


learning provided by such a system. Twenty-four participants

tested the system against a baseline system comprised of

colored lights flashing in codes, and the resultant data was

analyzed to determine whether motion-based communication

could be adequately accurate, efficient, and easy to learn for

use in underwater robot-to-human communication.

In this paper, we make the following contributions:

• We propose a unique system: motion-based (kineme)

communication for underwater robots which purely uses

motion to communicate information to human collabo-

rators.

• We show that there is a statistically significant improve-

ment in the accuracy of communication when using

kinemes compared to light codes.

• We show that kinemes outperform light codes in ease

of learning and that given enough education, they can

be nearly as quick to understand as light codes.

We also provide insight into the design of motion-based

communication systems for other underwater robots, such

as which kinds of information are best suited for kineme

communication and discuss potential design implications for

the implementation of our system using the Aqua AUV.

II. RELATED WORK

A. Underwater Human-Robot Interaction

1) Diver Communication: Underwater human-robot inter-

action (HRI) primarily focuses on the problem of human-to-

robot communication. In this space, the emphasis has been

on removing barriers to communication between the pair. A

common approach is for a human operator on the surface

to interpret the needs of the diver (possibly through hand

signals from the diver) and teleoperate the AUV accordingly.

This could be considered direct control, supported by high-

speed tethered communication [18]. However, having the

controller on the surface introduces latency and causes some

issues by limiting situational awareness. In order to remove

this latency, the use of waterproofed control devices at

depth has been proposed [19], which essentially moves the

controller down to the depth of the robot. This method

requires additional hardware, however, which adds weight

and complexity to the interaction scenario. To avoid this, on-

board systems to enable human-to-robot communication are

preferable. Examples of systems of communication which do

not require an additional device include the use of fiducial

tags [3] [20] or of hand gestures [5], [6], [8], [9], [16], which

can be recognized and interpreted onboard a robot.

2) Robot Communication: As previously mentioned, the

inverse communication problem of the robot communicating

to the human has not been well explored. In many meth-

ods, the robot responds to the human’s input via a small

display [2], [5], [15], [21]. These displays are typically

difficult to read from any distance or outside of optimal

viewing angles. Larger screens, as in [22], would greatly

reduce the depth rating and effective range of an AUV.

Specific interaction devices generally are used for bidirec-

tional communication, as in [19]. Once again, this requires

the addition of other devices, which is costly and increases

complexity. One of the more unique proposals is the use of

an AUV’s light system in [16], where illumination intensity

is modulated to communicate simple ideas. This case study

proved that a robot and a human could collaborate to achieve

a task underwater, but the communication methods used were

not validated by a multi-user study.

B. Nonverbal, Non-facial and Non-Humanoid HRI

Nonverbal methods form only a small portion of HRI,

much of which focuses on displaying emotions in humanoid

platforms, therefore, their results are only tangentially related

to the problem of nonverbal underwater HRI, as our focus

is non-humanoid robots displaying information rather than

emotion. That said, there are a number of works which

directly relate to our problem of robot-to-human commu-

nication using nonverbal, non-facial methods with a non-

humanoid robot. These can be classified into categories

based on their intended purpose. A useful source for these

categories is the work of Mark L. Knapp [23], which defines

five basic categories of body language:

1) Emblems, which have a particular linguistic meaning.

2) Illustrators, which provide emphasis to speech.

3) Affective displays, which represent emotional states.

4) Regulators, which control conversation flow.

5) Adapters, which convey non-dialogue information.

The bulk of nonverbal, non-facial, and non-humanoid

HRI is concerned with affective display, while our work is

primarily concerned with emblems.

1) Emblems: Emblems in nonverbal, non-facial HRI on

non-humanoid platforms should be body movements which

code directly to some linguistic meaning. This is the area to

which our kineme communication system belongs, though

it has little company here. The previously mentioned case

study by DeMarco et al. [16] is one of the few attempts

to communicate information rather than emotion using non-

verbal methods, in this case via changes in the illumination

of a light. Another example of emblems in this type of

communication is the up-and-down tilt of a pan-tilt camera

being used as a nod in [24], in which the robot simulates

head gestures by controlling its camera’s pan and tilt.

2) Affective Display: Affective display is by far the most

explored realm of non-verbal communication with non-

humanoid robots. The work of Bethel [25], particularly her

doctoral dissertation [26], is a seminal work in this field, as

it explores the use of position, orientation, motion, colored

light, and sound to add affective display to appearance-

constrained robots used for search and rescue. There has

also been some work applied in this space to drones, such

as adding a head-like appendage to an aerial robot [27]. This

type of nonverbal communication has also been applied to

a dog robot [28] and learned over time by an agent given

the feedback of a human [29]. While many of these works

focus on the actual display of the emotions and less on how

they are generated, Novikova et al. [30] models an emotional

framework to generate a robot’s emotions and then display

them, largely through body language.
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Meaning Kineme Light Codes Human Eqiv? Meaning Type

Yes Head nod (pitch) One solid green Yes Response

No Head shake (yaw) One solid red Yes Response

Maybe Head bobble (roll) One solid yellow Yes Response

Ascend Ascend, look back, continue Two solid yellow, one blinking green No Spatial

Descend Descend, look back, continue Two solid yellow, one blinking green No Spatial

Remain At Depth Circle and barrel roll slowly Two solid yellow, one blinking yellow No Spatial

Look At Me Roll heavily and erratically Three quick flashing green No Situation

Danger Nearby Look around” then quick head shake Three quick flashing red No Situation

Follow Me Beckon with head, then swim away Three blinking yellow Yes Spatial

Malfunction Slowly roll over and pulse legs intermittently Three solid red No State

Repeat Previous “Cock an ear” to the human One blinking yellow light Yes Response

Object of Interest Orient toward object, look at human, proceed Two solid green, one yellow blinking Yes Spatial

Battery Low Small, slow loop-de-loop One solid yellow, two blinking red No State

Battery Full Large, fast loop-de-loop One solid yellow, two blinking green No State

I’m Lost Look from side to side slowly as if confused Three solid yellow No State

TABLE I: Kinemes and light codes with their associated meanings.

3) Regulators and Adapters: In this final category, we

mostly find work which attempts to communicate some non-

emotional state, which we consider to be adapters. A simple

example of an adapter in human body language would be

standing with slumped shoulders due to tiredness. While

adapters can frequently wander into the realm of affective

display, we consider a robot’s display of its state to be

an adapter-like communication. Works exist which merge

the two, such as Knight et al [31], which uses the motion

of the robot to display the internal state and task state of

the robot. A more straightforward example of an adapter,

however, would be the work of Baraka et al. [32], which

displays information such as intended path using an array of

expressive lights around the robot’s body. Regulators are not

well explored in non-humanoid robots, but some works such

as [33] address the problem of how to initiate conversations.

III. METHODOLOGY

In this section, we introduce the design and implemen-

tation of our kineme communication system using robot

motion and the light codes system to which it is compared.

A. Kineme System

1) Guiding Principles: The development of meaningful

motion is a somewhat out-of-scope problem for most com-

puter scientists and engineers. It is most closely related to

animation [34] in the way it must be approached, which is

by considering how a given motion is likely to affect the

viewer. In this particular case of informative display for a

non-humanoid underwater robot, there is little previous work,

so it is important to develop guiding principles for design.

We applied the following concepts to develop our kinemes:

• If a human analog for a gesture exists (such as nodding

or shaking of the head), mimic it.

• Exaggerate motions so that they are clearly visible from

distance.

• Exploit any humanoid-looking design elements of the

AUV; e.g., the front cameras of Aqua look somewhat

like eyes, so “gazing” motions would likely work well.

2) Design Process: With these concepts in mind, we

selected a set of appropriate meanings for the kinemes.

We began by considering the types of information divers

communicate with each other using hand signals as the basis

for the information our robot should be able to communicate,

identifying four primary categories: a) responses to queries,

b) spatial information and commands, c) situational infor-

mation and commands, and d) state information. With the

possible meanings selected, we split them into those with

obvious equivalent human gestures and those without.

The human equivalent group was developed by attempting

to mimic the human gestures which existed. These kinemes

were mostly in the Response category. For these kinemes,

Aqua’s front was viewed as a face, with the cameras serving

as eyes. Then, by manipulating the motion of the whole

robot, Aqua’s “face” could be moved in a head-nodding

motion for Yes, a head-shaking motion for No, etc.

The group without human equivalent gestures was more

challenging to design motion for. For these kinemes, if they

were spatially oriented, the general approach was to orient

Aqua’s “face” to that location, move towards it, (e.g., towards

the surface to indicate Ascend), look back at the human,

and then continue towards the location. For kinemes in the

situation and state categories, design started by identifying a

relevant emotion, such as fear for Danger Nearby, followed

by developing a motion characteristic of that emotion. A

complete list of kinemes along with their meanings can be

found in Table I, as well as in the video submitted with this

work.

3) Implementation: Implementation of kinemes was done

using Epic Game’s Unreal EngineTM to animate a 3D mesh

of the Aqua AUV going through the selected motions. While

physics simulation was not used to produce the kinemes, all

kinemes were created by researchers familiar with the motion

of the AUV in question and is achievable by the physical

robot. The motion of Aqua’s flippers was implemented as

the forward swimming gait, regardless of the motion actually

being executed. This is unlikely to have had an effect on

participants, as none of them had experience with the Aqua

robot, and almost all had never even seen it swim.

B. Lights System

1) Guiding Principles of Design: While the light system

was designed as a baseline to compare to the kineme system,

care was taken to make the light system as robust as possible.
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Fig. 3: Average Accuracy per education level

Fig. 4: Average Operational Accuracy per education level.

• Accuracy – The accuracy of a participant’s understand-

ing of a kineme or light code, rated from 0 to 10 in order

of increasing accuracy.

• Confidence – The confidence a participant has in their

understanding of a kineme or light code, rated from 1

to 5, in order of increasing confidence.

• Operational Accuracy – The same metric as accuracy,

but only taking answers rated at a confidence level of

3 or higher, representing the answers that participants

would be likely to act on.

• Time To Answer – The time it takes a participant to

give the meaning of a kineme or light code, measured

in seconds from the beginning of the signal to the

beginning of their answer.

We use the Mann-Whitney test [37] to evaluate the

hypotheses we set out in Section IV-A. We also use the

Mann-Whitney test to validate that there is no statistically

significant improvement in accuracy regardless of which

system was shown to participants first and that there is no

statistically significant difference between the accuracies of

male and female participants.

The Mann-Whitney test is ideal for measuring the statis-

tical effects of using the different systems in our trials, as it

does not require normally-distributed data, while providing

hypothesis testing capabilities. For each Mann-Whitney test,

we report the p-value p, which is the probability under the

null hypothesis of obtaining a result equal to or more extreme

than what was observed. We also report the z-statistic z,

which is used to calculate the approximate p-value. z is

defined as

Fig. 5: Average Confidence per education level.

Fig. 6: Average Time To Answer per education level.

z =
W − E(W )
√

V (W )

where W is the Wilcoxon rank sum. Unless otherwise

noted, all hypothesis tests are conducted at significance level

α = 0.005.

B. Statistical Results

1) Accuracy and Operational Accuracy Between Educa-

tion Levels: We compare kineme and light code accuracies

at each education level, using a right-tailed Mann-Whitney

test with this hypothesis:

H0 = Kineme accuracy does not have a higher median.

Ha = Kineme accuracy has a higher median than lights.

When testing accuracy, we find statistically significant

increases in accuracy when comparing kinemes to light codes

for EDU0 (p = 0.0113, z = 2.282), EDU1 (p = 0.0009, z =
3.114), and EDU2 (p = 0.000009, 4.27). For operational

accuracy, we again find statistically significant increases for

EDU0 (p = 0.029, z = 1.890), EDU1 (p = 0.007, z =
2.418), and EDU2 (p = 0.0006, z = 3.221). In all of these

cases, we can reject the null hypothesis in favor of the

alternative. We can also see this visually in the plots of these

statistics in Figures 3 and 4.

2) Confidence and Time-To-Answer Between Education

Levels: We also test the median of confidence participants

reported in their answers, and here we find that while there is

no statistically significant increase in confidence in kinemes

vs light codes at EDU0 (p = 0.156, z = 1.01), there is

a statistically significant increase present at EDU1 (p =
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(a) Average Accuracy per meaning.

(b) Average Operational Accuracy per meaning.

Fig. 7: Average Accuracy and Operational Accuracy per

meaning.

0.006, z = 2.496) and EDU2 (p = 0.0004, z = 3.297).

Finally, when considering the time to answer, we must

slightly reformulate our test to be a left tailed test, testing the

null hypothesis that the median time to answer for light codes

is not lower than for kinemes, with the alternative being that

the median for lights is lower. Here, we show that there is

a statistically significant reduction in time when comparing

lights to kinemes for EDU0 (p = 0.0000002, z = −5.031)

and EDU1 (p = 0.0003, z = −3.39), but at EDU2 (p =
0.4074, z = −0.828) there is no significant reduction. This

indicates that time to answer for kinemes drops with higher

education, while time to answer for light codes remains

approximately the entire length of the light code at all levels.

These trends can be seen in Figures 5 and 6.

3) Comparison Between Specific Kinemes and Codes:

For kineme-by-kineme comparison, we direct the reader to

Figures 7a and 7b. We can see a particularly high accuracy

for those kinemes in the spatial category, paired with low

light-code accuracy for those same meanings. Conversely,

we see that situation concepts such as Danger Nearby and

Malfunction work better with flashing lights, likely due to a

lifetime of being taught that flashing red lights mean danger.

Operational accuracy figures are much closer between light

codes and kinemes, but whether the kineme or light codes are

the most accurate system does not change between accuracy

and operational accuracy.

4) Internal Validation For Order and Gender: We validate

these results by checking for a statistically significant bias

based on system order. We find no statistically significant

difference between the accuracy of kinemes when shown first

or when shown second (p = 0.449, z = −0.756), nor do we

find a statistically significant change in the accuracy of the

light codes (p = 0.748, z = −0.320).

C. Opinion-Based Results

1) Participant Opinions: In their exit survey, participants

were asked to rate the kineme and lights systems on a

scale of 1 to 10 for several metrics. Participants rated

kinemes easier to understand (µ = 5.6, σ = 2.2) than lights

(µ = 3.5, σ = 3.3). They also considered kinemes easier

to learn (µ = 7, σ = 2.1) than lights (µ = 5.5, σ = 3.5).

When asked, 71.4% of participants also preferred the kineme

system overall and 66.7% felt it would be most effective from

a significant distance. Lastly when asked whether kinemes,

light codes, or an LCD would be best for an underwater

communication system, 45.6% preferred the kineme system,

compared to 37.5% for lights and 16.7% for the LCD.

VI. CONCLUSION

In this paper, we proposed a unique motion-based com-

munication for underwater robots, which we call kinemes,

and implemented a version of these kinemes in Unreal

Engine TM for testing. We evaluated the use of kinemes

versus the use of colored light codes and found statistically

significant superiorities in accuracy and operational accuracy,

while remaining within an acceptable speed of recognition.

Additionally, in our study, users preferred the kineme system

over the light code system, and even over an LCD screen,

especially when considering use at a distance or underwater.

We have also found that certain concepts related to

3-dimensional space are especially easy to communicate

through motion via perceived gaze directions, as are concepts

with a direct human analog by mimicking that human analog.

It is noted that to properly express these types of concepts,

estimating the pose of the interactant will be a necessary

capability of any AUV using this communication scheme.

Future work must explore further into the related control

(how to make the motions look correct on physical robots)

and perception (how to ground interactions by determining

the interactant’s pose and state) problems. We plan to extend

this concept to other robotic systems and implement kinemes

on the physical Aqua robot, further validating our findings by

running studies involving fully closed-loop interaction tests

and more participants. Testing our desiderata in more depth

is another focus of future work, as interaction at distance

and with different angles is not considered in this study.

Furthermore, we plan to integrate light and sound alongside

motion to create a communication system which fuses these

communication vectors to effectively communicate informa-

tion to human collaborators in underwater environments.
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