


(i.e., ground, underwater, and aerial) pose different opera-

tional challenges and add constraints on the construction

and dynamics of the robot. These factors are determined by

specific application requirements, which make it difficult

to design a generic person-following methodology.

Attempts to develop person-following robots for a wide

range of applications have resulted in a variety of different

methodologies. In particular, computer vision and robotics

researchers have been developing person-following meth-

odologies for ground robots since the nineties

(Azarbayejani and Pentland, 1996; Darrell et al., 1998;

Wren et al., 1997). Initially seen as a special case of object

tracking, person-following by autonomous robots soon

became a challenging problem of its own as many indus-

trial applications started to flourish (Balan et al., 2005; Cu

et al., 2013; Ess et al., 2008; Pairo et al., 2013). Recently,

other aspects of the problem, such as human–robot interac-

tion, social awareness, and the degree of autonomy, are also

receiving attention from researchers (Dewantara and Miura,

2016; Triebel et al., 2016). The advent of underwater and

aerial applications has added other dimensions to this

growing field (Mueller et al., 2016; Naseer et al., 2013;

Sattar and Dudek, 2009b). Different mediums and a diverse

set of operational considerations often demand application-

specific design for a person-following robot. However, cer-

tain design issues, underlying algorithms, and methods of

human–robot interaction, among others, remain mostly

generic for all person-following scenarios. An elaborate

discussion of these aspects, with a comparison of different

approaches and the state-of-the-art techniques would

greatly help current and future researchers.

This paper outlines various aspects of the person-

following problem and provides a comprehensive overview

of the existing literature. In addition, different issues per-

taining to robot and algorithmic design are identified,

operational scenarios are illustrated, and qualitative analy-

ses of the state-of-the-art approaches are presented.

Specifically, the contributions of this paper are the

following:

� A categorization of the person-following problem is

presented based on various attributes, such as the

medium of operation, choice of sensors, mode of inter-

action, and degree of autonomy. Operational scenarios

for each category are then discussed, along with the

relevant applications.
� Additionally, for different person-following scenarios,

key design issues are identified, the underlying assump-

tions are discussed, and state-of-the-art approaches to

cope with the operational challenges are presented.
� Subsequently, an elaborate discussion of the underlying

algorithms of different state-of-the-art approaches for

perception, planning, control, and interaction are pre-

sented. The attributes and overall feasibility of these

algorithms are qualitatively analyzed and then com-

pared based on various operational considerations.

� Furthermore, several open problems for future research

are highlighted, along with their current status in the

literature.

2. Categorization of autonomous person-

following behaviors

Person-following behaviors by autonomous robots can be

diverse depending on several application-specific factors,

such as the medium of operation, choice of sensors, mode

of interaction, granularity, and degree of autonomy. The

design and overall operation of a person-following robot

mostly depend on the operating medium, e.g., ground,

underwater, and aerial. Other application-specific con-

straints influence the choice of sensors, mode of interaction

(explicit or implicit), granularity, and degree of autonomy

(full or partial). In this paper, explicit and implicit interac-

tions refer to direct and indirect human–robot communica-

tion, respectively. In addition, the term granularity is

defined as the number of humans and robots involved in a

person-following scenario.

Based on these attributes, a simplified categorization of

autonomous person-following behaviors is depicted in

Figure 1. The rest of this paper is organized by following

the categorization based on the medium of operation, while

other attributes are discussed as subcategories.

2.1. Ground scenario

Domestic assistant robots (Piaggio-Fast-Forward, 2017)

and shopping-cart robots (Nishimura et al., 2007) are the

most common examples of person-following unmanned

ground vehicles (UGVs). Their usage in several other

industrial applications (The-5elementsrobotics, 2014), and

in health care has also increased in recent times (Ilias et al.,

2014; Iribe et al., 2011; Tasaki et al., 2015). Figure 2 illus-

trates typical person-following scenarios for ground robots.

The UGV uses its camera and other sensors to detect the

person in its field of view. Once the position and distance

of the person are approximated, path planning is performed,

and the corresponding control signals are generated in

order to follow the person. Details of these operations and

the related state-of-the-art methodologies will be discussed

later in this paper. The following discussion expounds vari-

ous design issues and related operational constraints based

on the choice of sensors, mode of interaction, granularity,

and degree of autonomy.

2.1.1. Choice of sensors. Most person-following UGVs

are equipped with cameras and the perception is performed

through visual sensing. Other sensors are used to accurately

measure the distance and activities (walking, waving hands,

etc.) of the person for safe navigation and interaction. The

choice of sensors is often determined by the operating envi-

ronment, i.e., indoors or outdoors. For example, RGBD

sensors are very effective in indoor environments; in
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addition to having a regular RGB camera, they are

equipped with an infrared sensor to provide the associated

depth information (Mi et al., 2016). Therefore, both the

position and distance of the person can be measured with

good accuracy. However, since infrared sensors perform

poorly in the presence of sunlight, they are not good

choices for outdoor environments. The use of stereo cam-

eras can get rid of this problem, as depth information can

be approximated by using triangulation techniques (Chen

et al., 2017b; Satake et al., 2013). Laser range finders

(LRFs) are also widely used by person-following UGVs

(Chung et al., 2012; Susperregi et al., 2013). These sensors

provide a cluster of directional distance measures, from

which the presence and distance of a person can be

approximated. Moreover, some applications use ultrawide

band (UWB) (Laneurit et al., 2016), radio-frequency identi-

fication (RFID) tags (Germa et al., 2010; Kulykukin et al.,

2004), and haptic interfaces (Ghosh et al., 2014) as extero-

ceptive sensors.

Proprioceptive sensors, such as inertial measurement

units (IMUs), are used to keep track of the robot’s relative

motion and orientation information (Brookshire, 2010) for

smooth and accurate navigation. Researchers have also

explored the use of wearable IMUs for modeling the human

walking gait (Cifuentes et al., 2014); this is useful for dif-

ferentiating humans from other moving objects.

Person-following UGVs typically use a number of sen-

sors in order to ensure robustness and efficiency. Standard

sensor fusion techniques are then adopted to reduce the

uncertainty in sensing and estimation (Cifuentes et al.,

2014; Luo et al., 2009; Susperregi et al., 2013). A sum-

mary of the key design issues based on different choices of

sensors for person-following UGVs is presented in Table 1.

2.1.2. Mode of interaction. It is ideal for a person-

following robot to interact with the human user in a natural

way. Even if the robot is not designed to interact with the

person directly, implicit (i.e., indirect) interactions exist,

since the person is aware that the robot is following (Hu

et al., 2014). This awareness is important for the overall

success of the operation because the person can simplify

the robot’s task in many ways, e.g., by making smooth

turns, avoiding obstacles, and walking at a reasonable

speed. Additionally, the robot needs to maintain a safe

Fig. 1. A categorization of autonomous person-following behaviors based on five major attributes: medium of operation, choice of

sensors, mode of interaction, granularity, and degree of autonomy.

GPS: Global Positioning System; IMU: inertial measurement unit; IR: infrared; LRF: laser range finder; RFID: radio-frequency identification; RGBD:

RGB-depth; USBL: ultrashort baseline.

Fig. 2. Typical person-following scenarios for ground robots: (a)

TurtleBot (Willow-Garage, 2011) following a person in an indoor

setting; (b) Gita cargo robot (Piaggio-Fast-Forward, 2017)

following a person outdoors.
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Table 1. Choice of sensors and corresponding design issues for person-following unmanned ground vehicles.

Sensor Data Challenges or limitations Usage or operation Selected references

Monocular camera RGB image Low visibility; lighting variation Computer vision-based
algorithms are used for detection
and tracking

Guevara et al. (2016); Isobe et al. (2014);
Kobilarov et al. (2006); Kwon et al. (2005);
Ma et al. (2008); Pierre (2018)

Stereo camera RGB image Low visibility; lighting variation In addition to RGB image-based
detection and tracking, stereo
triangulation techniques are used
to approximate the associated
depth information

Brookshire (2010); Chen et al. (2017b); Hu et
al. (2014); Itoh et al. (2006); Luo et al.
(2009); Satake and Miura (2009); Satake et al.
(2012, 2013); Takemura et al. (2007)

RGBD camera RGBD data Presence of sunlight In addition to RGB image-based
detection and tracking, distance
of the person is approximated
using the depth data

Basso et al. (2013); Cosgun et al. (2013);
Doisy et al. (2012); Masuzawa et al. (2017);
Mi et al. (2016); Munaro et al. (2013); Wang
et al. (2017)

Laser range finder Planner distance
measures

Presence of transparent
(e.g., glass) or dark surfaces

Person’s body is detected from a
cluster of distance measures

Alvarez-Santos et al. (2012); Cai and
Matsumaru (2014); Cosgun et al. (2013);
Jung and Yi (2012); Leigh et al. (2015); Pairo
et al. (2013); Shaker et al. (2008)

Sonar Directional distance
measures

Specular reflections; crosstalk Presence and distance of a
person is detected from the
directional distance measures

Gascueña and Fernández-Caballero (2011);
Itoh et al. (2006); Peng et al. (2016)

Radio-frequency
identification

RF signal Presence of interfering signals;
limited range; ensuring privacy

Person carrying an RFID tag is
tracked by following the
direction of the RFID signal
source

Germa et al. (2010); Kulykukin et al. (2004)

Inertial measurement
unit (IMU)

IMU data Precision; drift Robot’s relative orientation,
angular and linear velocity, and
acceleration are estimated for
motion control

Brookshire (2010); Cifuentes et al. (2014)
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distance and plan a socially aware motion trajectory while

following the person (Granata and Bidaud, 2012; Triebel

et al., 2016). A number of user studies have explored dif-

ferent aspects of implicit interactions, including but not

limited to the robot’s spatial conduct (Fleishman et al.,

2018), preferred following angles (Shanee et al., 2016),

turning behaviors (Hu et al., 2014), and socially aware

motion conduct (Honig et al., 2018; Triebel et al., 2016).

An elaborate discussion of these aspects is provided later

in this paper (see Section 3.3.2).

Explicit interactions refer to direct human–robot com-

munication. In many practical applications, a human

instructs the UGV to perform certain tasks, such as chang-

ing its motion or speed, taking photographs, or making

phone calls. These instructions are typically communicated

using voice commands (Fritsch et al., 2004), hand gestures

(Doisy et al., 2013; Marge et al., 2011), or haptic interfaces

(Ghosh et al., 2014; Park and Howard, 2010). Moreover,

some smart carts and autonomous luggage robots allow

users to interact using smartphone applications

(DiGiacomcantonio and Gebreyes, 2014). Explicit human–

robot interaction is essential for most person-following

ground applications; however, additional computational

capabilities are required in order for the UGVs to under-

stand human instructions and spontaneously interact in a

natural manner. Table 2 highlights the challenges and

responsibilities involved in different forms of human–robot

interactions for person-following UGVs.

2.1.3. Granularity. Most domestic applications involve a

single robot accompanying a single person. Interacting with

a specific person is also common, particularly for accompa-

nying older people and people with disabilities (Ilias et al.,

2014; Kulykukin et al., 2004; Liem et al., 2008). The most

important features of these robots are the social and interac-

tive skills needed to make the accompanying person feel

safe and attended to. In industrial applications, however,

robustness and performance are more important, relative to

social aspects (Cosgun et al., 2013; Germa et al., 2010).

These robots typically assist a single person in a dynamic

multi-agent environment, i.e., with the presence of other

humans and robots.

A robot can also accompany a group of people by fol-

lowing the center of attention of the group (Basso et al.,

2013; Chen et al., 2017b). However, this can be challenging

if people move in random directions. An anchor person is

generally specified to the robot beforehand to interact with

the robot and help it to navigate. In such cases, the robot

uses features specific to the anchor person for tracking

while interacting with the group as a whole. Since interact-

ing with a group of people can be challenging, service

robots are often equipped with user interfaces for easy and

effective human–robot interaction. Furthermore, a number

of independent robots can assist a single person in a com-

mon task, given that the person is responsible for synchro-

nizing their activities. Although swarm-like multi-robotT
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Table 3. Choice of sensors and corresponding design issues for person-following underwater robots.

Sensor Data Challenges or limitations Usage or operation Selected references

Monocular camera RGB image Poor lighting conditions and
visibility; suspended particles;
color distortions

Computer vision-based
algorithms are used for detection
and tracking

Islam and Sattar (2017); Islam et
al. (2018a); Sattar and Dudek
(2006)

Stereo camera RGB image Poor lighting conditions and
visibility; suspended particles;
color distortions

In addition to RGB image space
based detection and tracking,
stereo triangulation techniques
are used to approximate the
associated depth

Corke et al. (2007); Stilinović
et al. (2015)

Active sonar Directional
distance measures

Noisy reading; scattering and
reverberation

Diver’s presence and distance are
approximated from the
directional distance measures

DeMarco et al. (2013); Mandic
et al. (2016)

Passive sonar Frequency responses Extremely noisy reading; limited
coverage

Frequency responses of the
sound wave generated by the
diver are used for detection

Gemba et al. (2014); Hari et al.
(2015)

Ultrashort baseline
(USBL) transponder

Acoustic pulse Presence of a paired USBL
transceiver; noisy reading

Diver’s position information is
estimated by communicating
with the transceiver

Corke et al. (2007); Mandic
et al. (2016); Miskovic et al.
(2015)

Inertial measurement unit (IMU) IMU data Precision; drift Robot’s relative orientation,
angular and linear velocity, and
acceleration are estimated for
motion control

Miskovic et al. (2015)

Pressure sensor Depth measurement Sensitiveness to temperature Depth of the robot is
approximated using the
measured external pressure

Corke et al. (2007)
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cooperation or non-cooperative multi-agent synchroniza-

tion (Chen et al., 2017e) is possible, these frameworks are

rather resource-demanding and not commonly adopted in

person-following applications.

2.1.4. Degree of autonomy. A major advantage of using

person-following robots is that it eliminates the need for

dedicated teleoperation. Since autonomous ground naviga-

tion is relatively less challenging than underwater or aerial

scenarios, person-following UGVs are typically designed

to have fully autonomous behavior (Leigh et al., 2015).

Some applications, however, allow partial autonomy for

UGVs that perform very specific tasks, such as assisting a

nurse in an operating room (Ilias et al., 2014) or serving

food at a restaurant (Pieska et al., 2013). These service

robots follow their companions around within a predefined

operating area and provide assistance by carrying or orga-

nizing equipment, serving food, etc. While doing so, they

may take human inputs for making navigation decisions,

such as when to follow, on which side to stay, where or

when to wait, which objects to carry or organize, etc.

Such semi-autonomous behaviors for UGVs are adopted

in robot-guiding applications as well, e.g., guiding a

visually impaired person (Ghosh et al., 2014) or tour guid-

ing at a museum or shopping mall (Burgard et al., 1998;

Kanda et al., 2009). Although robot-guiding is not strictly

a person-following application, it shares a similar set of

features and operational challenges for assisting a human

companion. In particular, features such as socially aware

planning, some aspects of explicit interaction, navigating

through crowds while guiding or leading people, etc., are

closely related to person-following applications. Readers

are referred to Table 6 in Section 4 for an organized and

annotated collection of the person-following (and relevant)

literature.

2.2. Underwater scenario

Underwater missions are often conducted by a team of

human divers and autonomous robots, who cooperatively

perform a set of common tasks (Islam et al., 2018c; Sattar

et al., 2008). The divers typically lead the tasks and interact

with the robots, which follow the divers at certain stages of

the mission (Islam et al., 2018a). These situations arise in

important applications, such as the inspection of ship hulls

and submarine pipelines, the study of marine species migra-

tion, and search-and-rescue or surveillance operations. In

these applications, following and interacting with the com-

panion diver (Islam et al., 2018c) is essential because fully

autonomous navigation is challenging, owing to the lack of

radio communication and global positioning information

underwater. Additionally, the human-in-the-loop guidance

reduces operational overhead by eliminating the necessity

of teleoperation or complex mission planning a priori.

Figure 3 illustrates a scenario in which an autonomous

underwater vehicle (AUV) is following a scuba diverT
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tá
k
an
d
V
y
k
ov
sk
ý
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during an underwater mission. The operational complex-

ities and risks involved in underwater applications are gen-

erally much greater than those in ground applications

(Sattar and Dudek, 2006). The following sections discuss

these operational challenges and the related design issues

based on the choice of sensors, mode of interaction, granu-

larity, and degree of autonomy.

2.2.1. Choice of sensors. Underwater diver-following

robots usually rely on vision for tracking, owing to the

bandwidth limitations of acoustic modems. In addition, it

is undesirable to be intrusive and disruptive to the ecosys-

tem (Slabbekoorn et al., 2010). Cameras, being passive

sensors (i.e., they do not emit energy), are thus preferred

over active sensors. Additionally, the use of stereo cameras

is effective in approximating the relative distance of a diver

or other targets (Corke et al., 2007; Stilinović et al., 2015);

standard computer vision-based techniques are then uti-

lized for visual tracking. Although visibility can be a chal-

lenge, there is usually ample natural daylight at depths

(typically 20–25 m) where human beings can dive and

remain for extended periods of time without using specia-

lized equipment.

However, visual data gets noisy, owing to challenging

marine conditions (Sattar and Dudek, 2006) arising from

such factors as color distortions, lighting variations, or sus-

pended particles. Consequently, robust visual detection and

tracking become extremely difficult. Passive sonars, such

as hydrophones are useful in such scenarios (Gemba et al.,

2014; Hari et al., 2015). Active sonars are also used for

diver-following in unfavorable visual conditions (DeMarco

et al., 2013; Mandic et al., 2016). They are particularly use-

ful when a robot loses the diver from its field of view and

tries to rediscover the diver; once rediscovered, the robot

can switch back to visual tracking. Conversely, ultrashort

baseline (USBL) is often used for global positioning of

underwater robots and remotely operated vehicles (ROVs).

A USBL transponder (mounted on the robot) communicates

with a USBL transceiver (mounted on a pole under a ship

or a boat) using acoustic signals. Phase-differencing meth-

ods are then used by the USBL to calculate positioning

information (range, angle, etc.). The robot uses this

information for navigation and tracking divers or other

objects of interest.

Proprioceptive sensors, such as IMUs, are also used by

underwater robots for internal state estimation (Miskovic

et al., 2015); in addition, pressure sensors are used for mea-

suring the depth of the robot (from the surface) using exter-

nal pressure (Corke et al., 2007). The depth information is

useful for the depth-control and altitude-control modules of

the robot. Moreover, inertial navigation systems and other

navigation sensors can be used to determine the robot’s

instantaneous pose and velocity information; however,

these systems drift, thus requiring repeated correction using

secondary sensing systems. Table 3 summarizes the chal-

lenges and operational issues based on different choices of

sensors for person-following underwater robots.

2.2.2. Mode of interaction. Since truly autonomous under-

water navigation is still an open challenge, explicit interac-

tion with the accompanying diver is crucial for diver-

following robots. In particular, in complex missions, such

as surveillance and rescue operations, robots can dynami-

cally adjust their mission parameters by regularly commu-

nicating with the diver. In addition, some underwater

exploration and data collection processes require close

human supervision. In these scenarios, the divers typically

instruct the robot to perform certain tasks (record snap-

shots, take samples, etc.) in different situations (Islam

et al., 2018c). Although such communication paradigms

are fairly straightforward in terrestrial settings, these are

rather complex undertakings for underwater robots.

A number of communication frameworks have been

proposed for underwater human–robot interaction. In

RoboChat (Dudek et al., 2007), divers use a set of ‘‘AR-

Tag’’ markers to display a predefined sequence of symbolic

patterns to the robot; these patterns are then mapped to a

set of grammar rules defined for the language. A major

limitation of such marker-based frameworks is that the

markers need to be carried along and used in the correct

order to produce instruction commands for the robot.

Although the number of required markers can be reduced

by incorporating additional shapes or motion signs with

each marker (Sattar et al., 2007; Xu et al., 2008), this

framework still involves a significant cognitive load on the

diver. A simpler alternative is to use hand gestures to com-

municate with the robot (Chiarella et al., 2018; Islam et al.,

2018b). This comes more naturally to divers because they

already communicate with each other using hand gestures.

Conversely, robots can communicate emergency messages

(e.g., low battery) and periodic updates to the diver using

an on-board screen, flashing lights, etc.

The social and behavioral aspects of underwater mis-

sions are limited (Wu et al., 2015). However, implicit

diver–robot interactions are vital for ensuring the robot’s

safety and the overall success of the operation. The associ-

ated cognitive load on the divers is another important

Fig. 3. A typical diver-following scenario for an underwater

robot during a reef exploration task.
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consideration for designing an interaction framework

(Chiarella et al., 2015; Islam et al., 2018b).

2.2.3. Granularity. As mentioned, the applications envi-

sioned for underwater diver-following robots usually

require a team of divers and robots. In most cases, each

robot is assigned to one leader (usually a diver) who guides

the robot during a mission (Islam et al., 2018a). The leader

can be another robot as well. For instance, a robot can fol-

low another robot, which is following a diver; such opera-

tions are referred to as robot convoying (Shkurti et al.,

2017). Robot convoying is useful when there are more

robots than divers. Additionally, it is often more convenient

and safer than having a number of robots follow a single

diver. Underwater robots are usually not assigned to follow

more than one diver because this requires complex motion

planning; also, interacting with a number of humans simul-

taneously can be computationally demanding and often

problematic.

2.2.4. Degree of autonomy. Since underwater missions are

strictly constrained by time and physical resources, most

diver-following applications use semi-autonomous robots

that take human inputs to make navigation decisions when

needed. This reduces the overhead associated with under-

water robot deployment and simplifies associated mission

planning. For simple applications, diver-following robots

are typically programmed to perform only some basic tasks

autonomously, e.g., following the diver, hovering, or taking

snapshots. These programs and associated parameters are

numbered and made known to the robot (and diver) before-

hand. The diver leads the mission and instructs the robot to

execute (one of) these programs during operation. For

instance, the robot might be instructed to follow the diver

to the operation zone, then to hover at a particular location

of interest, take pictures, and eventually follow the diver

back at the end of the mission. This interactive operational

loop is very useful for simple applications, such as explora-

tion and data collection (Islam et al., 2018c). However,

more autonomous capabilities are required for complex

applications, such as surveillance or monitoring the migra-

tion of marine species. ROVs are typically deployed for

these critical applications; these are connected to a surface

vehicle (usually a ship or a boat) via an umbilical link that

houses communication cables and an energy source, to

enable power and information transfer.

2.3. Aerial scenario

Unmanned aerial vehicles (UAVs) are traditionally used for

surveillance, industrial, and military applications. More

recently, UAVs have become more accessible and popular

for entertainment purposes and in the film industry. They

are very useful for capturing sports activities, such as climb-

ing or skiing, from a whole new perspective (Higuchi et al.,

2011; Skydio, 2018; Staaker, 2016) without the need for

teleoperation or a full-scale manned aerial vehicle. Another

interesting application is to use person-following UAVs to

provide external visual imagery, which allows athletes to

gain a better understanding of their motions (Higuchi et al.,

2011). These popular use cases have influenced significant

endeavors in research and development for affordable

UAVs, and they have been at the forefront of person-

following aerial drone industry in recent times.

Figure 4 illustrates a typical person-following scenario

for a UAV. The operating time for UAVs is usually much

shorter than for ground and underwater scenarios, e.g., less

than half an hour to a few hours per episode, owing to lim-

ited battery life. The person launches the take-off command

at the beginning of each episode and then commands the

UAV to follow (and possibly to take snapshots) while he or

she is performing some activities. The person makes the

landing command after a reasonable amount of time, end-

ing the episode. It is common to carry a number of portable

batteries or quick chargers to capture longer events. The

following sections discuss other operational considerations

and related design issues based on the choice of sensors,

mode of interaction, granularity, and degree of autonomy.

2.3.1. Choice of sensors. As the mentioned applications

suggest, person-following UAVs are equipped with cam-

eras for visual sensing. Usually, a front-facing camera is

used for this purpose, while an additional low-resolution

vertical camera (i.e., facing down) is used as an optical

flow sensor. The vertical camera uses ground textures and

visible features to determine the UAV’s ground velocity

and ensure stabilization. Owing to the constraints on cost,

weight, size, and battery life, the use of other exteroceptive

sensors is often limited to consumer-grade person-follow-

ing UAVs. The Parrot ARDrone 2.0 (Parrot, 2012), for

instance, only uses cameras (front and vertical) as extero-

ceptive sensors; these UAVs weigh less than a pound and

cost approximately two hundred US dollars. Conversely,

with a 4k resolution camera and a three-axis mechanical

gimbal, the DJI Mavic drones (DJI, 2016) weigh 700–850

grams and cost approximately a thousand US dollars.

However, UAVs used in industrial, military, and other

critical applications can accommodate several high-

resolution cameras, range sensors, stereo cameras, etc. For

instance, Inspire 2.0 (DJI, 2015) drones have additional

upward-facing infrared sensors for upward obstacle avoid-

ance, ultrasonic sensors, and camera gimbals for stable for-

ward vision. While these drones weigh about 6–8 pounds

and cost a few thousand US dollars, they offer the robust-

ness and reliability required for critical applications.

Moreover, infrared and thermal cameras (Kumar et al.,

2011) are particularly useful in autonomous human surveil-

lance and rescue operations in darkness and during adverse

weather. These sensors provide low-resolution thermal

images (Rudol and Doherty, 2008), which are used to loca-

lize moving targets (e.g., people) in darkness. While multi-

ple high-resolution stabilized cameras are useful in these
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applications, manufacturers of person-following UAVs tend

to avoid using other exteroceptive sensors and try to bal-

ance the trade-off between cost and battery life. For

instance, although laser scanners are widely used by UAVs

for surveying tasks involving mapping and localization

(Huh et al., 2013; Tomic et al., 2012), these are not com-

monly used for person-following applications.

Lastly, proprioceptive sensors are used mainly by flight

controller modules. For instance, IMUs measure three-axis

rotations and acceleration while an optical flow sensor

measures the horizontal (ground) velocity of the UAV.

Additionally, ultrasonic and pressure sensors measure alti-

tude and vertical displacements of the UAV (Barták and

Vykovský, 2015). Flight controller modules use these sen-

sory measurements to estimate the UAV pose and eventu-

ally control its position and trajectory during flight. Hence,

these sensors are critical for the overall successes of the

operations. Additionally, advanced UAVs make use of

Global Positioning System (GPS)receivers within the navi-

gation and control loop, allowing for smart navigation fea-

tures, such as maintaining a fixed position or altitude.

Table 4 summarizes the usage and challenges of different

sensors used by person-following UAVs.

2.3.2. Mode of interaction. Since the per-episode operating

time for UAVs is significantly shorter than that of UGVs

and AUVs, their take-offs and landings are frequent. This

requires that the person be aware of the UAV’s location and

available battery at all times in order to facilitate smooth

person-following and ease the landing processes.

Additionally, for a UAV paired to a user application via a

wireless local area network (WLAN), the person being fol-

lowed should not venture outside the WLAN range.

Furthermore, the person can positively influence the beha-

vior of the UAV by understanding the underlying algo-

rithms, e.g., by knowing how the UAV navigates around an

obstacle, how rediscovery happens when the target person

is lost, etc. While these positive influences via implicit

interactions are important for person-following in general,

they are more essential in the aerial scenario.

As mentioned earlier, implicit interaction incurs addi-

tional cognitive loads on the user. To this end, explicit

interactions and commands can simplify the task of con-

trolling the UAV. Most commercial UAVs can be controlled

via smart devices (DJI, 2016; Skydio, 2018), proprietary

controllers, wearable beacons, etc. Moreover, hand-gesture-

based interaction is particularly popular in personal appli-

cations where the UAV flies close to the person at a low

altitude (Naseer et al., 2013). Typical instructions involve

changing the robot’s position or initiating a particular task,

such as to start circling around the person, start or stop

video recording, or make an emergency landing.

Nevertheless, hand-gesture-based interaction with UAVs

can be quite challenging when the UAV flies at a high alti-

tude; these challenges are elaborately discussed later in this

paper (Section 3.3.1).

2.3.3. Granularity. As with the ground and underwater

scenarios, a single UAV follows a single person in most

commercial and personal applications. Owing to the

increasing popularity of these applications, research studies

have also concentrated largely on this interaction paradigm

(Chakrabarty et al., 2016; Lugo and Zell, 2014; Pestana

et al., 2014). However, a single UAVoften cannot fulfill cer-

tain application requirements, such as capturing an event

from different viewpoints or over a long period of time.

Hence, critical applications, such as search-and-rescue

operations, require several UAVs to follow a team (Cacace

et al., 2016) and often share a cooperative task (e.g., cover-

ing a certain search perimeter). Moreover, a group of coop-

erative UGVs is more effective for crowd control (Minaeian

et al., 2016), than is a single UAV.

While the integration of a number of person-following

UAVs can overcome certain limitations of using a single

UAV, controlling and interacting with a number of UAVs

can become increasingly difficult. The cognitive load on

the users is significantly increased as they need to worry

about the battery life, take-off and landing, position, move-

ment, etc., of each UAV. Although it is theoretically possi-

ble to interact with several UAVs separately and as a group

using hand gestures or smart devices, it is not practical for

most personal applications. For critical applications, how-

ever, UAVs with more advanced autonomous capabilities

are used to reduce the cognitive load on the person. In fact,

advanced UAVs have features that allow interactions with

several persons, who share the cognitive load in complex

operations. For instance, the camera gimbals of Inspire 2.0

(DJI, 2015) can be controlled independently (by a person)

while it is interacting with a different person.

2.3.4. Degree of autonomy. Unlike ground scenarios, par-

tial autonomy is preferred over full autonomy in most appli-

cations for person-following UAVs. The person usually

uses a smartphone application for take-offs, positioning,

and landing. Then, the UAV switches to autonomous mode

and starts following the person. During operation, the per-

son typically uses a smartphone application or hand ges-

tures to communicate simple instructions for moving the

Fig. 4. Unmanned aerial vehicle filming a sport activity while

intelligently following an athlete (Wellbots, 2015).
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UAV around, taking snapshots, etc. If the UAV loses visual

on the person, it hovers until rediscovery is made. UAVs

are also capable of emergency landing by themselves if

necessary (e.g., when the battery is low or internal malfunc-

tions are detected). These autonomous features minimize

the cognitive load on the person and reduce the risk of los-

ing or damaging the UAV.

While partially autonomous UAVs are suitable in con-

trolled settings, such as filming sports activities, fully

autonomous behavior is suitable in situations where exter-

nal controls cannot be easily communicated. For instance,

autonomous mission planning is essential for such applica-

tions as remote surveillance and rescue operations, aiding

police in locating and following a fleeing suspect, etc.

3. State-of-the-art approaches

Perception, planning, control, and interaction are the major

computational components of an autonomous person-

following robotic system. This section discusses these

components of the state-of-the-art methodologies and their

underlying algorithms.

3.1. Perception

An essential task of a person-following robot is to perceive

the relative position of the person in its operating environ-

ment. The state-of-the-art perception techniques for object-

following or object-tracking can, in general, be categorized

based on two perspectives: feature perspective and model

perspective (see Figure 5). Based on whether or not any

prior knowledge about the appearance or motion of the tar-

get is used, the techniques can be categorized as model-

based or model-free. Conversely, based on the algorithmic

usage of the input features, perception techniques can be

categorized as feature-based tracking, feature-based learn-

ing, and feature or representation learning.

Our discussion is schematized based on the feature per-

spective, since this is more relevant to the person-following

algorithms. Additionally, various aspects of using human

appearance and motion models are included in our discus-

sion. These aspects, including other operational details of

the state-of-the-art perception techniques for ground, under-

water, and aerial scenarios, are presented in the following

sections.

3.1.1. Ground scenario. The UGVs navigate in a two-

dimensional (2D) space while following a person (Figure

6). Most UGVs adopt a unicycle model (Pucci et al., 2013)

with linear motion along the ground (XY ) plane and angu-

lar motion about the vertical (Z) axis. One implicit assump-

tion is that the cameras are static and rigidly attached to the

robots, as omnidirectional cameras (Kobilarov et al., 2006)

are rarely used for person-following applications. The

camera feeds and other sensory inputs are fused and sent to

the perception module in order to localize the person with

respect to the robot. Although the underlying algorithms

vary depending on the choice of sensors, they can be gen-

eralized into the following categories.

(i) Feature-based tracking. The simplest class of person-

following algorithms detect person-specific features in the

input feature space. For example, blob detection algorithms

use color-based segmentation to track a person in the RGB

image space (Hu et al., 2007, 2009; Schlegel et al., 1998). The

obvious dependency on specific colors (e.g.,the person’s cloth-

ing), make these algorithms impractical for general applica-

tions. More robust and portable algorithms can be designed

using the depth data generated from an RGBD camera or a

stereo camera. As illustrated in Figure 6(e), the presence of a

person corresponds to a specific pattern in terms of shape,

average distance, and the number of points in the 3D point-

cloud. Usually, a template is designed based on the expected

values of these attributes, and is then used for detection (Isobe

et al., 2014; Satake et al., 2013). A family of person-following

algorithms applies similar methodologies to LRF and sonar

data. As seen in Figure 6(d), slices of planar distance measures

from an LRF or directional distance measures from a sonar

can be used to detect specific feature patterns or templates per-

taining to a person in an upright posture.

More advanced algorithms iteratively refine the initial

detection of person-specific features. Mean-shift and parti-

cle filter-based algorithms (Germa et al., 2009; Kwolek,

2004) are the most popular ones used for person-following.

A mean-shift algorithm performs back-projection to find

the probabilities of the target feature map in each point in

the feature space. Then, by iteratively following the center

of mass of the probability distribution (termed the mean-

shift vector), the algorithm finds the mode of the distribution

that corresponds to the best match for the target feature map.

These approaches work very well for unimodal cases and are

therefore not very effective in tracking several targets at once.

Particle filters, however, adopt an iterative prediction-update

process to derive a set of particles (i.e., candidate solutions).

The particles are initialized randomly over the feature space,

then iteratively updated based on their similarities with the

Fig. 5. Categorization of various perception techniques for

person-following based on feature and model perspectives.
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target feature map. The update rules and similarity functions

are designed in such a way that the particles move toward

more prospective regions in the feature space and eventually

converge to the target region.

Since searching over the entire feature space can be

computationally expensive, it is very helpful to use prior

knowledge or to make educated assumptions in order to

reduce the search space. For example, Gaussian mixture

model-based background subtraction (Stauffer and

Grimson, 1999) can be used to avoid searching for person-

specific features over background regions (Figure 6(e)).

Additionally, exhaustive searching in every frame can be

avoided by keeping track of the detected features over

sequences of frames. Optical flow-based methods (Handa

et al., 2008) and other feature-based trackers (Satake

et al., 2012, 2013) take advantage of this for efficient

tracking. Furthermore, educated assumptions of the walk-

ing model of a person can also facilitate the removal of

unpromising regions from the feature space (Guevara

et al., 2016).

(ii) Feature-based learning. Another class of approaches

makes statistical assumptions about the true underlying

function that relates the input feature space to the exact

location of the person and then uses machine learning tech-

niques to approximate that function. For example, histo-

gram of oriented gradients (HOG) features are used to train

support vector machines (SVMs) for robust person detec-

tion (Satake and Miura, 2009). HOG features are

histograms of local gradients over uniformly spaced rectan-

gular blocks in the image space. The localized gradient

orientations are binned to generate dense feature descrip-

tors. These descriptors, along with other sensory inputs

(e.g., depth information) are used to formulate the feature

space, which is then used for offline training of detectors

such as SVMs. These detectors are known to be robust and

their inference is fast enough for real-time applications.

Other supervised models, such as decision tree and logistic

regression, can also be applied by following a similar meth-

odology (Germa et al., 2009). Figure 6(c) shows HOG fea-

tures for a particular image patch; as seen, the presence of a

person results in a particular spatial pattern in the HOG fea-

ture space.

Conversely, learning models based on adaptive boosting

(AdaBoost) (Chen et al., 2017b) are different in that,

instead of learning a single hypothesis, they iteratively

refine a set of weak hypotheses to approximate the strong

(optimal) hypothesis. The use of a number of learners

almost always provides better performance than a single

model in practice, particularly when the input features are

generated using heterogeneous transformations (e.g., linear

and non-linear) of a single set of inputs or simply contain

data from different sources (i.e., sensors). Dollár et al.

(2009) exploited this idea to extract integral channel fea-

tures using various transformations of the input image.

Such features as local sums, histograms, Haar features

(Papageorgiou et al., 1998) and their various generaliza-

tions are efficiently computed using integral images and

Fig. 6. Snapshot of a person-following scenario by a UGV, the sensory data for different choices of sensors, and visualizations of the

processed data used by various algorithms.
HOG: histogram of oriented gradients; LRF: laser range finder; UGV: unmanned ground vehicle.
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then used as inputs to decision trees that are then trained

via AdaBoost. A family of these models (Dollár et al.,

2010; Zhu et al., 2006) is known to work particularly well

as pedestrian detectors for near real-time applications, such

as person-following.

Furthermore, Bayesian estimation and other probabilis-

tic models (Alvarez-Santos et al., 2012; Guevara et al.,

2016) are widely used to design efficient person detectors.

These models make statistical assumptions about the

underlying probability distributions of the feature space

and use optimization techniques to find the optimal

hypothesis that maximizes the likelihood or the posterior

probability. A major advantage of these models is that they

are computationally fast and hence suitable for on-board

implementations.

(iii) Feature or representation learning. Feature-based

learning methods learn an optimal hypothesis on a feature

space that is designed beforehand from the input sensory

data. Consequently, the performance of the underlying algo-

rithm largely depends on how discriminative and informa-

tive the feature space is. Deep learning-based approaches

try to learn an optimal feature space and the optimal

hypothesis simultaneously, providing a significant boost in

performance. Recent developments in convolutional neural

networks (CNNs) have made it possible to use these models

in real-time applications such as person-following.

Supervised deep models typically consist of a convolu-

tional network and an additional classification or regres-

sion network. The former consists of several convolutional

layers that extract the informative features from the input

data to generate different feature representations. These fea-

ture representations are then fed to a classification or

regression network (a set of fully connected layers) for

detection. Often, a separate region proposal network is used

to allow efficient detection of several objects in the scene.

Back-propagation and gradient-based optimization tech-

niques are used to find the optimal feature space and opti-

mal hypothesis simultaneously. The sample DeConvnet

visualization (Zeiler and Fergus, 2014) shown in Figure 7

shows feature representations extracted by a CNN at differ-

ent layers. Each sub-plot represents the feature maps that

excite a particular neuron in the given layer. Feature maps

for the first and second layers (of a CNN) are shown, since

they are easier to inspect. These feature maps are used by

the classifiers and regressors to detect a person and other

objects in the scene.

The CNN-based deep models define the current state of

the art for object detection, classification, and visual per-

ception in general (Tensorflow, 2017). However, they

require a set of comprehensive training samples in order to

achieve good generalization performances by avoiding

over-fitting. Nevertheless, they often perform poorly in

such situations such as occlusions, appearance changes of

the target (person), or random changes in the environment.

Online learning schemes (Chen et al., 2017a) can cope with

these issues by adjusting their model weights based on new

observations on the fly. Conversely, in deep reinforcement

learning (Chen et al., 2017e) and agent-based models

(Gascueña and Fernández-Caballero, 2011), a reward func-

tion is defined based on the robot’s perceived state and per-

formed actions. The robot learns sequential decision

making to accumulate more rewards while in operation.

The overall problem is typically formulated as a Markov

decision process and the optimal action-state rules are

learned using dynamic programming techniques. These

methods are attractive because they do not require supervi-

sion and they imitate the natural human learning experi-

ence. However, they require complex and lengthy learning

processes.

Unsurprisingly, modern person-following robots use

deep learning-based person detectors (Chen et al., 2017a;

Jiang et al., 2018; Wang et al., 2018b) since they are highly

accurate in practice and robust to noise, illumination

changes, and other visual distortions. More advanced

robots go beyond person detection and adopt robust models

for human pose estimation and action recognition. These

are potentially useful for enabling many additional capabil-

ities, such as learning long-term human behavior, under-

standing sentiment, or engaging in natural conversation;

Fig. 7. The leftmost image shows a person detected by a deep object detection model, named Single-Shot Multibox Detector (Liu et

al., 2016); visualizations for different feature representations that are extracted at the first two layers of the model are shown in the

next two images; the rightmost image shows the human body pose being detected using Open-Pose (Cao et al., 2017).
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these are attractive for interactive person-following applica-

tions in social settings.

3.1.2. Underwater scenario. As discussed in Section 2.2,

perception is more challenging for underwater diver-

following robots. Challenging operating conditions call for

two major characteristics of a perception algorithm: robust-

ness to noisy sensory data and fast running time with lim-

ited on-board resources. Consequently, state-of-the-art

approaches focus more on robustness and fast running time

than on accuracy of perception.

To this end, simple feature-based trackers are often prac-

tical choices (Sattar and Dudek, 2006). As illustrated in

Figure 8(b), color-based tracking algorithms can be utilized

to localize a diver in the image space. These algorithms

perform binary image thresholding based on the color of

the diver’s flippers or suit. The binary image is then refined

to track the centroid of the target (diver) using algorithms,

such as mean-shift, particle filters, etc. AdaBoost is another

popular method for diver tracking (Sattar and Dudek,

2009a); as discussed in Section 3.1.1, AdaBoost learns a

strong tracker from a large number of simple feature-based

trackers. Such ensemble methods are proven to be compu-

tationally inexpensive yet highly accurate in practice.

Optical flow-based methods can also be utilized to track a

diver’s motion from one image frame to another, as illu-

strated in Figure 8(c). Optical flow is typically measured

between two temporally ordered frames using the Horn and

Schunk formulation (Inoue et al., 1992), which is driven by

brightness and smoothness assumptions of the image deri-

vatives. Therefore, as long as the target motion is spatially

and temporally smooth, optical flow vectors can be reliably

Fig. 8. Snapshots of autonomous diver-following scenarios and visualization of the processed data used by various algorithms.
DTFT: discrete-time Fourier transform; HMM: hidden Markov model.
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used for detection. Several other feature-based tracking

algorithms and machine learning techniques have been

investigated for diver tracking, and underwater object

tracking in general. However, these methods are mostly

applicable in favorable visual conditions with clear visibi-

lity and steady lighting.

Color distortions and low visibility issues are common

in deep-water scenarios. Sattar and Dudek (2009b) showed

that human swimming cues in the frequency domain are

more stable and regular in noisy conditions than tradition-

ally used spatial features like shape and color. Specifically,

intensity variations in the spatio-temporal domain along the

diver’s swimming direction have identifiable signatures in

the frequency domain. These intensity variations caused by

the diver’s swimming gait tend to generate high-energy

responses in the 1–2 Hz frequency range. This inherent per-

iodicity can be used for robust detection of divers in noisy

conditions. A mixed-domain periodic motion (MDPM)

tracker generalizes this idea in order to track arbitrary

motions (Islam and Sattar, 2017). In the MDPM tracker,

spatial features are used to keep track of the potential

motion directions of the diver using a hidden Markov

model (HMM). Frequency responses along those directions

are then inspected to find the most probable one; the overall

process is outlined in Figure 8(e). These methods are fast

and known to be more robust than simple feature-based

trackers.

The use of sonars is effective in unfavorable visual con-

ditions. Sonars use acoustic chirps (low-frequency sound

waves) along a range of bearings; directional distance mea-

sures are then calculated from the reflected sound waves.

AUVs and autonomous surface vehicles (ASVs) most com-

monly use active sonars to track divers (Mandic et al.,

2016; Miskovic et al., 2015) in diver-following applica-

tions. Additionally, the processed sonar image measure-

ments (Figure 8(d)) can be fused with USBL measurements

to obtain reliable tracking estimates at a steady rate. Such

sensor fusion increases robustness and works even in cases

when either the sonar or the USBL measurements are noisy

or unavailable. However, active sonars face challenges in

coastal waters, owing to scattering and reverberation.

Additionally, their usage cause disturbances to the marine

ecosystem and may also be limited by government regula-

tions on sound levels. Thus, the use of passive sonars such

as hydrophones is a practical alternative (Gemba et al.,

2014; Hari et al., 2015). Passive sonars capture sound

waves of diver’s breaths and movements, which have inher-

ent periodicity. These waves are then analyzed in the fre-

quency domain to detect periodic bursts of low-frequency

sound waves pertaining to the diver’s breathing or move-

ments. A similar methodology is used by underwater ROVs

that use electric-field sensors to detect the presence of

divers within a short range (Lennartsson et al., 2009).

Deep learning-based object detection models have

recently been investigated for underwater applications as

well (Islam et al., 2018a; Shkurti et al., 2012). The state-of-

the-art pre-trained models are typically trained (offline) on

large underwater datasets and sometimes quantized or

pruned in order to get faster inference by balancing robust-

ness and efficiency (Islam et al., 2018a,c). As illustrated in

Figure 8(f), once trained with sufficient data, these models

are robust to noise and color distortions; additionally, a sin-

gle model can be used to detect (and track) several objects

at once. Despite the robust performance, these models are

not as widely used in practice as in terrestrial scenarios,

owing to their slow on-board running times. However, with

the advent of mobile supercomputers and embedded paral-

lel computing solutions (Google, 2018; NVIDIA, 2014),

efficient on-board implementations of these models are

becoming possible. Nevertheless, although the online learn-

ing and reinforcement learning-based approaches are effec-

tive for person tracking when the appearance and scene

changes (Chen et al., 2017a,e), they are yet to be success-

fully used in practice for diver-following applications.

3.1.3. Aerial scenario. The underlying mechanism of a

perception algorithm for person-following UAVs is mostly

defined by two aspects: the expected flying trajectory of the

UAV and the available sensory data. For instance, in some

personal applications, the UAV flies close to the person at a

low altitude (e.g., 4–6 m from the ground). The perception

algorithms in such a set-up are similar to those in ground

scenarios, as illustrated in Figure 9(a). Conversely, applica-

tions such as filming sports activities demand rather com-

plex trajectories of the UAV while following an athlete

(Figure 9(d)). Robust detection and control mechanisms are

required in these set-ups, including reliable sensing. Lastly,

autonomous surveillance and rescue operations involve sen-

sing from long distances, often in unfavorable sensing con-

ditions; hence, perception techniques differ among these

scenarios.

Standard feature-based tracking methods are suitable if

the UAV is expected to fly close to the person while main-

taining a smooth horizontal trajectory. As seen in Figure

9(a) and (b), the camera image captures most of the per-

son’s body with no significant perspective distortions;

hence, computer vision-based object detectors and pedes-

trian detectors perform well in such scenarios. To this end,

color-based segmentation, mean-shift, particle tracker, and

HOG-based detectors are widely used (Higuchi et al.,

2011; Kumar et al., 2011; Lugo and Zell, 2014; Teuliere

et al., 2011). The operations of these algorithms are dis-

cussed in Section 3.1.1. In a seminal work, Pestana et al.

(2014) showed that OpenTLD trackers can achieve robust

performance for outdoor suburb environments. These

trackers decompose a target-tracking task into tracking,

learning, and detection (TLD); they are known to perform

well for long-term object tracking in general. One limita-

tion of TLD trackers is that they often incorporate the

background into the learning over time, leading to quick

target drift.

More reliable sensing and robust tracking performance

can be achieved by using an additional depth sensor (e.g., a
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RGBD camera), particularly for indoor applications. Naseer

et al. (2013) presented an indoor person-following system

using two cameras; a regular camera for determining the

3D position of the UAV based on markers on the ceiling

and a depth camera to detect a person in 3D. The images

from the depth camera are warped based on the calculated

3D position. The stabilized depth images are then used for

robust perception using the OpenNI platform (Figure 9(b)).

Gioioso et al. (2014) also used an RGBD camera to detect

hand-gesture-based teleoperation commands for UAVs.

Such systems, however, are limited to indoor environments

and small motions. Additionally, they often require a

remote computer for intensive computations.

For challenging outdoor applications, where the UAV

trajectory changes rapidly because of dynamic obstacles or

fast movements, the person may appear significantly differ-

ent from different viewpoints. Hence, perspective distor-

tions need to be taken into account. De Smedt et al. (2015)

used ground plane estimation techniques to approximate

the orientation of the ground plane in 3D relative to the

position of the camera; object heights in the image were

then predicted based on the homography of the ground

plane and the real-world sizes of the objects. De Smedt

et al. (2015) exploited this idea to localize prospective rec-

tangular regions in the image space for detecting pedes-

trians of expected heights between 160 cm and 185 cm.

This allows approximation of the height of the person in

different perspectives and thus reduces the search space,

leading to efficient tracking performances. De Smedt et al.

(2015) used standard pedestrian trackers based on aggre-

gate channel features and achieved good on-board perfor-

mances. A number of other online tracking algorithms have

been investigated by Mueller et al. (2016) for person-

following and general object tracking by UAVs. Mueller

et al. (2016) also presented a camera handover technique,

where one UAV can pass the tracking task over to another

UAV without interruption; this can be useful in long-term

tracking and filming applications. Moreover, some com-

mercial UAVs build a 3D map of the surroundings using

techniques such as visual simultaneous localization and

mapping (SLAM) and follow their target (person) within

the map (Skydio, 2018). These UAVs are usually equipped

with advanced features, such as obstacle avoidance or target

motion prediction. Furthermore, UAVs that capture sports

Fig. 9. Snapshots of aerial person-following scenarios by UAVs and visualization of the processed sensory data used by various

algorithms.
GPS: Global Positioning System; SLAM: simultaneous localization and mapping; UAV: unmanned aerial vehicle.
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activities often track the location information provided by a

paired controller device carried by or mounted on an ath-

lete, as illustrated in Figure 9(d). The paired device is

equipped with a GPS receiver and communicates informa-

tion related to motion and orientation of the athlete; this

additional information helps the UAV plan its optimal tra-

jectory for filming (Vasconcelos and Vasconcelos, 2016).

As mentioned, thermal and infrared cameras are particu-

larly useful in autonomous surveillance, search and rescue,

and other military applications. Thermal images detect the

emissions of heat from various objects in the image space,

which can be easily identifiable from the surroundings.

This feature is crucial while sensing from long distances

and in unfavorable sensing conditions. Figure 9(e) shows

snapshots of a military-grade thermal infrared camera (SPi,

2015); as seen, the warm objects can be easily located in

the image. In fact, one major advantage of using thermal

imagery is that simple computer vision techniques can be

used for robust detection. For instance, Portmann et al.

(2014) showed that the standard background subtraction

techniques can be used to segment regions that are both

hotter and colder than the environment. Then, HOG-based

detectors or particle filters can be used to track humans in

the segmented regions. Gaszczak et al. (2011) used the

mean-shift algorithm on the background-subtracted thermal

image and achieved good results. Additionally, they showed

that the Haar classifiers can be used to detect human body

signatures, as well as other objects, accurately. These meth-

ods are computationally inexpensive and suitable for on-

board implementations.

Lastly, deep learning-based person detectors are yet to

be explored in depth for the aerial applications, largely

owing to the limited on-board computational resources

available, particularly in consumer-grade UAVs.

Nevertheless, some recent commercial UAVs, such as

Skydio R1 (Skydio, 2018), use mobile embedded super-

computers in order to use deep visual models in real time.

It is safe to say that with faster mobile supercomputers and

better low-power computing solutions, efficient on-board

implementations of various deep learning-based perception

modules will soon become possible and will be more com-

monly used by person-following UAVs in the near future.

3.2. Planning and control

Once the perception module obtains an estimate of the tar-

get (person) pose by processing the sensory inputs, control

commands need to be generated in order to achieve the

desired motion. Ground robots navigate in a 2D plane,

whereas underwater and aerial robots navigate in 3D

spaces; hence, the corresponding control signals and their

operational constraints vary. However, the overall operation

is mostly similar; Figure 10 illustrates an outline of the

operational flow for an autonomous person-following sys-

tem. The following discussions provide an overview of the

planning and control modules that are standard for general

object-following, and focus on the aspects that are particu-

larly important for person-following applications.

First, the target person’s position and heading informa-

tion are estimated with respect to the robot’s known frame

of reference. Additionally, the sensory data are processed

and sent to the state estimation filters. These observed

measurements are used by the filters to refine the state esti-

mation through iterative prediction-update rules. Linear

quadratic estimators, such as the Kalman filter (Kalman,

1960), and non-linear estimators, such as the extended

Kalman filter (EKF) (Julier and Uhlmann, 1997) are most

widely used for this purpose. The unscented Kalman filter

(Wan and Van Der Merwe, 2000) addresses the approxima-

tion issues of the EKF and is often used in practice for state

estimation from noisy sensory data. Methodological details

of these algorithms are beyond the scope of this paper;

interested readers are referred to Jung and Yi (2012); Lugo

and Zell (2014); Morioka et al. (2012); Satake and Miura

(2009); Sattar et al. (2008); Teuliere et al. (2011) and Yoon

et al. (2014).

The refined measurements are then processed to gener-

ate a set of way points, i.e., a representation of potential tra-

jectories for the robot in order to follow the target person.

The path planner uses this information and finds the opti-

mal trajectory by taking into account the estimated relative

positions of the static obstacles, other humans, and dynamic

objects in the environment. The constraint here is to opti-

mize some aspect of the anticipated motion of the robot,

such as travel time, safety, or smoothness of motion. A

sequence of points is then generated to discretize the antici-

pated motion; the points pertaining to the optimal trajectory

are generally termed the set-points (Doisy et al., 2012).

Finally, the control modules analyze the set-points and gen-

erate navigation commands to drive the robot. The gener-

ated navigation commands are usually fed to a set of

feedback (e.g., proportional–integral–derivative (PID)) con-

trollers. This process of robot control is also generic for

most applications; interested readers are referred to De Wit

et al. (2012), Mezouar and Chaumette (2002), and Pounds

et al. (2010) for further details.

Figure 11 illustrates a categorical overview of various

types of path planning algorithm in the literature. Based on

the locality of sensing, planning can be either global (for

fully observable environments) or local (for partially obser-

vable environments). Additionally, if the optimal path (to

the target) is computed first and executed sequentially, it is

termed as offline planning; conversely, the planned path is

refined dynamically in online planning paradigms. Since

person-following robots are deployed in partially observa-

ble and dynamic environments, they require local and

online path planning in order to adapt to irregular and

unpredictable changes in their surroundings. Path planning

algorithms for person-following robots can be further cate-

gorized based on mapping information and on their algo-

rithmic structure. Although these algorithms are fairly

standard for dynamic target-following, a brief discussion of
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their operational considerations for person-following is pre-

sented in the following sections.

3.2.1 Map-assisted versus target-centric planning. Map-

assisted planning is feasible for structured environments

with a known map, particularly for person-following

ground robots in indoor settings (Doisy et al., 2012; Nikdel

et al., 2018). The global map of the environment (including

static objects) is used as prior knowledge. Typically, a static

planner keeps track of the robot’s location within the map

and its admissible waypoints by taking into account static

obstacles in the environment (Ahn et al., 2018). The

dynamic planner then refines these waypoints by consider-

ing the motions of the dynamic objects in the environment

(Figure 12). Other constraints, such as social awareness,

implicit interactions, etc., can also be considered in the

refinement process that eventually generates the optimal

path (Cosgun et al., 2016). Standard map-based navigation

techniques are then used to invoke the person-following

motion.

Although a global map can significantly simplify the

planning and navigation processes, it is usually not avail-

able in outdoor applications. In such cases, a target-centric

approach is adopted. First, the locally sensed information is

used to create a partial map of the environment; traditional

SLAM-based techniques are most commonly used for this

purpose (Ahn et al., 2018; Cosgun et al., 2016). As illu-

strated in Figure 13, the UAV creates a 3D (depth) map of

the partially observed environment in order to find the opti-

mal path for person-following (Skydio, 2018). Such reac-

tive path planning sometimes leads to non-smooth

trajectories, particularly if the person moves quickly in a

zigzag trajectory (Tarokh and Merloti, 2010). Anticipatory

planning, i.e., predicting where the person is going to be

next and planning accordingly, can significantly alleviate

this problem and is thus widely used in practical applica-

tions (Hoeller et al., 2007; Nikdel et al., 2018; Tarokh and

Shenoy, 2014).

3.2.2 Planning for position-based servoing. In position-

based servoing, the path planner finds the optimal path to

follow a target using its estimated position with respect to

the robot. For instance, a person-following UAV uses its

current 3D position as the source and the estimated 3D

location of the person as the destination, and then uses

source-to-destination path planning algorithms to find the

optimal path that meets all the operational constraints. It is

to be noted that this planning can be either map-assisted or

target-centric, depending on whether or not global mapping

information is available.

Fig. 10. Data and control flow among major computational components of a person-following system; this flow of operation is

generic to most autonomous object-following paradigms.

Fig. 11. Categorization of path planning algorithms from the perspective of sensing, methodology, and computation.
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Standard path planners typically represent the state

space using cells, grids, or potential fields and then apply

various search methods to find the optimal source-to-

destination path. For instance, the navigation space (and

the locations of relevant objects) is often interpreted using

an occupancy grid, and graph search-based algorithms,

such as A*, D*, or IDA* (Iterative Deepening A*), are used

to find the optimal path (Ahn et al., 2018; Huskić et al.,

2017; Müller et al., 2008). Another approach is to ran-

domly sample the state space and attempt to establish

source-to-destination connectivity using such techniques as

rapidly exploring random trees (RRTs) (Triebel et al.,

2016), RRT*, or probabilistic road maps (Hoeller et al.,

2007). These methods are good at finding near-optimal

solutions at a fast rate in large search spaces where ensur-

ing completeness is computationally expensive; hence, they

are widely used in real-time path planning for person-

following robots.

It is also common to represent the planning hypothesis

given the constraints as a probabilistic inference model.

Then, the problem reduces to finding a minimum cost or

maximum utility path from the search space of all admissi-

ble paths. Machine learning models and heuristic and evolu-

tionary approaches are also used to approximate the optimal

solution (i.e., to find a near-optimal path), particularly if the

search space is too large (Gong et al., 2011; Triebel et al.,

2016). Moreover, the problem can be modeled as a partially

observable Markov decision process (POMDP) in order to

perform online planning in a continuous state and action

space (Goldhoorn et al., 2014; Triebel et al., 2016).

POMDPs are good at dealing with dynamic environments

and complex agent behaviors. However, they can be compu-

tationally intractable and generate sub-optimal solutions.

Therefore, approximate solutions are typically formulated

with an assumption of a discrete state or action space.

Table 5 summarizes the different classes of path plan-

ning algorithms for position-based servoing and highlights

their operational considerations in person-following

applications. These algorithms are fairly standard; inter-

ested readers are referred to González et al. (2015) and

Yang et al. (2016) for further methodological details.

3.2.3. Planning for image-based servoing. Autonomous

navigation of a robot using visual feedback is known as

image-based (visual) servoing, where the path planner uses

image-based features in order to find the optimal path to

follow the target (Gupta et al., 2017). Image-based servo-

ing is particularly useful when it is difficult to accurately

localize the target, particularly underwater and in GPS-

denied environments (Pestana et al., 2014). For instance,

AUVs often use bounding-box reactive path planners for

diver-following (Islam et al., 2018a). Here, the planning

objective is to keep the target diver at the center of the

robot’s view. That is, motion commands are generated in

order to bring the observed bounding box of the diver to

the center of the camera image (Figure 14). The relative

distance of the diver is approximated by the size of the

bounding box and forward velocity rates are generated

accordingly. In addition, the yaw and pitch commands are

normalized based on the horizontal and vertical displace-

ments of the observed bounding box center from the image

center; these navigation commands are then regulated by

the controller to drive the robot.

Furthermore, it is common to simplify the planning

component for image-based servoing in order to reduce

computational burdens on the robot. For instance, diver-

following robots sometimes plan a straight-line trajectory

to remain immediately behind the diver (Islam and Sattar,

2017). A similar strategy is adopted by ground robots as

well (Brookshire, 2010; Doisy et al., 2012; Wang et al.,

2018a), with an additional planning component for obsta-

cle avoidance. As illustrated in Figure 15, person-following

UGVs can use tools from prospective geometry to get the

relative homography of the orthogonal planes and then find

the optimal path along the ground plane by keeping safe

distances from the person and obstacles. This simplifies

the operational complexities and is often sufficient for non-

critical applications.

Fig. 12. Map-assisted 2D path planning of ground robot,

avoiding static and dynamic obstacles within the map.

Fig. 13. An unmanned aerial vehicle using a multi-camera depth

map of the partially observed environment for target- centric

planning in order to follow a person (Skydio, 2018).
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3.2.4. Planning by end-to-end learning. End-to-end tech-

niques try to learn problem-specific robot navigation rules

directly from input sensory data. This way of coupling the

perception, planning, and control modules together is

inspired by the self-driving-car concept and is very popular

these days. Several deep-learning-based models for super-

vised learning and agent-based reinforcement learning have

recently been introduced for person-following as well

(Dewantara and Miura, 2016; Goldhoorn et al., 2014).

Typically, these models are first trained in simulations with

an existing motion planner and then transferred to real-

world environments for further tuning. Researchers have

reported exciting results, demonstrating their effectiveness

for UGVs in autonomous 2D navigation, avoiding obsta-

cles, following people in near-optimal paths, multi-agent

cooperation, etc. However, these techniques are mostly

applied for person-following UGVs in indoor settings, and

sometimes only in simulation environments (Dewantara

and Miura, 2016; Pierre, 2018). Therefore, more research

attention is needed in order to improve and generalize these

techniques for a wide range of other person-following

applications.

3.2.5. Other considerations for planning and control. In

addition to the operating constraints for person-following

mentioned already, there are other practical, and often

application-specific, considerations for effective planning

and control. Several such aspects are discussed in this

section.

Planning ahead to avoid occlusion. The most essential

feature of a person-following robot’s planning module is to

ensure that the target person is in the field of view during

the robot’s motion. The trajectory needs to be planned in

such a way that, in addition to meeting the standard criteria

of an optimal path, e.g., based on distances from obstacles,

expected travel time, smoothness of anticipated motion,

etc., the person remains reasonably close to the center of

the robot’s field of view and not occluded by obstacles.T
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Fig. 14. Illustration of a bounding-box reactive planner; the

horizontal and vertical displacements of the center of the

detected bounding box is used for image-based servoing.
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This is challenging if the sensing range is limited, especially

in the presence of dynamic obstacles. Typically, a probabil-

istic map (Hoeller et al., 2007) for motions of the moving

objects in the scene is formulated and then path planning is

performed on the dynamic occupancy field; a temporal

window of motion history is maintained to facilitate such a

formulation. Another approach is to predict the positions

and velocities of the moving objects a few time-epochs into

the future and plan the optimal trajectory ahead of time.

Such anticipatory planning is particularly important for

person-following UGVs that are meant to stay ahead of the

person (Mi et al., 2016) and UAVs that film fast-moving

athletes (Skydio, 2018).

Camera control. If the person-following robot is

equipped with a pan-and-tilt camera, a controller module is

required to ensure that the camera is always pointed at the

person during navigation (Doisy et al., 2012; Tarokh and

Merloti, 2010). In addition, it is common for person-

following UAVs to have camera gimbals; if so, an addi-

tional module is required to control the gimbals’ angles

instantaneously (Skydio, 2018; Staaker, 2016) based on the

person’s relative motion.

Person re-identification and recovery. In addition to

robust person detection and tracking, person-following

robots need to be able to plan to re-identify when necessary

(Koide and Miura, 2016). Moreover, these techniques are

essential for accompanying a specific person (Eisenbach

et al., 2015; Ilias et al., 2014). Predictive and probabilistic

models, such as Kalman filters and particle filters, are typi-

cally used to estimate the person’s future location, which

can be used as prior knowledge in case of a missing target

situation. That is, when the robot fails to detect the person

(owing to occlusion or noisy sensing), the recovery planner

can use that person’s anticipated location as a prior and

search probable locations for re-identification (Do Hoang

et al., 2017; Gupta et al., 2017). Standard feature-based

(Alvarez-Santos et al., 2012) and trajectory replication-

based techniques (Chen et al., 2017a) are most commonly

used in practice; appearance-based deep visual methods

(Ahmed et al., 2015; Li et al., 2014) can also be used by

recovery planners for person re-identification.

Additional planning and control procedures are required

to incorporate desired autonomous behaviors in emergency

situations, e.g., when the recovery planner fails to re-

identify the missing person, or if there is a critically low

battery or internal malfunctions are detected. For instance,

a UAV should be capable of making an emergency landing

and communicate its status to the person if possible.

Moreover, UGVs and UAVs can use some sort of emer-

gency beacons, e.g., flashing lights or beeping sounds, to

attract immediate attention.

Social awareness in a crowded area. It is essential for

person-following robots to maintain certain social rules

while operating in a populated area (Honig et al., 2018).

For instance, passing pedestrians on the correct side, main-

taining average human walking speed, taking nearby per-

sons’ motions into account for planning, etc., are norms

(Dewantara and Miura, 2016; Gockley et al., 2007) that a

social robot should be aware of. Therefore, application-

specific social norms need to be modeled and translated

into path planning and control rules in order to enable the

desired behaviors. Enabling socially aware behaviors in

mobile robots is an active research topic and researchers

have been exploring these aspects for person-following

robots in various environments, such as airports (Triebel

et al., 2016), hospitals (Ilias et al., 2014), and other crowded

areas (Ferrer et al., 2013).

Maintaining the norms of interaction. Lastly, the plan-

ning and control modules for person-following robots need

to accommodate the norms of explicit and implicit human–

robot interactions. In particular, various aspects such as

desired proximity behaviors, following angles (Shanee

et al., 2016), turning and waiting behavior, etc., should be

considered during trajectory planning. Additionally,

application-specific choices, such as whether to stay behind

or side-by-side while following, the desired speed, and rele-

vant anticipative behaviors (Granata and Bidaud, 2012; Mi

et al., 2016) are essential considerations. Another important

feature is to maintain the expected behavior during explicit

interactions (Hu et al., 2014; Islam et al., 2018c), e.g.,

being stationary when the human is communicating, and

exhibiting correct acknowledgement responses. These

aspects of human–robot interaction are elaborately dis-

cussed in the following section.

3.3. Interaction

Various forms of explicit and implicit interactions for

person-following scenarios are discussed in Section 2. The

following discussion provides a summary of how these

Fig. 15. Simple planning strategy for an unmanned ground

vehicle; it finds a straight-line trajectory in order to remain

immediately behind the person while avoiding obstacles.
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interactions take place, different methodologies used, and

the related operational considerations.

3.3.1. Explicit interaction. Explicit interactions happen

when there are direct communications between the human

and the robot. Although most robots are equipped with per-

ipheral devices and sometimes haptic sensors (Ghosh et al.,

2014), those are typically used for offline tasks (powering

the robot, transferring software or data, sending emergency

signals, etc.). Conversely, communication paradigms based

on speech, tags or markers, and hand gestures are used dur-

ing operation for explicit human–robot interaction.

Verbal communication is convenient and commonly

practiced in ground applications (Sakagami et al., 2002).

Typically the person uses voice commands to convey sim-

ple instructions to the robot. The level of communication

can vary from simple imperative commands (start or stop

following, move left or right) to complex procedural

instructions (e.g., a set of sequential tasks) depending on

the application requirements. Systems for speech recogni-

tion and synthesis are very robust and commercially avail-

able these days. However, their usage is mostly limited to

terrestrial applications.

Tags or fiducial markers (e.g., ARTag, ARToolkit) have

been used for underwater human–robot communication.

Visual languages, such as RoboChat (Dudek et al., 2007),

assign different sequences of symbolic patterns of those

markers to a set of grammar rules (Figure 16). This is gen-

erally a robust way of communication because the fiducial

markers are easy to detect in noisy underwater conditions.

However, it is not very intuitive, and carrying a large set of

markers during an underwater mission is inconvenient.

Consequently, hand-gesture-based communication para-

digms (Chiarella et al., 2015; Islam et al., 2018b) are often

preferred, where sequences of hand gestures are used as

symboling patterns instead of the tags. Detecting hand ges-

tures in real time is relatively more challenging than detect-

ing markers; therefore, deep visual detectors are typically

used to ensure the robustness and accuracy of the system

(Islam et al., 2018c).

An additional challenge for hand gesture-based commu-

nication in aerial applications is the relatively long and

varying human–robot distance (Figure 17). Unlike in an

underwater scenario, the person cannot come close to the

robot and perform hand gestures in front of its camera.

Consequently, the UAV might end up being too far away to

detect various kinds of hand gestures (Bruce et al., 2016;

Monajjemi et al., 2016). In such cases, it is often useful to

use a reliable gesture (a static palm gesture, waving hands,

etc.) to instruct the UAV to first come closer and then per-

form other hand gestures for communication (Cauchard

et al., 2015; Naseer et al., 2013). Conversely, hand gesture-

based communication is relatively less challenging in

ground applications (Alvarez-Santos et al., 2014; Marge

et al., 2011) and sometimes used even if a voice-based

communication system is available. Moreover, it is often

more feasible than voice-based communication in crowded

environments (Ferrer et al., 2013), and in a multi-robot

setting.

Smart devices and paired wearable devices are also

commonly used to communicate human instructions, par-

ticularly by commercial UAVs (Skydio, 2018; Vasconcelos

and Vasconcelos, 2016), and interactive UGVs (Burgard

et al., 1998; Faria et al., 2015). Typically, the humans use a

set of menu options to instruct the robot to perform spe-

cific tasks. For instance, instructions to start or stop record-

ing videos, move in a particular direction, stop following,

make an emergency landing, etc., are practically useful for

interacting with person-following UAVs. Conversely, a con-

versational user interface is needed for UGVs that serve as

museum tour-guide robots, or as personal assistants.

3.3.2. Implicit interaction. Research studies on implicit

interactions in person-following scenarios mostly concen-

trate on two aspects: the human perspective and the robot

perspective. As mentioned in Section 2, these aspects boil

down to the following sets of mutual responsibilities in dif-

ferent stages of a person-following operation.

1. Spatial conduct consists of a set of desired proxemic

behaviors (Fleishman et al., 2018) of a robot while fol-

lowing a person in a human–robot interaction setting.

Fig. 16. Diver communicating instructions to autonomous

underwater vehicle during a mission (Islam et al., 2018c).

Fig. 17. The visual challenges of detecting hand gestures from a

distant unmanned aerial vehicle (Monajjemi et al., 2016): notice

the minuscule appearance of people on the right compared with

the left image where the UAV is much closer.
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This behavioral quantification is important to define

safe person-following trajectories and to model prox-

imity control parameters (Yamaoka et al., 2008) for

following and waiting while engaging in, and during,

an explicit interaction.

2. Appearance and gaze conduct consists of desired

responsive behaviors during human–robot communica-

tion (Zender et al., 2007) and non-responsive gaze beha-

viors during following, approaching, and handing-over

scenarios (Moon et al., 2014), etc. Moreover, for person-

following robots that stay in front (Jung and Yi, 2012;

Nikdel et al., 2018), companion humans’ gaze behavior

is an important feature to track in order to predict their

motion. Additionally, it helps the robot to identify when

the person is about to start an explicit interaction and to

plan accordingly, e.g., slow down or stop, prepare to

detect and interpret the communicated instructions, etc.

3. Motion conduct refers to a set of desired person-

following motion trajectories of the robot in different

situations. It includes motion models for following a

person from different directions (from behind, side-by-

side, at an angle, etc.), turning behaviors, and waiting

behaviors. Additionally, the expected motion behavior

of the robot when its human companion is interacting

with other people or goes out of its sight are important

design considerations (Gockley et al., 2007; Granata

and Bidaud, 2012). Motion conduct rules are used by

the planning component of the system in order to

maintain the desired motion behaviors. Therefore,

prior knowledge about human motion (walking, swim-

ming, etc.) and the overall interaction model can facili-

tate the design of those anticipated motion behaviors

(Hu et al., 2014) for person-following robots.

The modalities and characteristics of implicit interactions

are difficult to quantify in terms of technicality. This calls

for rigorous user studies and feasibility analysis to formulate

the right research questions and their effective solutions.

4. Qualitative analysis: Feasibility, practicality,

and design choices

An overwhelming amount of research work and industrial

contributions have enriched the literature on autonomous

person-following. This paper highlights and organizes these

into a categorical study; to further assist readers in navigat-

ing the large body of literature, it is presented in an ordered

and organized fashion in Table 6. This section analyzes a

number of prominent person-following systems and pro-

vides a comparative discussion in qualitative terms. A sum-

mary of this qualitative analysis is given in Table 7.

4.1. Detection and tracking performance

An important consideration in designing a perception mod-

ule is the desired level of detection accuracy and tracking

performance given the operating constraints. This impacts

the choices of sensors and on-board computational hard-

ware as well. For instance, person-following UGVs can

accommodate several sensors, e.g., combinations of cam-

eras, sonars, laser scanners, and RGBD cameras. Therefore,

it is generally good practice to adopt sensor fusion schemes

(Nikdel et al., 2018; Susperregi et al., 2013; Wang et al.,

2018a) to ensure accurate feature-based detection and track-

ing at a fast rate. If only a single exteroceptive sensor is (or

can be) used, more sophisticated techniques, such as deep

visual models or online learning-based models, are required

to ensure reliable perception (Chen et al., 2017b; Wang

et al., 2018b); these models are computationally demanding

and typically require single-board supercomputers

(NVIDIA, 2014) for real-time inference. However, if there

are constraints on power, the use of UWB or RFID tags

(Germa et al., 2010; Laneurit et al., 2016) is ideal for

designing effective low-power solutions.

The constraints on power consumption and resource uti-

lization are more important considerations for person-

following AUVs and UAVs. Hence, using domain-specific

prior knowledge, such as modeling divers’ swimming pat-

terns by AUVs (Islam and Sattar, 2017) and perspective fil-

tering by UAVs (De Smedt et al., 2015), can facilitate the

design of efficient trackers. Nevertheless, on-board super-

computers (NVIDIA, 2014) or edge devices (Google, 2018)

can be used to run deep visual trackers in real time (Islam

et al., 2018a; Skydio, 2018). Moreover, paired connectivity

with the companion human, e.g., paired GPS receivers by

UAVs (Staaker, 2016) or acoustic links by ASVs (Miskovic

et al., 2015), can provide reliable and fast tracking perfor-

mances at a low power budget.

The methodological details of these perception modules

are discussed in Section 3.1. A qualitative comparison of

them is provided in Table 7. The comparison also includes

two other important features, i.e., whether online learning

is used (Gupta et al., 2017; Park and Kuipers, 2013) and

whether person re-identification or recovery is considered

(Chen et al., 2017a; Doisy et al., 2012). Additionally, for

diver-following systems, invariance to divers’ appearance,

motion, and wearables is taken into account for compari-

son. While interpreting this table, it is to be noted that sev-

eral check-mark (�) symbols in the first comparison (i.e.,

for detection and tracking) represent the quality of a pro-

posed solution on a scale of one to three, where three indi-

cates state-of-the-art performance. In all other columns of

Table 7, the check-mark (�) and cross (× ) symbols inde-

pendently represent yes, and no, respectively, for their cor-

responding comparisons.

4.2. Optimal planning and control

A few application-specific requirements, particularly the

degree of autonomy and the presence of dynamic agents or

obstacles in the operating environment directly influence

the design choices in planning and control modules of a

person-following robot. For instance, in predominately
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Table 6. An ordered collection of the person-following systems discussed in this paper; they are mentioned in reverse chronological order and grouped according to their primary focus

(perception, planning and control, or interaction). Diamonds (e) indicate that the corresponding techniques are not specifically about person-following robots, yet are applicable or relevant.

Perception Planning and control Interaction

Ground (2010–2018) Chen et al. (2017a); Chi et al. (2018); Gupta et al.
(2017); Jiang et al. (2018); Popov et al. (2018);
Wang et al. (2018a); Chen et al. (2017e)e; Chen
et al. (2017b); Do Hoang et al. (2017); Wang et al.
(2017); Cao et al. (2017)e; Guevara et al. (2016);
Koide and Miura (2016); Faria et al. (2015)e;
Babaians et al. (2015); Cai and Matsumaru (2014);
Eisenbach et al. (2015); Ilias et al. (2014); Isobe
et al. (2014); Leigh et al. (2015); Pairo et al. (2013);
Pradhan et al. (2013)e; Alvarez-Santos et al. (2012);
Awai et al. (2013); Basso et al. (2013); Cao and
Hashimoto (2013); Chung et al. (2012); Gascueña
and Fernández-Caballero (2011); Munaro et al.
(2013); Satake et al. (2012, 2013); Susperregi et al.
(2013); Yoon et al. (2013); Dollár et al. (2010)e;
Brookshire (2010); Germa et al. (2010)

Chen (2018); Huskić et al. (2017); Nikdel et al.
(2018); Pierre (2018); Wang et al. (2018b); Chen
et al. (2017d)e; Masuzawa et al. (2017); Mi et al.
(2016); Peng et al. (2016); Cosgun et al.
(2016)e; Sung and Chung (2016);
DiGiacomcantonio and Gebreyes (2014); Park
and Kuipers (2013); Tarokh and Shenoy (2014);
Pradhan et al. (2013)e; Doisy et al. (2012); Jung
and Yi (2012); Morioka et al. (2012); Tarokh and
Merloti (2010); Yamaoka et al. (2010)

Honig et al. (2018); Ahn et al. (2018)e;
Fleishman et al. (2018); Pourmehr et al. (2017)e;
Alves-Oliveira and Paiva (2016); Shanee et al.
(2016); Triebel et al. (2016); Dewantara and
Miura (2016)e; Thomason et al. (2015)e;
Alvarez-Santos et al. (2014); Hu et al. (2014);
The-5elementsrobotics (2014); Cifuentes et al.
(2014)e; Moon et al. (2014)e; Cosgun et al.
(2013); Doisy et al. (2013); Ferrer et al. (2013)e;
Granata and Bidaud (2012); Marge et al. (2011)

Ground (2000–2009) Hu et al. (2007, 2009); Dollár et al. (2009)e;
Bajracharya et al. (2009)e; Calisi et al. (2007); Chen
and Birchfield (2007); Germa et al. (2009); Handa et
al. (2008); Itoh et al. (2006); Kobilarov et al. (2006);
Liem et al. (2008); Satake and Miura (2009); Shaker
et al. (2008); Takemura et al. (2007); Yoshimi et al.
(2006); Zender et al. (2007); Zhu et al. (2006)e;
Kwolek (2004); Kwon et al. (2005); Sedighi et al.
(2004)e; Hirai and Mizoguchi (2003)

Luo et al. (2009); Satake and Miura (2009);
Müller et al. (2008)e; Chivilo et al. (2004);
Hoeller et al. (2007); Tarokh and Ferrari (2003)

Yamaoka et al. (2008)e ; Gockley et al. (2007);
Kuno et al. (2007); Syrdal et al. (2007)e;
Hüttenrauch et al. (2006)e; Yoshikawa et al.
(2006)e; Kulykukin et al. (2004); Matsumaru
et al. (2005)Sakagami et al. (2002)e

Ground (*–1999) Stauffer and Grimson (1999)e ; Darrell et al. (1998);
Schlegel et al. (1998); Papageorgiou et al. (1998)e;
Yamane et al. (1998)e; Wren et al. (1997)e;
Azarbayejani and Pentland (1996)e

Sidenbladh et al. (1999); Stentz (1994)e; Espiau
et al. (1992)e

Piaggio et al. (1998); Burgard et al. (1999)e;
Burgard et al. (1998)e

Underwater (2010–2018) Islam and Sattar (2017); Islam et al. (2018a);
DeMarco et al. (2013); Gemba et al. (2014); Hari
et al. (2015); Mandic et al. (2016); Miskovic et al.
(2015)

Islam et al. (2018a); Zadeh et al. (2016)e;
Shkurti et al. (2017)e; Meger et al.
(2014)eJanabi-Sharifi et al. (2011)e

Chiarella et al. (2018); Gomez Chavez et al.
(2018); Islam et al. (2018b,c); Fulton et al.
(2019)e; Chiarella et al. (2015)e; Stilinović
et al. (2015)

Underwater (*–2009) Lennartsson et al. (2009); Sattar and Dudek (2009b);
Sattar and Dudek (2006)e

Sattar and Dudek (2009a); Corke et al. (2007)e;
Rosenblatt et al. (2002)e

Sattar and Dudek (2009b); Xu et al. (2008)e;
Dudek et al. (2007)e

Aerial Mueller et al. (2016); Skydio (2018); Vasconcelos
and Vasconcelos (2016); Chakrabarty et al. (2016)e;
Barták and Vykovský; (2015)e; De Smedt et al.
(2015); Graether and Mueller (2012); Higuchi et al.
(2011); Naseer et al. (2013); Pestana et al. (2014);
Portmann et al. (2014); Kumar et al. (2011)e;
Teuliere et al. (2011)e; Gaszczak et al. (2011)e

Skydio (2018); Staaker (2016); Huh et al.
(2013)e; Lugo and Zell (2014)e; Gong et al.
(2011)e; Tomic et al. (2012)e; Teuliere et al.
(2011)e; Kim et al. (2008)e

Bruce et al. (2016); Cauchard et al. (2015);
Monajjemi et al. (2016); Nagy and Vaughan
(2017); Vasconcelos and Vasconcelos (2016);
Gioioso et al. (2014)e; Lichtenstern et al.
(2012)e; Tisdale et al. (2009)e; Mezouar and
Chaumette (2002)e
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Table 7. Qualitative comparisons of a number of prominent person-following systems reported over the last decade (2009–2019). They are compared based on a subset of these items: (i)

detection & tracking: qualitative performance; (ii) online: whether an online learning (person re-identification or recovery) module is used; (iii) optimal planning or control: optimality of

underlying planning and control modules; (iv) obstacle avoidance: presence of obstacle avoidance feature (for UGVs or UAVs); (v) explicit (implicit): availability of some forms of explicit

(implicit) interaction; (vi) interactive: availability of interactive user interfaces (for UGVs or UAVs); (vii) multi-H: applicability of the system for multiple-human-following; (viii) outdoors:

applicability outdoors (for UGVs or UAVs); (ix) socially aware: availability of socially compliant planning or interaction modules (for UGVs); (x) crowded places: applicability in crowded or

populated area (for UGVs or UAVs); (xi) invariance to: whether the tracking performance is invariant to divers’appearance, motion, and wearables (of AUV or ASVs); (xii) coastal waters:

applicability in coastal and shallow waters (for AUVs or ASVs); (xiii) visibility: applicability in conditions of poor or no visibility (for AUVs or ASVs); (xiv) GPS-denied: applicability in

GPS-denied environments (for UAVs).

(a) Person-following
systems for UGVs.

Perception, planning, & control Interaction Multi-H support & general applicability

Detection
& tracking

Online
(re-identification)

Optimal planning
or control

Obstacle
avoidance

Explicit
(implicit)

Interactive Multi-H Outdoors Socially
aware

Crowded
places

Wang et al. (2018a) ��� × (× ) × /× × × (× ) × × � × �

Nikdel et al. (2018) �� × (× ) �/� � �(�) × × × × ×

Chen (2018) ��� × (× ) × /� × × (× ) × × × × �

Chen et al. (2017b) ��� �(× ) × /� × × (× ) × × � × ×

Gupta et al. (2017) ��� �(�) × /� × × (�) × × � × �

Chen et al. (2017a) ��� �(�) × /× × × (�) × × � × �

Huskić et al. (2017) �� × (× ) �/� � × (�) × × � × �

Koide and Miura (2016) ��� �(�) × /× × × (�) × × � × �

Triebel et al. (2016) ��� �(× ) �/× � �(�) � � × � �

Sung and Chung (2016) ��� × (× ) × /× × × (�) × × × × �

Leigh et al. (2015) �� × (× ) × /� × × (�) × � � × ×

Eisenbach et al. (2015) ��� × (�) × /× � × (�) × × × × �

Hu et al. (2014) �� × (× ) �/� � × (�) × × × � ×

Munaro et al. (2013) ��� �(�) × /× � × (�) × � × × �

Park and Kuipers (2013) �� �(× ) �/× � × (�) × × � � �

Cosgun et al. (2013) �� × (× ) �/× � �(�) � × × � ×

Chung et al. (2012) ��� × (�) × /× × × (�) × × × × �

Doisy et al. (2012) �� × (�) �/� � × (�) × × × × ×

Granata and Bidaud (2012) �� × (× ) �/� � �(�) � × × � �

Germa et al. (2010) ��� × (�) × /� × × (�) × × × × �

(continued)
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(b) Person-following systems for AUVs (systems for ASVs are marked with an asterisk (*))

Perception, planning, & control Interaction Multi-H support & feasibility

Detection & tracking Invariance to:\appearance,
motion, wearables. | online
(re-identification)

Optimal planning
or control

Human-to-robot
(robot-to-human)

Multi-H Visibility:
poor/no

Coastal waters

Islam et al. (2018a) ��� \�, �, �. |× (× ) �/� �(× ) � �/× �

Islam et al. (2018c) ��� \�, �, �. |× (× ) �/� × (× ) × �/× �

Islam and Sattar (2017) �� \�, × , �. |× (× ) × /× × (× ) × × /× �

Mandic et al. (2016) ��� \�, �, �. |× (× ) × /� × (× ) × �/� ×

Hari et al. (2015) �� \�, �, �. |× (× ) × /× × (× ) × �/� �

Miskovic et al. (2015)* ��� \�, �, �. |× ( �) �/� × (�) � �/� ×

Gemba et al. (2014) �� \�, �, �. |× (× ) × /× × (× ) × �/� �

DeMarco et al. (2013) �� \�, �, �. |× (× ) × /× × (× ) × �/� �

Sattar and Dudek (2009b) �� \�, × , ×. |× (× ) × /� × (× ) × × /× �

(c) Person-following systems for UAVs (commercially available UAVs are marked with an asterisk (*))

Perception, planning, & control Interaction Multi-H support
& general applicability

Detection &
tracking

Online
(re-identification)

Optimal
planning
or control

Obstacle
avoidance

Explicit
(implicit)

Interactive Multi-H Outdoors GPS-denied Crowded
places

Skydio (2018)* ��� × (�) �/� � �(× ) � � � × �

Vasconcelos and Vasconcelos (2016) �� × (�) × /× × �(× ) × × � × ×

Mueller et al. (2016) ��� × (�) × /� × × (× ) � × � × �

De Smedt et al. (2015) ��� × (× ) × /� × × (× ) × × � × ×

Portmann et al. (2014) ��� × (× ) × /× × × (× ) × × � × �

Pestana et al. (2014) �� × (�) × /� × × (× ) × × � � �

Naseer et al. (2013) �� × (× ) × /� × �(× ) × × × � �

Staaker (2016)* ��� × (�) �/� × �(× ) × × � × �

Higuchi et al. (2011) �� × (× ) × /� × �(× ) × × � × �

ASV: autonomous surface vehicle; AUV: autonomous underwater vehicle; GPS: Global Positioning System; UAV: unmanned aerial vehicle; UGV: unmanned ground vehicle.

Table 7. Continued
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static settings, robots can rely on their human companions

for collision-free navigation, i.e., plan to maintain a con-

stant distance while assuming that there will be no interfer-

ing agents along the way. This approach, often with

additional features for obstacle avoidance, is feasible in

underwater scenarios (Islam et al., 2018c), and adopted in

many ground applications (Koide and Miura, 2016; Sung

and Chung, 2016) of person-following. However, as dis-

cussed in Section 3.2, optimal planning with consideration

of dynamic obstacles, motion, and interaction from other

humans, norms of social or public places, etc., is essential

for robots operating in crowded area (Granata and Bidaud,

2012; Park and Kuipers, 2013), social settings (Cosgun

et al., 2013; Triebel et al., 2016), and challenging outdoor

scenarios (Mueller et al., 2016; Staaker, 2016).

Conversely, complex motion planning requires dense

knowledge about the environment, which impacts the

choice and modality of sensors. For instance, UGVs oper-

ating in known indoor environments can take advantage of

a global map (Nikdel et al., 2018) in order to accurately

plan to navigate while avoiding obstacles (Triebel et al.,

2016). Even when a global map is not available, 3D sen-

sing capabilities (e.g., a camera with sonar, LRF, or infrared

sensors, or several cameras) are needed to obtain localized

3D information about the world, which can be used for

SLAM-based navigation (Huskić et al., 2017; Skydio,

2018). Furthermore, based on application-specific require-

ments, the rules of social norms and desired implicit beha-

viors of the robot must be modeled as prior knowledge and

eventually incorporated into planning and control modules.

These aspects are also considered in the qualitative com-

parison given in Table 7.

4.3. Interactivity and general feasibility

A number of important design choices depend on the

desired level of interactivity between a robot and its compa-

nion human (Cosgun et al., 2013; Granata and Bidaud,

2012). This influences the choice of sensors or peripheral

devices (interactive screen, voice interface, paired applica-

tion, etc.), and the design of important perception and plan-

ning modules (hand-gesture recognition, action recognition,

planning for implicit interaction, etc.). Additionally, some

aspects, such as whether multiple-human support (i.e., fol-

lowing as a group) or social awareness is needed and the

choice between following ahead or behind, are essential

considerations while designing a person-following system.

These interactivity requirements need to be formulated by

thorough user experiments for practical applications

(Gockley et al., 2007; Triebel et al., 2016).

Several features pertaining to the interactivity and gen-

eral feasibility of person-following robots are considered

for qualitative comparison in Table 7. These aspects, rele-

vant design issues based on various use cases, and the cor-

responding state-of-the-art solutions for ground,

underwater, and aerial scenarios are elaborately discussed

in this paper. As is evident from these discussions, the vast

majority of the literature on person-following robots

addresses various research problems in ground scenarios. It

is safe to say that the current state-of-the-art systems pro-

vide very good solutions to these problems. However, the

social and behavioral aspects of these systems require more

attention from researchers. In addition, better and smarter

methodologies are required to address the unique chal-

lenges of underwater and aerial scenarios. These aspects,

and other important research directions are highlighted in

the following section.

5. Prospective research directions

The following subsections discuss a number of active

research areas and open problems that are naturally chal-

lenging and are potentially useful in person-following

applications.

5.1. Following a team

Many underwater missions involve a team of several divers

working together (Figure 18). Following the team as a

whole is operationally more efficient in general. Similar

scenarios arise when filming a social or sports event using

UAVs. The perception problem can be easily solved by a

simple extension (i.e., by allowing the detection of several

humans); however, motion planning and control modules

are not straightforward. Moreover, the rules for spatial con-

duct and interaction need to be identified and quantified.

Tracking a team of independently moving objects is a chal-

lenging problem in general (Shu et al., 2012); it gets even

more challenging in a 3D environment while dealing with

real-time constraints. Despite the challenges, it is poten-

tially invaluable in numerous applications of person-

following robots (Shkurti et al., 2012; Wellbots, 2015).

5.2. Following as a team (convoying)

Multi-robot human-led convoys are useful in cooperative

estimation problems (Rekleitis et al., 2001). A simple

approach to this problem is to assign leader–follower pairs;

that is, one of the robots is assigned to follow the person,

and every other robot is individually assigned another robot

as its leader. Each robot follows its leader and together they

move as a team. Another approach is to let the robots com-

municate with each other and cooperatively plan their

motions. The underlying planning pipeline is similar to that

of a multi-robot convoying problem, which is particularly

challenging in underwater and aerial scenarios (Minaeian

et al., 2016; Shkurti et al., 2017). Moreover, this can be fur-

ther generalized into the problem of following a group of

people by a team of autonomous robots in a cooperative

setting. However, a complex cooperative planning pipeline

is required to achieve optimal positioning and motion tra-

jectories for each robot, which is an open problem as well.
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5.3. Following behind or ahead?

There are scenarios where it is ideal to have the robot stay

ahead of the person while following. Hands-free shopping-

cart robots, for instance, should stay ahead of the human,

not behind (Kuno et al., 2007; Nikdel et al., 2018). Another

prime example is of person-following UAVs that record

sports activities; they should be able to move around and

take snapshots from different directions to get the best per-

spective (Skydio, 2018). Therefore, traditional systems and

methodologies for following from behind are not very use-

ful in these applications.

In recent years, researchers have begun to explore the

particularities of different scenarios (Figure 19) where the

robot should be in front or at the side of the person while

following (Ferrer et al., 2013; Hu et al., 2014; Nagy and

Vaughan, 2017). These scenarios impart more operational

challenges since the robot needs to predict the motion tra-

jectory of the person, and needs some way to recover from

a wrong prediction or action. Knowledge of motion history

and gaze behaviors of the person, and prior knowledge

about the environment or destination can be utilized to

model such anticipative behaviors. The person can help the

robot make decisions in critical situations as well (using

hand gestures or voice commands). Nevertheless, these

aspects demand more research attention and experimental

evaluations in real-world settings.

5.4. Learning to follow from demonstration

End-to-end learning of autonomous robot behaviors from

demonstration is an interesting ongoing research topic.

Researchers have reported exciting results in the domains

of 2D robot navigation in cluttered environments (Pfeiffer

et al., 2017), simple autonomous driving (Codevilla et al.,

2018), imitating driving styles (Kuderer et al., 2015), etc.

These results indicate that the end-to-end learning models,

particularly the idea of learning from demonstration can be

very effective for person-following robots. Further research

attention is required to explore other end-to-end (deep)

learning-based models as well because they have the poten-

tial to significantly simplify autonomous person-following.

There are a few research efforts already in this regard in

simulation environments (Dewantara and Miura, 2016;

Pierre, 2018); however, more extensive research and real-

world experiments are necessary.

5.5. Human–robot communication

A generic communication paradigm for human–robot dia-

log (Thomason et al., 2015) can be very useful in practice

for person-following applications. Several human-to-robot

communication paradigms using speech, markers, and hand

gestures are discussed in this paper. There are not many

research studies on how a robot can initiate communication

and maintain a proper dialog with the human, particularly

in applications where interactive user interfaces are not

feasible (Fulton et al., 2019). Furthermore, effective and

efficient risk assessment in human–robot dialog (Robinette

et al., 2016; Sattar and Dudek, 2011) is another potential

research problem in this domain.

5.6. Enabling social and spatial awareness

Various forms of implicit human–robot interaction, particu-

larly the preferred spatial and motion behaviors for person-

following robots were discussed in the previous section.

Robots that are deployed in a social setting should be aware

of these aspects and the social norms in general (Granata

and Bidaud, 2012; Honig et al., 2018; Kim and Mutlu,

2014).

A particular instance of anticipative robot behavior is

illustrated in Figure 20. Here, the robot anticipates the

door-opening action (Zender et al., 2007), increases the dis-

tance from the person by slowing down, and waits instead

of moving forward. Many other anticipated behaviors, such

as moving slowly while entering cross-paths, waiting at a

side when the person is interacting with other people, etc.,

are important features of a social robot. These are difficult

to quantify and implement in general (Chen et al., 2017d;

Kruse et al., 2013); extensive experiments and further user

studies are required to model these social norms for person-

following robots.

Fig. 18. Views from robots’ cameras while following teams of

people.

Fig. 19. Scenarios where a robot is not following its companion

from behind.
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5.7. Long-term interaction and support

Another social aspect of the person-following UGV is

long-term interaction with a human companions. This has

numerous potential applications in health care; for instance,

Coninx et al. (2016) showed that long-term child–robot

interaction was useful for learning and therapeutic pur-

poses; Chen et al. (2017c) and Kidd and Breazeal (2008)

proved that long-term interaction with a robot helped peo-

ple in physical exercises. These, among many other studies,

show that robots can help more by learning about the gen-

eral behaviors and routine activities of their human compa-

nions. Thorough analyses and user studies are needed to

discover the feasibilities and utilities of long-term interac-

tions for other person-following applications.

5.8. Specific person-following

Following a specific person is generally more useful than

following any person, specially in a multi-human setting

(Satake and Miura, 2009) and in social or crowded envir-

onments. Moreover, the ability to follow a specific person

is an essential feature for UGVs that accompany older peo-

ple and people with disabilities (Ilias et al., 2014; Liem

et al., 2008). It is straightforward to achieve this in some

applications, with the use of an additional human face or

body-pose recognition module (Cao and Hashimoto, 2013;

Yoshimi et al., 2006). However, scenarios such as following

a person in crowded surrounding (Germa et al., 2009) or

avoiding an impeding person (Hoeller et al., 2007) are

rather challenging. Furthermore, lack of person-specific

features while viewing a diver from behind (different divers

may wear similar suits), make it a harder problem for

underwater robots (Xia and Sattar, 2019). Detecting a spe-

cific person from a distant UAV is also challenging for sim-

ilar reasons.

5.9. Person re-identification

Several mechanisms for person recovery or re-identifica-

tion used by existing person-following systems are men-

tioned in Section 3.2.5. They mostly use feature-based

template-matching (Do Hoang et al., 2017; Gupta et al.,

2017; Koide and Miura, 2016) techniques; trajectory

replication-based techniques (Chen et al., 2017a) are also

used for re-identification when the target person transiently

disappears from the robot’s view and appears again. A

number of recently proposed appearance-based deep mod-

els (Ahmed et al., 2015; Li et al., 2014) have significantly

improved the state-of-the-art performance for person re-

identification on standard datasets. Despite the potentials,

these models are yet to be used in person-following sys-

tems. Investigating the applicability of these person re-

identification models for specific person-following in

human-dominated social settings is an interesting and

potentially rewarding research direction.

5.10. Surveillance and rescue support

Features such as person re-identification and adversarial

person-following are useful for autonomous human surveil-

lance using UAVs (Portmann et al., 2014). Additionally, in

human rescue missions, a team of UAVs is invaluable in

adversarial conditions (Doherty and Rudol, 2007). These

are critical applications and there is always room for

improvements.

5.11. Embedded parallel computing solutions

As mentioned earlier, deep learning-based models provide

robust solutions to most of the perception problems

involved in person-following scenarios. One practical lim-

itation of these models is that they are often computation-

ally expensive and require parallel computing platforms.

Therefore, faster mobile supercomputers and embedded

parallel computing solutions (Google, 2018; NVIDIA,

2014) will be immensely useful in person-following appli-

cations. The recent success of the person-following UAV

named Skydio R1 (Skydio, 2018) is a practical example.

However, the high power consumption of these on-board

computers is still a major concern; for instance, the flight

time for a Skydio R1 is only about 16 min. In addition to

computational capacity and power consumption, many

other aspects of mobile supercomputers, such as durability

and cooling mechanisms, require further technological

improvements. Future advancements in ultra-low-power

computer vision (TinyVision) and machine learning

(TinyML) techniques and platforms (Warden and

Situnayake, 2019) might play an important role in this

regard.

5.12. Addressing privacy and safety concerns

There have been an increasing number of concerns across

cyberspace about the privacy and safety issues of autono-

mous robots, particularly UAVs operating in social and

public environments (UCTV, 2013). A recent study (Hitlin,

2017) has found that about 54% of the US population

thinks that drones and autonomous UAVs should not be

allowed to fly near people’s homes. This is because the use

Fig. 20. Desired robot behavior: notice that the UGV is giving

extra space to the person to open the door.
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of drones undermines people’s ability to assess context and

measure trust. While person-following UAVs are mostly

used for recreational purposes in public areas and often

crowded places, these concerns need to be addressed using

technological and educational solutions (Finn and Wright,

2012; Wang et al., 2016) to ensure transparency and trust.

6. Conclusions

Person-following by autonomous robots has numerous

important applications in industry. In addition, the usage of

person-following robots in social settings and for entertain-

ment purposes has flourished over the last decade.

Researchers have approached various aspects of the auton-

omous person-following problem from different perspec-

tives and contributed to the development of a vast body of

literature. This paper makes an effort to present a compre-

hensive overview of this large body of literature in a cate-

gorical fashion. First, design issues and operational

challenges for person-following robots in ground, under-

water, and aerial scenarios are presented. Then state-of-the-

art methods for perception, planning, control, and interac-

tion of various person-following systems are elaborately

discussed.

In addition, several operational considerations for apply-

ing these methods, underlying assumptions, and their feasi-

bility in different use cases is analyzed and compared in

qualitative terms. Finally, a number of open problems and

potential applications are highlighted for future research;

improved solutions to these problems will significantly

strengthen the literature and bridge the gap between

research and practice.
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