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The approximate number system (ANS) has attracted broad inter-

est due to its potential importance in early mathematical devel-

opment and the fact that it is conserved across species. Models

of the ANS and behavioral measures of ANS acuity both assume

that quantity estimation is computed rapidly and in parallel across

an entire view of the visual scene. We present evidence instead

that ANS estimates are largely the product of a serial accumu-

lation mechanism operating across visual fixations. We used an

eye-tracker to collect data on participants’ visual fixations while

they performed quantity-estimation and -discrimination tasks. We

were able to predict participants’ numerical estimates using their

visual fixation data: As the number of dots fixated increased,

mean estimates also increased, and estimation error decreased. A

detailed model-based analysis shows that fixated dots contribute

twice as much as peripheral dots to estimated quantities; peo-

ple do not “double count” multiply fixated dots; and they do not

adjust for the proportion of area in the scene that they have fix-

ated. The accumulation mechanism we propose explains reported

effects of display time on estimation and earlier findings of a bias

to underestimate quantities.

mathematical cognition | approximate number system | eye-tracking

From infancy, humans are equipped with an approximate num-
ber system (ANS) that allows for inexact quantity estimation

and comparison (e.g., refs. 1–4). This system is shared with our
close and distant evolutionary relatives (e.g., refs. 5–7) and may
be related to the development of exact numerical concepts and
later mathematics in humans (4, 8–10). However, the defining
feature of the ANS is that it is inexact, providing an approximate
representation of quantity, which is likely useful in a variety of
evolutionary contexts (e.g., refs. 6, 7, 11, and 12). The acuity of
an individual’s ANS is often quantified in terms of their Weber
fraction, w , which is a real number denoting how the noise in a
representation scales with numerosity. Specifically, one popular
psychophysical model of the ANS assumes that a number n is
represented by a Gaussian with mean n and SD w ·n , so that a
lower w implies a higher-fidelity system.

The mechanisms supporting the ANS are often contrasted
with other mechanisms for computing numerosity, such as count-
ing and subitizing (13–15). Counting, for instance, is dependent
on intentional, serial enumeration of a set; the ANS, in con-
trast, is often viewed as parallel, rapid, and automatic. This view
is supported by response times, where counting takes around
300 ms per enumerated item, but approximate-number compu-
tations can take as little as 16 ms, independent of the number
of objects (16). Additionally, researchers have identified pop-
ulations of neurons that respond similarly for sequentially and
simultaneously presented numerosities in monkeys (17), which
has been taken as evidence that ANS representations are not the
result of sequential processing.

However, recent evidence has muddied the simple picture of
the ANS. Several studies have shown that individuals’ Weber
fractions are highly task-dependent, differing between estima-
tion and discrimination tasks (e.g., refs. 18 and 19). In fact,
Weber fractions have poor retest reliability, even when mea-
sured by using the same task (20). Numerical estimates have also

been found to be influenced by nonnumerical features of stim-
uli, such as the degree of clustering in a scene (21). Finally, the
precision of numerical estimates is known to improve as stimuli
are presented for a longer duration (16), suggesting that ANS
estimation may involve some type of temporal process.

Despite this, prior computational models of the ANS have
built speed and parallelism into their architecture. For instance,
many of the dominant ANS models are feedforward neural
network models, where input is processed in parallel and instan-
taneously (e.g., refs. 22–24). The objective of the present study
is to critically evaluate the simple picture of the ANS as a rapid
and entirely parallel process. In particular, we aim to capture the
possible sequential mechanisms involved in numerical estima-
tion using behavioral experiments and model-driven analysis. We
present a model and behavioral data from two experiments that
challenge the standard parallel perception theory. Our results
lend support instead to an account of ANS estimation that
involves sequential integration across visual fixations.

We ran estimation (Experiment 1) and discrimination (Exper-
iment 2) tasks in which participants made nonsymbolic numeros-
ity judgments at different exposure durations. Critically, we
collected visual fixation data using an eye-tracker so that we
could measure how participants’ ANS estimation was influenced
by their path of visual fixations. We show that ANS estimates are
the result of a serial accumulation process (25), such that esti-
mates increase as a function of foveation. We present an analysis
that quantifies the contribution of foveal, peripheral, and mul-
tiply fixated dots in an array which supports this interpretation.
Our results suggest that individual differences in ANS acuity may
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reflect differences in cognitive processes that are not directly
related to numerical estimation, including attention or visual-
processing speed. This dependence on nonnumerical factors may
explain why studies that train people’s ANS yield mixed results
in transferring to mathematical knowledge (26–29).

Experiment 1

Since the visual mechanisms supporting the ANS have not been
explored in detail, we first used the simplest paradigm possible
to understand ANS estimation. Fig. 1 illustrates the sequence
of displays shown on each trial. After viewing a fixation cross,
participants were shown an array of randomly placed dots on a
screen which were noise-masked after a short time. They were
then prompted to enter an estimate in Arabic numerals. Subjects
were not given feedback and thus had no push to recalibrate
their response scale. We manipulated the amount of time that
each display was visible to replicate and extend the previous work
on the effect of timing on the ANS. Each participant completed
16 trials for each of four display-time conditions: 100; 333; 1,000;
and 3,000 ms. We eye-tracked participants during this task to
determine how their estimates were influenced by the number of
dots in the path of their visual fixation. Importantly, the screen
subtended a range of participants’ visual field that ensured that
some of the dots could be seen foveally and others peripherally

from the initial fixation.
∗

Results.

Replication of basic number psychophysics. Fig. 2A shows how
the mean estimate (y axis) varied as a function of the quantity dis-
played (x axis), collapsing over all time conditions. There are two
aspects of this graph worth highlighting: First, mean estimates
vary approximately linearly as a function of quantity, exactly as
should be found in Weber models of the number system. Sec-
ond, this shows a strong tendency to increasingly underestimate
larger numbers,† as shown by the fact that the slope of the line is
less than 1, which would have corresponded to perfectly veridi-
cal estimation (assuming an intercept of 0). Both effects have
been found robustly in the literature (e.g., ref. 31). Fig. 2B shows
that Experiment 1 replicates the second traditional property of
ANS estimation: scale variability, wherein the error in estimation
increases linearly in magnitude.
More time improves estimation mean and variance. To evaluate
whether timing influenced participants’ ANS, we ran a hierarchi-
cal regression to estimate the effect of time on both the mean
estimate and Weber fraction, including participant- and group-
level regression effects fit jointly. The model assumed that means
and SDs varied linearly as a function of quantity in accordance
with Weber’s law. More specifically, on a trial that showed n
dots, each participant’s mean estimate was drawn from a Gauss
ian centered around β ·n and modeled with SD w ·β ·n , where
β and w are hierarchically fit parameters (SI Appendix). The
regression included logarithmic effects of time on mean esti-
mates and Weber ratios, allowing us to extract each individual’s
effective slope and Weber ratio as a function of time.

Fig. 2 shows the mean slope (Fig. 2C) and Weber fraction
(Fig. 2D) in each time condition extracted from this model. The
group-level means are shown in blue, and each participant is
shown by a line in black. If participants’ estimates were unbi-
ased (e.g., veridical estimation as opposed to underestimation),
then the group mean slopes would be 1 (black dotted line),
and if time did not have an effect, the group mean slopes and

*The display size was 38◦ of participants’ visual field left-to-right and 26◦ top-to-

bottom. This is smaller than some displays used in prior ANS literature (e.g., ref. 30),

but large enough that some dots are peripheral.

†When we use the term “underestimation,” we mean that the average estimate is less

than a given numerosity.

Fig. 1. Each of the four images represents one stage of a trial in the estima-

tion task, in their order. Stage 1: A fixation cross appears for 1,500 ms. Stage

2: The fixation cross is removed, and dots appear on the screen for between

100 ms and 3 s, depending on the condition. Stage 3: The display is masked

by noise for 500 ms. Stage 4: A prompt appears asking for an estimate of

the number of dots shown.

Weber fractions (y axis) would remain constant across time
(x axis). In contrast, Fig. 2C shows that subjects consistently
underestimate with slopes less than 1, but that this underestima-
tion effect decreases with increasing time. Participants’ average
slope increases by about 17% (0.71–0.83) from the shortest to
the longest time condition. This is what would be expected by
quantity accumulation over time: More time increases reported
quantities. Additionally, their average Weber fraction decreases
by about 21% (0.28–0.22) (SI Appendix, Table S1). Correspond-
ingly, Fig. 2D shows that Weber fractions improve (decrease)
with more time.
Foveation, not time, is what matters for estimation. If ANS esti-
mation is driven by accumulation of quantity across saccades, we
should first expect that mean estimates increase with foveation.
We should also expect that time has no effect when jointly
considering foveation—i.e., that time simply allows for more
saccades and nothing more. To evaluate this, we summed the
number of dots that fell within 5◦ (often called the “parafoveal
region”) of the center of participants’ fixation paths for more

than 50 ms on a trial.‡ We denote the dots that are seen for at
least this amount of time as “foveated.”

Fig. 3 provides four example trials, depicting a participant’s
gaze path across the screen while the stimulus is being shown.
The filled points represent “foveated” dots, and the unfilled

points represent those that were not.§ At the bottom of each
display, the number of dots shown, foveated, and estimated are
shown. We provide a more rigorous formalization and test of this
idea in The Mechanics of ANS Estimation.

Fig. 4A shows the percent of dots that are foveated for each
time condition. As should be expected, more dots are foveated
with longer exposure duration. The average proportion of dots
foveated more than tripled from the shortest to longest time con-
dition (18–64%). Consistent with the hypothesis that effects of
time are due to accumulation of foveated dots, the effects of time
on estimation disappeared when the effect proportion of dots
foveated was jointly taken into account. Fig. 4B shows the per-
cent deviation of estimates from the true quantity as a function
of dots foveated, colored by time. That the lines overlap suggests

‡We also tested 16 ms and 100 ms as possible thresholds and 2◦ and 10◦ as possible

visual degree thresholds. These differences did not affect the qualitative pattern of

results.

§This is for illustrative purposes only—stimuli were entirely static during a trial.
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Fig. 2. (A) Estimates as a function of the number of dots presented, collaps-

ing across time conditions. Points are binned means, with errors represent-

ing bootstrapped 95% CIs. (B) The SD of participants’ estimates as a function

of the number of dots displayed, collapsing across time conditions. (C) Par-

ticipant (black) and group-level (blue) slopes in each time condition of the

estimation task are shown. Slopes represent the way the mean estimate scales

as a function of quantity shown. (D) Participant (black) and group-level (red)

Weber fractions in each time condition of the estimation task are shown.

that there is no effect of time when both foveation and time are
taken into account.

To formally evaluate this, we ran a second hierarchical regres-
sion that was identical to the one reported above, except that
it included a covariate for the effect of the proportion of dots
foveated on the mean and variance of each participant’s estimate.
This regression shows that the proportion of dots foveated signifi-
cantly affected both the mean of participants’ estimates (Fig. 4C)
and Weber ratios (Fig. 4D), and the effect of time disappeared
when foveation was taken into account. Moreover, when 100% of
dots were foveated, participants were nearly unbiased (slope ≈ 1
in Fig. 4C), suggesting that the underestimation bias previously
observed was not miscalibration, but was, rather, due to partici-
pants not foveating all of the dots. In a separate analysis, we found

N/F/E:  69/37/40

N/F/E:  30/22/22

N/F/E:  59/35/45

N/F/E:  32/22/19

Fig. 3. Example fixation paths of one subject in the 3-s time condition,

with each panel representing a single trial. The points represent the dots

displayed on their screen, where filled dots represent the ones that were

foveated. At the bottom of each panel, a label N/F/E shows how many

dots were shown (N), how many were foveated (F), and what quantity the

participant actually estimated (E).

Group

Participant

A B

C D

Fig. 4. (A) The proportion of dots foveated (y axis) as a function of time

(x axis), at the group level (red) and for each participant (black). (B) The

percent deviation of estimates from the true number of dots (y axis) as a

function of the percent of dots foveated (x axis). Each time condition is

grouped by color. (C) The slope of participants’ mean estimates (y axis) as a

function of the percent of dots foveated (x axis). (D) Weber fractions (y axis)

as a function of the percent of dots foveated.

that the observed effect of foveation on mean estimates held in
each time condition separately (SI Appendix, Table 3).

Thus, these results provide an alternative account of prior
findings of 1) underestimation and 2) effects of time. Indeed,
both are unified into an account where serial accumulation of
foveated dots drives numerical quantity estimates. This find-
ing calls into question the construct validity of Weber ratios
as a measure of numerical cognition, since numerical estimates
depend on how many dots happen to be foveated, a capacity
which is nonnumerical.

Experiment 2

Because there is evidence that Weber fractions may differ
between estimation and discrimination tasks (19), it is impor-
tant to replicate these patterns in a discrimination task. We ran a
second experiment with the same participants as Experiment 1,
again recording participants’ gaze. Participants saw two stimuli of
dot arrays (as in Fig. 1) sequentially and were then asked to indi-
cate which had a greater quantity. We manipulated timing in four
conditions, which determined whether the first or second array of
dots was visible for longer. Specifically, we crossed long and short
durations to give presentation times of 100:100 ms, 1,000:100 ms,
100:1,000 ms, and 1,000:1,000 ms for the two displays. We pre-
dicted that, if ANS estimation relied on foveal accumulation in
this task as well, timing would bias participants toward whichever
display was presented for longer.

Results. Participants’ responses as a function of ratio collapsed
across time conditions can be seen in Fig. 5 A and B. Fig. 5A
shows the proportion of participants who responded that the sec-
ond display had more dots than the first as a function of the ratio
of dots in the second display relative to the first. The proportion
of participants who responded that the second display was more
numerous increased monotonically with the ratio. Participants
reported that the second display was more numerous on aver-
age (56% of the time), possibly suggesting an effect of memory.
This is consistent with studies finding effects of recency in non-
symbolic magnitude comparison (32). Fig. 5B shows participants’
accuracy as a function of the absolute magnitude ratio, or the
minimum magnitude over the maximum. Participants were able
to discriminate ratios of 5 : 6 with roughly 75% accuracy.

Cheyette and Piantadosi PNAS Latest Articles | 3 of 6
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Fig. 5. (A) The probability that participants responded that the second dis-

play had more dots as a function of the ratio N1/N2, where N1 and N2 are

the number of dots in the first and second display, respectively, collapsed

across conditions. The fit curve (as well as all other fits in this display) is

from a probit regression. (B) Accuracy as a function of the absolute ratio

(Min(N1, N2)/Max(N1, N2). (C) The probability participants responded that

the second display had more dots in the long–short (blue) and short–long

(green) conditions as a function of ratio. (D) Accuracy as a function of the

absolute ratio in the long–long (yellow) and short–short (red) conditions.

Fig. 5C shows response curves for the critical conditions where
the first and second displays were shown for different amounts of
time, but the total presentation time was controlled (long–short
versus short–long). The difference between the curves indicated
a bias to choose the second display when it was long compared
with when it was short, as predicted. Fig. 5D shows response
curves for the conditions where the first and second displays are
shown for the same amount of time, but overall presentation time
differed (short–short versus long–long). The observed difference
between the response curves in Fig. 5D indicates that responses
in the long–long condition were more accurate than those in
the short–short condition. Collapsing across ratios, participants
chose the second display 62% of the time in the short–long
condition and 45% of the time in the long–short condition, as
predicted. Participants chose the second display at intermedi-
ate (though above-chance) rates in the short–short (56%) and
long–long (57%) conditions (see SI Appendix for analysis).

Analogous to the analysis for Experiment 1, we used the eye-
tracking data to determine whether participants’ visual samples
mediated the observed effect of time. We found that the propor-
tion of dots foveated had a significant effect on both the slope
and Weber fraction, and, as with the estimation task, the effect
of time on the slope disappeared. There was still an effect of time
on Weber fraction, though it was heavily reduced (SI Appendix).

The Mechanics of ANS Estimation

We next developed a statistical model that allowed us to use
people’s behavioral data to quantify how different components
of visual input contributed to numerical estimates. This model
was parameterized in a way that allowed us to test a variety of a
priori plausible hypotheses about how ANS accumulation might
relate to visual behavior. Primarily, this allowed us to test sep-
arable contributions of several behaviorally measured factors to
an estimated quantity µ. The weight of each factor was inferred
by the model. Fig. 6A shows all of these terms in the full equa-

tion for µ, with the fit parameters in color and the behaviorally
measured variables on each trial in black.

The model assumed that there were five components that con-
tributed to µ. First were the number of dots foveated (Nfoveal)
and the number of dots not foveated (Nperipheral), which were each
weighted by their corresponding regression parameters (βfoveal

and βperipheral). In addition, we tested the contribution of dots that
were fixated more than once after first saccading away (Ndouble

weighted by the parameter βdouble). Finally, the proportion of
area that has been foveated (Afoveated )—which we measured as
percent of the screen within the 5◦ window used above—and the
area not foveated (Aperipheral) were allowed as scaling factors.

To fit this model to behavioral data, we again used a hierarchi-
cal Bayesian model which allowed partial pooling of parameters.
Examination of the inferred parameters allowed us to charac-
terize the mechanisms of ANS estimation in three critical ways:
First, comparison of βperipheral and βfoveal will show if the accu-
mulation mechanism relies more, less, or equally on foveal and
peripherally observed dots. This, in turn, tells us whether the
ANS is primarily parallel or whether foveated dots contribute
more to the observed estimates. Second, examination of βdouble

will tell us whether participants “double count” dots that are
refoveated (βdouble ≈ 1) or not (βdouble ≈ 0). This will answer a
basic question about ANS accumulation: Is it based on mere
retinal input or on a spatially based picture of the world that
is built up across saccades (e.g., ref. 33)? Third, do participants
rescale their input by the area they have foveated (γfoveated ≈ 1)
to correct for their limited visual sample? Or, is estimation a
more simple accumulator (γfoveated ≈ 0) that does not take into
account how much of the scene has been viewed? Note that our
formalization does not test whether area, density, convex-hull,
or some other continuous quantity is the basis of numerical esti-
mation (10, 15, 34). Rather, this tests whether the ANS relies
preferentially on foveated objects and whether it adjusts for the
proportion of screen area that has been foveated. SI Appendix,
however, presents results showing that convex-hull has little to
no effect on mean estimates.

Fig. 6B shows the inferred group- and subject-level means for
βfoveal (x axis) and βperipheral (y axis). This shows that foveated dots
contribute about twice as much as peripheral dots to estimates.
Moreover, the value of βfoveal is ∼1, meaning that people veridi-

cally count one foveated dot as one more in their estimate.¶

Interestingly, however, the peripheral dots do provide a nonzero
contribution, explaining why ANS estimation is possible with
very fast presentation times, albeit with a lower precision (16).
Fig. 6C shows that both γfoveal and γperipheral are near zero, indicat-
ing little area renormalization. This finding supports our primary
claim that the estimation is based on accumulation, rather than
inference using the density of dots observed in part of the scene.
Finally, βdouble was near 0 for all participants, indicating that
there is almost no effect of seeing the same dot multiple times in
the same display. This would happen, for instance, if people build
up a mental image of the dot array that is fed to the accumulator.

Fig. 6D visualizes the relative contribution of each factor to
mean estimates (y axis) across time conditions (x axis), as inferred
by the model. At 0.1 s, peripheral and foveated dots contribute
roughly equal amounts to estimates, accounting for the signif-
icant degree of underestimation given such a short exposure.
However, as the exposure time increased, foveated dots con-
tributed increasing amounts to the estimate, such that peripheral
dots barely played a role in estimation at 3 s. Rescaling and
double-counting played almost no role at any amount of time.

¶This does not mean that they were actually counting, as the short display times pre-

cluded that. Rather, it means that if all dots in a scene were foveated, estimates would

be unbiased in expectation, though not error-free.
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Fig. 6. (A) The mean estimate, µ, given as a function of the number of dots foveated, Nfoveal; the number of dots not foveated, Nperipheral; the percent

of screen area foveated, Afoveal; the percent of screen area not foveated, Aperipheral; and the number of dots foveated more than once, Ndouble. Each of

these has a corresponding parameter quantifying its contribution to the estimate µ. (B) Parameters βfoveal and βperipheral capture the foveal and peripheral

contribution to the accumulated count. (C) Parameters γfoveal and γperipheral capture the degree to which the accumulated count is normalized by the percent

of screen for area foveated (Afoveal) or peripheral (Aperipheral). (D) A visualization of how each factor contributes to µ over time. As exposure time increases,

the average proportion of dots foveated increases, leading to differences in the expected contribution of each factor to the mean estimate.

General Discussion

ANS estimation is typically thought to operate rapidly and in
parallel. There is evidence to support this view. For instance,
people can discriminate quantities at above-chance levels given
only 16 ms of exposure (16). Studies have also demonstrated
that reaction times are roughly constant across numerosities
in humans and monkeys performing approximate numerical
estimation and discrimination tasks (35, 36). The latency of
number-sensitive neurons tends to be independent of numeros-
ity in monkeys as well (17, 36). However, the results and analysis
we present support an alternative theory: that ANS estima-
tion relies on a serial accumulation mechanism that integrates
information—either numerical quantity itself or lower-level
visual content—across eye fixations.

Our experiments first replicate two prior behavioral findings:
an underestimation bias (31) and a dependence of ANS acu-
ity on time (16). We then showed that the underestimation
bias decreases with time, such that participants estimated higher
numbers as the stimulus’ duration increased. Such an influ-
ence of time is predicted by an accumulation model, but not
by prior accounts that attribute underestimation to miscalibra-
tion of response scales (31). Finally, we showed that the effect
of time is almost entirely mediated by visual fixations, suggest-
ing that time matters, because with more time, subjects are able
to fixate more of the display. Freely fit parameters from our
model indicated that foveated points contribute twice as much
to a numerical estimate as peripheral ones. This analysis also
revealed that the accumulation likely does not adjust for area,
nor does it double-count refixated dots. Together, these results
suggest that a primarily foveal, serial accumulation mechanism
is at the heart of ANS estimation, rather than the rapid, parallel
mechanism previously proposed and commonly imagined.

A serial accumulator is similar to ANS models that perform
temporal integration of, for instance, sequences of clicks (5),
as well as an approximate version of counting logic observed
in sequential presentation of quantities to primates (37). Thus,

visual ANS estimation may share resources and processes with
nonvisual quantity estimation, as experiments on cross-modal
matching would suggest (38). Specifically, visual fixations may be
a proxy for attention, which would be consistent with the finding
that the numerosity of auditory and tactile stimuli are increas-
ingly underestimated as their presentation rate increases (39,
40). Still, it is surprising to see such serial effects in visual displays
since vision can in principle support parallel processes (41).

One limitation of the current work is that our results do
not address the specificity of the accumulation mechanism. In
particular, our results are consistent with at least two possibili-
ties: Either numerical quantities themselves are being integrated
across visual fixations, or people build up an increasingly precise
image of the visual scene as they saccade, from which numerical
information is later extracted. In either case, our results do show
that performance in ANS tasks is largely determined by the serial
component of this process.

Regardless of the ultimate mechanisms, our results raise an
important methodological point for both basic cognitive research
on the ANS and applied education research which relies on it.
In light of our findings, it is difficult to interpret results from
studies that compare participants’ performance across ANS tasks
which use different display sizes or stimulus-exposure durations
(e.g., refs. 13, 19, and 30). More broadly, our results suggest that
the nearly universal use of ANS tasks to index a “pure” sense of
number may be misguided. A full picture of ANS estimation
will require integrating aspects of visual cognition such as atten-
tion and ocular-motor control to understand the cognitive mech-
anisms that translate visual scenes into abstract numerosities.

Materials and Methods

Experiment 1. Participants were placed directly in front of a computer, with

the eye-tracker mounted on top. The computer screen was 24 inches, with

an aspect ratio of 16:10 and screen resolution of 1,920 × 1,200 pixels. The

screen sat on an adjustable desk, which was vertically realigned for each par-

ticipant to ensure that that the center of the screen was level with their eyes.
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The participants were fixed to a distance such that their eyes were 26 inches

away from the screen, which was ensured by measurement with a yardstick.

The screen subtended ∼38◦ of participants’ visual field left-to-right and 26◦

top-to-bottom. The eye-tracker was a Tobii T60XL model, providing a read-

out of 60 samples per second. We used built-in Tobii software to calibrate

participants to the eye-tracker.

Each dot had a radius of 10 pixels. The density of the dots in the images

ranged from 0.01 to 0.07 dots/deg2. Note that the constant dot size meant

that it was not possible to directly test whether the ANS estimation uses

number rather than another correlated dimension such as density. The num-

ber of dots displayed on each trial varied between 10 and 90 dots, inclusive.

To determine the numerosities shown to a given subject, 16 numbers were

chosen randomly from within that range. The same 16 numbers were shown

to the participant in each of the 4 time conditions, with presentation order

randomized across the conditions. The median range size across participants

was 71 (minimum 54, maximum 79). The median lowest number shown was

14, and the median highest number shown was 86. The dots were placed

on the screen at random locations, only constrained to be nonoverlapping.

Participants entered their numerical estimates using a keyboard attached to

the computer. The experiment was designed by using the Python library

Kelpy (42); all of the code to run it can be found on the first author’s

github page at https://github.com/samcheyette/accumulator paper files. All

data and analysis used in the paper can be found there as well.

Participants. A total of 27 adult subjects (15 female, 12 male) from the Uni-

versity of Rochester community were recruited to participate in the task.

The participants’ ages ranged from 18 to 29 (M = 21.4).

Procedure. All study procedures were approved by the University of

Rochester Institutional Review Board. After providing consent, participants

were calibrated to the eye-tracker and subsequently began the experiment.

The experiment consisted of 64 total trials, with 4 blocks of 16 trials each.

Each 16-trial block contained one of the 4 different time conditions each

subject underwent: 100; 333; 1,000; and 3,000 ms (together comprising all 64

trials); the order of the blocks was randomized across participants. On each

trial, dots were displayed, followed by a noise mask. Subjects then typed

their responses into a text box using a keyboard and pressed the enter key

to move onto the next trial.

Experiment 2. Experiment 2 was a sequential number-discrimination task

with the same participants who completed Experiment 1. Likewise, the

properties of the stimuli and materials used in Experiment 2 were the

same as in Experiment 1 (e.g., dots in both had the same radius). Sixteen

pairs of numbers were chosen randomly for each participant, with the ratio

(the minimum over the maximum) of the number pairs constrained to be

between 0.5 and 0.99. For a given subject, the same number pairs were used

across the 4 time conditions, with their order randomized across conditions.

Procedure. After completing Experiment 1, participants took a break (if

needed), were recalibrated to the eye-tracker, and then began Experiment

2. In this task, participants saw 2 flashes of dots, one after the other, and

were subsequently asked which stimulus they thought had a greater quan-

tity of dots (pressing 1 or 2 on a keyboard). There were 4 conditions with

16 trials each (like Experiment 1), where each condition corresponded to

a unique pair of stimulus durations for the first and second display. More

specifically, the 4 conditions were (100; 100 ms), (100; 1,000 ms), (1,000;

100 ms), and (1,000; 1,000 ms).
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