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Abstract
We study the inverse boundary value problem for time-harmonic elastic waves, for the recovery of P- and S-wave speeds
from vibroseis data or the Neumann-to-Dirichlet map. Our study is based on our recent result pertaining to the uniqueness
and a conditional Lipschitz stability estimate for parametrizations on unstructured tetrahedral meshes of this inverse
boundary value problem. With the conditional Lipschitz stability estimate, we design a procedure for full waveform inversion
(FWI) with iterative regularization. The iterative regularization is implemented by projecting gradients, after scaling,
onto subspaces associated with the mentioned parametrizations yielding Lipschitz stability. The procedure is illustrated in
computational experiments using the continuous Galerkin finite element method of recovering the rough shapes and wave
speeds of geological bodies from simple starting models, near and far from the boundary, that is, the free surface.

Keywords Full waveform inversion · Finite element method · Stability and convergence

1 Introduction

Seismic data from land acquisition can mathematically
be represented by the Neumann-to-Dirichlet map [3]
since the normal traction (Neumann boundary value) is
applied to the boundary and the displacement (Dirichlet
boundary value) is measured. This map forms the data
for the inverse boundary value problem for time-harmonic
elastic waves corresponding with vibroseis data. We
present FWI with iterative regularization, which aids in
avoiding over-parameterization of the original problem.
This approach is based on our recent result [6] pertaining
to uniqueness and a conditional Lipschitz stability estimate,
that is, well-posedness for parametrizations on unstructured
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tetrahedral meshes of this nonlinear inverse boundary
value problem. The unstructured tetrahedral meshes form
domain partitions, while the wave speeds on these are
chosen to be piecewise constant. The conditional Lipschitz
stability linking the model differences and the data residuals
provides theoretical control of the reconstruction on the
stable subspace.

Following the mentioned parameterizations and a natural
tetrahedral mesh refinement procedure (while elements may
simply, randomly change as well), we form a hierarchy
of subspaces generating sequences of increasingly accurate
approximations of “true” models. One may view these
subspaces as setup for compression of true models [2].
The piecewise constant parameter representations are
reminiscent of expansions of parameters in terms of Haar
wavelets [34]. We note that the stability constant will grow
exponentially in the number of elements of the mesh.
This reflects the ill-posedness of the problem. The study
of the interplay between growing stability constants and
compression rates in multi-level iterative reconstruction was
studied in generality by De Hoop et al. [18].

The contribution of this paper is a convergence study of
the above mentioned, multi-level approach to FWI by com-
putational experiments. We formulate the inverse bound-
ary value problem in terms of a constrained minimization
of a suitable misfit functional justifiably derived from a
Hilbert-Schmidt norm. The adjoint state method yields an
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adjoint boundary value problem. Elastic-wave boundary
value problems can be naturally discretized by the finite
element method. To mimic the target half-space problem
with a Neumann boundary condition on the top, we intro-
duce a constraint for the damping function in constructing
the perfectly matched layers (PMLs) [4]. The local matrices
are constructed elementwise after discretizing the relevant
weak formulation. We construct the global matrix pattern
on unstructured meshes and then apply a parallel strategy
for generating a distributed matrix. We refer to [35] for the
use of the finite element method and associated parametriza-
tions in FWI. Unstructured tetrahedral meshes aligned with
finite element discretizations [53] were considered using
purely imaginary frequencies.

Following earlier works [25, 29, 58] for the acoustic
wave equation, the reconstruction of subsurface elastic
parameters using iterative minimization was originally
introduced in the time domain [37, 60]. The time-harmonic
or frequency-domain formulation of the seismic inverse
problem was later considered for the acoustic case [45]
and then for the elastic case [43]. Multi-scale FWI [11,
55] was designed to mitigate the occurrence of local
minima without proof. However, many case studies [1, 7,
24, 27] have confirmed its computational efficiency. Here,
frequency progression comes into play. In our formulation,
the optimal frequency for the next level minimizes the
Lipschitz stability constant for the next level yielding
the largest possible radius of convergence to the next
approximation. We illustrate this in our computational
experiments.

As far as optimization is concerned, the application of
Newton-type methods in FWI dates back to the 1980s
[37] and 1990s [44]. Typically, one adopts a matrix-free
approach through the adjoint state method. We mention
a few results describing various strategies to mitigate the
computational cost. The diagonal of the Gauss-Newton
Hessian [15] was used to scale the gradients of the misfit
function for P- and S-wave speeds, presumably to speed
up convergence. Other standard methods, such as a limited-
memory variant of the quasi-Newton BFGS method known
as the L-BFGS algorithm [10] and the truncated Newton
method [36], have also been adopted in FWI. We limit
ourselves to scaling the gradient with the diagonal of the
Gauss-Newton Hessian primarily due to the computational
cost in three-dimensional multi-parameter reconstruction
while the efficiency of a Gauss-Newton method remains
questionable anyway.

We give a brief overview of recent work concern-
ing multi-parameter inversion. Multi-parameter FWI was
applied to marine and land data examples [41] and studied
for multi-component ocean-bottom-cable data over the Val-
hall field, where P- and S-wave speeds were jointly updated
[46]. Here, hydrophone data were utilized to update the long

and intermediate wavelengths of the S-wave speeds from the
amplitude-versus-offset variations of the PP reflections. To
reduce the computational costs, a multi-scale FWI scheme,
which promotes the construction of full waveform tomo-
graphic models that describe the geological structures at
multiple scales, was used in [24, 64]. Multi-parameter FWI
was also applied to a large wide-azimuth long-offset land
data set in Oman [56], where large wave speed variations
occur between shale and carbonate layers. The data con-
tained low frequencies down to 1.5 Hz with long-offsets
and wide azimuths. We feel that this case study justifies
the use of low-frequency data in our computational experi-
ments. Time-lapse FWI [47] as a monitoring tool for directly
resolving changes was applied to elastic parameter mod-
els to detect a carbon dioxide gas cloud. Incorporation of
surface topography is important for successful elastic FWI
of land seismic data [39]. We note that surface topography
can naturally be incorporated into unstructured tetrahedral
meshes. Multi-component three-dimensional elastic FWI
with both surface and body waves has been recently applied
to detect near-surface anomalies [8]. In our formulation,
surface and body waves co-exist. For the recovery of a high-
wave-speed variations, total variation regularization was
used for blocky updates [19]. Such a regularization is inher-
ent in our approach. An iterative solver of the Helmholtz
problem was implemented using a complex-shifted incom-
plete LU-based preconditioner [40] and applied to elastic
FWI recently.

As conventional elastic multi-parameter FWI [8, 24,
40, 41, 46, 56, 64] is commonly initiated with some
smooth tomographic model, we initiate our iterations with
a very coarse mesh with piecewise constant parameters.
At low frequencies, this yields a relatively large radius of
convergence to a proper coarse approximation. We note that
the computational and parameter meshes typically are not
the same in our approach.

The outline of the paper is as follows. In Section 2, we
introduce the direct problem for modeling land vibroseis
data and the corresponding inverse boundary value problem.
In Section 3, we present the adjoint state equation for the
inverse boundary value problem and an idealized example to
verify the theory. In Section 4, we describe our multi-level,
multi-frequency, and multi-parameter iterative scheme and
illustrate its properties with a computational experiment
recovering geobodies from simple initial models. In
Section 5, we show two computational experiments where
the true models are piecewise smooth with high contrasts
and do not belong to the hierarchy of stable subspaces,
to illustrate the recovery of best approximation in general
applications. In Section 6, we discuss our approach and
the reasoning behind it. To ensure reproducibility of our
experiments, we present our use of the continuous Galerkin
formula for Neumann boundary value problems with PMLs
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in Appendix A, and the first- and second-order adjoint
state method for inverse boundary value problems in
Appendices B and C, respectively.

2 Direct and inverse problem

We consider seismic land acquisition where the forward
modeling can be viewed as solving an elastic boundary
value problem. Vibroseis data (omitting correlation in
time) are modeled by the Neumann-to-Dirichlet map:
the boundary values are given by the normal traction
underneath the base plate of the vibroseis and are zero (free
surface) elsewhere. The applied signal is essentially time-
harmonic (suppressing the sweep) [3, (2.52)–(2.53)]. The
particle velocities—from which the displacements can be
obtained—are measured by the geophones.

Time-harmonic elastic waves are described by the
operator,

Pil = −ρ(x)δil ω
2 + Ail, Ail = −∂xj

cijkl(x) ∂xk
, x ∈ X,

where i, j, k, l ∈ {1, 2, 3}, X ⊂ R
3 and X is the open

bounded domain of interest and ω denotes the frequency.
The relevant boundary value problem is given by

Pilul = 0, (1)

(cinkl∂xk
ul) νn|Σ = gi, (2)

where u is the displacement vector, Σ ⊆ ∂X signifies the
part of the surface on which the acquisition geometry is
defined, and g denotes the time-harmonic boundary normal
traction, or the Neumann boundary condition. The other
computational boundaries that are not the surface, that is,
∂X/Σ , are treated as the PMLs. Details are discussed in
Appendix A. Let m represent the model coefficients, m =
(c, ρ). Proceeding as in the analysis [6], we find a suitable
range of frequencies, that is away from the eigenfrequency
of the problem (1)–(2), such that the problem has a solution
for any model m satisfying suitable prior assumptions. The
displacement fields are measured at the surface, which are
also the Dirichlet data. Thus, we define the so-called local
Neumann-to-Dirichlet map

ΛΣ
m : g �→ u|Σ,

The vibroseis data probe the Neumann-to-Dirichlet
map via applying the boundary normal tractions at Σ

and collecting the displacement information at Σ . The
properties of the data operator ΛΣ

m depend on the model m

and the acquisition set Σ . The forward map is given by

F : m → ΛΣ
m . (3)

Here, we assume that the parameters are real-valued and
known in a neighborhood of Σ and otherwise piecewise
constant on a tetrahedral partition. In the case of isotropic

media, cijkl = λδij δkl +μ(δikδjl +δilδjk). If the parameters
are piecewise constant on a domain partition, X =⋃N

j=1 Dj , where Dj, j = 1, 2, . . . , N are connected and
pairwise nonoverlapping open subdomains, here, tetrahedra,
we arrive at the parametrizations,

λ =
N∑

j=1

λjχDj
(x), μ =

N∑

j=1

μjχDj
(x),

ρ =
N∑

j=1

ρjχDj
(x), (4)

where χ indicates the characteristic function. If the partition
is known with reasonable assumptions [6, Assumptions
2.4 – 2.6], we can show by choosing suitable normal traction
functions g that F is injective and that F−1 is Lipschitz
continuous [6, Theorem 2.7], that is, there exists a constant
C such that

‖m1 − m2‖L2 ≤ C‖ΛΣ
m1

− ΛΣ
m2

‖∗, (5)

where m1 and m2 are two different real-valued coefficients,
that is, the collections of {λj }j=N

j=1 , {μj }j=N

j=1 and {ρj }j=N

j=1 in
Eq. 4; ∗ denotes the operator norm. The constant C grows
essentially exponentially with the number of subdomains.
This number is directly related to spatial scale. The idea is to
pair scale and frequency through the stability constant, which
controls the radius of convergence within a subspace asso-
ciated with this scale. We do not need to know the domain
partition if it consists of subanalytic sets; at the same time, the
domain partition can be viewed as yielding an approxima-
tion and its precise subdomains are not so relevant.

Frequency progression is carried out as a multi-level non-
linear projected steepest descent iteration, reminiscent of
a multi-grid approach, which was introduced and analyzed
in [18]. We emphasize that the (scale-dependent) meshes
defining our domain partitions are chosen independently
from the (frequency-dependent) computational meshes as
illustrated in Fig. 1. The tetrahedral domain partitions are
generated using Tetgen [54]. The linear system (1) and
(2) from a realistically sized problem can be solved by a
massively parallel algorithm [62] with randomized numeri-
cal linear algebra [33]. To solve a large-scale problem with
above 10 million model parameters, we may need to utilize
an iterative method [32] with highly parallel matrix-vector
products [51] to construct a numerical solution at the target
frequency.

3 Adjoint state method for vibroseis data

In this section, we discuss the adjoint problem as a
boundary value problem and formulate the adjoint state
method for vibroseis data. We construct a constrained
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Fig. 1 Illustrations of different meshes. The arrow and red triangles represent the source and receivers. (a) A coarse parameter representation.
(b) A finer parameter representation. (c) The computational mesh

optimization problem with the data residual norm as our
misfit functional. We derive the gradient in an abstract
setting for general parametrization and then consider
the isotropic case for piecewise constant parameters on
an unstructured tetrahedral mesh. For the application of
Newton’s method and a broader understanding, we give
the first- and second-order adjoint state method for the
Neumann-to-Dirichlet map as the data in Appendices B
and C.

3.1 Misfit functional of the inverse boundary value
problem

To implement a reconstruction procedure for the solution
of the inverse problem, we can reformulate the problem
as a constrained optimization problem. More precisely, we
consider

Ψ̃ = 1

2
‖ΛΣ

m − ΛΣ
m�‖2∗,

where m varies in the class of piecewise constant
coefficients and m� denotes the true model. From the theory
developed by [6], one should use the data operator norm ∗.
Assuming our models are known in the subdomain of the
partition containing Σ on its boundary, ΛΣ

m −ΛΣ
m� will be a

Hilbert-Schmidt (HS) operator. We then introduce the misfit
functional using the HS norm [17],

Ψ̃ = 1

2
‖ΛΣ

m − ΛΣ
m�‖2

HS

= 1

2

∞∑

j=1

‖(ΛΣ
m − ΛΣ

m�)ψj‖2
H 1/2(Σ)

, (6)

where {ψj }∞j=1 is an orthonormal basis of the space of

the boundary sources and {ΛΣ
m�ψj }∞j=1 are measured. In

practice, we replace {ψj }∞j=1 by the finite set {ĝs}Ns

s=1 and

omit (1 − Δ)1/2 in our computational experiments while
dealing with H 1/2 norm. This operator (1 − �)1/2 can also
be implemented as a filter [57].

To estimate such an operator norm that is controlled
by the HS norm, the linear combination of sources and
receivers needs to be enough to probe the data operator.

Within one Love wavelength, a few sources and receivers
are needed. Hence, choosing suitable boundary sources
{gs}Ns

s=1 with Ns sufficiently large, the misfit functional

Ψ HS = 1

2

Ns∑

s=1

∫

Σ

χΣ(Rus − ΛΣ
m�g

s)·

(Rus − ΛΣ
m�g

s) dx, (7)

gives a good approximation of Ψ̃ . We note that {gs}Ns

s=1 is
selected as a set of compact support point sources and natu-
rally approximates an orthonormal basis. The Neumann-to-
Dirichlet map generates measurements ΛΣ

mgs = Rus , for
s = 1, 2, . . . , Ns , where s is the source index, Ns is the
total number of sources, ΛΣ

m�g
s represents the data gener-

ated from the true model, R restricts us for each boundary
source to the surface, and χΣ represents a smooth cutoff
function over Σ . In practice, we can use fewer sources and
receivers for reconstruction at low frequency.

3.2 Adjoint state equation and gradient
for the inverse boundary value problem

The adjoint state method was introduced in optimal control
theory [31]. This method [13] was designed to efficiently
calculate the gradient of a functional without computing
Fréchet derivatives of the forward operator F in Eq. 3. The
standard formulation uses the elastic wave equation and
point-source data [59, 60].

Our adjoint state equation can be viewed as an extension
of the classic adjoint state method [42]. To deal with
the boundary data, we note that the adjoint sources are
essentially boundary values instead of body forces, which
is often overlooked. Since our model contains sharp jumps,
the use of the weak formula is necessary. It is also beneficial
for describing major geological discontinuities. The adjoint
equation for inverse boundary value problem should be

−ω2ργlδil − ∂xj
cijkl ∂xk

γl = 0, (8)

with the adjoint boundary value,

(cijkl∂xk
γl) νj |∂X = −χΣR(ũi − u�

i ), (9)

where γ denotes the adjoint wave field; −χΣR(ũi − u�
i )

denotes the adjoint source; ũ is the solution of the forward
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problem (1) and (2). Since the objective function Ψ HS(̃u)

depends on the model m, we then let

E(m) = Ψ HS(̃u).

Combining contributions from all the available sources, we
obtain,

DmE[m] δm =
∑

s

{ ∫

X

−ω2ũs
i γ̃

s
i

∂ρ

∂m
δm dx

+
∫

X

(∂xj
ũs

i ) (∂xk
γ̃ s
l )

∂cijkl

∂m
δm dx

}
= (∇E, δm), (10)

where γ̃ denotes the solution of the adjoint problem (8) and
(9); DmE[m] denotes the derivative; and ∇E[m] denotes
the gradient. In this work, we will update VP and VS

alternatively from the updated Lamé parameters. More
details of the derivation can be found in Appendix B. It has
been pointed out that the difference between the derivative
DmE[m] and gradient ∇E[m] is sometimes overlooked
and the corresponding scaling of the gradient is essential
for the convergence of the gradient-based optimization
approaches [30]. The scaling factors rely on the choice of
inner products. The discretized inner product, (m1, m2) =
mT

1Wm2, contains a symmetric positive definite weight W.
We note that the weight W can naturally be constructed
via the Galerkin approximation from the predefined inner
product.

3.3 An idealized computational experiment using
single-frequency data

To follow the theory [6] closely, here, we use an example
to show the convergence using single-frequency data, if the
exact partition is known. Some preliminary results can be
found in [50]. We use a complex salt problem using the

extended SEG Advanced Modeling Program (SEAM) phase
I model [22]. To describe the model using fully unstructured
tetrahedral meshes, we need to triangulate the exterior
and internal discontinuities. To illustrate the procedure,
which is similar to the work in medical imaging [21],
we utilize image segmentation for generating the surface
meshes for discontinuities using the Computation Geometry
Algorithms Library (CGAL) [20] and then construct the
entire volume meshes. We separate the model into four
domains to capture the major geological features (see Fig. 2,
similar to the early work [63]). Once these surface meshes
are generated, we use Tetgen to generate the entire
unstructured tetrahedral mesh. We note that this procedure
is flexible and allows us to control the quality of our desired
mesh, including the smoothness of the surface mesh, the
number of triangles and tetrahedra.

The true model, which is shown in Fig. 3 (at) and (bt)
for VP and VS , respectively, is piecewise constant. The
model size is 7 km×8 km×3 km. Each model contains 14
subdomains that form the four main subdomains in Fig. 2.
Each main subdomain is equally divided into three to four
subdomains. We use 3.0 Hz data to perform the inversion
with 40 iterations. Fifty-six (nx = 7, ny = 8) sources are
regularly spaced on the top boundary and represent three
directional tractions. Fifty-six (nx = 7, ny = 8) receivers
are also regularly spaced in the top boundary. The sources
and receivers are not spatially coincident. The smallest
offset is around 50 m. In Fig. 3 (a0) and (b0), we show
the starting VP and VS models. Since the partitioning of
the true models is known and the number of subdomains is
small, we match the assumption in the theory [6] and expect
that the stability constant is small. Hence, the reconstruction
shown in Fig. 3 (af) and (bf) is good. The values of
the bottom two layers are affected due to the PMLs. We

Fig. 2 Composition of the mesh
of the extended SEAM phase I
model. (a) Mesh underneath the
salt body. (b) Mesh of the salt
body. (c) Mesh around the salt
body. (d) Mesh of the original
water bottom
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Fig. 3 Left column: VP models, (a0) starting VP model, (af) recon-
structed VP model, (at) true VP model; right column: VS models,
(b0) starting VS model, (bf) reconstructed VS model, (bt) true VS

model. The model size is 7 km×8 km×3 km. Middle slices, that is,
x = 3.5 km, y = 4.0 km, z = 1.5 km, are shown in all figures. The x

axis points outwards and the y axis points from left to right

verify the theoretical analysis [6] using this example with
single-frequency partial boundary data and known domain
partition. The salt body that was completely missing in the
initial model is successfully recovered. In fact, since the
number of subdomains is known, we can start with relatively
higher frequency.

4 Computational study: progressive
refinement

In this section, we develop a computational, multi-level
approach consistent with the theory accounting for the fact
that the stability constant will grow exponentially with the
number of subdomains in the partition. This multi-level
technique allows the radius of convergence to be enlarged.
We scale the gradient with the diagonal of the Gauss-
Newton Hessian, HGN say; this scaling appears as a weight
matrix on the left-hand side of (10). We note that the use
of projections (corresponding to iterative regularization)
allows us to avoid over-parameterization. We demonstrate
the convergence with piecewise constant models containing
shallow and deep geological structures. The true model used
in this section contains complex geological features using
mentioned tetrahedral representations.

In the iteration, we make a simplification by choosing a
fixed step size following rules explained below. We update
VP and VS alternatively from the updated Lamé parameters.
A level-wise stopping criterion, as well as rules for gradual
refinement of the domain partition together with frequency
progression, is discussed in the following subsections. We
demonstrate that a piecewise constant 1D layered initial
model suffices to obtain convergence. This initial model has
very few parameters and will be an approximation (in L2

norm) to the true model. We typically start the multi-level
scheme with 1.0- or 1.5-Hz data necessitated by the general
complexity of the true models.

4.1 Iterative regularization and strategy

In this subsection, we discuss our iterative regularization
strategy and rules associated with the aforementioned
multi-level projected steepest descent method. Our initial
subdomains have roughly cubical shapes since we have
limited knowledge about the subsurface. We choose the
frequency roughly proportional to the cubic root of the
number of subdomains, N . This choice is motivated by
minimizing the upper bound for the stability constant
(maximizing the radius of convergence) in frequency for a
given number of subdomains [5, (41)]. In the acoustic case,
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the stability constant is studied quantitatively as well and
the choice of frequency can be evaluated from a quantitative
estimate [5]. Given r as the average radius of the subdomain
and cm as the shortest (shear-)wave speed, we have

N = Vol(X)

r3
= Vol(X)

[α(cm/ω)]3
= α−3ω3c−3

m Vol(X), (11)

where α = r/(cm/ω) is a scaling factor. In Table 1, we
summarize our observations of different choices of (ω, N)

pairs. A small N may cause an issue of poor resolution
while a large N may result in divergence. If N is increased
too rapidly the current model might no longer be within the
radius of convergence of the next level approximation of
the “true” model. In Fig. 4, we show the choices of (ω, N)

pairs in the later sections. In practice, we relate the diameter
of a subdomain, r , to the wavelength and determine the
normalization of the diameter of a subdomain by the
shortest (shear-)wavelength, cm/ω. This is not dissimilar
from homogenization [12].

The (fixed) step length is chosen in accordance with the
following rule. First, we scale the gradient of the misfit
functional by the diagonal of the Gauss-Newton Hessian.
Then, we determine the energy norm of the gradient and
multiply it with the maximum value of VP or VS at the
current iteration. Since the computational cost for linear
search is quite high, we typically take 10% of this value as
the step size. At the lowest levels, we can enlarge the step
size for computational efficiency.

It will also help us to check if we obtain linear
convergence, since the stability constant C in Eq. 5 is
related to the slope of the residual curve, which is shown in
Section 5. We monitor the decrease in residual as well as the
norm of the gradient [38, Chapter 3]. We stop the level-wise
iteration when the relative change in residual when updating
VS is less than 1%; however, if the norm of the gradient
determining the update of VS becomes less than 1% of the
norm of the initial gradient, we stop the iteration as well.

We also monitor the initial convergence rate: if it is linear,
we are within the radius of convergence to obtain the best
approximation at the next level. The convergence is valid
only on the projected space. Hence, a range of models can
be good approximations to the true one as long as they stay
in the convergence radius of the next level. Here we exploit
that due to Lipschitz stability, the convergence is necessarily
linear as proved in [18]. We adjust the refinement of the

Table 1 Observations of different choices of (ω, N) pairs

Choices Observations

ω � αcm[N/Vol(X)]1/3 Possible to diverge

ω ≈ αcm[N/Vol(X)]1/3 Relatively optimal

ω � αcm[N/Vol(X)]1/3 Convergence with poor resolution

10 2 10 4

N

1

1.5

2

2.5

3

/2
 (

H
z)

Section 4.3
Section 5.1
Section 5.2

Fig. 4 Choices of different (ω, N) pairs in different sections. The
numerical slopes of the curves indicate that ω ∼ N0.264, N0.333 and
N0.264 for the experiments in Section 4.3, Section 5.1 and Section 5.2,
respectively

domain partitioning accordingly. The choice of N in Eq. 4
and ω pair is important.

The initial convergence rate can illustrate the success of
the reconstruction and let us know if the starting model is in
the convergence radius.

4.2 Domain partition

The computational subdomain refinement procedure is
important for the reconstruction. In principle, the fully
unstructured mesh allows us to design arbitrary domain
partition. Figure 5 illustrates the local refinement of the
parametric representations from level to level. At each level,
we partition the computational mesh into the subdomains
with a size of approximately half of the shear wavelength.
During the inversion, these subdomains are utilized as
the projections onto a hierarchy of stable subspaces. In
the later Section 4.3 and 5, we utilize box-like partitions
at different levels as shown in Fig. 5. Ideally, the local
partition can be performed based on the gradient and model
information. Other techniques, such as the random mesh
projectors [28] used in machine learning community and
shape optimization [52], can further be applied to improve
the modeling of complex geological features. We note that
the classical Tikhonov weights can also be space-dependent
and can help to adjust the local velocities. The meshing
technique extends the generality and can help to model
known discontinuities, such as topography, arid terrains, and
karst fields [48].

4.3 An idealized computational experiment
illustrating convergence radii

To verify that our proposed iterative regularization using
projections onto a hierarchy of stable subspaces leads to
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Fig. 5 Refinement (from (a) to
(b) to (c)) on the parametric
representations. (a) A single
piece at the first level. (b) Eight
pieces at the second level.
(c) Sixty-four pieces at the third
level

convergence, we present a computational experiment in which
the true model is piecewise constant, and it is recovered on a
tetrahedral mesh. We consider geological bodies with rough
shapes and high-contrast variations in P- and S-wave speeds.
In the experiment, the wave speeds at the boundary are
assumed to be known. The model contains a background
structure of three (plane) layers with constant wave speeds
while the heterogeneous bodies are contained in the middle
layer. The background structure is used as the starting model.

First, we study the reconstruction of shallow hetero-
geneities. Figure 7 (at) and (bt) show the true VP and VS

models. Figure 7 (bt) shows the mesh. These shallow bodies
have different shapes and wave speed values higher or lower
than the background wave speed values. The sizes of the
bodies vary from 200 m to 3 km. The P-wave speed contrast
varies from −0.9 to 0.8 km/s and the S-wave speed contrast
varies from −0.52 to 0.46 km/s. At 1.0 Hz, the diameter
of the subdomain is 0.5 km and the shortest wavelength is
around 1 km.

The depths of the bodies range from 200 m to 1.5 km.
The starting model has three constant P- and S-wave speeds
in layers shown in Fig. 6 (a0) and (b0). The model size is
8 km×4 km×3 km and contains 1.3 million elements.

We design three levels for the recovery, with each level
providing a rough box-like domain partition of the model.
The first level contains 252 (nx = 14, ny = 6, nz = 3)
subdomains, the second level contains 2016 (nx = 28, ny =
12, nz = 6) subdomains, and the third level contains 16128
(nx = 56, ny = 24, nz = 12) subdomains. For each level,
we perform a maximum of 150 iterations for the reconstruc-
tion at a fixed frequency. Eighty (nx = 16,ny = 5) sources
are regularly spaced in the top boundary and represent three
directional tractions. Eighty (nx = 16, ny = 5) receivers are
also regularly spaced in the top boundary. The sources and
receivers are not spatially coincident. The smallest offset is
around 50 m.

Following Section 4.1, at the first level, we select 1.0-Hz
data, and the results are shown in Fig. 6 (a1) and (b1). At the

Fig. 6 Left column: VP models,
(a0) starting VP model, (a1)
reconstructed VP model at the
first level, (a2) reconstructed VP

model at the first level; right
column: VS models, (b0) starting
VS model, (b1) reconstructed VS

model at the first level, (b2)
reconstructed VS model at the
second level. The model size is
8 km×4 km×3 km. In the
bottom layer, VP = 4.0 km/s
and VS = 2.31 km/s
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Fig. 7 Final reconstructions: (a3) inverted VP model at the third level, (b3) inverted VS model at the third level; true model: (at) VP , (bt) VS . The
model size is 8 km×4 km×3 km. In the bottom layer, VP = 4.0 km/s and VS = 2.31 km/s

second level, we select 2.0-Hz data; the results are shown in
Fig. 6 (a2) and (b2). At the third level, we select 3.0-Hz data,
and the results are shown in Fig. 7 (a3) and (b3). Figure 8
shows the true uy data at different frequencies. Figure 8 (a1–
a2, b1–b2, c1–c2) shows a uy data residual (associated with
a centrally located source) from level to level.

For the piecewise constant case, the model representation
follows Eq. 4 exactly. Since we begin with a constant layered
model, low-frequency data are important to find the rough
anomalies. The later local refinement allows us to capture
details of the anomalies. The multi-level strategy with sub-
domain refinement is suitable to capture the main anomalies.
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Fig. 8 Data differences from a given boundary traction at the cen-
ter of the upper surface: at 1.0 Hz, (a1) uy difference between the
starting (cf. Fig. 6(a0,b0)) and true (cf. Fig. 7(at,bt)) models, (a2) uy

difference between the level 1 (cf. Fig. 6(a1,b1)) and true models, (a3)
uy data from the true models; at 2.0 Hz, (b1) uy difference between

the level 1 and true models, (b2) uy difference between the level 2
(cf. Fig. 6(a2,b2)) and true models, (b3) uy data from the true models;
at 3.0 Hz, (c1) uy difference between the level 2 and true models, (c2)
uy difference between the level 3 (cf. Fig. 7(a3,b3)) and true models,
(c3) uy data from the true models
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Fig. 9 A vertical slice of the
SEG thrust model from a
three-dimensional regular file
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5 Computational experiments:
multi-parameter elastic FWI

In this section, we study the performance of our FWI
algorithm in two cases as the best approximate models are
computed in a hierarchy of stable subspaces defined by
tetrahedral mesh refinement. We note that both true models
are piecewise smooth. The true data are generated from the
true model with the true mesh with complicated geometries.
The simulated data are generated from the model with
the computational mesh. In current experiments, no noise
is included in the simulated data. However, for the low-
frequency updates, since we use fewer subdomains, the
stability constant is small, the reconstruction can tolerate
noise.

5.1 SEG thrust model

To verify that our proposed iterative regularization (using
projections onto a hierarchy of stable subspaces) leads to
convergence, we present one computational experiment, in
which the true model is represented and recovered on a
tetrahedral mesh. In this example, we use the SEG thrust
model as the true one.

To illustrate the mesh generation, we use a two-
dimensional slice, see Fig. 9, as an example to perform
image segmentation. The top row of Fig. 10 shows several
individual features in Fig. 9. We illustrate the three-
dimensional surface mesh in the bottom row of Fig. 10. This
procedure is helpful for multi-resolution analysis.

Figure 11 (a0) and (b0) show the starting VP and VS

models, which are far away from the true models in Fig. 12
(at) and (bt). The starting models can be obtained from
tomographic results. The size of the SEG thrust model is
16 km×4.41 km×3 km. The left columns in Figs. 11 and

12 show the vertical slice of the VP models at y = 1.5 km
and both right columns show the horizontal slice of the VS

models at z = 0.8 km. As mentioned in Section 1, we start
from 1.5 Hz, which can be obtained in the field [56].

We design three levels for the recovery, with each level
providing a rough box-like domain partition of the model.
The first level contains 960 (nx = 24, ny = 8, nz = 5)
subdomains, the second level contains 3840 (nx = 48,

ny = 8, nz = 10) subdomains, and the third level contains
7680 (nx = 48, ny = 16, nz = 10) subdomains. For
each level, we perform a maximum of 120 iterations for
the reconstruction at a fixed frequency. A total of 240
(nx = 30, ny = 8) sources are regularly spaced in the top
boundary and represent three directional tractions. These
three components are treated separately. Two hundred forty
(nx = 30, ny = 8) receivers are also regularly spaced in
the top boundary. The sources and receivers are not spatially
coincident. The smallest offset is around 50 m.

Following Section 4.1, at the first level, we select 1.5-
Hz data, and the results are shown in Fig. 11 (a1) and (b1).
At the second level, we select 2.385-Hz data; the results
are shown in Fig. 11 (a2) and (b2). At the third level, we
select 3.0-Hz data, and the results are shown in Fig. 12 (a3)
and (b3). The width of the PMLs is 0.7 km and the models
(16 km×4.41 km×3 km) that are shown contain the PMLs.
Hence, the boundary box of the VS shown in Fig. 12 (b3) is
not well updated.

We show that the proposed strategy can work on the
classic layered model problem. While the conventional
FWI approaches usually begin with a smooth tomographic
model as the starting model, based on the analysis, we
start with a low-dimensional piecewise constant model. We
check if the start model is in the convergence radius by
monitoring convergence rates. Fig. 13 shows the residuals
of the misfit at different levels. The residuals drop to 10%,
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Fig. 10 Surface mesh generation. Top row: image segmentations of each individual geological features; Bottom row: three-dimensional surface
mesh for the coressponding features
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Fig. 11 Top row: VP models; (a0) starting VP model, (a1) recon-
structed VP model at the first level, (a2) reconstructed VP model at
the second level; Bottom row: VS models; (b0) starting VS model, (b1)
reconstructed VS model at the first level, (b2) reconstructed VS model

at the second level. The model size is 16 km×4.41 km×3 km. In (a0),
(a1), and (a2), y = 1.5 km and the slice size is 16 km×3 km. In (b0),
(b1), and (b2), z = 0.8 km and the slice size is 16 km×4.41 km
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Fig. 12 Final reconstructions: (a3) inverted VP model at the third
level, (b3) inverted VS model at the third level; true model: (at) VP ,
(bt) VS . The model size is 16 km×4.41 km×3 km. In (a3) and (at),

y = 1.5 km and the slice size is 16 km×3 km. In (b3) and (bt), z = 0.8
km and the slice size is 16km ×4.41 km
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Fig. 13 The residuals of the misfit at different levels. The residuals drop to 10%, 17%, and 30% of the starting value at the first, second, and third
levels, respectively. The purple line shows the residual decay with a much larger N = 61448 at the third level. The y axis is on the log scale. The
red lines show that the residuals reach the stopping criteria
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17%, and 30% of the starting value at the first, second,
and third levels, respectively. It also shows the residual
decay with a much larger N = 61448 at the third level.
The residual decay is slow and the updated model does not
have much improvements. It confirms our observations in
Table 1. Since the slope of the residuals stays approximately
constant, it is consistent with the analysis that the slopes of
the residual curves are proportional to the stability constant
C in Eq. 5. We monitor the residual curves and stop the
iteration when the residual decay is roughly no longer
linear. We expect that the results can further be improved
using higher frequency data with higher computational
costs.

5.2 SEAM

Here, we return to the SEAM as our example. In our test
case, the starting model shown in Fig. 14 (a0–b0) has six
planar layers; on each layer, the P- and S-wave speeds are
constant. The true model shown in Fig. 15 (at–bt) is adapted
from SEAM Phase I; the original water layer and model
size have been modified. The top layer contains a Poisson
solid with constant P-wave speed 2.1 km/s. Note that the
true model is piecewise smooth, but not piecewise constant,
and therefore lies outside the stable subspace hierarchy.
The model size is 7 km×8 km×3 km and each model
contains 1.1 million elements. Figure 16 shows the true
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Fig. 14 Left column: Vp models; (a0) starting VP model, (a1) recon-
structed VP model at the first level, (a2) reconstructed VP model at
the first level; Right column: VS models; (b0) starting VS model, (b1)

reconstructed VS model at the first level, (b2) reconstructed VS model
at the second level. The model size is 7 km×8 km×3 km. The x axis
points inwards and the y axis points from left to right
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Fig. 15 Final reconstructions: (a3) inverted VP model at the third level, (b3) inverted VS model at the third level; true model: (at) VP , (bt) VS . The
model size is 7 km×8 km×3 km
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Fig. 16 Data differences from a given boundary traction at the center
of the upper surface: at 1.0 Hz, (a1) uz difference between the starting
(cf. Fig. 14(a0,b0)) and true (cf. Fig. 15(c,d)) models, (a2) uz differ-
ence between the level 1 and true models, (a3) uz data from the true
models. At 2.0 Hz, (b1) uz difference between the level 1 and true

models, (b2) uz difference between the level 2 and true models, (b3)
uz data from the true models. At 3.0 Hz, (c1) uz difference between
the level 2 and true models, (c2) uz difference between the level 3 and
true models, (c3) uz data from the true models
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Fig. 17 Error log plots for data.
(a) The data residuals at
different levels; the red lines
show that the residuals reach the
stopping criteria; the circle
indicates that we stop at the
maximum iteration. (b) The data
residual at the first level with
different number of subdomains
coupled with different
frequencies. The blue curve is
the same blue curve in (a)
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vertical displacements at different frequencies. At 1.0 Hz,
the diameter of the subdomain is again about 0.5 km and the
shortest wavelength is around 1 km.

As before, we design three levels for the recovery,
each level providing a rough box-like domain partition of
the model. In this example, we also include lateral PML
regions for the update. The first level contains 840 (nx =
14, ny = 12, nz = 5) subdomains, the second 6720 (nx =
28, ny = 12, nz = 10) subdomains, and the third 53760
(nx = 56, ny = 24, nz = 20) subdomains. At each level,
we perform 75 iterations for the reconstruction at a fixed
frequency. A total of 56 (nx = 7, ny = 8) sources are
regularly spaced on the top boundary and represent three
directional tractions. Fifty-six (nx = 7, ny = 8) receivers
are also regularly spaced in the top boundary. The sources
and receivers are not spatially coincident. The smallest
offset is around 50 m.

We also select 1.0-Hz, 2.0-Hz, and 3.0-Hz data respec-
tively for the first level (Fig. 14 (a1–b1)), second (Fig. 14
(a2–b2)), and third levels (Fig. 15 (a3–b3)). Figure 16 (a1–
a2, b1–b2, c1–c2) shows the decay in uz data residual (for a
centrally located source) from level to level.

In Figs. 17 and 18, we show data and model errors
during our iterations. Figure 17(a) plots the data residual
over the course of the algorithm at different levels. As the

plot shows, the behavior of the residual change is consistent
with a projected gradient-based method. In the first several
iterations, the errors decay linearly, which indicates the
procedure is converging to the next best approximation that
we can obtain. In Fig. 17(b), we plot the data residual over
different number of subdomains (N = 120, 840, 3200, plus
a fixed near surface layer) at the first level. It shows that
when N is too small, that is, the diameter of the subdomain
is too large, the residual may diverge in the later inversion
because the inverted model may not stay in the convergence
radius of the next level; when N is too large, that is, the
diameter of the subdomain is too small, the residual may
also diverge even using a smaller step size. It confirms
our observations in Table 1. Since we start without prior
information in this experiment, it is challenging to capture
large-scale anomalies. It is important to set up a proper N

and ω pair. As described in Section 4.1, we check whether
the coupled choice of N and ω brings us within the radius
of convergence. We point out that the convergence is solid
only on the projected space. We check this by monitoring
convergence rates as illustrated in Fig. 17(a) and (b). The
projected model errors in Fig. 18 show linear convergence
rates at different levels as they should. The slopes of the
residual curves are related to the stability constant C in
Eq. 5. These linear convergence rates apply directly to the

Fig. 18 Error log plots for
Figs. 14 and 15. (a) The
projected λ model errors at
different levels. (b) The
projected μ model errors at
different levels. Here we
compute the errors between the
current model and the best
projected model at the current
level
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Table 2 Final model relative errors between models at different level
and the projected true model and final relative residuals at different
levels and frequencies

Relative errors Start Level 1 Level 2 Level 3

VP (L2) 1.0 0.447 0.272 0.192

VS (L2) 1.0 0.361 0.213 0.168

L2 residuals at 1.0 Hz 1.0 0.027

L2 residuals at 2.0 Hz 1.0 0.0632

L2 residuals at 3.0 Hz 1.0 0.125

reconstructions level by level, as illustrated in Fig. 18. The
convergence of the best approximations in each level to the
true model and relative residuals is illustrated in Table 2. We
note that the projected true model may not always be the
best approximation at each level.

6 Discussion

We presented a scheme for multi-parameter elastic FWI
with iterative regularization, motivated by a new result [6]
on uniqueness and a conditional Lipschitz stability esti-
mate for model representations that are piecewise constant
on unstructured tetrahedral meshes in the inverse boundary
value problem associated with vibroseis data. We devel-
oped a procedure to generate a hierarchy of such repre-
sentations or parametrizations via adaptive mesh refine-
ment. Such a hierarchy enabled an implementation of the
multi-level scheme—with frequency-scale progression—
introduced and analyzed in [18] which comes with condi-
tions for convergence. The iterative regularization is numer-
ically implemented to avoid over-parameterization of the
original problem. Note that we do not need strict mesh
refinement as we can change coarser elements from level
to level. We could even run Poisson-Voronoi with multi-
ple realizations at each level. In a second pass, for each
level, you can search for the best linear combination of
the realizations. The hierarchy of parametrizations allows
robust estimation of salt bodies with rough shapes and
complex geological structures from simple starting models.
Our starting models are typically constructed with a few
blocks. Recent progress in the development of massively
parallel structured direct solvers [62] makes it possible to
apply our scheme to realistically sized problems. From the
underlying mathematical analysis, we expect that the esti-
mation of highly complex geological structures far from,
say, models with piecewise smooth P- and S-wave speeds
requires low-frequency data as confirmed by our computa-
tional experiments. This is in agreement with recent work
[49].
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Appendix A: Formulation of perfectly
matched layers with the Neumann boundary
conditions

The PML technique [4] was first implemented and used in
a finite-difference time-domain method for the computation
of electromagnetic waves. A more straightforward and
convenient approach [14] was introduced by using complex
coordinate stretching to build the same PMLs. Here, we will
follow the work for the isotropic case [65] with the caveat
that the half-space problem with a Neumann boundary
condition on the top requires some adaptations. That is,
we will need a constraint for the damping function in
constructing the PMLs.

We let Si(xi) be a complex-valued damping function.
We note that each Si(xi) is only a function of xi and
is independent of other coordinates. We adjust the partial
derivatives, ∂xi

→ 1
Si

∂xi
, with Si being identically one in

the domain of interest and complex-valued inside the PML
region.

Numerically, we expect ul |∂X/Σ → 0. The boundary
value problem (1)–(2) takes the form
{

(−ρ(x)ω2δil − 1
Sj

∂xj
cijkl(x) 1

Sk
∂xk

)ul = 0,

(cijkl
1
Sk

∂xk
ul) νj |Σ = gi .

(12)

To arrive at the weak formulation, we need to carry
out the following steps. We multiply both sides of (12) by
S1S2S3,

(−S1S2S3ρ(x)ω2δil − ∂xj
cijkl(x)

S1S2S3

SjSk

∂xk
)ul = 0,

noting that S1S2S3/Sj is not a function of xj . We now
introduce coefficients,

ρ̃(x) = S1S2S3ρ(x), c̃ijkl(x) = cijkl(x)
S1S2S3

SjSk

,

x ∈ X ∪ ∂X, (13)

where X ∪ ∂X is the computational box with PML inside
X. When we apply the classical PML coefficient Sj , we
observe the reflected surface waves from the corners of
the upper surface. This is because we have a mismatch
between PML and the Neumann boundary condition. Here
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we modify the PML coefficient so that we can deal with the
boundary conditions properly. We let

Sj |∂X = 1, for j = 1, 2, 3. (14)

We multiply S1S2S3 to both sides of the Neumann boundary
condition,

(cijkl

S1S2S3

Sk

∂xk
ul) νj |Σ = (cijkl

S1S2S3

SjSk

∂xk
ul) νj |Σ

= (c̃ijkl∂xk
ul) νj |Σ = S1S2S3ui . (15)

We note that we replace the original coefficients cijkl with
the new coefficients c̃ijkl at the boundary.

Considering that S1S2S3gi |Σ = gi |Σ , we obtain the
modified strong formulation,

(−ρ̃(x)ω2δil − ∂xj
c̃ijkl(x)∂xk

)ul = 0, (16)

(c̃ijkl∂xk
ul) νj |Σ = gi . (17)

Since we now have standard derivatives without any
complex functions, we are now able to apply the continuous
Galerkin finite element approximation to the system with
PMLs. We then construct the local matrices on each element
and assemble these local matrices into the global matrix.
The strategy is similar to the standard work [26].

Appendix B: First-order adjoint state
method: the gradient

Elastic FWI can be formulated as an optimization problem
with equality constraints.

Since we deal with inverse boundary value problems, to
extract the adjoint boundary values for misfit functional,
we revisit the classical first-order adjoint state method.
We consider a single source g here and sum over all
the available sources later. The optimization problem
minimizing Ψ HS(u) in Eq. 7 takes the form,

argmin
m

Ψ HS(u) subject to
∫

X

(
− ω2ρuivi + (∂xj

vi)cijkl∂xk
ul

)
dx

=
∫

Σ

givi dx, ∀v ∈ H 1(X), (18)

where the constraint in Eq. 18 represents the weak form of
the entire boundary value problem (1)–(2), u denotes the
weak solution and v denotes the test function. H 1 denotes
the Sobolev space of square-integrable functions with
square-integrable weak first-order derivatives. We point
out that the boundary value problems with discontinuities
in the media can naturally be solved in the weak sense.
Additionally, to obtain the adjoint boundary value, one
needs to derive the adjoint formula in the weak sense.

To compute the gradient of the functional involved, we
use a Lagrangian approach, the constrained optimization

problem is cast into a formulation with Lagrange multi-
pliers γ ,

L(m, u, γ ) = 1

2

∫

∂X

χΣR(ui − u�
i ) · R(ui − u�

i ) dx

+
∫

X

(
− ω2ρuiγi + (∂xj

ui) cijkl ∂xk
γl

)
dx

−
∫

Σ

giγi dx, (19)

where u� denotes the solution in the true model m�. Given
some m, we let ũ = ũ(m) be the solution to the forward
boundary value problem and write

L(m, ũ, γ ) = Ψ HS(̃u) = E(m). (20)

Since we consider piecewise constant models as described
in Eq. 4, E is a Fréchet differentiable function E : V → R,
where V is a finite-dimensional vector space, the derivative
DmE[m] exists. Since the Fréchet derivative is continuous,
the Riesz representation theorem can be applied, here, using
the L2 inner product in the model space [9]:

DmE[m]δm = (∇E, δm), ∀ m ∈ V,

where ∇E denotes the gradient and DmE is defined as the
linear operator

DmE[m] : δm �→ d

dt

∣
∣
∣
t=0

E(m + tδm), δm ∈ V .

Since the Fréchet derivative of ũ(m) exists, the Fréchet
derivative of E(m) with respect to m in the direction δm

attains the form

DmE[m] δm = DmL(m, ũ, γ ) δm

=
∫

X

−ω2ũiγi

∂ρ

∂m
δm dx

+
∫

X

(∂xj
ũi)(∂xk

γl)
∂cijkl

∂m
δm dx

+
∫

X

(
− ω2ργi(Dmũi[m] δm)

+∂xj
(Dmũi[m] δm) cijkl ∂xk

γl

)
dx

+
∫

∂X

(
R(Dmũi[m] δm) χΣR(̃ui −u�

i )
)

dx.

(21)

We choose the adjoint state, γ̃ = γ̃ (m), so that (m, ũ, γ̃ ) is
a stationary point of the Lagrangian [16, 42, 61].

Thus, applying the calculus of variations, we let γ̃ solve
∫

X

(
− ω2ργivi + (∂xj

vi) cijkl (∂xk
γl)

)
dx

+
∫

∂X

vi χΣR(̃ui − u�
i ) dx = 0, ∀v ∈ H 1(X). (22)

From Eq. 22, it follows that the first-order adjoint state
equation for the boundary value problem takes the form of
Eqs. 8 and 9. Clearly, the adjoint boundary value problem
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(8)–(9) is well-posed in the weak sense. Substituting
v = Dmũ[m] δm in Eq. 21, we avoid computing Dmũ[m]
explicitly and obtain,

DmE[m] δm = (∇E, δm) =
∫

X

−ω2ũi γ̃i

∂ρ

∂m
δm dx

+
∫

X

(∂xj
ũi)(∂xk

γ̃l)
∂cijkl

∂m
δm dx. (23)

Summing over all available sources, we arrive at Eq. 10.

Appendix C: Second-order adjoint state
method for the inverse boundary value
problem

Since the vibroseis data lead to the inverse boundary value
problems, we present the evaluation of (full and Gauss-
Newton) Hessian-vector multiplication. For the analogous
evaluation in the case of traditional FWI, several previous
works [23, 36, 44] have been performed.

C.1 Full Hessian-vector product computation

To begin with, we consider the optimization problem with
equality constraints with a single source,

min
m

Ψ1(u, u1) subject to
∫

X

(
− ω2ρuiv1i + (∂xj

v1i ) cijkl ∂xk
ul

)
dx

=
∫

Σ

giv1i dx, ∀v1 ∈ H 1(X),

∫

X

(
− ω2ρu1ivi + (∂xj

vi) cijkl ∂xk
u1l

)
dx

= −
∫

X

(
− ω2(δlρ)uivi + (∂xj

vi) (δlc)ijkl ∂xk
ul

)
dx

+
∫

∂X

−[
(δlc)ijkl∂xk

ul

]
νj vi dx, ∀v ∈ H 1(X),

in which

Ψ1(u, u1) = DmΨ (u)δl =
∫

∂X

χΣR(ui − u�
i )Ru1i dx,

(24)

where Ψ was introduced in Eq. 18, δl is the parameter
perturbation, m + δl, δlc is the stiffness tensor part
of parameter perturbation δl, δlρ is the density part of
parameter perturbation δl, and u1 is the first-order perturbed
field with respect to m along δl.

We derive the full Hessian-vector product for the inverse
boundary value problem. We have two forward problems: ũ

is the weak solution to the direct problem (1)–(2) and the
other generates ũ1, which is the solution to

Pilu1l = ω2(δlρ )̃ulδil + ∂xj
(δlc)ijkl ∂xk

ũl ,

supplemented with the boundary condition,

(cijkl∂xk
u1l) νj |∂X = −[

(δlc)ijkl∂xk
ũl

]
νj |∂X,

We introduce two Lagrangian multi-parameters γ and
γ1 to replace v and v1. Following a similar argument in
Appendix B, we choose γ̃ to be the weak solution to the
first adjoint boundary value problem (8)–(9), and γ̃1 to be
the weak solution to the the second adjoint boundary value
problem, which is given by

Pilγ1l = δlρω2γ̃lδil + ∂xj
[(δlc)ijkl∂xk

γ̃l],
(cijkl∂xk

γ1l) νj |∂X = −((δlc)ijkl∂xk
γ̃l) νj |∂X − χΣRũ1i .

When summing over available boundary sources, gs , we
obtain the Hessian-vector product,

Hδl(·) =
∑

s

∫ [

−ω2ũ1
s
i γ̃

s
i

∂ρ

∂m
(·)+(∂xj

ũ1
s
i ) (∂xk

γ̃ s
l )

∂cijkl

∂m
(·)

]

dx,

+
∫ [

−ω2ũs
i γ̃1

s
i

∂ρ

∂m
(·)+(∂xj

ũs
i ) (∂xk

γ̃1
s
l )

∂cijkl

∂m
(·)

]

dx

+
∫

(∂2
mPδl(·) ũs) · γ̃ s dx, (25)

where the data residual information is hidden in the adjoint
wavefield, γ̃ s and γ̃1

s ; Pδl is a short-hand representation of
Pil acting on δl.

C.2 Gauss-Newton Hessian-vector product
computation

For the Gauss-Newton method, we consider the least-
squares misfit and aim to compute the Gauss-Newton
Hessian-vector product via the constrained minimization
problem [36]. We consider a new objective function Ψ GN ,

min
m

Ψ GN(u) subject to
∫

X

(
− ω2ρuivi + (∂xj

vi)cijkl∂xk
ul

)
dx

=
∫

Σ

givi dx, ∀v ∈ H 1(X),

in which

Ψ GN(u) =
∫

∂X

χΣRuiRũ1i dx.

With analogous derivation as the second-order adjoint state
method, we introduce a Lagragian multiplier η and let η̃ to
be the weak solution to the Gauss-Newton adjoint equation

Pilηl = 0, (26)

νj (cijkl∂xk
ηl)|∂X = −χΣRũ1i . (27)

We have a new adjoint equation for Gauss-Newton Hessian-
vector product, which means we need to solve one
more equation to retrieve a Gauss-Newton Hessian-vector
multiplication.
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Then, for any choice of the parameters, we have

HGN δl(·) =
∑

s

{∫

−ω2ũs
i η̃

s
i

∂ρ

∂m
(·) dx

+
∫

(∂xj
ũs

i ) (∂xk
η̃s

l )
∂cijkl

∂m
(·) dx

}

, (28)

Note that δl is hidden in the Gauss-Newton adjoint
wavefield η̃.
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