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Abstract

Coral reefs are essential to millions of island inhabitants. Yet, coral reefs are threatened by

thermal anomalies associated with climate change and by local disturbances that include

land-use change, pollution, and the coral-eating sea star Acanthaster solaris. In combina-

tion, these disturbances cause coral mortality that reduce the capacity of reefs to produce

enough carbonate to keep up with sea-level rise. This study compared the reef-building

capacity of shallow-water inner, patch, and outer reefs in the two islands of Pohnpei and

Kosrae, Federated States of Micronesia. We identified which reefs were likely to keep up

with sea-level rise under different climate-change scenarios, and estimated whether there

were differences across habitats in the threshold of percentage coral cover at which net car-

bonate production becomes negative. We also quantified the influence of A. solaris on car-

bonate production. Whereas the northwestern outer reefs of Pohnpei and Kosrae had the

highest net rates of carbonate production (18.5 and 16.4 kg CaCO3 m-2 yr-1, respectively),

the southeastern outer reefs had the lowest rates of carbonate production (1.2–1.3 and 0.7

kg CaCO3 m-2 yr-1, respectively). The patch reefs of Pohnpei had on average higher net car-

bonate production rates (9.5 kg CaCO3 m-2 yr-1) than the inner reefs of both Pohnpei and

Kosrae (7.0 and 7.8 kg CaCO3 m-2 yr-1, respectively). A. solaris were common on Kosrae

and caused an average reduction in carbonate production of 0.6 kg CaCO3 m-2 yr-1 on Kos-

raean reefs. Northern outer reefs are the most likely habitats to keep up with sea-level rise in

both Pohnpei and Kosrae. Overall, the inner reefs of Pohnpei and Kosrae need ~ 5.5%

more coral cover to generate the same amount of carbonate as outer reefs. Therefore, inner

reefs need special protection from land-use change and local pollution to keep pace with

sea-level rise under all climate-change scenarios.

Introduction

Coral reefs are an integral component of global marine ecosystems and are essential to millions

of people that benefit from the goods and services that coral reefs provide. For example, coral

reefs reduce storm-wave energy by up to 97% [1], reducing the threat of coastal inundation
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during severe storms [2]. However, contemporary thermal-stress events, associated with

global-climate change, cause coral bleaching and mortality, which can lead to shifts in species

dominance [3–6]. These changes have reduced the capacity of coral reefs to accrete carbonate

in some localities and keep up with sea-level rise [7]. Here we examine whether the reefs of

Pohnpei and Kosrae, Federated States of Micronesia (FSM; Figure A in S1 File), are producing

enough carbonate to keep up with sea-level rise, while experiencing thermal stress and local

disturbances.

Rates of carbonate production have been studied using geological coring [8–10], hydro-

chemistry [11], modeling [12], and in situ estimates [13–15]. All approaches show considerable

variation across ocean basins, with erosional forces only exceeding rates of carbonate produc-

tion when gross calcification rates are low. In a global synthesis, Vecsei (2004) [16] showed

that carbonate production decreased with depth and was lower on reef flats than in other habi-

tats. These results agree with van Woesik and Cacciapaglia (2018) [17] who showed major dif-

ferences in carbonate production among reef habitats in the Republic of Palau and the island

of Yap, western FSM, with outer reefs averaging greater carbonate production (i.e., 10 kg

CaCO3 m-2 yr-1) than inner reefs (i.e., averaging 7 kg CaCO3 m-2 yr-1). Yet, in less favorable

environments, Perry et al. (2013) [7] estimated that Caribbean reefs have modern net carbon-

ate production rates averaging only 1.5 kg CaCO3 m-2 yr-1, with some reefs showing net nega-

tive carbonate budgets. On the shallow fore-reef slopes in the Maldives in the Indian Ocean,

Perry and Morgan (2017) [18] showed that after a thermal-stress event net accretion rates were

negative, at -3 kg CaCO3 m-2 yr-1. Although, through the same thermal-stress event, Ryan et al.

(2019) [15] showed evidence that the upper reef crest and reef flats of the same Maldivian reef

maintained positive accretion rates. In a study in the Seychelles, Januchowski-Hartley et al.

(2017) [19] showed that carbonate production was dependent on thermal stress, depth, macro-

algal presence, wave energy, and the abundance of excavating parrotfish.

Carbonate production rates can be influenced also by other chronic local disturbances. For

example, the coral predator Acanthaster solaris has long been known to reduce coral popula-

tions when the sea stars are in high densities [20]. While high densities of Acanthaster larvae

have been associated with elevated nutrient concentrations through river discharge [21, 22],

other aspects of their biology and ecology remain unresolved [23]. Here we examine the influ-

ence of A. solaris populations on the capacity of Pohnpeian and Kosraean shallow-water reefs

to produce carbonate, and determine the density of A. solaris, relative to the available percent-

age of live coral cover, beyond which carbonate production is reduced to zero.

Quantifying carbonate production is critical when predicting how coral reef systems will

respond to sea-level rise, especially as the rate of sea-level rise is predicted to accelerate rapidly

into the future [24–26]. These estimates in carbonate production should also influence conser-

vation targets, especially if inner reefs require more coral cover to produce the same amount of

carbonate as outer reefs [17]. Here we examine the coral reefs on two islands, Pohnpei and

Kosrae, FSM, and quantify the in situ rates of carbonate production to identify which reefs are

likely to keep up with sea-level rise [27, 28] under different climate-change scenarios. We also

estimate whether there are differences in the threshold of percentage coral cover, at which net

carbonate production becomes negative, across habitats.

Methods

Study design and field methods

Twenty-four study sites were randomly selected in each of Pohnpei (6.2˚N, 158.2˚E) and Kos-

rae (5.3˚N, 162.9˚E) FSM using a randomly stratified sampling approach with the package sp
[29] in R [30]. In Pohnpei, reefs were stratified as inner reefs, patch reefs, and outer reefs. In
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Kosrae, we only stratified the reefs as either inner reefs or outer reefs (because of the lack of

patch reefs). Sample size of each strata was determined by calculating the geographic area of

each reef type, using the area function from the R package raster [31], and allocating the num-

ber of sites in accordance with the area estimates. Reef surveys focused on the 2–5 meters

depth contour to estimate shallow-water carbonate production.

Six, 10 m transects, using a modified line-intercept technique that followed the reef substrate,

were used to measure the benthic composition for every centimeter, at each site of the 48 sites

[32, 17]. A few meters gap was allocated between the ends of the transects to ensure no overlap

of substrate between transects. Corals were recorded to species level, except massive Porites and

encrusting Montipora, which were recorded in the field as growth forms. All other organisms

along each transect were identified to the highest possible taxonomic resolution. Rugosity was

recorded using the planar length of a second transect that spanned across the reef horizontally.

Echinoids were recorded within 30 cm on either side of the 10 m tape. The urchins were

recorded as Echinometra, Diadema, and ‘Other’, and the diameter of each echinoid test was

measured to the nearest 0.5 cm. The abundance of Acanthaster solaris (crown-of-thorns sea

star) were recorded within 5 m along each of the six 10 m transects. Herbivorous parrotfishes

were videoed and identified to species and their estimated length was recorded to the nearest

cm along six transects, each of which was 30 m long by 4 m wide. Care was taken to record the

fish-transect videos ahead of the other transects to avoid any disturbance to the fishes.

Carbonate production

Net carbonate production (kg CaCO3 m-2 yr-1) was estimated using the following equation:

Carbonate productioni ¼ calcificationi þ sgnðxÞsedimentationi �erosioni �Acanthasteri ð1Þ

where calcification is the gross carbonate production by reef building organisms at site i [33];

sedimentation is the contribution of sediment to the reef, where it increases carbonate produc-

tion rates if sedimentation is low (< 0.05 kg m-2 d-1) [33,34] and then sgn (x) is positive,

whereas if terrestrial sedimentation is high sgn (x) is negative because the sediment smothers

corals; erosion is the rate of erosion, estimated following van Woesik (2013) [33]; and Acantha-
ster is amount of carbonate potentially lost by Acanthaster solaris (i.e., the crown-of-thorns sea

star) eating corals. High densities of A. solaris reduce live coral cover [35], which in turn

reduces a reef’s capacity to produce carbonate. Calcification of organisms was calculated as fol-

lows:

calcificationi ¼ ri S mi;j �
xi;j
100

� �
� di;j � gi;j � 10

h i
þ cai

n o
ð2Þ

where r is the rugosity of site i averaged across six transects; m is the adjustment coefficient for

the morphology of species j at site i (following van Woesik and Cacciapaglia 2018) [17]; x is

the planar percent cover averaged across site i for species j, d is the density (g cm-3) of species j
(following [17]) in site i; g is the vertical growth rate of coral species j (cm yr-1) (after van Woe-

sik and Cacciapaglia 2018 [17]); 10 is an adjustment constant to convert units back to kg

CaCO3 m-2 yr-1; and ca is the contribution of coralline algae to carbonate production, calcu-

lated following Perry et al. (2012) [14] as:

cai ¼ 0:018 � ðpcaiÞ � 10 ð3Þ

where pca is the planar coralline algae cover averaged across six transects at site i, 0.018 is the

gross carbonate production (g cm-2 yr-1) estimated using averages from Perry et al. (2012)

[14]; and 10 is an adjustment constant used to convert units from g cm-2 yr-1 to kg m-2 yr-1.
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Sedimentation

The accretion of reefs can be supplemented by calcareous sedimentation [9,10], or com-

promised by excessive amounts of terrestrial sedimentation (when > 0.05 kg m-2 d-1) [34],

which causes coral smothering and reduces the rate of carbonate production [36]. The

sedimentation rate that was used in Pohnpei and Kosrae was 0.4 kg CaCO3 m-2 yr-1 fol-

lowing estimates from Montaggioni (2005) [10] and Hubbard (1997) [36]. We witnessed

some terrestrial runoff and a high deposition of fine sediment in the southern bay of Kos-

rae (Utwe Bay), and we therefore introduced a negative sedimentation component to Eq

1, using -0.4 kg CaCO3 m-2 yr-1 [37], at sites that were downstream of river runoff at that

location.

Erosion

Reef erosion was comprised of three biological components, echinoids or sea urchins, herbivo-

rous fishes, and macroboring organisms. Gross erosional rates were calculated as:

Erosioni ¼ Sðparrotfishi;j þ urchini ;jÞ þ macroboringi ð4Þ

where parrotfish is the rate of erosion by herbivorous fish species j at site i; urchin is the rate of

biological erosion by sea urchins species j at site i; and macroboring is the erosional forces of

macroboring organisms in site i. Erosion by parrotfish was estimated after [14] using the equa-

tion:

parrotfishi ¼ Σðvoli;j;n � spi;j;n � bri;j;nÞ � Di � 365 � 0:001 ð5Þ

where vol is the estimated volume of the bites of individual parrotfish n for species j at site i; sp
is the scar proportion, or the proportion of bites that leave scars on corals for individual n, of

species j at site i; br is the bite rate (bites day-1) of individual n, of species j, at site i; the average

density D of corals was calculated at site i based on coral composition; the constant 365 was to

convert days into years; and 0.001 was a constant to convert grams into kilograms. Bite volume

vol was further defined using the following equation:

voli;j;n ¼
e1:32þ0:06�lengthi;j;n

1000
ð6Þ

where length is the length (cm) of each parrotfish n, of species j at site i; the constants were

gained using a linear regression of data collected by Ong and Holland (2010) [38]; the constant

one thousand was used to convert cubic millimeters to cubic centimeters. Scar proportion, sp,

from Eq 5 was further defined as follows:

spi;j;n ¼ 1=½1 þ e�ð�2:46þ0:089�lengthi;j;nÞ� ð7Þ

where length is the length of fish n of species j at site i. The equation was based on a regression

using data from Bonaldo and Bellwood (2008) [39] and Ong and Holland (2010) [38]. Bite

rate, br, from Eq 5 was defined as:

bri;j;n ¼ 60 f½ð4:31 þ brci;j � 0:36Þ �ð0:045 � reeftime � lengthi;j;nÞ�g ð8Þ

where brc is a bite rate constant, reeftime is the amount of time fishes spend grazing on reefs,

estimated to be 9 hours per day. These constants were estimated by Peter Mumby (personal

communication). Length is length of fish n of species j at site i.
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Erosion by sea urchins (kg CaCO3 m-2) was estimated after [14] using the following equa-

tion:

urchini ¼ ΣðDiademai;n þ Echinometrai;n þ Other urchinsi;nÞ ð9Þ

where Diadema is the erosion caused by a Diadema individual n at site i; Echinometra is the

erosion caused by an Echinometra individual n at site i, and Other urchins is the erosion caused

by sea urchins that were not Echinometra or Diadema. Diadema was defined as:

Diademai;n ¼ ð0:000001 � diameteri;n
3:42Þ � 0:365 � 0:57 ð10Þ

following an equation by Januchowski-Hartley et al. (2017) [19], where diameter is the test size

(cm) of the individual n at site i. Echinometra, from Eq 9, also follows an equation from Janu-

chowski-Hartley et al. (2017) [19]:

Echinometrai;n ¼ ð0:0004 � diameteri;n
1:98Þ � 0:365 � 0:57 ð11Þ

where diameter is the test size of individual n within the genus Echinometra at site i. Other
urchins in Eq 9 follows an equation from Januchowski-Hartley et al. (2017) [19], as follows:

Other urchinsi;n ¼ ð0:0001 � diameteri;n
2:32Þ � 0:365 � 0:57 ð12Þ

where diameter is the test size of individual n outside the genus of Echinometra or Diadema at

site i. Macroboring organisms were included into Eq 4 to incorporate the erosional forces of

boring sponges following the equation:

macroboringi ¼ plamci � mec ð13Þ

where plamc is the planar cover of the macroboring organisms averaged over at site i; and mec
is the constant used to define macroboring erosion, which was set as a conservative 10 kg

CaCO3 m-2 yr-1 following Glynn (1997) [40].

Acanthaster

While Glynn (1973) [41] estimated the densities of Acanthaster that would overwhelm the abil-

ity for corals to persist, there have been no studies aimed at quantifying the influence of

Acanthaster on carbonate production rates. We used field estimates to evaluate the effect of

Acanthaster solaris on carbonate production as follows:

Acanthasteri ¼ ðtc:transecti � RIiÞ=50 ð14Þ

where Acanthasteri is the reduction in gross production caused by observed A. solaris at site i;
RIi is the rate of coral ingestion at site i (see Eq 16); 50 is a constant to convert observational

transect size to m2; and tc.transecti is the per transect consumption rate:

tc:transecti ¼ A:spi � con � Densityi � 10 � 365 ð15Þ

where A.spi is the number of A. solaris observed in site i divided by the number of transects;

con is the average consumption rate (0.01 m2 d-1) estimated from Keesing and Lucas (1992)

[42]; Densityi is the average density of corals in site i (g cm3); 10 is the constant used to convert

the unit to kg m2, and 365 converts days to years.

RIi ¼
ai � Ri

1 þ ai � h � Ri
� 4:53 ð16Þ

where RIi is the rate of coral ingestion in site i; Ri is the resource density or live coral cover (%)

Reef growth in Micronesia
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at site i. The handling rate, or how long it takes for a single A. solaris to eat a coral colony, h,

was estimated using the average size of coral colonies and the average rate of consumption,

which was conservatively estimated to be around 3.5 days. The 4.53 constant is used to rescale

RIi, which is resource dependent, to match average coral density with estimated consumption

rate; ai is the attack rate, estimated using the speed at which A. solaris can move and the density

of corals in the transect following Eq 17:

ai ¼ 12=fð½ð½100 �Ri þ 1E10�=10Þ=2�Þ̂ 2 � pig=speed ð17Þ

where 12 is a constant for active predatory hours; Ri is the resource density or live coral cover

in site i as a percentage, subtracted from 100; and 1E10 was added to convert the value to a

non-zero area where corals are present. These values are divided by 10 for the transect length,

to determine average distance between corals, and it was assumed the A. solaris had to search

the area of a circle with this average distance between corals equaling the diameter of that cir-

cle. The area was then divided by the speed at which A. solaris can move, speed, (504 m d-1;

Muller et al. 2011 [43]). It was assumed that A. solaris could only reduce or negate carbonate

production in this model, so the effects were subtracted from gross production to a maximum

erosional force netting zero gross production.

To convert net carbonate production, from Eq 1, to vertical reef growth (in mm) we used:

Vertical reef accretion ¼ Cp þ CpðCp � alphaÞ ð18Þ

where Cp is carbonate production (from Eq 1) and alpha is a coefficient estimated as -0.01949

(after van Woesik and Cacciapaglia 2018 [17]).

Carbonate thresholds

We used an additive mixed effects model in a Bayesian framework [44] to estimate the value of

coral cover, for the different habitats, at which net carbonate production became negative,

using the following:

G ¼ Beta þ f ðcoral coverÞ þ Habitat þ a þ error ð19Þ

where G is the net carbonate production at site i; f(coral cover) uses an O’Sullivan spline

smoothing function [45]; Habitat is the fixed effect of interest; a is a random intercept for site;

and error is the error term for the residuals. We assumed that no prior information was known

and therefore used multivariate normal diffuse and normal diffuse priors [44]. All models

were run in R and coded in JAGS [46] (all the R code is available in S1 Data and at https://

github.com/rvanwoesik).

We would also like to thank Eugene Joseph the Director of the Conservation Society of

Pohnpei and Andy George the Director of the Kosrae Conservation Society for granting us

permission to conduct research on Pohnpei and Kosrae respectively.

Results

Gross carbonate production on Pohnpei averaged 8.2 kg CaCO3 yr-1, and was on average

higher on patch reefs (9.1 kg CaCO3 m-2 yr-1) than on outer reefs (7.7 kg CaCO3 m-2 yr-1) and

on inner reefs (6.8 kg CaCO3 m-2 yr-1) (Table 1). Net carbonate production rates closely fol-

lowed rates of gross production (Table 1), although within-habitat differences were consider-

able (Figs 1 and 2). For example, the outer northwestern reefs of Pohnpei supported the

highest rates of net carbonate production (18.5 kg CaCO3 m-2 yr-1), and the lowest rates were

recorded on the southeastern outer reefs (1.2–1.3 kg CaCO3 m-2 yr-1), (Table 1 and Fig 2).
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Gross carbonate production on Kosrae averaged 7.4 kg CaCO3 m-2 yr-1, although on aver-

age the outer and inner reefs did not vary greatly (7.6 and 7.0 kg CaCO3 m-2 yr-1, respectively).

Similar to Pohnpei, carbonate production on the outer reefs on Kosrae was variable and was

highest on the northern outer reefs (16.4 kg CaCO3 m-2 yr-1), and lowest on southeastern

outer reefs (0.7 kg CaCO3 m-2 yr-1) (Table 1 and Fig 3). Net production differed from gross

Table 1. Carbonate production and erosion rates across shallow-water coral reef habitats (2–5 m depth) on Pohnpei and Kosrae, Federated States of Micronesia.

All values are in kg CaCO3 m-2 yr-1. Gross production is the total rate of carbonate production across habitats, excluding erosion rates. Erosion includes parrotfish and

urchin erosional forces combined (which does not include Acanthaster solaris erosion). Net production is gross carbonate production minus the erosional estimates and

sedimentation inputs. Acanthaster erosion is the erosion caused by A. solaris. Combined reef strata were only available for inner and outer reefs, due to the lack of patch

reefs in Kosrae.

Coral-reef habitat Gross production

(kg CaCO3

m-2 yr-1)

Erosion rates

(kg CaCO3

m-2 yr-1)

Net production

(kg CaCO3

m-2yr-1)

Acanthaster erosion

(kg CaCO3

m-2yr-1)

Pohnpei (combined) 8.17 ± 1.77 0.04 ± 0.04 8.49 ± 1.75 0.04 ± 0.05

Pohnpei inner 6.75 ± 3.60 0.01 ± 0.01 7.10 ± 3.60 0.03 ± 0.05

Pohnpei patch 9.12 ± 2.04 0.01 ± <0.01 9.47 ± 2.04 0.00

Pohnpei outer 7.74 ± 4.07 0.09 ± 0.11 8.01 ± 4.0 0.09 ± 0.14

Kosrae (combined) 7.42 ±1.40 0.04 ± 0.03 7.51 ± 1.41 0.61 ± 0.50

Kosrae inner 6.95 ±2.14 0.01 ± <0.01 6.98 ± 2.0 0.28 ± 0.36

Kosrae outer 7.56 ± 1.76 0.04 ± 0.03 7.69 ± 1.77 0.72 ± 0.65

Both islands inner 6.86 ±1.90 0.01 ± <0.01 7.03 ± 1.86 0.15± 0.19

Both islands outer 7.62±1.70 0.06 ± 0.04 7.79 ± 1.69 0.52 ± 0.46

https://doi.org/10.1371/journal.pone.0224887.t001

Fig 1. Net shallow-water coral-reef carbonate production stratified by (a) island, (b) habitat type (at both Kosrae and Pohnpei inner reefs and outer reefs, and

Pohnpei patch reefs), and (c) site (at 24 sites in Pohnpei and 24 sites in Kosrae, Federated States of Micronesia) 2018. The thick horizontal lines are the

medians, the box surrounding the medians are the first and third quartiles, the whiskers identify the range of the data, and the circles identify outliers. These

data do not include the erosional effects of Acanthaster solaris.

https://doi.org/10.1371/journal.pone.0224887.g001
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production at sites where sedimentation and erosion were much higher than background

rates. This occurred in Utwe Bay in southern Kosrae, where terrestrially derived sediment was

much higher than elsewhere (personal observations). Terrestrially derived sediment smothers

coral colonies and thereby reduces carbonate production.

The reefs of Pohnpei and Kosrae supported similar coral assemblages, although there were

some differences in species dominance. The reefs of Pohnpei, particularly the patch and inner

reefs, were dominated by Porites rus, Porites cylindrica, and Porites lobata. The outer reefs

were dominated by encrusting Montipora and Acropora hyacinthus (Fig 4). These five species

contributed 82% of the gross carbonate production on Pohnpei. The reefs of Kosrae were

dominated by encrusting Montipora, Porites rus, Goniastrea retiformis, Porites lobata, and Por-
ites lichen (Fig 4). These five species contributed 78% of the total gross carbonate production

on Kosrae. Importantly, the inner reefs of both Pohnpei and Kosrae, and the patch reefs of

Pohnpei had a higher live-coral-cover threshold than the outer reefs of both islands, although

Fig 2. Spatial kriging of the net shallow-water coral-reef carbonate production (kg CaCO3 m-2 yr-1) without the influence of Acanthaster, for 24

sites in Pohnpei, Federated States of Micronesia, 2018. Base elevation map was plotted in R using raw 10 m Digital Elevation Model from https://

pae-paha.pacioos.hawaii.edu/thredds/ncss/usgs_dem_10m_pohnpei/dataset.html.

https://doi.org/10.1371/journal.pone.0224887.g002

Reef growth in Micronesia

PLOS ONE | https://doi.org/10.1371/journal.pone.0224887 November 15, 2019 8 / 17

https://pae-paha.pacioos.hawaii.edu/thredds/ncss/usgs_dem_10m_pohnpei/dataset.html
https://pae-paha.pacioos.hawaii.edu/thredds/ncss/usgs_dem_10m_pohnpei/dataset.html
https://doi.org/10.1371/journal.pone.0224887.g002
https://doi.org/10.1371/journal.pone.0224887


there was considerable uncertainty in the thresholds for the inner reefs (i.e., high 95% credible

intervals) (Fig 5).

Acanthaster solaris were observed on reefs of both islands although in 2018 populations

indicative of an outbreak (>30 hectare-1) were only observed on some of the shallow reefs of

Kosrae. Since outer reefs tended to have the highest densities of A. solaris, carbonate produc-

tion on these outer reefs were most affected (Table 1 and Figs 6 and 7). We re-ran the carbon-

ate production model for both islands to incorporate A. solaris and found that carbonate

production was reduced on Kosrae by an average 0.6 kg CaCO3 m-2 yr-1 and on Pohnpei by

0.04 kg CaCO3 m-2 yr-1, across all habitats (Table 1 and Figs 6 and 7). A. solaris densities did

not reduce carbonate production to negative values, although at two northwestern sites on

Kosrae gross carbonate production was reduced by 80% and 62%, where A. solaris densities

were 17 and 14 (per 300 m2) and where coral cover was low. For mitigation purposes, and to

sustain a productive reef, we found that A. solaris densities should be kept below a density

threshold that is proportional to 7.3% of the relative coral densities (Figure B in S1 File). For

Fig 3. Spatial kriging of the net shallow-water coral-reef carbonate production (kg CaCO3 m-2 yr-1) without the influence of Acanthaster, for 24

sites in Kosrae, Federated States of Micronesia, 2018. Base elevation map was plotted in R using raw 10 m Digital Elevation Model from https://

pae-paha.pacioos.hawaii.edu/thredds/ncss/usgs_dem_10m_kosrae/dataset.html.

https://doi.org/10.1371/journal.pone.0224887.g003
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example, if a 100 m2 site supports 30% live coral cover, any more than two Acanthaster in that

site for one year will likely reduce gross carbonate production to zero.

Other echinoids also reduce carbonate production, particularly Echinometra mathaii, and

related species in high densities [38]. We noticed that large populations of E. mathaii were

common on southeastern outer reefs and caused considerable erosion (Figures C and D in S1

File) and are less common on inner and patch reefs. Carbonate erosion by parrotfishes was

also high on the southeastern reefs and along western reefs, and was lower elsewhere (Figures

E and F in S1 File).

Discussion

This study aimed to identify the spatial variation of shallow-water carbonate production in

Pohnpei and Kosrae, Federated States of Micronesia, to assess which reefs are likely to keep up

with sea-level rise, and to determine what role Acanthaster solaris plays in carbonate

Fig 4. Cumulative shallow-water coral-reef carbonate production by coral species and other benthic taxa for (a) 24 sites in Pohnpei and (b) 24 sites in Kosrae,

Federated States of Micronesia, 2018.

https://doi.org/10.1371/journal.pone.0224887.g004
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production. While the leeward, northern and northwestern facing reefs had the highest rates

of net carbonate production (16.5–18.5 kg CaCO3 m-2 yr-1), the windward, southeastern facing

reefs showed the lowest rates of net carbonate production (0.7–1.3 kg CaCO3 m-2 yr-1). Such

high variation in carbonate production along the outer shallow-water reefs is important, espe-

cially since habitats with low rates may not have the capacity to keep up with predicted sea-

level rise. Based on different greenhouse-gas-emission scenarios, most frequently conveyed as

Representative Carbon Pathways (RCPs) 2.6. 4.5, 6.0, and 8.5 Wm-2, the predicted rates of sea-

level rise by the year 2100 have been conservatively estimated at 5, 6.5, 6.7, and 9 mm yr-1,

respectively [25]. Converting the field estimated rates of carbonate production to vertical rates

of reef accretion (following Eq 18) the northwestern shallow-water outer reefs of Pohnpei and

the northern shallow-water outer reefs of Kosrae are estimated to vertically accrete at 11.8 mm

yr-1 and 11.2 mm yr-1, respectively. These rates of vertical accretion are relatively high for con-

temporary reefs and exceed the rates of sea-level rise under RCP 8.5. Therefore, if effectively

managed, the northern shallow-water outer reefs of Pohnpei and Kosrae will likely have the

capacity to keep up with sea-level rise and maintain their essential ecosystem functions.

By contrast, the southeastern shallow-water reefs of Pohnpei and Kosrae, have estimated

vertical accretion rates of only 1.3 mm yr-1. Although we did not directly measure sedimenta-

tion rates nor did we measure micro-bioerosion rates, our data suggest that the southeastern

reefs are not likely to keep up with sea-level rise by the year 2100. Indeed, the projections of

our model show that without considering spatial variation, on average, Pohnpei’s and Kosrae’s

shallow-water outer reefs fall short of the moderate rates of sea-level rise projected under RCP

4.5 (i.e., 6.2 mm yr-1 accretion and 6.5 mm yr-1 of sea-level rise under RCP 4.5, Figure G in S1

File). Most concerning is that the shallow-water inner reefs of both islands have estimated

Fig 5. Percent threshold live coral cover (LCC) needed to maintain net positive accretion stratified by shallow-water coral-

reef habitat (at both Kosrae and Pohnpei inner reefs and outer reefs, and Pohnpei patch reefs) for (a) 24 sites in Pohnpei and

(b) 24 sites in Kosrae, Federated States of Micronesia, 2018. The dots represent the posterior means and the vertical lines

represent the 95% credible intervals.

https://doi.org/10.1371/journal.pone.0224887.g005
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rates of vertical accretion averaging 5.9 mm yr-1, which is lower than most predicted rates of

sea-level rise, even the conservative rates associated with RCP 4.5 by the year 2100 (Figure G in

S1 File). Although there is some uncertainty in the live-coral-cover thresholds for the inner

reefs of Pohnpei and Kosrae, these inner reefs on average require around 5.5% higher live

coral cover than outer reefs to produce the same amount of carbonate (Fig 4). These results

provide a strong conservation message that in order for nearshore reefs to have a chance to

keep up with sea-level rise, it is critical to mitigate land-use discharge and pollution to near-

shore shallow-water reefs. Without conserving these relatively sensitive, nearshore reefs our

projections suggest that they would likely drown in the near future. Additionally, mitigating

terrestrial runoff may also prevent large, persistent outbreaks of Acanthaster [21, 22].

Increases in the survival of Acanthaster brachiolaria-stage larvae have been associated with

river discharge and elevated nutrient concentrations [21, 22]. Therefore, implementing man-

agement strategies on small Pacific islands that mitigate terrestrial discharge will not only

reduce sedimentation stress on corals but will also effectively suppress chronically dense

Acanthaster populations that reduce carbonate production. In Kosrae, A. solaris reduced car-

bonate production by on average 0.6 kg CaCO3 m-2 yr-1, with a maximum reduction of 5.1 kg

Fig 6. The effect of Acanthaster solaris on the net shallow-water coral-reef carbonate production of Pohnpei, Federated

States of Micronesia, 2018 where the size of the bubble is proportional to the carbonate reduction by A. solaris. Plain

magenta dots are sites that had no observed A. solaris. Base elevation map was plotted in R using raw 10 m Digital Elevation

Model from https://pae-paha.pacioos.hawaii.edu/thredds/ncss/usgs_dem_10m_pohnpei/dataset.html.

https://doi.org/10.1371/journal.pone.0224887.g006
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CaCO3 m-2 yr-1 when A. solaris were at high densities (> 15 individuals per 300 m2). Although

our estimates of the impact of A. solaris on carbonate production are novel, they still comprise

a degree of uncertainty because of the assumptions underlying Eqs 14–17. Therefore, future

improvements in these estimates can be made by examining these assumptions, which could

include an adjustment for coral composition.

The coral species that were the most important contributors to carbonate production on

both islands were Porites rus and Porites lobata, particularly on the shallow-water inner reefs.

The most important contributors to carbonate production on the shallow-water outer reefs

were encrusting Montipora, merulinids, and acroporids. There was a lack of patch reefs and

large lagoons in Kosrae, therefore Porites cylindrica was less common on Kosrae than on

Pohnpei. Yet, if the shallow-water outer reefs are unable to keep up with sea-level rise and are

breached by offshore waves, the patch reefs of Pohnpei and the inner reefs of both islands will

likely become more similar in coral composition to that of the outer reefs [47]. Still, whether

Fig 7. The effect of Acanthaster solaris on the net shallow-water coral-reef carbonate production of Kosrae, Federated States of Micronesia,

2018 where the size of the bubble is proportional to the carbonate reduction by A. solaris. Plain magenta dots are sites that had no observed A.

solaris. Base elevation map was plotted in R using raw 10 m Digital Elevation Model from https://pae-paha.pacioos.hawaii.edu/thredds/ncss/usgs_

dem_10m_kosrae/dataset.html.

https://doi.org/10.1371/journal.pone.0224887.g007
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these reefs, even altered in composition, will be able to produce enough carbonate to keep up

with sea-level rise is an open question.

The shallow-water coral-reef carbonate production rates measured on both Pohnpei and

Kosrae are lower than the field estimates recorded farther west on Palau and Yap (~2.2 kg

CaCO3 m-2 yr-1 less, when averaged among habitat types) [17]. The lower carbonate produc-

tion rates are most likely a result of reduced Acropora cover caused by the recent thermal-stress

events on both Kosrae and Pohnpei in 2016 and 2017 (Peter Houk, pers. comm.). At the same

time, similar thermal-stress events were not recorded in Palau and Yap. Thermal-stress events

are known to significantly reduce a reefs’ capacity to produce calcium carbonate [19], and

under extreme events can temporarily reduce net accretion to negative values [18]. Although

there are some studies on the net ecosystem calcification of coral reefs and the influence of

coral bleaching on that process [47–51], more field studies are needed that examine (i) ther-

mal-stress events and the dynamics of carbonate production through those events, and (ii) the

rates of recovery of carbonate production from thermal-stress events.

The capacity of coral reefs to keep up with rising sea level is important for coastal residents

and is particularly relevant to residents of low-lying islands who cannot move to higher eleva-

tions. Historically, healthy coral reefs have kept up with dynamic shifts in sea level through gla-

cial-interglacial periods [52], yet disturbances to modern reefs are suppressing the capacity of

coral reefs to produce enough carbonate [53] and protect island residents from storm-wave

damage. In addition, drowned reefs will not be able to provide goods and services or support

fisheries. If the coral species contributing to reef complexity and carbonate production are

unable to persist under the stress of climate change then the coral reefs will not keep up with

sea-level rise and drown.
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S1 File. Seven supporting figures. These figures include (A) a location map, (B) limit on the

number of Acanthaster solaris sea stars, as a proportion of live coral cover (LCC) that a 100 m2

shallow-water coral-reef habitat, (C and D) erosional kriged maps for both islands, and (E and

F) erosional maps for parrotfishes for both islands, and (G) net vertical accretion split by strata

compared to the rates of sea-level rise under representative concentration pathways 2.6, 4.5,
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