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Abstract

A wide range of human—robot collaborative applications in diverse domains, such as manufacturing, health care, the
entertainment industry, and social interactions, require an autonomous robot to follow its human companion. Different
working environments and applications pose diverse challenges by adding constraints on the choice of sensors, degree of
autonomy, and dynamics of a person-following robot. Researchers have addressed these challenges in many ways and
contributed to the development of a large body of literature. This paper provides a comprehensive overview of the litera-
ture by categorizing different aspects of person-following by autonomous robots. Also, the corresponding operational
challenges are identified based on various design choices for ground, underwater, and aerial scenarios. In addition,
state-of-the-art methods for perception, planning, control, and interaction are elaborately discussed and their applicability
in varied operational scenarios is presented. Then some of the prominent methods are qualitatively compared, corre-
sponding practicalities are illustrated, and their feasibility is analyzed for various use cases. Furthermore, several pro-
spective application areas are identified, and open problems are highlighted for future research.
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1. Introduction Sattar and Dudek, 2009b). Furthermore, the use of person-

) ) ) ) following aerial robots (Mueller et al., 2016; Naseer et al.,
Person-following scenarios arise when a human being and 2013; Pestana et al, 2014) has flourished over the last
an autonomous robot collaborate on a common task that

requires the robot to follow the human. Usually, the human
leads the task and cooperates with the robot during task
execution. An example application would be the service
robots that are widely used in industrial applications, e.g.,
in manufacturing, warehousing, and health care. The use
of companion robots in surveillance, social interaction, and
medical applications has also flourished over the last
decade. Numerous new applications are also emerging in
the entertainment industry as robots are becoming more
accessible for personal use.

Based on the operating medium, person-following can
be categorized into ground, underwater, and aerial scenar-
ios. A ground service robot following a human while per-
forming a cooperative task is the canonical example of
person-following. Such assistant robots are being used in
many domestic and industrial applications (Piaggio-Fast-
Forward, 2017) and in health care (Ilias et al., 2014; Iribe
et al., 2011). Moreover, diver-following robots are useful in ~ Corresponding author:
submarine pipeline and shipwreck inspection, marine life Md Jahidul Islam, Interactive.t Robotics anq Visi.on Labgratqry,
and seabed monitoring, and many other underwater explo- Department of Computer Science and Engineering, University of

. .. K X Minnesota, Twin Cities, MN, USA.
ration activities (Islam et al., 2018a; Miskovic et al., 2015; gl islam03 A@umn.edu

decade in the entertainment industry (Skydio, 2018) as
quadcopters have become quite popular for filming outdoor
activities, such as mountain climbing, biking, surfing, and
many other sporting endeavors.

In all these applications, following a person is not the
primary objective of the robot, yet it is vital for achieving
the overall success of the primary operation. Robust tech-
niques to enable person-following are thus of significant
importance in the repertoire of robotic behaviors. The
major computational components of a person-following
system are perception, planning, control, and interaction.
The design of each of these components largely depends
on the choice of sensors and the degree of autonomy
required for the robot. Additionally, different scenarios
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(i.e., ground, underwater, and aerial) pose different opera-
tional challenges and add constraints on the construction
and dynamics of the robot. These factors are determined by
specific application requirements, which make it difficult
to design a generic person-following methodology.

Attempts to develop person-following robots for a wide
range of applications have resulted in a variety of different
methodologies. In particular, computer vision and robotics
researchers have been developing person-following meth-
odologies for ground robots since the nineties
(Azarbayejani and Pentland, 1996; Darrell et al., 1998;
Wren et al., 1997). Initially seen as a special case of object
tracking, person-following by autonomous robots soon
became a challenging problem of its own as many indus-
trial applications started to flourish (Balan et al., 2005; Cu
et al., 2013; Ess et al., 2008; Pairo et al., 2013). Recently,
other aspects of the problem, such as human-robot interac-
tion, social awareness, and the degree of autonomy, are also
receiving attention from researchers (Dewantara and Miura,
2016; Triebel et al., 2016). The advent of underwater and
aerial applications has added other dimensions to this
growing field (Mueller et al., 2016; Naseer et al., 2013;
Sattar and Dudek, 2009b). Different mediums and a diverse
set of operational considerations often demand application-
specific design for a person-following robot. However, cer-
tain design issues, underlying algorithms, and methods of
human-robot interaction, among others, remain mostly
generic for all person-following scenarios. An elaborate
discussion of these aspects, with a comparison of different
approaches and the state-of-the-art techniques would
greatly help current and future researchers.

This paper outlines various aspects of the person-
following problem and provides a comprehensive overview
of the existing literature. In addition, different issues per-
taining to robot and algorithmic design are identified,
operational scenarios are illustrated, and qualitative analy-
ses of the state-of-the-art approaches are presented.
Specifically, the contributions of this paper are the
following:

® A categorization of the person-following problem is
presented based on various attributes, such as the
medium of operation, choice of sensors, mode of inter-
action, and degree of autonomy. Operational scenarios
for each category are then discussed, along with the
relevant applications.

e Additionally, for different person-following scenarios,
key design issues are identified, the underlying assump-
tions are discussed, and state-of-the-art approaches to
cope with the operational challenges are presented.

e Subsequently, an elaborate discussion of the underlying
algorithms of different state-of-the-art approaches for
perception, planning, control, and interaction are pre-
sented. The attributes and overall feasibility of these
algorithms are qualitatively analyzed and then com-
pared based on various operational considerations.

® Furthermore, several open problems for future research
are highlighted, along with their current status in the
literature.

2. Categorization of autonomous person-
following behaviors

Person-following behaviors by autonomous robots can be
diverse depending on several application-specific factors,
such as the medium of operation, choice of sensors, mode
of interaction, granularity, and degree of autonomy. The
design and overall operation of a person-following robot
mostly depend on the operating medium, e.g., ground,
underwater, and aerial. Other application-specific con-
straints influence the choice of sensors, mode of interaction
(explicit or implicit), granularity, and degree of autonomy
(full or partial). In this paper, explicit and implicit interac-
tions refer to direct and indirect human—robot communica-
tion, respectively. In addition, the term granularity is
defined as the number of humans and robots involved in a
person-following scenario.

Based on these attributes, a simplified categorization of
autonomous person-following behaviors is depicted in
Figure 1. The rest of this paper is organized by following
the categorization based on the medium of operation, while
other attributes are discussed as subcategories.

2.1. Ground scenario

Domestic assistant robots (Piaggio-Fast-Forward, 2017)
and shopping-cart robots (Nishimura et al., 2007) are the
most common examples of person-following unmanned
ground vehicles (UGVs). Their usage in several other
industrial applications (The-5elementsrobotics, 2014), and
in health care has also increased in recent times (Ilias et al.,
2014; Iribe et al., 2011; Tasaki et al., 2015). Figure 2 illus-
trates typical person-following scenarios for ground robots.
The UGV uses its camera and other sensors to detect the
person in its field of view. Once the position and distance
of the person are approximated, path planning is performed,
and the corresponding control signals are generated in
order to follow the person. Details of these operations and
the related state-of-the-art methodologies will be discussed
later in this paper. The following discussion expounds vari-
ous design issues and related operational constraints based
on the choice of sensors, mode of interaction, granularity,
and degree of autonomy.

2.1.1. Choice of sensors. Most person-following UGVs
are equipped with cameras and the perception is performed
through visual sensing. Other sensors are used to accurately
measure the distance and activities (walking, waving hands,
etc.) of the person for safe navigation and interaction. The
choice of sensors is often determined by the operating envi-
ronment, i.e., indoors or outdoors. For example, RGBD
sensors are very effective in indoor environments; in
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I Autonomous Person-Following I

v
v v v v v
Medium of operation | | Choice of sensors | | Mode of interaction | | Granularity | | Degree of autonomy |
l Camera (monocular/stereo) l l Single-human single—robot‘
RGBD camera IR sensor i
Ground 1 l l l l .| Explicit and l Single-human multiple—robot‘ -~ Mostly Full
scenario | LRF |[RFID | [ Sonar | Implicit
l IMU l lHaptic interfaces] l Multiple-human single-robot‘
l Camera (monocular/stereo) ]
- ; --1 Single-h ingle-robot
.| Underwater | l Sonar (active/passive) ] [ Mostly l ingle-human single-robo ‘
scenario ici Partial
USBL transponder | Explict | l Single-human multiple—robot‘ artia
l MU ] l Pressure sensor ]
l Camera (monocular/stereo) ] l Single-human single—robot‘
Aerial l RGBD camera l l Vertical camera l .| Explicit and l Single-human multiplc—robot‘ i | Fulland
scenario l Infrared and Thermal sensor l Implicit l Multiple-human single—robot‘ Partial
l Ultrasonic sensor l l IMU l lGPS l l Multiple-human multiple—robot‘

Fig. 1. A categorization of autonomous person-following behaviors based on five major attributes: medium of operation, choice of

sensors, mode of interaction, granularity, and degree of autonomy.

GPS: Global Positioning System; IMU: inertial measurement unit; IR: infrared; LRF: laser range finder; RFID: radio-frequency identification; RGBD:

RGB-depth; USBL: ultrashort baseline.

addition to having a regular RGB camera, they are
equipped with an infrared sensor to provide the associated
depth information (Mi et al., 2016). Therefore, both the
position and distance of the person can be measured with
good accuracy. However, since infrared sensors perform
poorly in the presence of sunlight, they are not good
choices for outdoor environments. The use of stereo cam-
eras can get rid of this problem, as depth information can
be approximated by using triangulation techniques (Chen
et al., 2017b; Satake et al., 2013). Laser range finders
(LRFs) are also widely used by person-following UGVs
(Chung et al., 2012; Susperregi et al., 2013). These sensors
provide a cluster of directional distance measures, from
which the presence and distance of a person can be
approximated. Moreover, some applications use ultrawide
band (UWB) (Laneurit et al., 2016), radio-frequency identi-
fication (RFID) tags (Germa et al., 2010; Kulykukin et al.,
2004), and haptic interfaces (Ghosh et al., 2014) as extero-
ceptive sensors.

Proprioceptive sensors, such as inertial measurement
units (IMUs), are used to keep track of the robot’s relative
motion and orientation information (Brookshire, 2010) for
smooth and accurate navigation. Researchers have also
explored the use of wearable IMUs for modeling the human
walking gait (Cifuentes et al., 2014); this is useful for dif-
ferentiating humans from other moving objects.

Person-following UGVs typically use a number of sen-
sors in order to ensure robustness and efficiency. Standard
sensor fusion techniques are then adopted to reduce the
uncertainty in sensing and estimation (Cifuentes et al.,

(b) Outdoors.

(a) Indoors.

Fig. 2. Typical person-following scenarios for ground robots: (a)
TurtleBot (Willow-Garage, 2011) following a person in an indoor
setting; (b) Gita cargo robot (Piaggio-Fast-Forward, 2017)
following a person outdoors.

2014; Luo et al., 2009; Susperregi et al., 2013). A sum-
mary of the key design issues based on different choices of
sensors for person-following UGVs is presented in Table 1.

2.1.2. Mode of interaction. 1t is ideal for a person-
following robot to interact with the human user in a natural
way. Even if the robot is not designed to interact with the
person directly, implicit (i.e., indirect) interactions exist,
since the person is aware that the robot is following (Hu
et al., 2014). This awareness is important for the overall
success of the operation because the person can simplify
the robot’s task in many ways, e.g., by making smooth
turns, avoiding obstacles, and walking at a reasonable
speed. Additionally, the robot needs to maintain a safe



Table 1. Choice of sensors and corresponding design issues for person-following unmanned ground vehicles.

Sensor

Data

Challenges or limitations

Usage or operation

Selected references

Monocular camera

Stereo camera

RGBD camera

Laser range finder

Sonar

Radio-frequency
identification

Inertial measurement

unit (IMU)

RGB image

RGB image

RGBD data

Planner distance
measures

Directional distance
measures

RF signal

IMU data

Low visibility; lighting variation

Low visibility; lighting variation

Presence of sunlight

Presence of transparent
(e.g., glass) or dark surfaces

Specular reflections; crosstalk

Presence of interfering signals;
limited range; ensuring privacy

Precision; drift

Computer vision-based
algorithms are used for detection
and tracking

In addition to RGB image-based
detection and tracking, stereo
triangulation techniques are used
to approximate the associated
depth information

In addition to RGB image-based
detection and tracking, distance
of the person is approximated
using the depth data

Person’s body is detected from a
cluster of distance measures

Presence and distance of a
person is detected from the
directional distance measures
Person carrying an RFID tag is
tracked by following the
direction of the RFID signal
source

Robot’s relative orientation,
angular and linear velocity, and
acceleration are estimated for
motion control

Guevara et al. (2016); Isobe et al. (2014);
Kobilarov et al. (2006); Kwon et al. (2005);
Ma et al. (2008); Pierre (2018)

Brookshire (2010); Chen et al. (2017b); Hu et
al. (2014); Itoh et al. (2006); Luo et al.
(2009); Satake and Miura (2009); Satake et al.
(2012, 2013); Takemura et al. (2007)

Basso et al. (2013); Cosgun et al. (2013);
Doisy et al. (2012); Masuzawa et al. (2017);
Mi et al. (2016); Munaro et al. (2013); Wang
et al. (2017)

Alvarez-Santos et al. (2012); Cai and
Matsumaru (2014); Cosgun et al. (2013);
Jung and Yi (2012); Leigh et al. (2015); Pairo
et al. (2013); Shaker et al. (2008)

Gascuefia and Fernandez-Caballero (2011);
Itoh et al. (2006); Peng et al. (2016)

Germa et al. (2010); Kulykukin et al. (2004)

Brookshire (2010); Cifuentes et al. (2014)
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distance and plan a socially aware motion trajectory while
following the person (Granata and Bidaud, 2012; Triebel
et al., 2016). A number of user studies have explored dif-
ferent aspects of implicit interactions, including but not
limited to the robot’s spatial conduct (Fleishman et al.,
2018), preferred following angles (Shanee et al., 2016),
turning behaviors (Hu et al.,, 2014), and socially aware
motion conduct (Honig et al., 2018; Triebel et al., 2016).
An elaborate discussion of these aspects is provided later
in this paper (see Section 3.3.2).

Explicit interactions refer to direct human-robot com-
munication. In many practical applications, a human
instructs the UGV to perform certain tasks, such as chang-
ing its motion or speed, taking photographs, or making
phone calls. These instructions are typically communicated
using voice commands (Fritsch et al., 2004), hand gestures
(Doisy et al., 2013; Marge et al., 2011), or haptic interfaces
(Ghosh et al., 2014; Park and Howard, 2010). Moreover,
some smart carts and autonomous luggage robots allow
users to interact using smartphone applications
(DiGiacomcantonio and Gebreyes, 2014). Explicit human—
robot interaction is essential for most person-following
ground applications; however, additional computational
capabilities are required in order for the UGVs to under-
stand human instructions and spontaneously interact in a
natural manner. Table 2 highlights the challenges and
responsibilities involved in different forms of human-—robot
interactions for person-following UGVs.

(2018); Kulykukin et al.

Ferrer et al. (2013); Gockley et al. (2007);
(2004); Kuno et al. (2007); Liem et al.
Ghosh et al. (2014); Hirai and Mizoguchi

(2003); Marge et al. (2011); Triebel et al.

Cosgun et al. (2013); Doisy et al. (2013);
(2016)

Selected references
(2008); Matsumaru et al. (2005); Triebel
et al. (2016)

Honig et al.

Responsibilities of the person
Walking at reasonable speed; avoiding
obstacles; taking smooth turns
Additional responsibility:
communicating clearly based on the
predefined scheme

2.1.3. Granularity. Most domestic applications involve a
single robot accompanying a single person. Interacting with
a specific person is also common, particularly for accompa-
nying older people and people with disabilities (Ilias et al.,
2014; Kulykukin et al., 2004; Liem et al., 2008). The most
important features of these robots are the social and interac-
tive skills needed to make the accompanying person feel
safe and attended to. In industrial applications, however,
robustness and performance are more important, relative to
social aspects (Cosgun et al., 2013; Germa et al., 2010).
These robots typically assist a single person in a dynamic
multi-agent environment, i.e., with the presence of other
humans and robots.

A robot can also accompany a group of people by fol-
lowing the center of attention of the group (Basso et al.,
2013; Chen et al., 2017b). However, this can be challenging

decoding instruction commands; planning

socially aware spatial and motion conduct
and acting based on given instructions

Maintaining safe distance and speed;
Additional challenges: recognizing and

Challenges for the robot

Table 2. Challenges and responsibilities involved in implicit and explicit human—robot interactions for person-following UGVs.

%D if people move in random directions. An anchor person is

& generally specified to the robot beforehand to interact with

= the robot and help it to navigate. In such cases, the robot

uses features specific to the anchor person for tracking

while interacting with the group as a whole. Since interact-

ing with a group of people can be challenging, service

robots are often equipped with user interfaces for easy and

o effective human-robot interaction. Furthermore, a number
% = 5 of independent robots can assist a single person in a com-
£l = = mon task, given that the person is responsible for synchro-
E| E & nizing their activities. Although swarm-like multi-robot



Table 3. Choice of sensors and corresponding design issues for person-following underwater robots.

Sensor Data Challenges or limitations Usage or operation Selected references
Monocular camera RGB image Poor lighting conditions and Computer vision-based Islam and Sattar (2017); Islam et
visibility; suspended particles; algorithms are used for detection al. (2018a); Sattar and Dudek
color distortions and tracking (2006)
Stereo camera RGB image Poor lighting conditions and In addition to RGB image space Corke et al. (2007); Stilinovi¢
visibility; suspended particles; based detection and tracking, et al. (2015)
color distortions stereo triangulation techniques
are used to approximate the
associated depth
Active sonar Directional Noisy reading; scattering and Diver’s presence and distance are DeMarco et al. (2013); Mandic

Passive sonar
Ultrashort baseline
(USBL) transponder

Inertial measurement unit (IMU)

Pressure sensor

distance measures

Frequency responses

Acoustic pulse

IMU data

Depth measurement

reverberation

Extremely noisy reading; limited
coverage

Presence of a paired USBL
transceiver; noisy reading

Precision; drift

Sensitiveness to temperature

approximated from the
directional distance measures
Frequency responses of the
sound wave generated by the
diver are used for detection
Diver’s position information is
estimated by communicating
with the transceiver

Robot’s relative orientation,
angular and linear velocity, and
acceleration are estimated for
motion control

Depth of the robot is
approximated using the
measured external pressure

etal. (2016)

Gemba et al. (2014); Hari et al.
(2015)

Corke et al. (2007); Mandic
et al. (2016); Miskovic et al.
(2015)

Miskovic et al. (2015)

Corke et al. (2007)
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Table 4. Choice of sensors and corresponding design issues for person-following unmanned aerial vehicles.

Selected references

Usage or operation

Data Challenges or limitations

Sensor

De Smedt et al. (2015);

Computer vision algorithms are used for detection

and tracking

Low visibility; lighting variation

RGB image

Front camera

Gaszczak et al. (2011);

Pestana et al. (2014); Skydio (2018)

Lugo and Zell (2014)

Ground textures and visible features are used for

RGB image Lack of ground textures
stabilization

Vertical camera

Lichtenstern et al. (2012);
Naseer et al. (2013)

In addition to RGB image space based detection and

Presence of sunlight

RGB-depth data

RGB-depth camera

tracking, distance of the person is approximated

from depth data

Bartak and Vykovsky (2015);

Lugo and Zell (2014)

Kumar et al.

Vertical displacement is measured from the distance

measures

Limited range

Distance measure

Ultrasonic sensor

(2011); Rudol and

Thermal radiation of a person is detected

Low resolution

Thermal image

Infrared and thermal

sensor

Doherty (2008)

Bartak and Vykovsky (2015);

Lugo and Zell (2014)

Flight controllers use the orientation, angular speed,
acceleration, and magnetic field information for

navigation

IMU data Precision; drift

Inertial measurement
unit (IMU)

DIJI (2015); Rudol and

Doherty (2008)

The triangulated positioning information is used by

the control loop for smart navigation

Global position, Signal strength;

speed, and time

Global Positioning System

accuracy in indoor

settings

cooperation or non-cooperative multi-agent synchroniza-
tion (Chen et al., 2017¢) is possible, these frameworks are
rather resource-demanding and not commonly adopted in
person-following applications.

2.1.4. Degree of autonomy. A major advantage of using
person-following robots is that it eliminates the need for
dedicated teleoperation. Since autonomous ground naviga-
tion is relatively less challenging than underwater or aerial
scenarios, person-following UGVs are typically designed
to have fully autonomous behavior (Leigh et al., 2015).
Some applications, however, allow partial autonomy for
UGVs that perform very specific tasks, such as assisting a
nurse in an operating room (Ilias et al., 2014) or serving
food at a restaurant (Pieska et al., 2013). These service
robots follow their companions around within a predefined
operating area and provide assistance by carrying or orga-
nizing equipment, serving food, etc. While doing so, they
may take human inputs for making navigation decisions,
such as when to follow, on which side to stay, where or
when to wait, which objects to carry or organize, etc.

Such semi-autonomous behaviors for UGVs are adopted
in robot-guiding applications as well, e.g., guiding a
visually impaired person (Ghosh et al., 2014) or tour guid-
ing at a museum or shopping mall (Burgard et al., 1998;
Kanda et al., 2009). Although robot-guiding is not strictly
a person-following application, it shares a similar set of
features and operational challenges for assisting a human
companion. In particular, features such as socially aware
planning, some aspects of explicit interaction, navigating
through crowds while guiding or leading people, etc., are
closely related to person-following applications. Readers
are referred to Table 6 in Section 4 for an organized and
annotated collection of the person-following (and relevant)
literature.

2.2. Underwater scenario

Underwater missions are often conducted by a team of
human divers and autonomous robots, who cooperatively
perform a set of common tasks (Islam et al., 2018c; Sattar
et al., 2008). The divers typically lead the tasks and interact
with the robots, which follow the divers at certain stages of
the mission (Islam et al., 2018a). These situations arise in
important applications, such as the inspection of ship hulls
and submarine pipelines, the study of marine species migra-
tion, and search-and-rescue or surveillance operations. In
these applications, following and interacting with the com-
panion diver (Islam et al., 2018c) is essential because fully
autonomous navigation is challenging, owing to the lack of
radio communication and global positioning information
underwater. Additionally, the human-in-the-loop guidance
reduces operational overhead by eliminating the necessity
of teleoperation or complex mission planning a priori.
Figure 3 illustrates a scenario in which an autonomous
underwater vehicle (AUV) is following a scuba diver
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(a) Underwater robot following (b) Diver seen from the

a diver. robot’s camera.

Fig. 3. A typical diver-following scenario for an underwater
robot during a reef exploration task.

during an underwater mission. The operational complex-
ities and risks involved in underwater applications are gen-
erally much greater than those in ground applications
(Sattar and Dudek, 2006). The following sections discuss
these operational challenges and the related design issues
based on the choice of sensors, mode of interaction, granu-
larity, and degree of autonomy.

2.2.1. Choice of sensors. Underwater diver-following
robots usually rely on vision for tracking, owing to the
bandwidth limitations of acoustic modems. In addition, it
is undesirable to be intrusive and disruptive to the ecosys-
tem (Slabbekoorn et al., 2010). Cameras, being passive
sensors (i.e., they do not emit energy), are thus preferred
over active sensors. Additionally, the use of stereo cameras
is effective in approximating the relative distance of a diver
or other targets (Corke et al., 2007; Stilinovic et al., 2015);
standard computer vision-based techniques are then uti-
lized for visual tracking. Although visibility can be a chal-
lenge, there is usually ample natural daylight at depths
(typically 20-25 m) where human beings can dive and
remain for extended periods of time without using specia-
lized equipment.

However, visual data gets noisy, owing to challenging
marine conditions (Sattar and Dudek, 2006) arising from
such factors as color distortions, lighting variations, or sus-
pended particles. Consequently, robust visual detection and
tracking become extremely difficult. Passive sonars, such
as hydrophones are useful in such scenarios (Gemba et al.,
2014; Hari et al., 2015). Active sonars are also used for
diver-following in unfavorable visual conditions (DeMarco
et al., 2013; Mandic et al., 2016). They are particularly use-
ful when a robot loses the diver from its field of view and
tries to rediscover the diver; once rediscovered, the robot
can switch back to visual tracking. Conversely, ultrashort
baseline (USBL) is often used for global positioning of
underwater robots and remotely operated vehicles (ROVs).
A USBL transponder (mounted on the robot) communicates
with a USBL transceiver (mounted on a pole under a ship
or a boat) using acoustic signals. Phase-differencing meth-
ods are then used by the USBL to calculate positioning
information (range, angle, etc.). The robot uses this

information for navigation and tracking divers or other
objects of interest.

Proprioceptive sensors, such as IMUs, are also used by
underwater robots for internal state estimation (Miskovic
et al., 2015); in addition, pressure sensors are used for mea-
suring the depth of the robot (from the surface) using exter-
nal pressure (Corke et al., 2007). The depth information is
useful for the depth-control and altitude-control modules of
the robot. Moreover, inertial navigation systems and other
navigation sensors can be used to determine the robot’s
instantaneous pose and velocity information; however,
these systems drift, thus requiring repeated correction using
secondary sensing systems. Table 3 summarizes the chal-
lenges and operational issues based on different choices of
sensors for person-following underwater robots.

2.2.2. Mode of interaction. Since truly autonomous under-
water navigation is still an open challenge, explicit interac-
tion with the accompanying diver is crucial for diver-
following robots. In particular, in complex missions, such
as surveillance and rescue operations, robots can dynami-
cally adjust their mission parameters by regularly commu-
nicating with the diver. In addition, some underwater
exploration and data collection processes require close
human supervision. In these scenarios, the divers typically
instruct the robot to perform certain tasks (record snap-
shots, take samples, etc.) in different situations (Islam
et al.,, 2018c). Although such communication paradigms
are fairly straightforward in terrestrial settings, these are
rather complex undertakings for underwater robots.

A number of communication frameworks have been
proposed for underwater human-robot interaction. In
RoboChat (Dudek et al., 2007), divers use a set of “AR-
Tag” markers to display a predefined sequence of symbolic
patterns to the robot; these patterns are then mapped to a
set of grammar rules defined for the language. A major
limitation of such marker-based frameworks is that the
markers need to be carried along and used in the correct
order to produce instruction commands for the robot.
Although the number of required markers can be reduced
by incorporating additional shapes or motion signs with
each marker (Sattar et al., 2007; Xu et al., 2008), this
framework still involves a significant cognitive load on the
diver. A simpler alternative is to use hand gestures to com-
municate with the robot (Chiarella et al., 2018; Islam et al.,
2018b). This comes more naturally to divers because they
already communicate with each other using hand gestures.
Conversely, robots can communicate emergency messages
(e.g., low battery) and periodic updates to the diver using
an on-board screen, flashing lights, etc.

The social and behavioral aspects of underwater mis-
sions are limited (Wu et al, 2015). However, implicit
diver—robot interactions are vital for ensuring the robot’s
safety and the overall success of the operation. The associ-
ated cognitive load on the divers is another important
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consideration for designing an interaction framework
(Chiarella et al., 2015; Islam et al., 2018b).

2.2.3. Granularity. As mentioned, the applications envi-
sioned for underwater diver-following robots usually
require a team of divers and robots. In most cases, each
robot is assigned to one leader (usually a diver) who guides
the robot during a mission (Islam et al., 2018a). The leader
can be another robot as well. For instance, a robot can fol-
low another robot, which is following a diver; such opera-
tions are referred to as robot convoying (Shkurti et al.,
2017). Robot convoying is useful when there are more
robots than divers. Additionally, it is often more convenient
and safer than having a number of robots follow a single
diver. Underwater robots are usually not assigned to follow
more than one diver because this requires complex motion
planning; also, interacting with a number of humans simul-
taneously can be computationally demanding and often
problematic.

2.2.4. Degree of autonomy. Since underwater missions are
strictly constrained by time and physical resources, most
diver-following applications use semi-autonomous robots
that take human inputs to make navigation decisions when
needed. This reduces the overhead associated with under-
water robot deployment and simplifies associated mission
planning. For simple applications, diver-following robots
are typically programmed to perform only some basic tasks
autonomously, e.g., following the diver, hovering, or taking
snapshots. These programs and associated parameters are
numbered and made known to the robot (and diver) before-
hand. The diver leads the mission and instructs the robot to
execute (one of) these programs during operation. For
instance, the robot might be instructed to follow the diver
to the operation zone, then to hover at a particular location
of interest, take pictures, and eventually follow the diver
back at the end of the mission. This interactive operational
loop is very useful for simple applications, such as explora-
tion and data collection (Islam et al., 2018c). However,
more autonomous capabilities are required for complex
applications, such as surveillance or monitoring the migra-
tion of marine species. ROVs are typically deployed for
these critical applications; these are connected to a surface
vehicle (usually a ship or a boat) via an umbilical link that
houses communication cables and an energy source, to
enable power and information transfer.

2.3. Aerial scenario

Unmanned aerial vehicles (UAVs) are traditionally used for
surveillance, industrial, and military applications. More
recently, UAVs have become more accessible and popular
for entertainment purposes and in the film industry. They
are very useful for capturing sports activities, such as climb-
ing or skiing, from a whole new perspective (Higuchi et al.,
2011; Skydio, 2018; Staaker, 2016) without the need for

teleoperation or a full-scale manned aerial vehicle. Another
interesting application is to use person-following UAVs to
provide external visual imagery, which allows athletes to
gain a better understanding of their motions (Higuchi et al.,
2011). These popular use cases have influenced significant
endeavors in research and development for affordable
UAVs, and they have been at the forefront of person-
following aerial drone industry in recent times.

Figure 4 illustrates a typical person-following scenario
for a UAV. The operating time for UAVs is usually much
shorter than for ground and underwater scenarios, e.g., less
than half an hour to a few hours per episode, owing to lim-
ited battery life. The person launches the take-off command
at the beginning of each episode and then commands the
UAV to follow (and possibly to take snapshots) while he or
she is performing some activities. The person makes the
landing command after a reasonable amount of time, end-
ing the episode. It is common to carry a number of portable
batteries or quick chargers to capture longer events. The
following sections discuss other operational considerations
and related design issues based on the choice of sensors,
mode of interaction, granularity, and degree of autonomy.

2.3.1. Choice of sensors. As the mentioned applications
suggest, person-following UAVs are equipped with cam-
eras for visual sensing. Usually, a front-facing camera is
used for this purpose, while an additional low-resolution
vertical camera (i.e., facing down) is used as an optical
flow sensor. The vertical camera uses ground textures and
visible features to determine the UAV’s ground velocity
and ensure stabilization. Owing to the constraints on cost,
weight, size, and battery life, the use of other exteroceptive
sensors is often limited to consumer-grade person-follow-
ing UAVs. The Parrot ARDrone 2.0 (Parrot, 2012), for
instance, only uses cameras (front and vertical) as extero-
ceptive sensors; these UAVs weigh less than a pound and
cost approximately two hundred US dollars. Conversely,
with a 4k resolution camera and a three-axis mechanical
gimbal, the DJI Mavic drones (DJI, 2016) weigh 700-850
grams and cost approximately a thousand US dollars.
However, UAVs used in industrial, military, and other
critical applications can accommodate several high-
resolution cameras, range sensors, stereo cameras, etc. For
instance, Inspire 2.0 (DJI, 2015) drones have additional
upward-facing infrared sensors for upward obstacle avoid-
ance, ultrasonic sensors, and camera gimbals for stable for-
ward vision. While these drones weigh about 6—8 pounds
and cost a few thousand US dollars, they offer the robust-
ness and reliability required for critical applications.
Moreover, infrared and thermal cameras (Kumar et al.,
2011) are particularly useful in autonomous human surveil-
lance and rescue operations in darkness and during adverse
weather. These sensors provide low-resolution thermal
images (Rudol and Doherty, 2008), which are used to loca-
lize moving targets (e.g., people) in darkness. While multi-
ple high-resolution stabilized cameras are useful in these
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applications, manufacturers of person-following UAVs tend
to avoid using other exteroceptive sensors and try to bal-
ance the trade-off between cost and battery life. For
instance, although laser scanners are widely used by UAVs
for surveying tasks involving mapping and localization
(Huh et al., 2013; Tomic et al., 2012), these are not com-
monly used for person-following applications.

Lastly, proprioceptive sensors are used mainly by flight
controller modules. For instance, IMUs measure three-axis
rotations and acceleration while an optical flow sensor
measures the horizontal (ground) velocity of the UAV.
Additionally, ultrasonic and pressure sensors measure alti-
tude and vertical displacements of the UAV (Bartdk and
Vykovsky, 2015). Flight controller modules use these sen-
sory measurements to estimate the UAV pose and eventu-
ally control its position and trajectory during flight. Hence,
these sensors are critical for the overall successes of the
operations. Additionally, advanced UAVs make use of
Global Positioning System (GPS)receivers within the navi-
gation and control loop, allowing for smart navigation fea-
tures, such as maintaining a fixed position or altitude.
Table 4 summarizes the usage and challenges of different
sensors used by person-following UAVs.

2.3.2. Mode of interaction. Since the per-episode operating
time for UAVs is significantly shorter than that of UGVs
and AUVs, their take-offs and landings are frequent. This
requires that the person be aware of the UAV’s location and
available battery at all times in order to facilitate smooth
person-following and ease the landing processes.
Additionally, for a UAV paired to a user application via a
wireless local area network (WLAN), the person being fol-
lowed should not venture outside the WLAN range.
Furthermore, the person can positively influence the beha-
vior of the UAV by understanding the underlying algo-
rithms, e.g., by knowing how the UAV navigates around an
obstacle, how rediscovery happens when the target person
is lost, etc. While these positive influences via implicit
interactions are important for person-following in general,
they are more essential in the aerial scenario.

As mentioned earlier, implicit interaction incurs addi-
tional cognitive loads on the user. To this end, explicit
interactions and commands can simplify the task of con-
trolling the UAV. Most commercial UAVs can be controlled
via smart devices (DJI, 2016; Skydio, 2018), proprietary
controllers, wearable beacons, etc. Moreover, hand-gesture-
based interaction is particularly popular in personal appli-
cations where the UAV flies close to the person at a low
altitude (Naseer et al., 2013). Typical instructions involve
changing the robot’s position or initiating a particular task,
such as to start circling around the person, start or stop
video recording, or make an emergency landing.
Nevertheless, hand-gesture-based interaction with UAVs
can be quite challenging when the UAV flies at a high alti-
tude; these challenges are elaborately discussed later in this
paper (Section 3.3.1).

Fig. 4. Unmanned aerial vehicle filming a sport activity while
intelligently following an athlete (Wellbots, 2015).

2.3.3. Granularity. As with the ground and underwater
scenarios, a single UAV follows a single person in most
commercial and personal applications. Owing to the
increasing popularity of these applications, research studies
have also concentrated largely on this interaction paradigm
(Chakrabarty et al., 2016; Lugo and Zell, 2014; Pestana
et al., 2014). However, a single UAV often cannot fulfill cer-
tain application requirements, such as capturing an event
from different viewpoints or over a long period of time.
Hence, critical applications, such as search-and-rescue
operations, require several UAVs to follow a team (Cacace
et al., 2016) and often share a cooperative task (e.g., cover-
ing a certain search perimeter). Moreover, a group of coop-
erative UGVs is more effective for crowd control (Minaeian
et al., 2016), than is a single UAV.

While the integration of a number of person-following
UAVs can overcome certain limitations of using a single
UAV, controlling and interacting with a number of UAVs
can become increasingly difficult. The cognitive load on
the users is significantly increased as they need to worry
about the battery life, take-off and landing, position, move-
ment, etc., of each UAV. Although it is theoretically possi-
ble to interact with several UAVs separately and as a group
using hand gestures or smart devices, it is not practical for
most personal applications. For critical applications, how-
ever, UAVs with more advanced autonomous capabilities
are used to reduce the cognitive load on the person. In fact,
advanced UAVs have features that allow interactions with
several persons, who share the cognitive load in complex
operations. For instance, the camera gimbals of Inspire 2.0
(DJI1, 2015) can be controlled independently (by a person)
while it is interacting with a different person.

2.3.4. Degree of autonomy. Unlike ground scenarios, par-
tial autonomy is preferred over full autonomy in most appli-
cations for person-following UAVs. The person usually
uses a smartphone application for take-offs, positioning,
and landing. Then, the UAV switches to autonomous mode
and starts following the person. During operation, the per-
son typically uses a smartphone application or hand ges-
tures to communicate simple instructions for moving the
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UAV around, taking snapshots, etc. If the UAV loses visual
on the person, it hovers until rediscovery is made. UAVs
are also capable of emergency landing by themselves if
necessary (e.g., when the battery is low or internal malfunc-
tions are detected). These autonomous features minimize
the cognitive load on the person and reduce the risk of los-
ing or damaging the UAV.

While partially autonomous UAVs are suitable in con-
trolled settings, such as filming sports activities, fully
autonomous behavior is suitable in situations where exter-
nal controls cannot be easily communicated. For instance,
autonomous mission planning is essential for such applica-
tions as remote surveillance and rescue operations, aiding
police in locating and following a fleeing suspect, etc.

3. State-of-the-art approaches

Perception, planning, control, and interaction are the major
computational components of an autonomous person-
following robotic system. This section discusses these
components of the state-of-the-art methodologies and their
underlying algorithms.

3.1. Perception

An essential task of a person-following robot is to perceive
the relative position of the person in its operating environ-
ment. The state-of-the-art perception techniques for object-
following or object-tracking can, in general, be categorized
based on two perspectives: feature perspective and model
perspective (see Figure 5). Based on whether or not any
prior knowledge about the appearance or motion of the tar-
get is used, the techniques can be categorized as model-
based or model-free. Conversely, based on the algorithmic
usage of the input features, perception techniques can be
categorized as feature-based tracking, feature-based learn-
ing, and feature or representation learning.

Our discussion is schematized based on the feature per-
spective, since this is more relevant to the person-following
algorithms. Additionally, various aspects of using human
appearance and motion models are included in our discus-
sion. These aspects, including other operational details of
the state-of-the-art perception techniques for ground, under-
water, and aerial scenarios, are presented in the following
sections.

3.1.1. Ground scenario. The UGVs navigate in a two-
dimensional (2D) space while following a person (Figure
6). Most UGVs adopt a unicycle model (Pucci et al., 2013)
with linear motion along the ground (XY ) plane and angu-
lar motion about the vertical (Z) axis. One implicit assump-
tion is that the cameras are static and rigidly attached to the
robots, as omnidirectional cameras (Kobilarov et al., 2006)
are rarely used for person-following applications. The

Perception techniques for
person-following
T

]
’ Feature perspective ‘ Model perspective
>‘ Feature-based tracking ‘ ] Model-based
>‘ Feature-based learning ‘ —»] Model-free

>‘ Feature or Representation learning ‘

Fig. 5. Categorization of various perception techniques for
person-following based on feature and model perspectives.

camera feeds and other sensory inputs are fused and sent to
the perception module in order to localize the person with
respect to the robot. Although the underlying algorithms
vary depending on the choice of sensors, they can be gen-
eralized into the following categories.

(i) Feature-based tracking. The simplest class of person-
following algorithms detect person-specific features in the
input feature space. For example, blob detection algorithms
use color-based segmentation to track a person in the RGB
image space (Hu et al., 2007, 2009; Schlegel et al., 1998). The
obvious dependency on specific colors (e.g.,the person’s cloth-
ing), make these algorithms impractical for general applica-
tions. More robust and portable algorithms can be designed
using the depth data generated from an RGBD camera or a
stereo camera. As illustrated in Figure 6(e), the presence of a
person corresponds to a specific pattern in terms of shape,
average distance, and the number of points in the 3D point-
cloud. Usually, a template is designed based on the expected
values of these attributes, and is then used for detection (Isobe
et al,, 2014; Satake et al., 2013). A family of person-following
algorithms applies similar methodologies to LRF and sonar
data. As seen in Figure 6(d), slices of planar distance measures
from an LRF or directional distance measures from a sonar
can be used to detect specific feature patterns or templates per-
taining to a person in an upright posture.

More advanced algorithms iteratively refine the initial
detection of person-specific features. Mean-shift and parti-
cle filter-based algorithms (Germa et al., 2009; Kwolek,
2004) are the most popular ones used for person-following.
A mean-shift algorithm performs back-projection to find
the probabilities of the target feature map in each point in
the feature space. Then, by iteratively following the center
of mass of the probability distribution (termed the mean-
shift vector), the algorithm finds the mode of the distribution
that corresponds to the best match for the target feature map.
These approaches work very well for unimodal cases and are
therefore not very effective in tracking several targets at once.
Particle filters, however, adopt an iterative prediction-update
process to derive a set of particles (i.e., candidate solutions).
The particles are initialized randomly over the feature space,
then iteratively updated based on their similarities with the
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(a) UGV following a person (b) View from the robot’s
from behind. camera (with the detected
bounding box).

(c) HOG features are shown for
the selected region of interest.

(d) A slice of planar distance
measures generated from LRF
data (top view).

(e) 3D point clouds for the global scenario are shown in the leftmost image; for a selected region within the robot’s field of view,
the background-subtracted binary image and the corresponding depth map are shown on the right.

Fig. 6. Snapshot of a person-following scenario by a UGV, the sensory data for different choices of sensors, and visualizations of the

processed data used by various algorithms.

HOG: histogram of oriented gradients; LRF: laser range finder; UGV: unmanned ground vehicle.

target feature map. The update rules and similarity functions
are designed in such a way that the particles move toward
more prospective regions in the feature space and eventually
converge to the target region.

Since searching over the entire feature space can be
computationally expensive, it is very helpful to use prior
knowledge or to make educated assumptions in order to
reduce the search space. For example, Gaussian mixture
model-based background subtraction (Stauffer and
Grimson, 1999) can be used to avoid searching for person-
specific features over background regions (Figure 6(e)).
Additionally, exhaustive searching in every frame can be
avoided by keeping track of the detected features over
sequences of frames. Optical flow-based methods (Handa
et al., 2008) and other feature-based trackers (Satake
et al., 2012, 2013) take advantage of this for efficient
tracking. Furthermore, educated assumptions of the walk-
ing model of a person can also facilitate the removal of
unpromising regions from the feature space (Guevara
et al., 2016).

(ii) Feature-based learning. Another class of approaches
makes statistical assumptions about the true underlying
function that relates the input feature space to the exact
location of the person and then uses machine learning tech-
niques to approximate that function. For example, histo-
gram of oriented gradients (HOG) features are used to train
support vector machines (SVMs) for robust person detec-
tion (Satake and Miura, 2009). HOG features are

histograms of local gradients over uniformly spaced rectan-
gular blocks in the image space. The localized gradient
orientations are binned to generate dense feature descrip-
tors. These descriptors, along with other sensory inputs
(e.g., depth information) are used to formulate the feature
space, which is then used for offline training of detectors
such as SVMs. These detectors are known to be robust and
their inference is fast enough for real-time applications.
Other supervised models, such as decision tree and logistic
regression, can also be applied by following a similar meth-
odology (Germa et al., 2009). Figure 6(c) shows HOG fea-
tures for a particular image patch; as seen, the presence of a
person results in a particular spatial pattern in the HOG fea-
ture space.

Conversely, learning models based on adaptive boosting
(AdaBoost) (Chen et al.,, 2017b) are different in that,
instead of learning a single hypothesis, they iteratively
refine a set of weak hypotheses to approximate the strong
(optimal) hypothesis. The use of a number of learners
almost always provides better performance than a single
model in practice, particularly when the input features are
generated using heterogeneous transformations (e.g., linear
and non-linear) of a single set of inputs or simply contain
data from different sources (i.e., sensors). Dollar et al.
(2009) exploited this idea to extract integral channel fea-
tures using various transformations of the input image.
Such features as local sums, histograms, Haar features
(Papageorgiou et al., 1998) and their various generaliza-
tions are efficiently computed using integral images and



Islam et al.

1593

Fig. 7. The leftmost image shows a person detected by a deep object detection model, named Single-Shot Multibox Detector (Liu et
al., 2016); visualizations for different feature representations that are extracted at the first two layers of the model are shown in the
next two images; the rightmost image shows the human body pose being detected using Open-Pose (Cao et al., 2017).

then used as inputs to decision trees that are then trained
via AdaBoost. A family of these models (Dollar et al.,
2010; Zhu et al., 2006) is known to work particularly well
as pedestrian detectors for near real-time applications, such
as person-following.

Furthermore, Bayesian estimation and other probabilis-
tic models (Alvarez-Santos et al., 2012; Guevara et al.,
2016) are widely used to design efficient person detectors.
These models make statistical assumptions about the
underlying probability distributions of the feature space
and use optimization techniques to find the optimal
hypothesis that maximizes the likelihood or the posterior
probability. A major advantage of these models is that they
are computationally fast and hence suitable for on-board
implementations.

(iii) Feature or representation learning. Feature-based
learning methods learn an optimal hypothesis on a feature
space that is designed beforehand from the input sensory
data. Consequently, the performance of the underlying algo-
rithm largely depends on how discriminative and informa-
tive the feature space is. Deep learning-based approaches
try to learn an optimal feature space and the optimal
hypothesis simultaneously, providing a significant boost in
performance. Recent developments in convolutional neural
networks (CNNs) have made it possible to use these models
in real-time applications such as person-following.
Supervised deep models typically consist of a convolu-
tional network and an additional classification or regres-
sion network. The former consists of several convolutional
layers that extract the informative features from the input
data to generate different feature representations. These fea-
ture representations are then fed to a classification or
regression network (a set of fully connected layers) for
detection. Often, a separate region proposal network is used
to allow efficient detection of several objects in the scene.
Back-propagation and gradient-based optimization tech-
niques are used to find the optimal feature space and opti-
mal hypothesis simultaneously. The sample DeConvnet
visualization (Zeiler and Fergus, 2014) shown in Figure 7

shows feature representations extracted by a CNN at differ-
ent layers. Each sub-plot represents the feature maps that
excite a particular neuron in the given layer. Feature maps
for the first and second layers (of a CNN) are shown, since
they are easier to inspect. These feature maps are used by
the classifiers and regressors to detect a person and other
objects in the scene.

The CNN-based deep models define the current state of
the art for object detection, classification, and visual per-
ception in general (Tensorflow, 2017). However, they
require a set of comprehensive training samples in order to
achieve good generalization performances by avoiding
over-fitting. Nevertheless, they often perform poorly in
such situations such as occlusions, appearance changes of
the target (person), or random changes in the environment.
Online learning schemes (Chen et al., 2017a) can cope with
these issues by adjusting their model weights based on new
observations on the fly. Conversely, in deep reinforcement
learning (Chen et al., 2017e) and agent-based models
(Gascueia and Fernandez-Caballero, 2011), a reward func-
tion is defined based on the robot’s perceived sfate and per-
formed actions. The robot learns sequential decision
making to accumulate more rewards while in operation.
The overall problem is typically formulated as a Markov
decision process and the optimal action-state rules are
learned using dynamic programming techniques. These
methods are attractive because they do not require supervi-
sion and they imitate the natural human learning experi-
ence. However, they require complex and lengthy learning
processes.

Unsurprisingly, modern person-following robots use
deep learning-based person detectors (Chen et al., 2017a;
Jiang et al., 2018; Wang et al., 2018b) since they are highly
accurate in practice and robust to noise, illumination
changes, and other visual distortions. More advanced
robots go beyond person detection and adopt robust models
for human pose estimation and action recognition. These
are potentially useful for enabling many additional capabil-
ities, such as learning long-term human behavior, under-
standing sentiment, or engaging in natural conversation;
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(a) Typical diver-following scenario; the robot moves in a 3D
space while following the diver.

(b) Color-based tracking algorithms perform binary thresholding
on image, which is then refined to track divers.

(c) Optical flow-based methods can be used to track a diver's motion; the image in the middle (d) Sonar imagery (Mandic et al.,

shows the estimated optical flows pertaining to the temporally sequential frames on the left,
and is then refined to localize the diver (a heat-map is shown on the rightmost image).
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(e) Mixed-domain periodic motion tracker (Islam and Sattar, 2017) uses a HMM to track the potential motion directions of a diver,
which are then validated using frequency responses of the corresponding motion; as the right plot shows, intensity variations in
the spatio-temporal domain along diver’s swimming directions correspond to high-energy responses of 1-2 Hz in the frequency

domain.

(f) A convolutional neural network based deep model is used to detect divers and other objects (e.g., other robots) by an
autonomous underwater vehicle (Islam et al., 2018a).

Fig. 8. Snapshots of autonomous diver-following scenarios and visualization of the processed data used by various algorithms.

DTFT: discrete-time Fourier transform; HMM: hidden Markov model.

these are attractive for interactive person-following applica-
tions in social settings.

3.1.2. Underwater scenario. As discussed in Section 2.2,
perception is more challenging for underwater diver-
following robots. Challenging operating conditions call for
two major characteristics of a perception algorithm: robust-
ness to noisy sensory data and fast running time with lim-
ited on-board resources. Consequently, state-of-the-art
approaches focus more on robustness and fast running time
than on accuracy of perception.

To this end, simple feature-based trackers are often prac-
tical choices (Sattar and Dudek, 2006). As illustrated in
Figure 8(b), color-based tracking algorithms can be utilized
to localize a diver in the image space. These algorithms
perform binary image thresholding based on the color of

the diver’s flippers or suit. The binary image is then refined
to track the centroid of the target (diver) using algorithms,
such as mean-shift, particle filters, etc. AdaBoost is another
popular method for diver tracking (Sattar and Dudek,
2009a); as discussed in Section 3.1.1, AdaBoost learns a
strong tracker from a large number of simple feature-based
trackers. Such ensemble methods are proven to be compu-
tationally inexpensive yet highly accurate in practice.
Optical flow-based methods can also be utilized to track a
diver’s motion from one image frame to another, as illu-
strated in Figure 8(c). Optical flow is typically measured
between two temporally ordered frames using the Horn and
Schunk formulation (Inoue et al., 1992), which is driven by
brightness and smoothness assumptions of the image deri-
vatives. Therefore, as long as the target motion is spatially
and temporally smooth, optical flow vectors can be reliably
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used for detection. Several other feature-based tracking
algorithms and machine learning techniques have been
investigated for diver tracking, and underwater object
tracking in general. However, these methods are mostly
applicable in favorable visual conditions with clear visibi-
lity and steady lighting.

Color distortions and low visibility issues are common
in deep-water scenarios. Sattar and Dudek (2009b) showed
that human swimming cues in the frequency domain are
more stable and regular in noisy conditions than tradition-
ally used spatial features like shape and color. Specifically,
intensity variations in the spatio-temporal domain along the
diver’s swimming direction have identifiable signatures in
the frequency domain. These intensity variations caused by
the diver’s swimming gait tend to generate high-energy
responses in the 1-2 Hz frequency range. This inherent per-
iodicity can be used for robust detection of divers in noisy
conditions. A mixed-domain periodic motion (MDPM)
tracker generalizes this idea in order to track arbitrary
motions (Islam and Sattar, 2017). In the MDPM tracker,
spatial features are used to keep track of the potential
motion directions of the diver using a hidden Markov
model (HMM). Frequency responses along those directions
are then inspected to find the most probable one; the overall
process is outlined in Figure 8(e). These methods are fast
and known to be more robust than simple feature-based
trackers.

The use of sonars is effective in unfavorable visual con-
ditions. Sonars use acoustic chirps (low-frequency sound
waves) along a range of bearings; directional distance mea-
sures are then calculated from the reflected sound waves.
AUVs and autonomous surface vehicles (ASVs) most com-
monly use active sonars to track divers (Mandic et al.,
2016; Miskovic et al., 2015) in diver-following applica-
tions. Additionally, the processed sonar image measure-
ments (Figure 8(d)) can be fused with USBL measurements
to obtain reliable tracking estimates at a steady rate. Such
sensor fusion increases robustness and works even in cases
when either the sonar or the USBL measurements are noisy
or unavailable. However, active sonars face challenges in
coastal waters, owing to scattering and reverberation.
Additionally, their usage cause disturbances to the marine
ecosystem and may also be limited by government regula-
tions on sound levels. Thus, the use of passive sonars such
as hydrophones is a practical alternative (Gemba et al.,
2014; Hari et al., 2015). Passive sonars capture sound
waves of diver’s breaths and movements, which have inher-
ent periodicity. These waves are then analyzed in the fre-
quency domain to detect periodic bursts of low-frequency
sound waves pertaining to the diver’s breathing or move-
ments. A similar methodology is used by underwater ROVs
that use electric-field sensors to detect the presence of
divers within a short range (Lennartsson et al., 2009).

Deep learning-based object detection models have
recently been investigated for underwater applications as
well (Islam et al., 2018a; Shkurti et al., 2012). The state-of-
the-art pre-trained models are typically trained (offline) on

large underwater datasets and sometimes quantized or
pruned in order to get faster inference by balancing robust-
ness and efficiency (Islam et al., 2018a,c). As illustrated in
Figure 8(f), once trained with sufficient data, these models
are robust to noise and color distortions; additionally, a sin-
gle model can be used to detect (and track) several objects
at once. Despite the robust performance, these models are
not as widely used in practice as in terrestrial scenarios,
owing to their slow on-board running times. However, with
the advent of mobile supercomputers and embedded paral-
lel computing solutions (Google, 2018; NVIDIA, 2014),
efficient on-board implementations of these models are
becoming possible. Nevertheless, although the online learn-
ing and reinforcement learning-based approaches are effec-
tive for person tracking when the appearance and scene
changes (Chen et al., 2017a,e), they are yet to be success-
fully used in practice for diver-following applications.

3.1.3. Aerial scenario. The underlying mechanism of a
perception algorithm for person-following UAVs is mostly
defined by two aspects: the expected flying trajectory of the
UAV and the available sensory data. For instance, in some
personal applications, the UAV flies close to the person at a
low altitude (e.g., 4—6 m from the ground). The perception
algorithms in such a set-up are similar to those in ground
scenarios, as illustrated in Figure 9(a). Conversely, applica-
tions such as filming sports activities demand rather com-
plex trajectories of the UAV while following an athlete
(Figure 9(d)). Robust detection and control mechanisms are
required in these set-ups, including reliable sensing. Lastly,
autonomous surveillance and rescue operations involve sen-
sing from long distances, often in unfavorable sensing con-
ditions; hence, perception techniques differ among these
scenarios.

Standard feature-based tracking methods are suitable if
the UAV is expected to fly close to the person while main-
taining a smooth horizontal trajectory. As seen in Figure
9(a) and (b), the camera image captures most of the per-
son’s body with no significant perspective distortions;
hence, computer vision-based object detectors and pedes-
trian detectors perform well in such scenarios. To this end,
color-based segmentation, mean-shift, particle tracker, and
HOG-based detectors are widely used (Higuchi et al.,
2011; Kumar et al., 2011; Lugo and Zell, 2014; Teuliere
et al.,, 2011). The operations of these algorithms are dis-
cussed in Section 3.1.1. In a seminal work, Pestana et al.
(2014) showed that OpenTLD trackers can achieve robust
performance for outdoor suburb environments. These
trackers decompose a target-tracking task into tracking,
learning, and detection (TLD); they are known to perform
well for long-term object tracking in general. One limita-
tion of TLD trackers is that they often incorporate the
background into the learning over time, leading to quick
target drift.

More reliable sensing and robust tracking performance
can be achieved by using an additional depth sensor (e.g., a
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Front’-facing
Camera

(a) Typical aerial person-following scenario; the UAV moves in 3D space while following the person. The rightmost figure shows
the target bounding boxes found by the mean-shift algorithm on the color thresholded binary image; the final target bounding box

(b) A person being tracked from stabilized depth-map using
OpenNI skeleton tracker (Naseer et al., 2013).

(marked in pink) is projected on the original image and refined for tracking.

(c) lllustration of different appearances of humans based on the
altitude of UAVs; a low-altitude case is shown on the left and a
higher-altitude case on the right (Mueller et al., 2016).

(d) lllustrations of commercial UAVs following an athlete: (left) by

(e) Snapshots taken by a military-grade thermal infrared

creating a 3D map of the surrounding using visual SLAM & tracking camera (SPi, 2015); these images capture the infrared

him within the map (Skydio, 2018); (right) by tracking a paired

wrist-mounted device containing a GPS receiver (Staaker, 2016).

energy reflected by objects (such as humans), which can
be used to isolate them from the background.

Fig. 9. Snapshots of aerial person-following scenarios by UAVs and visualization of the processed sensory data used by various

algorithms.

GPS: Global Positioning System; SLAM: simultaneous localization and mapping; UAV: unmanned aerial vehicle.

RGBD camera), particularly for indoor applications. Naseer
et al. (2013) presented an indoor person-following system
using two cameras; a regular camera for determining the
3D position of the UAV based on markers on the ceiling
and a depth camera to detect a person in 3D. The images
from the depth camera are warped based on the calculated
3D position. The stabilized depth images are then used for
robust perception using the OpenNI platform (Figure 9(b)).
Gioioso et al. (2014) also used an RGBD camera to detect
hand-gesture-based teleoperation commands for UAVs.
Such systems, however, are limited to indoor environments
and small motions. Additionally, they often require a
remote computer for intensive computations.

For challenging outdoor applications, where the UAV
trajectory changes rapidly because of dynamic obstacles or
fast movements, the person may appear significantly differ-
ent from different viewpoints. Hence, perspective distor-
tions need to be taken into account. De Smedt et al. (2015)
used ground plane estimation techniques to approximate
the orientation of the ground plane in 3D relative to the
position of the camera; object heights in the image were
then predicted based on the homography of the ground

plane and the real-world sizes of the objects. De Smedt
et al. (2015) exploited this idea to localize prospective rec-
tangular regions in the image space for detecting pedes-
trians of expected heights between 160 cm and 185 cm.
This allows approximation of the height of the person in
different perspectives and thus reduces the search space,
leading to efficient tracking performances. De Smedt et al.
(2015) used standard pedestrian trackers based on aggre-
gate channel features and achieved good on-board perfor-
mances. A number of other online tracking algorithms have
been investigated by Mueller et al. (2016) for person-
following and general object tracking by UAVs. Mueller
et al. (2016) also presented a camera handover technique,
where one UAV can pass the tracking task over to another
UAV without interruption; this can be useful in long-term
tracking and filming applications. Moreover, some com-
mercial UAVs build a 3D map of the surroundings using
techniques such as visual simultaneous localization and
mapping (SLAM) and follow their target (person) within
the map (Skydio, 2018). These UAVs are usually equipped
with advanced features, such as obstacle avoidance or target
motion prediction. Furthermore, UAVs that capture sports
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activities often track the location information provided by a
paired controller device carried by or mounted on an ath-
lete, as illustrated in Figure 9(d). The paired device is
equipped with a GPS receiver and communicates informa-
tion related to motion and orientation of the athlete; this
additional information helps the UAV plan its optimal tra-
jectory for filming (Vasconcelos and Vasconcelos, 2016).

As mentioned, thermal and infrared cameras are particu-
larly useful in autonomous surveillance, search and rescue,
and other military applications. Thermal images detect the
emissions of heat from various objects in the image space,
which can be easily identifiable from the surroundings.
This feature is crucial while sensing from long distances
and in unfavorable sensing conditions. Figure 9(e) shows
snapshots of a military-grade thermal infrared camera (SPi,
2015); as seen, the warm objects can be easily located in
the image. In fact, one major advantage of using thermal
imagery is that simple computer vision techniques can be
used for robust detection. For instance, Portmann et al.
(2014) showed that the standard background subtraction
techniques can be used to segment regions that are both
hotter and colder than the environment. Then, HOG-based
detectors or particle filters can be used to track humans in
the segmented regions. Gaszczak et al. (2011) used the
mean-shift algorithm on the background-subtracted thermal
image and achieved good results. Additionally, they showed
that the Haar classifiers can be used to detect human body
signatures, as well as other objects, accurately. These meth-
ods are computationally inexpensive and suitable for on-
board implementations.

Lastly, deep learning-based person detectors are yet to
be explored in depth for the aerial applications, largely
owing to the limited on-board computational resources
available, particularly in  consumer-grade UAVs.
Nevertheless, some recent commercial UAVs, such as
Skydio R1 (Skydio, 2018), use mobile embedded super-
computers in order to use deep visual models in real time.
It is safe to say that with faster mobile supercomputers and
better low-power computing solutions, efficient on-board
implementations of various deep learning-based perception
modules will soon become possible and will be more com-
monly used by person-following UAVs in the near future.

3.2. Planning and control

Once the perception module obtains an estimate of the tar-
get (person) pose by processing the sensory inputs, control
commands need to be generated in order to achieve the
desired motion. Ground robots navigate in a 2D plane,
whereas underwater and aerial robots navigate in 3D
spaces; hence, the corresponding control signals and their
operational constraints vary. However, the overall operation
is mostly similar; Figure 10 illustrates an outline of the
operational flow for an autonomous person-following sys-
tem. The following discussions provide an overview of the
planning and control modules that are standard for general

object-following, and focus on the aspects that are particu-
larly important for person-following applications.

First, the target person’s position and heading informa-
tion are estimated with respect to the robot’s known frame
of reference. Additionally, the sensory data are processed
and sent to the state estimation filters. These observed
measurements are used by the filters to refine the state esti-
mation through iterative prediction-update rules. Linear
quadratic estimators, such as the Kalman filter (Kalman,
1960), and non-linear estimators, such as the extended
Kalman filter (EKF) (Julier and Uhlmann, 1997) are most
widely used for this purpose. The unscented Kalman filter
(Wan and Van Der Merwe, 2000) addresses the approxima-
tion issues of the EKF and is often used in practice for state
estimation from noisy sensory data. Methodological details
of these algorithms are beyond the scope of this paper;
interested readers are referred to Jung and Yi (2012); Lugo
and Zell (2014); Morioka et al. (2012); Satake and Miura
(2009); Sattar et al. (2008); Teuliere et al. (2011) and Yoon
et al. (2014).

The refined measurements are then processed to gener-
ate a set of way points, i.e., a representation of potential tra-
jectories for the robot in order to follow the target person.
The path planner uses this information and finds the opti-
mal trajectory by taking into account the estimated relative
positions of the static obstacles, other humans, and dynamic
objects in the environment. The constraint here is to opti-
mize some aspect of the anticipated motion of the robot,
such as travel time, safety, or smoothness of motion. A
sequence of points is then generated to discretize the antici-
pated motion; the points pertaining to the optimal trajectory
are generally termed the set-points (Doisy et al., 2012).
Finally, the control modules analyze the set-points and gen-
erate navigation commands to drive the robot. The gener-
ated navigation commands are usually fed to a set of
feedback (e.g., proportional-integral—derivative (PID)) con-
trollers. This process of robot control is also generic for
most applications; interested readers are referred to De Wit
et al. (2012), Mezouar and Chaumette (2002), and Pounds
et al. (2010) for further details.

Figure 11 illustrates a categorical overview of various
types of path planning algorithm in the literature. Based on
the locality of sensing, planning can be either global (for
fully observable environments) or local (for partially obser-
vable environments). Additionally, if the optimal path (to
the target) is computed first and executed sequentially, it is
termed as offline planning; conversely, the planned path is
refined dynamically in online planning paradigms. Since
person-following robots are deployed in partially observa-
ble and dynamic environments, they require local and
online path planning in order to adapt to irregular and
unpredictable changes in their surroundings. Path planning
algorithms for person-following robots can be further cate-
gorized based on mapping information and on their algo-
rithmic structure. Although these algorithms are fairly
standard for dynamic target-following, a brief discussion of
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Fig. 11. Categorization of path planning algorithms from the perspective of sensing, methodology, and computation.

their operational considerations for person-following is pre-
sented in the following sections.

3.2.1 Map-assisted versus target-centric planning. Map-
assisted planning is feasible for structured environments
with a known map, particularly for person-following
ground robots in indoor settings (Doisy et al., 2012; Nikdel
et al., 2018). The global map of the environment (including
static objects) is used as prior knowledge. Typically, a static
planner keeps track of the robot’s location within the map
and its admissible waypoints by taking into account static
obstacles in the environment (Ahn et al., 2018). The
dynamic planner then refines these waypoints by consider-
ing the motions of the dynamic objects in the environment
(Figure 12). Other constraints, such as social awareness,
implicit interactions, etc., can also be considered in the
refinement process that eventually generates the optimal
path (Cosgun et al., 2016). Standard map-based navigation
techniques are then used to invoke the person-following
motion.

Although a global map can significantly simplify the
planning and navigation processes, it is usually not avail-
able in outdoor applications. In such cases, a target-centric
approach is adopted. First, the locally sensed information is
used to create a partial map of the environment; traditional

SLAM-based techniques are most commonly used for this
purpose (Ahn et al., 2018; Cosgun et al., 2016). As illu-
strated in Figure 13, the UAV creates a 3D (depth) map of
the partially observed environment in order to find the opti-
mal path for person-following (Skydio, 2018). Such reac-
tive path planning sometimes leads to non-smooth
trajectories, particularly if the person moves quickly in a
zigzag trajectory (Tarokh and Merloti, 2010). Anticipatory
planning, i.e., predicting where the person is going to be
next and planning accordingly, can significantly alleviate
this problem and is thus widely used in practical applica-
tions (Hoeller et al., 2007; Nikdel et al., 2018; Tarokh and
Shenoy, 2014).

3.2.2 Planning for position-based servoing. In position-
based servoing, the path planner finds the optimal path to
follow a target using its estimated position with respect to
the robot. For instance, a person-following UAV uses its
current 3D position as the source and the estimated 3D
location of the person as the destination, and then uses
source-to-destination path planning algorithms to find the
optimal path that meets all the operational constraints. It is
to be noted that this planning can be either map-assisted or
target-centric, depending on whether or not global mapping
information is available.
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Fig. 12. Map-assisted 2D path planning of ground robot,
avoiding static and dynamic obstacles within the map.

Standard path planners typically represent the state
space using cells, grids, or potential fields and then apply
various search methods to find the optimal source-to-
destination path. For instance, the navigation space (and
the locations of relevant objects) is often interpreted using
an occupancy grid, and graph search-based algorithms,
such as A", D", or IDA” (Iterative Deepening A”), are used
to find the optimal path (Ahn et al., 2018; Huskic et al.,
2017; Miiller et al., 2008). Another approach is to ran-
domly sample the state space and attempt to establish
source-to-destination connectivity using such techniques as
rapidly exploring random trees (RRTs) (Triebel et al.,
2016), RRT", or probabilistic road maps (Hoeller et al.,
2007). These methods are good at finding near-optimal
solutions at a fast rate in large search spaces where ensur-
ing completeness is computationally expensive; hence, they
are widely used in real-time path planning for person-
following robots.

It is also common to represent the planning hypothesis
given the constraints as a probabilistic inference model.
Then, the problem reduces to finding a minimum cost or
maximum utility path from the search space of all admissi-
ble paths. Machine learning models and heuristic and evolu-
tionary approaches are also used to approximate the optimal
solution (i.e., to find a near-optimal path), particularly if the
search space is too large (Gong et al., 2011; Triebel et al.,
2016). Moreover, the problem can be modeled as a partially
observable Markov decision process (POMDP) in order to
perform online planning in a continuous state and action
space (Goldhoorn et al., 2014; Triebel et al, 2016).
POMDPs are good at dealing with dynamic environments
and complex agent behaviors. However, they can be compu-
tationally intractable and generate sub-optimal solutions.
Therefore, approximate solutions are typically formulated
with an assumption of a discrete state or action space.

Table 5 summarizes the different classes of path plan-
ning algorithms for position-based servoing and highlights
their operational considerations in person-following

Fig. 13. An unmanned aerial vehicle using a multi-camera depth
map of the partially observed environment for target- centric
planning in order to follow a person (Skydio, 2018).

applications. These algorithms are fairly standard; inter-
ested readers are referred to Gonzalez et al. (2015) and
Yang et al. (2016) for further methodological details.

3.2.3. Planning for image-based servoing. Autonomous
navigation of a robot using visual feedback is known as
image-based (visual) servoing, where the path planner uses
image-based features in order to find the optimal path to
follow the target (Gupta et al., 2017). Image-based servo-
ing is particularly useful when it is difficult to accurately
localize the target, particularly underwater and in GPS-
denied environments (Pestana et al., 2014). For instance,
AUVs often use bounding-box reactive path planners for
diver-following (Islam et al., 2018a). Here, the planning
objective is to keep the target diver at the center of the
robot’s view. That is, motion commands are generated in
order to bring the observed bounding box of the diver to
the center of the camera image (Figure 14). The relative
distance of the diver is approximated by the size of the
bounding box and forward velocity rates are generated
accordingly. In addition, the yaw and pitch commands are
normalized based on the horizontal and vertical displace-
ments of the observed bounding box center from the image
center; these navigation commands are then regulated by
the controller to drive the robot.

Furthermore, it is common to simplify the planning
component for image-based servoing in order to reduce
computational burdens on the robot. For instance, diver-
following robots sometimes plan a straight-line trajectory
to remain immediately behind the diver (Islam and Sattar,
2017). A similar strategy is adopted by ground robots as
well (Brookshire, 2010; Doisy et al., 2012; Wang et al.,
2018a), with an additional planning component for obsta-
cle avoidance. As illustrated in Figure 15, person-following
UGVs can use tools from prospective geometry to get the
relative homography of the orthogonal planes and then find
the optimal path along the ground plane by keeping safe
distances from the person and obstacles. This simplifies
the operational complexities and is often sufficient for non-
critical applications.
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Table 5. Various classes of path planning algorithms used by person-following robots for position-based servoing (based on the categorization shown in Figure 11), and their operational

consideration.

Selected references

Advantages

Constraints

Operation

Categories

Park and Kuipers (2013);

Computationally fast and
good for planning with

limited sensing

Probabilistic assumptions on

The planning hypothesis given the constraints

Probabilistic approaches

Sung and Chung (2016)

the system model might not

always hold

is represented as a generative or inference

model

Hoeller et al. (2007); Huski¢

et al. (2017); Triebel et al.

(2016)

Good at finding sub-optimal
and often optimal solutions

Prior knowledge about the
environment is needed

The workspace is sampled into nodes, cells,

Sampling and node-based

grids, or potential fields; then different search
methods are used to find the optimal path

Cosgun et al. (2013); Doisy

et al. (2012); Tisdale et al.

(2009)

Reliable and optimal

Can be computationally

expensive;

The environment is modeled as a time-variant

Mathematical model-based

kino-dynamic system; then a minimum cost

analytic solution of the
system may not exist

path or maximum utility path is computed

Morales et al. (2004); Triebel

et al. (2016)

Can easily deal with complex
and dynamic environments

Requires accurate feature

Parameters of the optimal planning hypothesis
are approximated using machine learning

models

Learning and

representation and rigorous

training process

optimization-based

Gong et al. (2011); Sedighi et al.

(2004)

Good at dealing with

Search space can be very
large; often produce locally

optimal solution

Planning hypothesis is evaluated using a

Heuristic and evolutionary

approaches

complex and dynamic

environments

heuristic or bio-inspired objective function;
then an optimal solution is iteratively sought

Fig. 14. Illustration of a bounding-box reactive planner; the
horizontal and vertical displacements of the center of the
detected bounding box is used for image-based servoing.

3.2.4. Planning by end-to-end learning. End-to-end tech-
niques try to learn problem-specific robot navigation rules
directly from input sensory data. This way of coupling the
perception, planning, and control modules together is
inspired by the self-driving-car concept and is very popular
these days. Several deep-learning-based models for super-
vised learning and agent-based reinforcement learning have
recently been introduced for person-following as well
(Dewantara and Miura, 2016; Goldhoorn et al., 2014).
Typically, these models are first trained in simulations with
an existing motion planner and then transferred to real-
world environments for further tuning. Researchers have
reported exciting results, demonstrating their effectiveness
for UGVs in autonomous 2D navigation, avoiding obsta-
cles, following people in near-optimal paths, multi-agent
cooperation, etc. However, these techniques are mostly
applied for person-following UGVs in indoor settings, and
sometimes only in simulation environments (Dewantara
and Miura, 2016; Pierre, 2018). Therefore, more research
attention is needed in order to improve and generalize these
techniques for a wide range of other person-following
applications.

3.2.5. Other considerations for planning and control. In
addition to the operating constraints for person-following
mentioned already, there are other practical, and often
application-specific, considerations for effective planning
and control. Several such aspects are discussed in this
section.

Planning ahead to avoid occlusion. The most essential
feature of a person-following robot’s planning module is to
ensure that the target person is in the field of view during
the robot’s motion. The trajectory needs to be planned in
such a way that, in addition to meeting the standard criteria
of an optimal path, e.g., based on distances from obstacles,
expected travel time, smoothness of anticipated motion,
etc., the person remains reasonably close to the center of
the robot’s field of view and not occluded by obstacles.
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Fig. 15. Simple planning strategy for an unmanned ground
vehicle; it finds a straight-line trajectory in order to remain
immediately behind the person while avoiding obstacles.

This is challenging if the sensing range is limited, especially
in the presence of dynamic obstacles. Typically, a probabil-
istic map (Hoeller et al., 2007) for motions of the moving
objects in the scene is formulated and then path planning is
performed on the dynamic occupancy field; a temporal
window of motion history is maintained to facilitate such a
formulation. Another approach is to predict the positions
and velocities of the moving objects a few time-epochs into
the future and plan the optimal trajectory ahead of time.
Such anticipatory planning is particularly important for
person-following UGVs that are meant to stay ahead of the
person (Mi et al., 2016) and UAVs that film fast-moving
athletes (Skydio, 2018).

Camera control. If the person-following robot is
equipped with a pan-and-tilt camera, a controller module is
required to ensure that the camera is always pointed at the
person during navigation (Doisy et al., 2012; Tarokh and
Merloti, 2010). In addition, it is common for person-
following UAVs to have camera gimbals; if so, an addi-
tional module is required to control the gimbals’ angles
instantaneously (Skydio, 2018; Staaker, 2016) based on the
person’s relative motion.

Person re-identification and recovery. In addition to
robust person detection and tracking, person-following
robots need to be able to plan to re-identify when necessary
(Koide and Miura, 2016). Moreover, these techniques are
essential for accompanying a specific person (Eisenbach
et al., 2015; Ilias et al., 2014). Predictive and probabilistic
models, such as Kalman filters and particle filters, are typi-
cally used to estimate the person’s future location, which
can be used as prior knowledge in case of a missing target
situation. That is, when the robot fails to detect the person
(owing to occlusion or noisy sensing), the recovery planner
can use that person’s anticipated location as a prior and
search probable locations for re-identification (Do Hoang

et al., 2017; Gupta et al.,, 2017). Standard feature-based
(Alvarez-Santos et al., 2012) and trajectory replication-
based techniques (Chen et al., 2017a) are most commonly
used in practice; appearance-based deep visual methods
(Ahmed et al., 2015; Li et al., 2014) can also be used by
recovery planners for person re-identification.

Additional planning and control procedures are required
to incorporate desired autonomous behaviors in emergency
situations, e.g., when the recovery planner fails to re-
identify the missing person, or if there is a critically low
battery or internal malfunctions are detected. For instance,
a UAV should be capable of making an emergency landing
and communicate its status to the person if possible.
Moreover, UGVs and UAVs can use some sort of emer-
gency beacons, e.g., flashing lights or beeping sounds, to
attract immediate attention.

Social awareness in a crowded area. 1t is essential for
person-following robots to maintain certain social rules
while operating in a populated area (Honig et al., 2018).
For instance, passing pedestrians on the correct side, main-
taining average human walking speed, taking nearby per-
sons’ motions into account for planning, etc., are norms
(Dewantara and Miura, 2016; Gockley et al., 2007) that a
social robot should be aware of. Therefore, application-
specific social norms need to be modeled and translated
into path planning and control rules in order to enable the
desired behaviors. Enabling socially aware behaviors in
mobile robots is an active research topic and researchers
have been exploring these aspects for person-following
robots in various environments, such as airports (Triebel
et al., 2016), hospitals (Ilias et al., 2014), and other crowded
areas (Ferrer et al., 2013).

Maintaining the norms of interaction. Lastly, the plan-
ning and control modules for person-following robots need
to accommodate the norms of explicit and implicit human—
robot interactions. In particular, various aspects such as
desired proximity behaviors, following angles (Shanee
et al., 2016), turning and waiting behavior, etc., should be
considered during trajectory planning. Additionally,
application-specific choices, such as whether to stay behind
or side-by-side while following, the desired speed, and rele-
vant anticipative behaviors (Granata and Bidaud, 2012; Mi
et al., 2016) are essential considerations. Another important
feature is to maintain the expected behavior during explicit
interactions (Hu et al., 2014; Islam et al., 2018c¢), e.g.,
being stationary when the human is communicating, and
exhibiting correct acknowledgement responses. These
aspects of human-robot interaction are elaborately dis-
cussed in the following section.

3.3. Interaction

Various forms of explicit and implicit interactions for
person-following scenarios are discussed in Section 2. The
following discussion provides a summary of how these
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interactions take place, different methodologies used, and
the related operational considerations.

3.3.1. Explicit interaction. Explicit interactions happen
when there are direct communications between the human
and the robot. Although most robots are equipped with per-
ipheral devices and sometimes haptic sensors (Ghosh et al.,
2014), those are typically used for offline tasks (powering
the robot, transferring software or data, sending emergency
signals, etc.). Conversely, communication paradigms based
on speech, tags or markers, and hand gestures are used dur-
ing operation for explicit human—robot interaction.

Verbal communication is convenient and commonly
practiced in ground applications (Sakagami et al., 2002).
Typically the person uses voice commands to convey sim-
ple instructions to the robot. The level of communication
can vary from simple imperative commands (start or stop
following, move left or right) to complex procedural
instructions (e.g., a set of sequential tasks) depending on
the application requirements. Systems for speech recogni-
tion and synthesis are very robust and commercially avail-
able these days. However, their usage is mostly limited to
terrestrial applications.

Tags or fiducial markers (e.g., ARTag, ARToolkit) have
been used for underwater human-robot communication.
Visual languages, such as RoboChat (Dudek et al., 2007),
assign different sequences of symbolic patterns of those
markers to a set of grammar rules (Figure 16). This is gen-
erally a robust way of communication because the fiducial
markers are easy to detect in noisy underwater conditions.
However, it is not very intuitive, and carrying a large set of
markers during an underwater mission is inconvenient.
Consequently, hand-gesture-based communication para-
digms (Chiarella et al., 2015; Islam et al., 2018b) are often
preferred, where sequences of hand gestures are used as
symboling patterns instead of the tags. Detecting hand ges-
tures in real time is relatively more challenging than detect-
ing markers; therefore, deep visual detectors are typically
used to ensure the robustness and accuracy of the system
(Islam et al., 2018c).

An additional challenge for hand gesture-based commu-
nication in aerial applications is the relatively long and
varying human-robot distance (Figure 17). Unlike in an
underwater scenario, the person cannot come close to the
robot and perform hand gestures in front of its camera.
Consequently, the UAV might end up being too far away to
detect various kinds of hand gestures (Bruce et al., 2016;
Monajjemi et al., 2016). In such cases, it is often useful to
use a reliable gesture (a static palm gesture, waving hands,
etc.) to instruct the UAV to first come closer and then per-
form other hand gestures for communication (Cauchard
et al., 2015; Naseer et al., 2013). Conversely, hand gesture-
based communication is relatively less challenging in
ground applications (Alvarez-Santos et al., 2014; Marge
et al,, 2011) and sometimes used even if a voice-based
communication system is available. Moreover, it is often

(a) Using AR-tags. (b) Using hand gestures.

Fig. 16. Diver communicating instructions to autonomous
underwater vehicle during a mission (Islam et al., 2018c).

Fig. 17. The visual challenges of detecting hand gestures from a
distant unmanned aerial vehicle (Monajjemi et al., 2016): notice
the minuscule appearance of people on the right compared with
the left image where the UAV is much closer.

more feasible than voice-based communication in crowded
environments (Ferrer et al., 2013), and in a multi-robot
setting.

Smart devices and paired wearable devices are also
commonly used to communicate human instructions, par-
ticularly by commercial UAVs (Skydio, 2018; Vasconcelos
and Vasconcelos, 2016), and interactive UGVs (Burgard
et al., 1998; Faria et al., 2015). Typically, the humans use a
set of menu options to instruct the robot to perform spe-
cific tasks. For instance, instructions to start or stop record-
ing videos, move in a particular direction, stop following,
make an emergency landing, etc., are practically useful for
interacting with person-following UAVs. Conversely, a con-
versational user interface is needed for UGVs that serve as
museum tour-guide robots, or as personal assistants.

3.3.2. Implicit interaction. Research studies on implicit
interactions in person-following scenarios mostly concen-
trate on two aspects: the human perspective and the robot
perspective. As mentioned in Section 2, these aspects boil
down to the following sets of mutual responsibilities in dif-
ferent stages of a person-following operation.

1. Spatial conduct consists of a set of desired proxemic
behaviors (Fleishman et al., 2018) of a robot while fol-
lowing a person in a human-robot interaction setting.
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This behavioral quantification is important to define
safe person-following trajectories and to model prox-
imity control parameters (Yamaoka et al., 2008) for
following and waiting while engaging in, and during,
an explicit interaction.

2. Appearance and gaze conduct consists of desired
responsive behaviors during human—robot communica-
tion (Zender et al., 2007) and non-responsive gaze beha-
viors during following, approaching, and handing-over
scenarios (Moon et al., 2014), etc. Moreover, for person-
following robots that stay in front (Jung and Yi, 2012;
Nikdel et al., 2018), companion humans’ gaze behavior
is an important feature to track in order to predict their
motion. Additionally, it helps the robot to identify when
the person is about to start an explicit interaction and to
plan accordingly, e.g., slow down or stop, prepare to
detect and interpret the communicated instructions, etc.

3. Motion conduct refers to a set of desired person-
following motion trajectories of the robot in different
situations. It includes motion models for following a
person from different directions (from behind, side-by-
side, at an angle, etc.), turning behaviors, and waiting
behaviors. Additionally, the expected motion behavior
of the robot when its human companion is interacting
with other people or goes out of its sight are important
design considerations (Gockley et al., 2007; Granata
and Bidaud, 2012). Motion conduct rules are used by
the planning component of the system in order to
maintain the desired motion behaviors. Therefore,
prior knowledge about human motion (walking, swim-
ming, etc.) and the overall interaction model can facili-
tate the design of those anticipated motion behaviors
(Hu et al., 2014) for person-following robots.

The modalities and characteristics of implicit interactions
are difficult to quantify in terms of technicality. This calls
for rigorous user studies and feasibility analysis to formulate
the right research questions and their effective solutions.

4. Qualitative analysis: Feasibility, practicality,
and design choices

An overwhelming amount of research work and industrial
contributions have enriched the literature on autonomous
person-following. This paper highlights and organizes these
into a categorical study; to further assist readers in navigat-
ing the large body of literature, it is presented in an ordered
and organized fashion in Table 6. This section analyzes a
number of prominent person-following systems and pro-
vides a comparative discussion in qualitative terms. A sum-
mary of this qualitative analysis is given in Table 7.

4.1. Detection and tracking performance

An important consideration in designing a perception mod-
ule is the desired level of detection accuracy and tracking

performance given the operating constraints. This impacts
the choices of sensors and on-board computational hard-
ware as well. For instance, person-following UGVs can
accommodate several sensors, e.g., combinations of cam-
eras, sonars, laser scanners, and RGBD cameras. Therefore,
it is generally good practice to adopt sensor fusion schemes
(Nikdel et al., 2018; Susperregi et al., 2013; Wang et al.,
2018a) to ensure accurate feature-based detection and track-
ing at a fast rate. If only a single exteroceptive sensor is (or
can be) used, more sophisticated techniques, such as deep
visual models or online learning-based models, are required
to ensure reliable perception (Chen et al., 2017b; Wang
et al., 2018b); these models are computationally demanding
and typically require single-board supercomputers
(NVIDIA, 2014) for real-time inference. However, if there
are constraints on power, the use of UWB or RFID tags
(Germa et al., 2010; Laneurit et al., 2016) is ideal for
designing effective low-power solutions.

The constraints on power consumption and resource uti-
lization are more important considerations for person-
following AUVs and UAVs. Hence, using domain-specific
prior knowledge, such as modeling divers’ swimming pat-
terns by AUVs (Islam and Sattar, 2017) and perspective fil-
tering by UAVs (De Smedt et al., 2015), can facilitate the
design of efficient trackers. Nevertheless, on-board super-
computers (NVIDIA, 2014) or edge devices (Google, 2018)
can be used to run deep visual trackers in real time (Islam
et al., 2018a; Skydio, 2018). Moreover, paired connectivity
with the companion human, e.g., paired GPS receivers by
UAVs (Staaker, 2016) or acoustic links by ASVs (Miskovic
et al., 2015), can provide reliable and fast tracking perfor-
mances at a low power budget.

The methodological details of these perception modules
are discussed in Section 3.1. A qualitative comparison of
them is provided in Table 7. The comparison also includes
two other important features, i.e., whether online learning
is used (Gupta et al., 2017; Park and Kuipers, 2013) and
whether person re-identification or recovery is considered
(Chen et al., 2017a; Doisy et al., 2012). Additionally, for
diver-following systems, invariance to divers’ appearance,
motion, and wearables is taken into account for compari-
son. While interpreting this table, it is to be noted that sev-
eral check-mark (v') symbols in the first comparison (i.e.,
for detection and tracking) represent the quality of a pro-
posed solution on a scale of one to three, where three indi-
cates state-of-the-art performance. In all other columns of
Table 7, the check-mark (v') and cross ( X ) symbols inde-
pendently represent yes, and no, respectively, for their cor-
responding comparisons.

4.2. Optimal planning and control

A few application-specific requirements, particularly the
degree of autonomy and the presence of dynamic agents or
obstacles in the operating environment directly influence
the design choices in planning and control modules of a
person-following robot. For instance, in predominately



Table 6. An ordered collection of the person-following systems discussed in this paper; they are mentioned in reverse chronological order and grouped according to their primary focus
(perception, planning and control, or interaction). Diamonds (<>) indicate that the corresponding techniques are not specifically about person-following robots, yet are applicable or relevant.

Perception

Planning and control

Interaction

Ground (2010-2018)

Ground (2000-2009)

Ground (*-1999)

Underwater (2010-2018)

Underwater (*~2009)

Aerial

Chen et al. (2017a); Chi et al. (2018); Gupta et al.
(2017); Jiang et al. (2018); Popov et al. (2018)
Wang et al. (2018a); Chen et al. (2017e) Chen

et al. (2017b); Do Hoang et al. (2017); Wang et al.
(2017); Cao et al. (2017) Guevara et al. (2016)
Koide and Miura (2016); Fana et al. (2015);
Babaians et al. (2015); Cai and Matsumaru (2014);
Eisenbach et al. (2015); Ilias et al. (2014); Isobe

et al. (2014); Leigh et al. (2015); Pairo et al. (2013);
Pradhan et al. (2013) Alvarez-Santos et al. (2012);
Awai et al. (2013); Basso et al. (2013); Cao and
Hashimoto (2013); Chung et al. (2012); Gascuefia
and Fernandez-Caballero (2011); Munaro et al.
(2013); Satake et al. (2012, 2013); Susperregi et al.
(2013); Yoon et al. (2013); Dollar et al. (2010)
Brookshire (2010); Germa et al. (2010)

Hu et al. (2007, 2009); Dollar et al. (2009)
Bajracharya et al. (2009)°; Calisi et al. (2007) Chen
and Birchfield (2007); Germa et al. (2009); Handa et
al. (2008); Itoh et al. (2006); Kobilarov et al. (2006);
Liem et al. (2008); Satake and Miura (2009); Shaker
et al. (2008); Takemura et al. (2007); Yosh1m1 et al.
(2006); Zender et al. (2007); Zhu et al. (2006)
Kwolek (2004); Kwon et al. (2005); Sedighi et al.
(2004) Hirai and Mlzoguchl (2003)

Stauffer and Grimson (1999) ; Darrell et al. (1998)
Schlegel et al. (1998) Papageorglou et al. (1998)
Yamane et al. (1998) Wren et al. (1997)
Azarbayejani and Pentland (1996)°

Islam and Sattar (2017); Islam et al. (2018a);
DeMarco et al. (2013); Gemba et al. (2014); Hari

et al. (2015); Mandic et al. (2016); Miskovic et al.
(2015)

Lennartsson et al. (2009) Sattar and Dudek (2009b);
Sattar and Dudek (2006)

Mueller et al. (2016); Skydio (2018); Vasconcelos
and Vasconcelos (2016); Chakrabarty et al. (2016)
Bartak and Vykovsky; (2015)°; De Smedt et al.
(2015); Graether and Mueller (2012) Higuchi et al.
(2011); Naseer et al. (2013); Pestana et al (2014);
Portmann et al. (201 3 Kumar et al. (2011);

Teuliere et al. (2011)™'; Gaszczak et al. (201 1)

Chen (2018); Huski¢ et al. (2017); Nikdel et al.
(2018); Pierre (2018) Wang et al. (2018b); Chen
et al. (2017d); Masuzawa et al. (2017); Mi et al.
(2016); Peng et al. (2016); Cosgun et al.

(2016)°; Sung and Chung (2016);
D1G1acomcant0ni0 and Gebreyes (2014); Park
and Kuipers (2013); Tarokh and Shenoy (2014);
Pradhan et al. (2013) Doisy et al. (2012); Jung
and Yi (2012); Morloka et al. (2012); Tarokh and
Merloti (2010); Yamaoka et al. (2010)

Luo et al. (2009); Satake and Miura (2009);
Miiller et al. (2008)°; Chivilo et al. (2004);
Hoeller et al. (2007); Tarokh and Ferrari (2003)

Sidenbladh et al. (1999); Stentz (1994)
et al. (1992)

Espiau

Islam et al. (2018a); Zadeh et al. (2016)
Shkurti et al. (2017) Meger et al.
(2014)© Janabi- Sharlfl et al. (201 1)

Sattar and Dudek (2009a) Corke et al. (2007)
Rosenblatt et al. (2002)
Skydlo (2018); Staaker (2016); Huh et al.

(2013) Lugo and Zell (2014) Gong et al.
(201 1) Tomic et al. (2012) Teuliere et al.
(2011)°; Kim et al. (2008)°

Honig et al. (2018); Ahn et al. (2018)
Fleishman et al. (2018); Pourmehr et al. (2()17)
Alves-Oliveira and Paiva (2016); Shanee et al.
(2016); Tnebel et al. (2016); Dewantara and
Miura (2016)“; Thomason et al. (2015);
Alvarez- Santos et al. (2014); Hu et al. (2014)
The- Selementsrobotlcs (2014); Cifuentes et al.
(2014) Moon et al. (2014)~; Cosgun et al.
(2013); D01sy et al. (2013); Ferrer et al. (2013)
Granata and Bidaud (2012); Marge et al. (2011)

Yamaoka et al. (2008)<> Gockley et al (2007);
Kuno et al. (2007); Syrdal et al. (2007)
Huttenrauch et al. (2006) Yoshikawa et al.
(2006)°; Kulykukin et al. (2004) Matsumaru

et al. (2005)Sakagaml et al. (2002)

Piaggio et al. (1998); Burgard et al. (1999)
Burgard et al. (1998)

Chiarella et al. (2018); Gomez Chavez et al.
(2018) Islam et al. (2018b,c¢); Fulton et al.
(2019) Chiarella et al. (2015); Stilinovi¢
et al. (2015)

Sattar and Dudek (2009b) Xu et al. (2008)
Dudek et al. (2007)

Bruce et al. (2016); Cauchard et al. (2015);
Monajjemi et al. (2016); Nagy and Vaughan
(2017); Vasconcelos and Vasconcelos (2016);
G1010so et al. (2014)7; Llchtenstern et al.
(2012) Tisdale et al. (2009) Mezouar and
Chaumette (2002)
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Table 7. Qualitative comparisons of a number of prominent person-following systems reported over the last decade (2009—2019). They are compared based on a subset of these items: (i)
detection & tracking: qualitative performance; (ii) online: whether an online learning (person re-identification or recovery) module is used; (iii) optimal planning or control: optimality of
underlying planning and control modules; (iv) obstacle avoidance: presence of obstacle avoidance feature (for UGVs or UAVs); (v) explicit (implicit): availability of some forms of explicit
(implicit) interaction; (vi) interactive: availability of interactive user interfaces (for UGVs or UAVs); (vii) multi-H: applicability of the system for multiple-human-following; (viii) outdoors:
applicability outdoors (for UGVs or UAVs); (ix) socially aware: availability of socially compliant planning or interaction modules (for UGVs); (x) crowded places: applicability in crowded or
populated area (for UGVs or UAVs); (xi) invariance to: whether the tracking performance is invariant to divers’appearance, motion, and wearables (of AUV or ASVs); (xii) coastal waters:
applicability in coastal and shallow waters (for AUVs or ASVs); (xiii) visibility: applicability in conditions of poor or no visibility (for AUVs or ASVs); (xiv) GPS-denied: applicability in
GPS-denied environments (for UAVs).

(a) Person-following
systems for UGVs.

Perception, planning, & control Interaction Multi-H support & general applicability

Detection Online Optimal planning Obstacle Explicit Interactive Multi-H Outdoors Socially Crowded

& tracking (re-identification) or control avoidance (implicit) aware places
Wang et al. (2018a) vy X (X) X/ X X X (X) X X v X v
Nikdel et al. (2018) v x (X) vIv v v (¥) X X X X X
Chen (2018) vV X (X) x [V X X (X) X X X X v
Chen et al. (2017b) vV v(x) x [V X X (X) X X v X X
Gupta et al. (2017) 444 v (V) x [V X x (V) X X 4 X 4
Chen et al. (2017a) vV v (v) X/ X X x (¥) X X v X 4
Huskic¢ et al. (2017) 44 X (X) vIv v x (¥) X X v X v
Koide and Miura (2016) v v (V) X / X X x (V) X X v X 4
Triebel et al. (2016) vV v(X) v/ x v v (¥) v v X v v
Sung and Chung (2016) 244 X (X) X/ X X x (V) X X X X v
Leigh et al. (2015) v x (x) x |V X x (V) X v 4 X X
Eisenbach et al. (2015) 444 x (V) X/ X v x (V) X X X X v
Hu et al. (2014) v X (X) v v x (¥Y) X X X v X
Munaro et al. (2013) 444 v (V) X / X 4 x (V) X 4 X X 4
Park and Kuipers (2013) v v(x) v/ x 4 x (V) X X v v v
Cosgun et al. (2013) 44 x (X) v/ x v v (¥) v X X v X
Chung et al. (2012) 444 x (V) X / X X x (V) X X X X v
Doisy et al. (2012) v x (V) vV 4 x (V) X X X X X
Granata and Bidaud (2012) v X (X) 74 v v (V) v X X v v
Germa et al. (2010) 444 x (V) x |V X x (V) X X X X v

(continued)
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Table 7. Continued

(b) Person-following systems for AUVs (systems for ASVs are marked with an asterisk (*))

Perception, planning, & control

Interaction

Multi-H support & feasibility

Detection & tracking Invariance to: <appearance, Optimal planning Human-to-robot Multi-H Visibility: Coastal waters
motion, wearables> | online or control (robot-to-human) poor/no
(re-identification)

Islam et al. (2018a) v <V, ¥, ¥V>|x (X) 74 V(%) v v/ x v
Islam et al. (2018c) 444 <V, vV, V>|x (X) 4 X (%) X v/ x 4
Islam and Sattar (2017) v <V, X,vV>|x (x) X /X X (%) X X / X 4
Mandic et al. (2016) Vv <V, Y, ¥V>|x (x) x NV X (X) X v X
Hari et al. (2015) v <V, vV, V>|x (X) X /X X (%) X VIV 4
Miskovic et al. (2015)" 224 <V, ¥, ¥>|x (¥) 4 x (¥) v 14 X
Gemba et al. (2014) v <V, ¥V, V>|x (x) X /X X (X) X 4 v
DeMarco et al. (2013) vV <V, v, ¥V>|x (x) X /X X (x) X 4 v
Sattar and Dudek (2009b) vV <V, X, X>|x (X) x IV X (X) X X /X v
(c) Person-following systems for UAVs (commercially available UAVs are marked with an asterisk (*))

Perception, planning, & control Interaction Multi-H support

& general applicability
Detection &  Online Optimal Obstacle Explicit Interactive =~ Multi-H  Outdoors GPS-denied  Crowded
tracking (re-identification) planning avoidance (implicit) places
or control

Skydio (2018)" N2 x (V) 4 v v(x) v v v X v
Vasconcelos and Vasconcelos (2016) vV x (¥) X /X X v(x) X X v X X
Mueller et al. (2016) 444 x (V) x Y X x (X)) v X v X v
De Smedt et al. (2015) 2% X (X) x Y X X (X) X X v X X
Portmann et al. (2014) 224 X (X) X /X X X (X) X X v X v
Pestana et al. (2014) 44 x (¥) x VY X x (X) X X v v v
Naseer et al. (2013) 44 x (%) x IV X v(x) X X X v v
Staaker (2016)" 2% x (V) 4 X v(x) X X v X v
Higuchi et al. (2011) v X (x) x Y X v(x) X X v X v

ASV: autonomous surface vehicle; AUV: autonomous underwater vehicle; GPS: Global Positioning System; UAV: unmanned aerial vehicle; UGV: unmanned ground vehicle.
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static settings, robots can rely on their human companions
for collision-free navigation, i.e., plan to maintain a con-
stant distance while assuming that there will be no interfer-
ing agents along the way. This approach, often with
additional features for obstacle avoidance, is feasible in
underwater scenarios (Islam et al., 2018c), and adopted in
many ground applications (Koide and Miura, 2016; Sung
and Chung, 2016) of person-following. However, as dis-
cussed in Section 3.2, optimal planning with consideration
of dynamic obstacles, motion, and interaction from other
humans, norms of social or public places, etc., is essential
for robots operating in crowded area (Granata and Bidaud,
2012; Park and Kuipers, 2013), social settings (Cosgun
et al., 2013; Triebel et al., 2016), and challenging outdoor
scenarios (Mueller et al., 2016; Staaker, 2016).

Conversely, complex motion planning requires dense
knowledge about the environment, which impacts the
choice and modality of sensors. For instance, UGVs oper-
ating in known indoor environments can take advantage of
a global map (Nikdel et al., 2018) in order to accurately
plan to navigate while avoiding obstacles (Triebel et al.,
2016). Even when a global map is not available, 3D sen-
sing capabilities (e.g., a camera with sonar, LRF, or infrared
sensors, or several cameras) are needed to obtain localized
3D information about the world, which can be used for
SLAM-based navigation (Huski¢ et al., 2017; Skydio,
2018). Furthermore, based on application-specific require-
ments, the rules of social norms and desired implicit beha-
viors of the robot must be modeled as prior knowledge and
eventually incorporated into planning and control modules.
These aspects are also considered in the qualitative com-
parison given in Table 7.

4.3. Interactivity and general feasibility

A number of important design choices depend on the
desired level of interactivity between a robot and its compa-
nion human (Cosgun et al.,, 2013; Granata and Bidaud,
2012). This influences the choice of sensors or peripheral
devices (interactive screen, voice interface, paired applica-
tion, etc.), and the design of important perception and plan-
ning modules (hand-gesture recognition, action recognition,
planning for implicit interaction, etc.). Additionally, some
aspects, such as whether multiple-human support (i.e., fol-
lowing as a group) or social awareness is needed and the
choice between following ahead or behind, are essential
considerations while designing a person-following system.
These interactivity requirements need to be formulated by
thorough user experiments for practical applications
(Gockley et al., 2007; Triebel et al., 2016).

Several features pertaining to the interactivity and gen-
eral feasibility of person-following robots are considered
for qualitative comparison in Table 7. These aspects, rele-
vant design issues based on various use cases, and the cor-
responding  state-of-the-art  solutions for  ground,
underwater, and aerial scenarios are elaborately discussed

in this paper. As is evident from these discussions, the vast
majority of the literature on person-following robots
addresses various research problems in ground scenarios. It
is safe to say that the current state-of-the-art systems pro-
vide very good solutions to these problems. However, the
social and behavioral aspects of these systems require more
attention from researchers. In addition, better and smarter
methodologies are required to address the unique chal-
lenges of underwater and aerial scenarios. These aspects,
and other important research directions are highlighted in
the following section.

5. Prospective research directions

The following subsections discuss a number of active
research areas and open problems that are naturally chal-
lenging and are potentially useful in person-following
applications.

5.1. Following a team

Many underwater missions involve a team of several divers
working together (Figure 18). Following the team as a
whole is operationally more efficient in general. Similar
scenarios arise when filming a social or sports event using
UAVs. The perception problem can be easily solved by a
simple extension (i.e., by allowing the detection of several
humans); however, motion planning and control modules
are not straightforward. Moreover, the rules for spatial con-
duct and interaction need to be identified and quantified.
Tracking a team of independently moving objects is a chal-
lenging problem in general (Shu et al., 2012); it gets even
more challenging in a 3D environment while dealing with
real-time constraints. Despite the challenges, it is poten-
tially invaluable in numerous applications of person-
following robots (Shkurti et al., 2012; Wellbots, 2015).

5.2. Following as a team (convoying)

Multi-robot human-led convoys are useful in cooperative
estimation problems (Rekleitis et al., 2001). A simple
approach to this problem is to assign leader—follower pairs;
that is, one of the robots is assigned to follow the person,
and every other robot is individually assigned another robot
as its leader. Each robot follows its leader and together they
move as a team. Another approach is to let the robots com-
municate with each other and cooperatively plan their
motions. The underlying planning pipeline is similar to that
of a multi-robot convoying problem, which is particularly
challenging in underwater and aerial scenarios (Minaeian
et al., 2016; Shkurti et al., 2017). Moreover, this can be fur-
ther generalized into the problem of following a group of
people by a team of autonomous robots in a cooperative
setting. However, a complex cooperative planning pipeline
is required to achieve optimal positioning and motion tra-
jectories for each robot, which is an open problem as well.
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5.3. Following behind or ahead?

There are scenarios where it is ideal to have the robot stay
ahead of the person while following. Hands-free shopping-
cart robots, for instance, should stay ahead of the human,
not behind (Kuno et al., 2007; Nikdel et al., 2018). Another
prime example is of person-following UAVs that record
sports activities; they should be able to move around and
take snapshots from different directions to get the best per-
spective (Skydio, 2018). Therefore, traditional systems and
methodologies for following from behind are not very use-
ful in these applications.

In recent years, researchers have begun to explore the
particularities of different scenarios (Figure 19) where the
robot should be in front or at the side of the person while
following (Ferrer et al., 2013; Hu et al., 2014; Nagy and
Vaughan, 2017). These scenarios impart more operational
challenges since the robot needs to predict the motion tra-
jectory of the person, and needs some way to recover from
a wrong prediction or action. Knowledge of motion history
and gaze behaviors of the person, and prior knowledge
about the environment or destination can be utilized to
model such anticipative behaviors. The person can help the
robot make decisions in critical situations as well (using
hand gestures or voice commands). Nevertheless, these
aspects demand more research attention and experimental
evaluations in real-world settings.

5.4. Learning to follow from demonstration

End-to-end learning of autonomous robot behaviors from
demonstration is an interesting ongoing research topic.
Researchers have reported exciting results in the domains
of 2D robot navigation in cluttered environments (Pfeiffer
et al., 2017), simple autonomous driving (Codevilla et al.,
2018), imitating driving styles (Kuderer et al., 2015), etc.
These results indicate that the end-to-end learning models,
particularly the idea of learning from demonstration can be
very effective for person-following robots. Further research
attention is required to explore other end-to-end (deep)
learning-based models as well because they have the poten-
tial to significantly simplify autonomous person-following.
There are a few research efforts already in this regard in
simulation environments (Dewantara and Miura, 2016;
Pierre, 2018); however, more extensive research and real-
world experiments are necessary.

5.5. Human—robot communication

A generic communication paradigm for human-robot dia-
log (Thomason et al., 2015) can be very useful in practice
for person-following applications. Several human-to-robot
communication paradigms using speech, markers, and hand
gestures are discussed in this paper. There are not many
research studies on how a robot can initiate communication
and maintain a proper dialog with the human, particularly
in applications where interactive user interfaces are not

(a) Underwater scenario.

(b) Aerial scenario.

Fig. 18. Views from robots’ cameras while following teams of
people.

(a) UAV filming an athlete from (b) UGV leading person
various viewpoints (Skydio, 2018). through hallway.

Fig. 19. Scenarios where a robot is not following its companion
from behind.

feasible (Fulton et al., 2019). Furthermore, effective and
efficient risk assessment in human-robot dialog (Robinette
et al., 2016; Sattar and Dudek, 2011) is another potential
research problem in this domain.

5.6. Enabling social and spatial awareness

Various forms of implicit human-robot interaction, particu-
larly the preferred spatial and motion behaviors for person-
following robots were discussed in the previous section.
Robots that are deployed in a social setting should be aware
of these aspects and the social norms in general (Granata
and Bidaud, 2012; Honig et al., 2018; Kim and Mutlu,
2014).

A particular instance of anticipative robot behavior is
illustrated in Figure 20. Here, the robot anticipates the
door-opening action (Zender et al., 2007), increases the dis-
tance from the person by slowing down, and waits instead
of moving forward. Many other anticipated behaviors, such
as moving slowly while entering cross-paths, waiting at a
side when the person is interacting with other people, etc.,
are important features of a social robot. These are difficult
to quantify and implement in general (Chen et al., 2017d;
Kruse et al., 2013); extensive experiments and further user
studies are required to model these social norms for person-
following robots.



Islam et al.

1609

(b) UGV standing clear of door
opening.

(a) UGV following person
while staying behind.

Fig. 20. Desired robot behavior: notice that the UGV is giving
extra space to the person to open the door.

5.7. Long-term interaction and support

Another social aspect of the person-following UGV is
long-term interaction with a human companions. This has
numerous potential applications in health care; for instance,
Coninx et al. (2016) showed that long-term child-robot
interaction was useful for learning and therapeutic pur-
poses; Chen et al. (2017¢) and Kidd and Breazeal (2008)
proved that long-term interaction with a robot helped peo-
ple in physical exercises. These, among many other studies,
show that robots can help more by learning about the gen-
eral behaviors and routine activities of their human compa-
nions. Thorough analyses and user studies are needed to
discover the feasibilities and utilities of long-term interac-
tions for other person-following applications.

5.8. Specific person-following

Following a specific person is generally more useful than
following any person, specially in a multi-human setting
(Satake and Miura, 2009) and in social or crowded envir-
onments. Moreover, the ability to follow a specific person
is an essential feature for UGVs that accompany older peo-
ple and people with disabilities (Ilias et al., 2014; Liem
et al., 2008). It is straightforward to achieve this in some
applications, with the use of an additional human face or
body-pose recognition module (Cao and Hashimoto, 2013;
Yoshimi et al., 2006). However, scenarios such as following
a person in crowded surrounding (Germa et al., 2009) or
avoiding an impeding person (Hoeller et al., 2007) are
rather challenging. Furthermore, lack of person-specific
features while viewing a diver from behind (different divers
may wear similar suits), make it a harder problem for
underwater robots (Xia and Sattar, 2019). Detecting a spe-
cific person from a distant UAV is also challenging for sim-
ilar reasons.

5.9. Person re-identification

Several mechanisms for person recovery or re-identifica-
tion used by existing person-following systems are men-
tioned in Section 3.2.5. They mostly use feature-based
template-matching (Do Hoang et al., 2017; Gupta et al.,

2017; Koide and Miura, 2016) techniques; trajectory
replication-based techniques (Chen et al., 2017a) are also
used for re-identification when the target person transiently
disappears from the robot’s view and appears again. A
number of recently proposed appearance-based deep mod-
els (Ahmed et al., 2015; Li et al., 2014) have significantly
improved the state-of-the-art performance for person re-
identification on standard datasets. Despite the potentials,
these models are yet to be used in person-following sys-
tems. Investigating the applicability of these person re-
identification models for specific person-following in
human-dominated social settings is an interesting and
potentially rewarding research direction.

5.10. Surveillance and rescue support

Features such as person re-identification and adversarial
person-following are useful for autonomous human surveil-
lance using UAVs (Portmann et al., 2014). Additionally, in
human rescue missions, a team of UAVs is invaluable in
adversarial conditions (Doherty and Rudol, 2007). These
are critical applications and there is always room for
improvements.

5.11. Embedded parallel computing solutions

As mentioned earlier, deep learning-based models provide
robust solutions to most of the perception problems
involved in person-following scenarios. One practical lim-
itation of these models is that they are often computation-
ally expensive and require parallel computing platforms.
Therefore, faster mobile supercomputers and embedded
parallel computing solutions (Google, 2018; NVIDIA,
2014) will be immensely useful in person-following appli-
cations. The recent success of the person-following UAV
named Skydio R1 (Skydio, 2018) is a practical example.
However, the high power consumption of these on-board
computers is still a major concern; for instance, the flight
time for a Skydio R1 is only about 16 min. In addition to
computational capacity and power consumption, many
other aspects of mobile supercomputers, such as durability
and cooling mechanisms, require further technological
improvements. Future advancements in ultra-low-power
computer vision (TinyVision) and machine learning
(TinyML) techniques and platforms (Warden and
Situnayake, 2019) might play an important role in this
regard.

5.12. Addressing privacy and safety concerns

There have been an increasing number of concerns across
cyberspace about the privacy and safety issues of autono-
mous robots, particularly UAVs operating in social and
public environments (UCTYV, 2013). A recent study (Hitlin,
2017) has found that about 54% of the US population
thinks that drones and autonomous UAVs should not be
allowed to fly near people’s homes. This is because the use



1610

The International Journal of Robotics Research 38(14)

of drones undermines people’s ability to assess context and
measure trust. While person-following UAVs are mostly
used for recreational purposes in public areas and often
crowded places, these concerns need to be addressed using
technological and educational solutions (Finn and Wright,
2012; Wang et al., 2016) to ensure transparency and trust.

6. Conclusions

Person-following by autonomous robots has numerous
important applications in industry. In addition, the usage of
person-following robots in social settings and for entertain-
ment purposes has flourished over the last decade.
Researchers have approached various aspects of the auton-
omous person-following problem from different perspec-
tives and contributed to the development of a vast body of
literature. This paper makes an effort to present a compre-
hensive overview of this large body of literature in a cate-
gorical fashion. First, design issues and operational
challenges for person-following robots in ground, under-
water, and aerial scenarios are presented. Then state-of-the-
art methods for perception, planning, control, and interac-
tion of various person-following systems are elaborately
discussed.

In addition, several operational considerations for apply-
ing these methods, underlying assumptions, and their feasi-
bility in different use cases is analyzed and compared in
qualitative terms. Finally, a number of open problems and
potential applications are highlighted for future research;
improved solutions to these problems will significantly
strengthen the literature and bridge the gap between
research and practice.
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