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ABSTRACT This paper presents a method to find the optimal size and place of the switched capacitors
using a hybrid optimization algorithm. The objective function includes the active and reactive power of
power plants, the capital and maintenance costs of capacitor banks, and the cost of active and reactive
power losses in distribution lines and transformers. The impact of the load model on the optimal sizing
and placement of switched capacitors is studied using three different scenarios: In the first scenario, all
loads are voltage-dependent; in the second scenario, only a portion of loads are voltage-dependent; in the
third scenario, all loads are voltage-independent. The proposed hybrid algorithm incorporates an outer and
two inner optimization layers. The outer layer is executed by a genetic algorithm (GA), while the inner
layer is performed by a GA, an exchange market algorithm (EMA), or a particle swarm optimization
(PSO). The performance of GA-GA, GA-EMA, and GA-PSO hybrid schemes are compared on an IEEE
33-bus test system. Moreover, IEEE 33-bus and 69-bus networks are used to verify the effectiveness of
proposed hybrid scheme against the gravitational search algorithm (GSA), a combination of PSO and GSA
(PSOGSA), cuckoo search algorithm (CSA), teaching learning-based optimization (TLBO), and flower
pollination algorithm (FPA). The results highlight the advantage of the proposed hybrid optimization scheme
over the other optimization algorithms.

INDEX TERMS Exchange market algorithm (EMA), genetic algorithm (GA), particle swarm optimization
(PSO), radial distribution system (RDS), switched capacitors.

I. INTRODUCTION
Minimizing power system losses results in the power system
performance improvement from economical and technical
points of view. According to [1], most of the power system
losses occur in the distribution networks. The consumed reac-
tive power in the distribution networks has a direct impact on
the power system losses. High reactive power consumption
occupies the power transfer capacity of lines and significantly
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drops the operating voltage across a distribution feeder [2].
The negative impacts of highly inductive loads can be mit-
igated by utilizing switched capacitors. Switched capacitors
can improve the distribution system voltage profile, reduce
the power system losses, and release the system power trans-
fer capacity [3]. Therefore, finding the optimal size, switch-
ing pattern, and location of the capacitors is of particular
importance.

The optimal planning of the capacitors in the distribution
systems is investigated in [4]. Optimal operation and place-
ment of capacitors are surveyed in [5]. Optimal capacitor

38892 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-9710-7685
https://orcid.org/0000-0001-9422-6534
https://orcid.org/0000-0001-5888-1195
https://orcid.org/0000-0002-0255-8353
https://orcid.org/0000-0003-4722-4346
https://orcid.org/0000-0002-0975-0241
https://orcid.org/0000-0002-7707-8944


A. Jafari et al.: Two-Loop Hybrid Method for Optimal Placement and Scheduling of Switched Capacitors

placement using an efficient heuristic algorithm is investi-
gated in [6]. In [7], genetic algorithm (GA) is utilized to
determine the optimal location and capacity of capacitor
banks for reducing the power system loss and improving the
voltage profile. Optimal placement of parallel fixed capaci-
tors is studied by using GA for minimizing the power losses
and reducing the cost of the capacitors and the network [8].
In [9], a mixed integer non-linear programming (MINLP)
approach is presented for optimal placement of capacitors
for decreasing the investment cost and minimizing the power
loss. The optimal capacitor placement problem is solved by
the particle swarm optimization (PSO) algorithm in [10].

In [11], a modified PSO algorithm is used to implement
optimized Volt/VAr control by utilizing switched capacitors
and on-load tap changers. Binary PSO is used in [12] for
optimal circuit reconfiguration and switching of capacitors to
minimize the loss. In [13], fuzzy adaptive hybrid PSOmethod
is used for optimal capacitor placement.

The simultaneous optimal network reconfiguration and
capacitor bank placement is studied in [14], [15]. The
integration of capacitors and renewable energy sources
into the distribution systems is analyzed in [16]. In [17],
distributed generators (DGs) and capacitor placement are
optimized throughweight improved particle swarm optimiza-
tion (WIPSO) algorithm and gravitational search algorithm
(GSA). The objective function includes voltage stability and
loadability improvement indices, energy loss reduction, and
total loss minimization. In [18], a hybrid algorithm is pro-
posed for minimizing the loss and maximizing the voltage
stability using switched capacitors.

In [19], first, the location of capacitors is selected through
sensitivity analysis. Then, the capacity of the capacitors is
optimized by using the ant colony algorithm. Sensitivity anal-
ysis and Gravitational Search Algorithm (GSA) are utilized
to find the optimal fixed capacitor location for reducing the
loss and operational cost of the distribution network in [20].
Optimal location, size, and the number of fixed and switch-
able capacitors are discussed in [21] by executing the non-
dominated sorting GA II (NSGA-II). Some other heuristic
methods used for optimal placement and sizing of capac-
itor banks are bacterial foraging solution based on fuzzy
logic decision [22], integrated evolutionary algorithms [23],
cuckoo search algorithm [24], fuzzy theory method [25],
modified monkey search optimization technique [26], and
harmony search approach [27].

The majority of the available methods used for optimal
placement and sizing of capacitor banks rely on a fixed
distribution network load behavior. However, due to the
probabilistic nature of distribution networks, considering the
probabilistic model of the network to obtain accurate results
is of significant value. Moreover, in the conventional two-
stage capacitor optimization schemes, the optimal location
and capacity of capacitor banks are obtained in two distinct
stages. i.e., the optimal capacity is calculated after the instal-
lation location is finalized which may not lead to the most
optimal solution.

In this paper, a two-layer hybrid optimization scheme for
optimal placement, sizing, and switching of switched capac-
itors is presented. The first layer determines the optimal
location of the switched capacitors. The objective function
includes the distribution network active and reactive power
losses, the capital and maintenance costs of capacitors and
the cost of active and reactive power generation in power
plants. The second layer renders the capacitors’ optimal size
and switching pattern.

The main innovative contributions of the proposed method
if compared with previous ones are as follows:

• The probabilistic model of the distribution network
is used with respect to the uncertainty in the power
consumption of the network. Moreover, the impact of
voltage dependency of loads on the optimal capacitor
placement and sizing is investigated.

• As opposed to the conventional schemes, in this paper,
the optimal location and capacity of capacitors are calcu-
lated simultaneously in the form of a bi-level optimiza-
tion. This strategy makes the proposed scheme more
robust in finding final optimal solutions.

• In addition to optimal size and location, the optimal
hourly switching scheduling of capacitor banks have
been found for determined operation interval that affects
the optimal value of capacitors size and locations.

• A new objective function by considering all operation
costs has been assumed, such as transformers loss cost,
reactive power generation cost and etc.

The rest of the paper is organized as follows: In Section II,
load uncertainty is modeled. In Section III, the objective func-
tion and constraints are determined. In Section IV, the method
used for power flow is explained. Section V describes
the heuristic algorithms used in the two-layer optimization
scheme. Moreover, the proposed two-layer hybrid optimiza-
tion scheme for optimal capacitor scheduling is elaborated
in Section VI. In Section VII, the simulation results are
presented. Section VIII concludes the paper.

II. LOAD UNCERTAINTY MODELING
In this paper, the optimization problem is solved seasonally.
In each season, the hourly average and variance of power
consumption are calculated from past recorded data. The
hourly active power consumption is computed by the normal
distribution function

Y = F (x|µ, σ) =
1

σ
√
2π

e
−(x−µ)2

2σ2 , (1)

where, x, µ, and σ are a real number, average, and standard
deviation of normal distribution values, respectively. The
reactive power profile is calculated with 10% probabilistic
error using the power factor of the distribution network [28].

III. PROBLEM FORMULATION
This section summarizes the objective function and con-
straints used in the optimization problem.
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A. OBJECTIVE FUNCTION
The objective function consists of minimizing active and
reactive power generation costs of power plants, capital and
maintenance costs of capacitors, and of cost of power losses.
Regarding the considered components, the profit of the net-
work is maximized. The overall objective function of the
optimization problem can be defined as

Max (f ) = Max
(
Rpsell −

(
Cp
gen + C

q
gen + COSTcap

))
, (2)

where f is the annual profit of the distribution network. And,
Rpsell , C

p
gen, C

q
gen, and COSTcap are the annual revenue, annual

cost of active power generation, annual cost of reactive power
generation, and the capacitors’ capital cost, respectively.

The annual cost of active power generation is given as

CP
gen =

4∑
s=1

(
90×

24∑
h=1

(
aPg, h, s2 + bPg, h, s+ c

))
, (3)

where a, b, and c are the coefficients of the active power
generation cost function. Pg, h, s is total active power gen-
erated at hth hour and sth season. It is assumed that each
season has 90 days. The power plant active power generation
is calculated as
Pg,h,s

=

nbus∑
i=1

ph,s,i+plosslineh,s +ploss
trans
h,s ,

{
h=1, 2, . . . , 24
s=1, 2, 3, 4,

(4)

where ph,s,i denotes the active power consumption of the ith

bus at hth hour and sth season. If the load of the network
is voltage-independent, the calculated power using (4) is
constant and is obtained probabilistically at a specified hour
and season. If the load is voltage-dependent, with changes
in voltage of bus, due to the power flow and installation
of the capacitors, load varies and the amount of ph,s,i is
calculated by power flow analysis. nbus is the number of
distribution network buses also plosslineh,s and plosstransh,s show
the active power loss in lines and transformers at hth hour and
sth season, respectively. The active power loss of feeders and
transformers, Plosslineh,s and Ploss

trans
h,s , are calculated by

Plosslineh,s =
nbus−1∑
j=1

(∣∣∣I linej,h,s

∣∣∣2 × rLj) {
h = 1, 2, . . . , 24
s = 1, 2, 3, 4,

(5)

Plosstransh,s =

nbus∑
i=1

(∣∣I transi,h,s

∣∣2 × rTi){h = 1, 2, . . . , 24
s = 1, 2, 3, 4.

(6)

where I linej,h,s and I
trans
i,h,s are the current of the jth branch and

current of the transformer connected to the ith bus at hth hour
and sth season, respectively. Additionally, the variables rLj
and rTi are associated with jth branch resistance and resistance
of the transformer connected to the ith bus, respectively. Using
the triangular approach, the annual cost of reactive power
generation of the power plant can be expressed as [29].

Cq
gen
=

4∑
s=1

90×
24∑
h=1

(
a′ × Q2

g,h,s + b
′
× Qg,h,s + c′

)
, (7)

a′ = a× sin2θh,s, b′ = b× sinθh,s, c′ = c, (8)

where a′, b′, and c′ are coefficients of the reactive power
generation cost function. Qg, h, s is the total reactive power
generation of the network at hth hour and sth season that is
calculated by

Qg,h,s =
nbus∑
i=1

qh,s,i + qlossline
h,s
+ qlosstrans

h,s
−

nc∑
k=1

qch,s,k

×

{
h = 1, . . . 24
s = 1, . . . , 4

(9)

and sin θh,s is:

sin θh,s =
Qg,h,s√

Qg,h,s + Pg,h,s
. (10)

In (9), qh,s,i represents the reactive power consumption of
the ith bus at hth hour and sth season. nc is the number of
installed capacitors. qlosslineh,s is the lines reactive power loss
at hth hour and sth season and qlosstransh,s describes the trans-
formers reactive power loss at hth hour and sth season. qch,s,k
represents the reactive power generated by the k th capacitor
at the hth hour and sth season. The reactive power loss of lines
and transformers are calculated by

qlossline
h,s

=

nbus−1∑
j=1

(∣∣∣I linej,h,s

∣∣∣2×xLj) , h = 1, 2, . . . , 24, s=1, 2, 3, 4,

(11)

qlosstrans
h,s

=

nbus∑
i=1

(∣∣I transi,h,s

∣∣2×xTi) , h = 1, 2, . . . , 24, s = 1, 2, 3, 4,

(12)

where I linej,h,s is the j
th branch current and I transi,h,s is the ith bus

transformer’s current at hth hour and sth season. Additionally,
the variables xLj and xTi are associated with jth branch reac-
tance and ith bus transformer’s reactance, respectively.

The capacitors capital cost including investment and instal-
lation costs are obtained using

COSTcap =
nc∑
k=1

(
Ck
cap
×invcap × crf

)
, (13)

crf =
i1 (i1 + 1)n

(i1 + 1)n − 1
, (14)

where Ck
cap is the capacity of the k

th capacitor. invcap denotes
the cost of the capacitor installment. crf is the coefficient
converting initial cost to the annual cost. i1 is the annual
interest rate and n is the number of years of operation. The
annual revenue is

Rpsell =
4∑
s=1

90×

(
24∑
h=1

nbus∑
i=1

(
ph,s,i × costenergy,p

))
, (15)

where costenergy,p is the price of energy. ph,s,i denotes the
active power consumption of the ith bus at hth hour and sth

season.
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B. CONSTRAINTS
Active and reactive power equilibrium equations are
described as

Qg,h,s +
nc∑
k=1

qch,s,k =
nbus∑
i=1

qh,s,i + qlosslineh,s
+ qlosstrans

h,s
,{

h = 1, . . . 24
s = 1, . . . , 4,

(16)

Pg,h,s =
nbus∑
i=1

ph,s,i + plosslineh,s + ploss
trans
h,s ,{

h = 1, . . . , 24
s = 1, . . . , 4.

(17)

Moreover, the total reactive power injected by capacitor
banks in each hour must be less than or equal to the total
required reactive power as shown in

nc∑
k=1

qch,s,k ≤
nbus∑
i=1

qh,s,i + qlosslineh,s
+ qlosstrans

h,s
. (18)

On the other hand, the selected capacity should not exceed
the maximum available capacity of capacitor banks which is
described as

Ck
cap ≤ Cmax , k = 1, 2, . . . , nC . (19)

The voltage security constraint can be expressed as

Vmin
h,s,i < Vh,s,i < Vmax

h,s,i , (20)

where Vh,s,i is the voltage of ith bus at the hth hour and
sth season. Vmin

h,s,i and Vmax
h,s,i are the desired minimum and

maximum voltage, respectively.
Distribution network feeders are divided into two cate-

gories of 20kV cables and overhead lines. Cables and over-
head lines have specific rated kVA capacity due to their
thermal limitation. In addition, distribution transformers have
specific nominal capacity and should be operated by respect-
ing this limitation. During the operation of distribution net-
works, feeders and transformers should not be overloaded
considering their nominal capacity. Maximum allowable
power for feeders and transformers are described as√(

Qbj,h,s
)2
+

(
Pbj,h,s

)2
< Sj,max , j = 1, 2, . . . , nbus − 1,

(21)∣∣S transi,h,s

∣∣ ≤ S transmax,i, i=1, 2, . . . , nbus, (22)

where Qbj,h,s and P
b
j,h,s show the reactive and active power

through the jth branch in the hth hour and sth season, respec-
tively. In (21), the b is an indication of the word ‘branch’.
The S transi,h,s denotes the power of the transformer connected to
the ith bus in hth hour and sth season. Sj,max and S transmax,i are the
maximum nominal power of the jth branch and the maximum
nominal power of the transformer connected to the ith bus,
respectively.

TABLE 1. Active power increment percentage in terms of voltage changes.

IV. POWER FLOW METHOD
In this paper, forward-backward (FB) power flow is utilized
for calculating the elements of the objective function. In the
power flow model, it is assumed that loads are voltage-
dependent. The initial value of voltage is assumed to be 1 p.u.
In each iteration of power flow, the load active power value
changes based on voltage variations according to

pnew,i = pbase,i ×
(
1+

173.1×e0.54087×|vi| − 297.3
100

)
(23)

where vi denotes the ratio of ith bus’s new voltage over the
old voltage. pnew,i denotes the load of the ith bus at vi. pbase,i
denotes the load of the ith bus when its voltage is equal to
1 pu. Equation (23) is extracted using Table 1 listing active
power consumption variations for different vi values [30].
Table 1 presents the percentage of the active power increment
per ratio of current voltage to the previous voltage. Since
capacitor banks improve the voltage profile of the network,
the ratio of current voltage to the previous voltage will be
always greater than one, therefore Table 1 only presents the
active power increment due to the voltage enhancement after
the capacitor banks allocation.

The curve fitting method in MATLAB is used to extract
(23). As seen, when vi is equal to 1, the value of the active
power consumption stays intact. In addition, Fig. 1 shows the
flowchart of the power flow algorithm.

Power flow steps are as follows:
Step 1: Network’s data including loads, network arrange-

ment, number of buses, and the impedance of lines are con-
sidered as the input data.
Step 2: The current at each bus is calculated using

Ii =
Pi − jQi
(Vi)∗

, i = 1, 2, . . . , nbus, (24)

where Pi and Qi are the consumed active and reactive power
in the ith bus.
Step 3: The current of each branch is obtained from the cur-

rent of the busses. The branch currents are used to calculate
the voltage drop across branches.
Step 4: New voltages of the buses are backwardly calcu-

lated by considering the branches’ voltage drop.
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FIGURE 1. Flowchart of the power flow calculation.

Step 5: If the voltage of a bus changes compared to its
previous value and the related load is voltage-dependent,
the value of the load is updated in the current iteration
by (23).
Step 6: The maximum difference between the results of the

previous iteration and a new iteration is calculated.
Step 7: If the calculated value in Step (6) is greater than

a maximum allowable error, the algorithm returns to Step
(2). Otherwise, the obtained results are desirable, and the
algorithm is terminated.
Step 8: Active and reactive power loss are calculated from

the result of the power flow.

V. PRELIMINARIES OF OPTIMIZATION ALGORITHMS
Three algorithms are candidates to select the optimal bi-level
combination. The first algorithm is GA that due to utilizing
the mutation concept is highly effective in optimizing prob-
lems with many local optimum points. The second selected
algorithm is PSO that is one of the most used memory-
based optimization algorithms. This algorithm utilizes own
experiment in past iterations in finding optimal routes in each
iteration. The last algorithm is EMA that is one of the recently
developed algorithms and has efficient performance in solv-
ing power system optimization problems. This algorithm

utilizes two searching operators and is performed in two
different solution spaces that lead to fast convergence and
powerful optimization ability.

In this section, the preliminaries of GA, PSO, and EMA
optimization algorithms are provided. These algorithms will
be later investigated and compared for the implementation of
a two-layer hybrid optimization scheme.

A. GENETIC ALGORITHM
In this paper, GA [7] is utilized to find the optimal location
of capacitor banks. GA is also proposed as a candidate for
finding the optimal size and switching schedule of each
capacitor bank. In the optimal location optimization problem,
the capacitor location candidates are considered as genes. For
the cross-over operator, multipoint displacement and proba-
bilistic selection of points are used. The probabilistic roulette
wheel method is used to select the best population and the
cross-over implementation among them. Different steps of
probabilistic roulette wheel method are as follows:
Step 1: Calculate eval(wi), i.e., the fitness value of each

chromosome wi.
Step 2: Calculate the fitness of the total population,

F , using

F =
popsize∑
j=1

eval
(
wj
)
, (25)

where popsize is the total number of populations.
Step 3: Calculate the probability of selection for each

chromosome, P (i), as

P (j) =
eval

(
wj
)

F
, (26)

Step 4: Calculate the cumulative probability for each chro-
mosome, Q (i), as

Q (i) =
i∑

j=1

Pj, (27)

Step 5: Generate a random number, v, between one and
zero.
Step 6: If v < Q(1), P(1) is selected. Otherwise, chromo-

some i, which satisfies

2 ≤ i ≤ popsize, Q(i− 1) ≤ v ≤ Q(i), (28)

is selected.

B. PSO ALGORITHM
PSO [10] is proposed as a candidate for finding the optimal
size and switching program of each capacitor bank. In PSO,
each problem solution is considered as a particle. Also,
the injected reactive power of capacitor banks are the coordi-
nates of the particles. The number of coordinates of each solu-
tion is equal to the number of capacitor banks. A specific error
threshold is defined as the stopping criterion. Considering
GA to find the optimal location of switched capacitors, PSO
determines the optimal capacity and switching schedule for
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each capacitor location proposed by GA. In PSO, the velocity
and position of particles are updated using

Vi (k + 1) = w (k) .Vi (k)+ c1r1
(
pibest (k)− pi (k)

)
+c2r2 (gbest (k)− pi (k)) (29)

pi (k + 1) = pi (k)+ Vi (k + 1) , (30)

where pi(k) is the current position of each particle and pi(k+
1) is the next position of each particle. pibest (k) denotes the
best position of each particle. gbest (k) is the best position in
the whole population. Vi (k) and Vi (k + 1) are the previous
and next velocities of each particle, respectively. c1r1 and c2r2
are the constant coefficients. w(k) is a constant coefficient,
in which its value decreases with a constant rate in each
iteration.

C. EXCHANGE MARKET ALGORITHM
EMA is a powerful tool in solving non-linear, non-convex,
and mixed integer optimization problems [31]-[34]. In this
paper, EMA is proposed as a candidate for finding the optimal
size and switching program of each capacitor bank. EMA
has two searching operators and two absorbing operators.
In EMA, there are two different states for the exchange mar-
ket, namely oscillating and balanced. In the oscillating state,
first, second, and third groups include 20%, 30%, and 50% of
the total members of the market, respectively. In the balanced
state, first, second, and third groups include 20%, 50%, and
30% members of the total market, respectively. These groups
identify high, medium, and low ranked members. EMA is
used to find the optimal capacity and capacitors’ switching
schedule for the capacitor locations identified by GA. The
injected reactive power of each capacitor bank is assumed as
a share of each member.

1) BALANCED STATE OF EXCHANGE MARKET
In this state, the market condition is balanced and there is
no oscillation. Members, regardless of risk, can perform their
exchanges in the market. In this condition, market members
are divided into three distinctive groups as follows.
• Members with high rank:Members of this group do not
change their shares.

• Members with medium rank: By utilizing the high-
ranked members, members of this group form their
exchanges as

popgroup(2)j = r × popgroup(1)1,i + (1− r) popgroup(1)2,i

i = 1, 2, 3, . . . , ni and j = 1, 2, 3, . . . , nj (31)

where r is a random number between 0 and 1. popgroup(2)j

denotes the jth member of the second group. popgroup(1)1,i and

popgroup(1)2,i are two random members selected from the first
group. ni and nj represent the number of the first and second
group members, respectively.
• Members with low rank:Members of this group perform
their exchanges differently from exchanges of the sec-
ond group as

Sk = 2× r1
(
popgroup(1)1,i − popgroup(3)k

)
+ 2

×r2
(
popgroup(1)2,i − popgroup(3)k

)
(32)

popgroup(3),newk = popgroup(3)k + 0.8× Sk , (33)

where r1 and r2 are two random numbers. nk is the number
of third group members. popgroup(3)k is the k th member of the
third group. Sk denotes the change of the share of the k th

member.

2) OSCILLATING STATE OF EXCHANGE MARKET
In this state, market members perform their exchanges by
predicting the future state of the market as well as by con-
sidering reasonable risks. Market members are divided into
three groups as follows:
• Members with high rank: Members of this group will not

change their shares and will not participate in exchanges.
• Members with mean rank:Members of this group consider

risk. However, they perform their exchanges in such a way
that their total shares remain constant. Members’ share
exchanges are performed using

• 1nt1 = nt1 − δ + (2 rµη1) , µ =

(
tpop
npop

)
, (34)

nt1 =
n∑
y=1

∣∣Sty∣∣ ,η = nt1g1, (35)

gk1 = g1,max −
g1,max − g1,min

itermax
k, (36)

where 1nt1 denotes the amount of the share that should be
randomly added to some shares. nt1 represents the total initial
shares value of the t th member. Sty is the yth share of the t th

member. Information about the exchange market is shown
by δ. r is a random number. η1 is related to the risk that
members consider in the second group. The variables tpop and
npop represent the number of the t th member in the exchange
market and the total number of the members, respectively.
Thus, µ is a constant number for each member. In addition,
gk1 denotes the amount of the risk of the k th member. g1,max
and g1,min are the maximum and minimum risk of the second
group members, respectively. itermax and k represent the total
number of iterations and iteration number, respectively.
• Members with Low rank: Members of this group con-
sider a higher risk for their exchanges. The total share of
each member can change according to

1nt3 = (4rsµη2) , (37)

rs = (0.5− rand (0, 1)) , (38)

η2 = nt1g2, (39)

gk2 = g2,max −
g2,max − g2,min

itermax
k, (40)

where1nt3 is the randomly added share amount to the shares
of the third group’s members. rs is a random number in the
range of [−0.5, 0.5]. η2 is the third group member’s’ risk. g2
is a variable risk factor for the members of this group.
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VI. TWO-LAYER HYBRID OPTIMIZATION SCHEME
In the two-layer hybrid optimization scheme, the outer layer
finds the optimal place of capacitor banks. While the inner
layer finds the optimal capacity and switching schedule of
capacitors. GA is used in the outer layer. For the inner layer,
this paper separately employs PSO, EMA, and GA and com-
pares them to recommend the most optimized hybrid opti-
mization scheme. To this end, three different combinations
of GA-GA, GA-EMA, and GA-PSO algorithms are investi-
gated. Fig. 2 illustrates the optimization process, assuming
that GA is utilized in both outer and inner layers. In this
flowchart, ε1 and ε2 denote the stopping criterion for the outer
and inner layers, respectively. itermax1 and itermax2 denote the
maximum iterations for the outer and inner layers, respec-
tively. npop_1 and npop_2 denote the number of populations for
the outer and inner layers, respectively.

According to Fig. 2, firstly the initial population includes
installation locations, which is generated randomly for the
outer layer. At the next stage, for each solution of the outer
layer, the separate population with the specific size is gen-
erated stochastically, and for each population member of
the inner layer, the objective function is calculated for the
whole year. After computation of total objective function
for each member of the inner layer population, the opti-
mization algorithm, GA, is applied to them and this process
continues until reaching the maximum iteration number of
the inner layer or acceptable error value. The inner GA is
implemented on each solution of the outer layer population to
find the optimal capacity of capacitor banks and their yearly
switching scheduling. After the calculation of objective func-
tion for all members of the outer layer and sorting them,
the GA is applied to the population of the outer layer. The
presented algorithm continues until reaching the acceptable
error value or maximum iteration number of the outer layer.

VII. RESULTS AND DISCUSSION
IEEE 33-bus and 69-bus test systems, illustrated in
Figs. 3 and 4, are used for implementing the proposed
GA-GA, GA-EMA, and GA-PSO hybrid schemes. The con-
sidered optimization problem is solved by MATLAB soft-
ware. It is assumed that loads connected to the network
are highly sensitive for which Vmin

h,s,i and Vmax
h,s,i are set to

0.95 and 1.02, respectively. The maximum available capacity
for capacitor banks, Cmax , is set to 1MVAr. The hourly active
power data used for generating stochastic power consumption
is provided in Table 2 [35]. Figs. 5 and 6 show the active
and reactive power consumption graphs, respectively. For
power flow calculations, base power and the base voltage
are 100 kW and 12660 V, respectively. The resistance and
reactance of the transformers are 0.01 pu and 0.005 pu,
respectively. Stepped prices are chosen such that the average
price follows the United States average energy price [36].
Table 3 shows the cost of active power consumption. The
capacitor banks purchasing cost rate is 12 $/kVAr for all
7 capacitors [37]. Also, the capacitor banks’ installation and
maintenance costs rate is 8 $/kVAr. The coefficients a, b, and c

TABLE 2. Active power consumption data in four seasons (KW).

TABLE 3. Price of active power consumption.

are equal to 0.00482, 7.97, 78, respectively [38]. The interest
rate is 0.1 [39].

The initialization of algorithms controlling parameters has
been done by the trial and error method. By varying the con-
trolling parameters of each algorithm in the specific interval,
their appropriate values have been obtained. The mutation
probability of GA has been selected equal to 0.015. In order
to improve the performance of PSO, the cognitive factor (c1)
and the social factor (c2) have been selected 1.2 and 1.4,
respectively. In addition, the values of selected risks of trades
between shareholders are the significant controlling param-
eters of EMA. The value of g1 and g2 have been adjusted
to [0.1 0.05] and [0.05 0.01], respectively. The size of the
population for all algorithms is equal to 50.
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FIGURE 2. Proposed hybrid optimization algorithm’s flowchart.
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FIGURE 3. Schematic of IEEE 33-Bus radial network.

FIGURE 4. Schematic of IEEE 69-Bus radial network.

A. HYBRID OPTIMIZATION SCHEME UNDER DIFFERENT
LOAD MODELS
To account for load-voltage dependency, three different sce-
narios are considered. In all scenarios, GA is used for finding
the optimal location of capacitors. However, all three algo-
rithms (GA, EMA, and PSO) are applied for finding optimal
capacity and switching schedules of the capacitors in the
inner layer of the hybrid optimization scheme [18]. The three
types of loads are explained as follows:

• First Scenario: In this scenario, it is assumed that net-
work loads are dependent on the voltage. As a bus volt-
age drifts apart from 1 pu, the active power of connected
load changes according to (23).

• Second Scenario: In this scenario, some loads are depen-
dent on the voltage. Loads connected to Bus 4, 9, 13, 15,
20, 22, 26, 31, and 32 are considered voltage-dependent.

• Third Scenario: In this scenario, network loads are con-
stant and do not change with respect to the voltage
variations.

The results of the optimization for all 3 scenarios are
presented in Table 4. L indicates the optimal location of
the capacitors and C represents the optimal capacity of the
capacitors. Table 5 compares the different hybrid optimiza-
tion schemes from the perspective of the annual network’s
profit and distribution system minimum voltage.

As seen in Table 4, some capacitors are assigned a zero
capacity. This means that less than seven capacitors are

FIGURE 5. Active power consumption curve in four seasons.

FIGURE 6. Reactive power consumption curve in four seasons.

required to minimize the objective function. In other words,
the proposed algorithm is capable of optimally determining
the number of capacitor banks connected to the network
with 7 as the maximum number of capacitors. According
to Table 4, in all scenarios, the outer layer of the presented
approach has been optimized by GA. In other words, in all
scenarios, the optimization of capacitor locations is done
by GA. The reason for such selection is the high capability
of GA in the optimization of binary and discrete optimiza-
tion problems. By considering the optimal results in three
different scenarios, it is observed that the majority of the
capacitors are located close to the end of the circuit when
all the network loads are voltage-dependent. As the number
of voltage-dependent loads decreases, the capacitors are dis-
persed throughout the circuit more evenly.

According to Table 5, when the loads are voltage-
dependent, the total profit is less than other scenarios; how-
ever, the proposed hybrid optimization scheme results in
the highest percentage of the increased profit for this sce-
nario. The third scenario incorporates the highest profit val-
ues. As the number of voltage-dependent loads increases,
the profit decreases but the impact of optimal capacitor place-
ment on annual profit is more salient.When the voltage is less
than 1 pu, the voltage-dependent load value will be less than
the base amount. So, the sold power and profit is decreased.
Since the load is voltage-dependent, capacitor placement has
more effect on the voltage profile and the power consumption,
as well as the profit, is improved. However, the impact of
capacitor utilization on the profit increase will be less in the
voltage-independent load state.
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TABLE 4. Optimal location (L) And capacity (C) of capacitors for different scenarios.

TABLE 5. Profit and voltage of the network.

FIGURE 7. Switching schedule in spring.

In terms of the profit increase percentage, all three hybrid
optimization schemes render close improvements. Accord-
ing to Table 5, with the increase in the number of voltage-
dependent loads, the minimum voltage of the network
increases and the voltage profile is improved. The reason is
that if the voltage of voltage-dependent load bus decreases,
the active power of load decreases according to (23) which
impedes further bus voltage reduction.

Figs. 7–10 illustrate the optimized capacitor switching
schedules. Figs. 11–14 show the voltage of different buses
when the loads are voltage-independent and GA–EMA is
applied. As seen, spring has the highest voltage profile due
to the lowest loading level, while summer renders the low-
est voltage profile due to the highest loading level. The
PSO, EMA, and GA algorithm convergence rates are plotted
in Fig. 15.

FIGURE 8. Switching schedule in summer.

FIGURE 9. Switching schedule in fall.

In Fig. 15, the horizontal axis is related to the iteration
number of the outer layer. The reason for selecting a maxi-
mum of 60 iterations of the outer layer is that after iteration
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FIGURE 10. Switching schedule in winter.

FIGURE 11. Hourly voltage profiles on different buses in spring.

FIGURE 12. Hourly voltage profiles on different buses in summer.

60, there is not any change in the fitness value and the
algorithms are converged to their optimal value at amaximum
of 60 iterations of the outer layer. By considering 10 iterations
for the inner layer, the total iteration of hybrid algorithms will
be equal to 600 iterations.

B. COMPARISON OF HYBRID OPTIMIZATION SCHEME
WITH OTHER OPTIMIZATION ALGORITHMS
To compare the proposed hybrid optimization scheme with
other optimization algorithms, the following criteria, derived
from [19], are considered:
1) The switching schedule period is reduced from one year

to an hour, and capacitors are considered with a fixed
capacity.

2) Capacitors have limited capacity and different capital
costs (See Table 6).

TABLE 6. Standard capacitor specifications.

FIGURE 13. Hourly voltage profiles on different buses in fall.

FIGURE 14. Hourly voltage profiles on different buses in winter.

3) Three capacitors are required to be installed in the net-
work.

4) The objective function only includes the cost of loss and
the capacitors’ installation.

5) Simulation is executed on the IEEE 33- and 69-bus
radial standard test systems [40].

6) Loads are voltage-independent.
7) For all algorithms, the total number of objective function

calculations are the same. EMA needs to calculate the
objective function two times in each iteration. Therefore,
the inner layer iterations are 20 for EMA and 40 for
both PSO and GA. The outer layer iterations are 10.
The objective function is calculated 400 times, which is
like [19].
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TABLE 7. Different algorithms results for IEEE 33-bus radial network.

FIGURE 15. Convergence rate of GA, EMA, and PSO algorithms.

8) The active power generation cost is 168 $/kW.

Tables 7 and 8 represent the results of different algorithms
for the IEEE 33-bus radial network and IEEE 69-bus radial
network, respectively.

Tables 7 and Table 8 show that the proposed hybrid opti-
mization scheme results in a more cost-saving percentage
compared to other algorithms. For both IEEE 33-bus and
69-bus test systems, GA-EMA renders the most optimal solu-
tion compared to the two other combinations, i.e., GA-GA

and GA-PSO. The results of this section suggest that the
combination of GA and EMA results in an improved opti-
mization efficiency. The reason is that EMA is highly capa-
ble of finding the optimal solution for the capacity of the
capacitors and determining their optimal switching schedule
due to having two powerful operators, namely Oscillation and
Balanced, and three solution spaces. It should be noted that
in the proposed hybrid scheme, GA is employed to find the
optimal location of capacitors in the outer layer, which is due
to the proper performance of this algorithm in solving discrete
optimization problems.

Among the selected references to compare results with,
[43] has used a conventional and separate two-stage method
for finding the optimal solution. This reference firstly calcu-
lates the voltage stability index (VSI) for all network busses
and determines the optimal locations for installing capacitor
banks, then finds optimal capacities for them. On the other
hand, [20] and [41] initially decrease the candidate busses
by sensitivity analysis and then solve the problem for the
remained busses of the network. This procedure can eliminate
some parts of the solution space and obstructs the algorithm
from finding the absolute optimal solution. The comparison
of obtained results with the results of such approaches proves
the superiority of the presented method over the other two-
stage capacitor allocation methods.

In the conventional two-stage capacitor optimization
schemes, the optimal location and capacity are obtained in
two distinct stages. i.e., the optimal capacity is calculated
after the installation location is finalized. As opposed to the
conventional schemes, in this paper, the optimal location and
capacity of capacitors are calculated together in the form of
a bi-level optimization. While finding the optimal location
of capacitors, the optimal capacities are calculated in a sub-
problem inside the main problem for each solution of the
population; in other words, the impact of the location and
capacitance of the capacitors on each other is considered. This
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TABLE 8. Different algorithms results for IEEE 69-bus radial network.

TABLE 9. Anova test on IEEE 33- and 69-bus test systems.

strategy makes the proposed scheme more robust. Moreover,
the obtained results from this scheme are closer to the abso-
lute optimal solutions.

C. ANOVA TEST
The ANOVA test is one of the common analytic strategies
to assess optimization methods [44], [45]. This test is imple-
mented to analyze the mean-variance of the system’s cost
function with various optimization techniques. In this work,
the ANOVA test has been performed between six optimiza-
tion techniques when the 33-bus system is optimized, and
between seven optimization methods when the 69-bus test
system is considered. In other words, degrees of freedom
between techniques are equal to 5 and 6 for 33- and 69-bus
test systems, respectively. The optimization methods have
been run for 50 times, so the degrees of freedom within tech-
niques will be equal to 44 and 43 for 33- and 69-bus systems,
respectively. Table 9 presents the ANOVA test results for both
test systems.

As seen in the table, the values of F-ratio for both systems
are higher than the standard value of F-ratio at 5 percent

significance level. The results show that the variation in the
obtained optimal cost by different methods is significant and
is not just a chance.

VIII. CONCLUSION
In this paper, a new two-layer optimization scheme is pro-
posed for optimal placement, sizing, and scheduling of
switched capacitors in the distribution networks. In the
outer layer, the optimal location of capacitor banks is
selected. In the inner layer, the capacitor banks’ opti-
mal capacity and switching schedule are calculated. The
objective function consists of annual active and reactive
power generation cost, total annual lines’ and transformers’
active and reactive loss cost, capacitor banks’ capital and
maintenance costs, and annual revenue of the distribution
network.

Three different heuristic algorithms are used in the inner
layer. In the outer layer, GA is used. These algorithms are
applied to solve the optimization problem and their results are
compared. The impact of the load model on the optimization
scheme is considered by incorporating three different scenar-
ios based on load-voltage dependency. Results indicate that
optimal capacitor bank placement and scheduling has more
impact on the networks with voltage-dependent loads. IEEE
33-bus and 69-bus radial test systems are used to highlight the
advantages of the proposed hybrid optimization scheme over
other optimization algorithms.

IX. FUTURE WORKS
In addition to the used objective function for calculating
electricity usage cost, the day-ahead market strategy can be
considered in the simulations. This suggestion can extend the
simulation results andmake the results more robust and closer
to the real state. This concept can be included in future works.
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