; in

such a case, βM would not be too far from β∗, in which case our inferential statements may be translated,

approximately, to statements about β∗. An interesting future direction would be to characterize the regimes

(in terms of size of outlier) in which (i) all true outliers are easily detected and thus we can make inferential

statements about β∗ and (ii) not all outliers are easily detected but βM ≈ β∗ so that approximate statements

about β∗ can be made. And of course, a central question would then be whether there is a gap between

regimes (i) and (ii).

The inferential framework introduced in this paper suffers from a loss of power, especially in the case

of unknown σ. A possible remedy is to introduce some randomization into the outlier detection procedure.

For example, one can adopt the strategy of Tian et al. (2018), namely adding a properly scaled Gaussian

noise to the response, so that the selective tests can have a better power at the cost of a less accurate outlier

detection procedure. Investigating possible strategies to increase the power remains for future work.

In this paper, we have provided frequentist inference in the linear model after outlier removal. However,

with the characterization of the detection procedure at hand, our method can be extended to a Bayesian

setup, namely constructing the appropriate detection-adjusted posterior on the regression coefficients, by

adapting the results from Yekutieli (2012); Panigrahi et al. (2016).

Another future direction would be to consider proper inference after outlier removal in the high-dimensional

setting. Our method explicitly assumes a low-dimensional setting through the assumption that X
M̂,· has
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linearly independent columns. A direct generalization of the outlier detection method (8) is to instead solve

(β̂, û) = argmin
β∈Rp,u∈Rn

1

2n
‖y −Xβ − u‖22 + λ1‖β‖1 + λ2‖u‖1.

Applying Lee et al. (2016, Theorem 4.3), one could perform inference corrected simultaneously for both

variable selection and outlier removal. Another approach would be to use a high-dimensional extension of

Cook’s distance proposed by Zhao et al. (2013) (it too can be shown to be a quadratic outlier detection

procedure). One could then do variable selection with the remaining data, for example using the lasso. In

this case our methodology would still, in principle, apply. Characterizing the exact conditional distributions

from more general procedures, such as after MM-estimation, remains a non-trivial problem.
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SUPPLEMENTARY MATERIAL

Supplementary material for this manuscript: For brevity, we collect proofs of most theoretical results,

some additional simulation results and the implementation details in the online supplementary material.

(available at https://www.dropbox.com/s/o9xxkap0q68knbc/supplements.pdf?dl=0)

R package outference: R package containing code to perform the inferential methods described in this

paper. (available at https://github.com/shuxiaoc/outference)

R scripts R scripts to reproduce all figures and simulation results in this paper. (.zip file)
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