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Abstract—1In this paper, we propose a novel method for
underwater robot-to-human communication using the motion
of the robot as “body language”. To evaluate this system, we
develop simulated examples of the system’s body language
gestures, called kinemes, and compare them to a baseline
system using flashing colored lights through a user study. Our
work shows evidence that motion can be used as a successful
communication vector which is accurate, easy to learn, and
quick enough to be used, all without requiring any additional
hardware to be added to our platform. We thus contribute
to “closing the loop” for human-robot interaction underwater
by proposing and testing this system, suggesting a library of
possible body language gestures for underwater robots, and
offering insight on the design of nonverbal robot-to-human
communication methods.

I. INTRODUCTION

In the United States of America as of May 2017, 3,280
people are employed as commercial divers, tasked with
dangerous and difficult tasks underwater [1]. The presence
of a capable Autonomous Underwater Vehicle (AUV) as a
partner to assist in data collection, monitoring, search and
rescue, or maintenance tasks has the potential to increase
efficiency and ensure the safety of the diver [2]. In order
for an AUV to be an effective partner to a human, it must
be capable of accurate and efficient communication with
its partner. A number of methods have been proposed to
enable humans to communicate with robots underwater [3]—
[9] but few have addressed the inverse problem of how
the robot could communicate back. Underwater, the well-
explored interaction vectors of voice interaction (through
speech synthesis and text-to-speech systems) and text inter-
action (through keyboards and screens) are infeasible or less
effective. It is therefore desirable to develop new modalities
of robot-to-human communication for underwater robots to
enable their use as workers, companions, and guides to
divers.

Robot communication to humans underwater is quite
challenging, as the two most common modalities used for
human interaction are significantly limited. Sound is dis-
torted, attenuated and can be masked by equipment noise.
While vision is usually available, it is often degraded or
altered [10]-[13]. In such a challenging environment, the
de facto solution is to simply accept the AUV as a silent
partner which listens but does not respond. This keeps
AUVs from achieving their full potential as diver partners
by offering relevant safety information, providing advice,
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Fig. 1: An example of a swimmer interacting with the Aqua
AUV, instructing the robot with free-form hand gestures.

and most importantly, engaging in dialogue with humans.
Besides ignoring robot-to-human communication, the most
common technique is the use of a display device such as
an OLED or LCD display, integrated into the robot, as in
the Aqua AUV [14] or the CADDY AUV [15]. However,
such displays are typically very small and hard to read
from a distance or at an angle, introduce additional weight
and power requirements, and are susceptible to failure. The
other primary method that is proposed and has been used is
messaging via flashing lights [16]. This has the advantage of
wider viewing angles and the fact that many AUVs already
have some kind of lighting system. However, lights are not a
natural communication vector and require divers to commit
to memory a list of light codes and associated meanings.
They also may have a limited number of possible meanings
which can be communicated, since most built-in systems
have only one light and are thus limited to varying the
blinking rate of that single light.

In response to the drawbacks of the systems described
above, we construct a list of desiderata. Underwater robot-to-
human communication should: a) work from a distance and
multiple viewing angles, b) require no additional hardware,
¢) be natural and easy to learn for the users, and d) al-
low for a large number of interaction phrases. To address
these desiderata, we propose the use of robot motion as
kinemes [17], a motion associated with a distinct meaning.
We believe that a kineme communication system fulfills our
desiderata, while remaining fast enough to be feasible for
underwater interaction tasks.

To validate the use of motion as a communication tech-
nique, we conducted a study using simulated videos of the
Aqua AUV to test the accuracy, efficiency, and ease of

4660



learning provided by such a system. Twenty-four participants
tested the system against a baseline system comprised of
colored lights flashing in codes, and the resultant data was
analyzed to determine whether motion-based communication
could be adequately accurate, efficient, and easy to learn for
use in underwater robot-to-human communication.

In this paper, we make the following contributions:

« We propose a unique system: motion-based (kineme)
communication for underwater robots which purely uses
motion to communicate information to human collabo-
rators.

o We show that there is a statistically significant improve-
ment in the accuracy of communication when using
kinemes compared to light codes.

o We show that kinemes outperform light codes in ease
of learning and that given enough education, they can
be nearly as quick to understand as light codes.

We also provide insight into the design of motion-based
communication systems for other underwater robots, such
as which kinds of information are best suited for kineme
communication and discuss potential design implications for
the implementation of our system using the Aqua AUV.

II. RELATED WORK
A. Underwater Human-Robot Interaction

1) Diver Communication: Underwater human-robot inter-
action (HRI) primarily focuses on the problem of human-to-
robot communication. In this space, the emphasis has been
on removing barriers to communication between the pair. A
common approach is for a human operator on the surface
to interpret the needs of the diver (possibly through hand
signals from the diver) and teleoperate the AUV accordingly.
This could be considered direct control, supported by high-
speed tethered communication [18]. However, having the
controller on the surface introduces latency and causes some
issues by limiting situational awareness. In order to remove
this latency, the use of waterproofed control devices at
depth has been proposed [19], which essentially moves the
controller down to the depth of the robot. This method
requires additional hardware, however, which adds weight
and complexity to the interaction scenario. To avoid this, on-
board systems to enable human-to-robot communication are
preferable. Examples of systems of communication which do
not require an additional device include the use of fiducial
tags [3] [20] or of hand gestures [5], [6], [8], [9], [16], which
can be recognized and interpreted onboard a robot.

2) Robot Communication: As previously mentioned, the
inverse communication problem of the robot communicating
to the human has not been well explored. In many meth-
ods, the robot responds to the human’s input via a small
display [2], [5], [15], [21]. These displays are typically
difficult to read from any distance or outside of optimal
viewing angles. Larger screens, as in [22], would greatly
reduce the depth rating and effective range of an AUV.
Specific interaction devices generally are used for bidirec-
tional communication, as in [19]. Once again, this requires

the addition of other devices, which is costly and increases
complexity. One of the more unique proposals is the use of
an AUV’s light system in [16], where illumination intensity
is modulated to communicate simple ideas. This case study
proved that a robot and a human could collaborate to achieve
a task underwater, but the communication methods used were
not validated by a multi-user study.

B. Nonverbal, Non-facial and Non-Humanoid HRI

Nonverbal methods form only a small portion of HRI,
much of which focuses on displaying emotions in humanoid
platforms, therefore, their results are only tangentially related
to the problem of nonverbal underwater HRI, as our focus
is non-humanoid robots displaying information rather than
emotion. That said, there are a number of works which
directly relate to our problem of robot-to-human commu-
nication using nonverbal, non-facial methods with a non-
humanoid robot. These can be classified into categories
based on their intended purpose. A useful source for these
categories is the work of Mark L. Knapp [23], which defines
five basic categories of body language:

1) Emblems, which have a particular linguistic meaning.
2) Hlustrators, which provide emphasis to speech.

3) Affective displays, which represent emotional states.
4) Regulators, which control conversation flow.

5) Adapters, which convey non-dialogue information.

The bulk of nonverbal, non-facial, and non-humanoid
HRI is concerned with affective display, while our work is
primarily concerned with emblems.

1) Emblems: Emblems in nonverbal, non-facial HRI on
non-humanoid platforms should be body movements which
code directly to some linguistic meaning. This is the area to
which our kineme communication system belongs, though
it has little company here. The previously mentioned case
study by DeMarco et al. [16] is one of the few attempts
to communicate information rather than emotion using non-
verbal methods, in this case via changes in the illumination
of a light. Another example of emblems in this type of
communication is the up-and-down tilt of a pan-tilt camera
being used as a nod in [24], in which the robot simulates
head gestures by controlling its camera’s pan and tilt.

2) Affective Display: Affective display is by far the most
explored realm of non-verbal communication with non-
humanoid robots. The work of Bethel [25], particularly her
doctoral dissertation [26], is a seminal work in this field, as
it explores the use of position, orientation, motion, colored
light, and sound to add affective display to appearance-
constrained robots used for search and rescue. There has
also been some work applied in this space to drones, such
as adding a head-like appendage to an aerial robot [27]. This
type of nonverbal communication has also been applied to
a dog robot [28] and learned over time by an agent given
the feedback of a human [29]. While many of these works
focus on the actual display of the emotions and less on how
they are generated, Novikova et al. [30] models an emotional
framework to generate a robot’s emotions and then display
them, largely through body language.
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Meaning Kineme Light Codes Human Eqiv? | Meaning Type
Yes Head nod (pitch) One solid green Yes Response
No Head shake (yaw) One solid red Yes Response
Maybe Head bobble (roll) One solid yellow Yes Response
Ascend Ascend, look back, continue Two solid yellow, one blinking green No Spatial
Descend Descend, look back, continue Two solid yellow, one blinking green No Spatial
Remain At Depth | Circle and barrel roll slowly Two solid yellow, one blinking yellow No Spatial
Look At Me Roll heavily and erratically Three quick flashing green No Situation
Danger Nearby Look around” then quick head shake Three quick flashing red No Situation
Follow Me Beckon with head, then swim away Three blinking yellow Yes Spatial
Malfunction Slowly roll over and pulse legs intermittently | Three solid red No State
Repeat Previous “Cock an ear” to the human One blinking yellow light Yes Response
Object of Interest | Orient toward object, look at human, proceed | Two solid green, one yellow blinking Yes Spatial
Battery Low Small, slow loop-de-loop One solid yellow, two blinking red No State
Battery Full Large, fast loop-de-loop One solid yellow, two blinking green No State
I'm Lost Look from side to side slowly as if confused | Three solid yellow No State

TABLE I: Kinemes and light codes with their associated meanings.

3) Regulators and Adapters: In this final category, we
mostly find work which attempts to communicate some non-
emotional state, which we consider to be adapters. A simple
example of an adapter in human body language would be
standing with slumped shoulders due to tiredness. While
adapters can frequently wander into the realm of affective
display, we consider a robot’s display of its state to be
an adapter-like communication. Works exist which merge
the two, such as Knight et al [31], which uses the motion
of the robot to display the internal state and task state of
the robot. A more straightforward example of an adapter,
however, would be the work of Baraka et al. [32], which
displays information such as intended path using an array of
expressive lights around the robot’s body. Regulators are not
well explored in non-humanoid robots, but some works such
as [33] address the problem of how to initiate conversations.

II1. METHODOLOGY

In this section, we introduce the design and implemen-
tation of our kineme communication system using robot
motion and the light codes system to which it is compared.

A. Kineme System

1) Guiding Principles: The development of meaningful
motion is a somewhat out-of-scope problem for most com-
puter scientists and engineers. It is most closely related to
animation [34] in the way it must be approached, which is
by considering how a given motion is likely to affect the
viewer. In this particular case of informative display for a
non-humanoid underwater robot, there is little previous work,
so it is important to develop guiding principles for design.

We applied the following concepts to develop our kinemes:

« If a human analog for a gesture exists (such as nodding
or shaking of the head), mimic it.

« Exaggerate motions so that they are clearly visible from
distance.

« Exploit any humanoid-looking design elements of the
AUV; e.g., the front cameras of Aqua look somewhat
like eyes, so “gazing” motions would likely work well.

2) Design Process: With these concepts in mind, we

selected a set of appropriate meanings for the kinemes.
We began by considering the types of information divers

communicate with each other using hand signals as the basis
for the information our robot should be able to communicate,
identifying four primary categories: a) responses to queries,
b) spatial information and commands, c) situational infor-
mation and commands, and d) state information. With the
possible meanings selected, we split them into those with
obvious equivalent human gestures and those without.

The human equivalent group was developed by attempting
to mimic the human gestures which existed. These kinemes
were mostly in the Response category. For these kinemes,
Aqua’s front was viewed as a face, with the cameras serving
as eyes. Then, by manipulating the motion of the whole
robot, Aqua’s “face” could be moved in a head-nodding
motion for Yes, a head-shaking motion for No, etc.

The group without human equivalent gestures was more
challenging to design motion for. For these kinemes, if they
were spatially oriented, the general approach was to orient
Aqua’s “face” to that location, move towards it, (e.g., towards
the surface to indicate Ascend), look back at the human,
and then continue towards the location. For kinemes in the
situation and state categories, design started by identifying a
relevant emotion, such as fear for Danger Nearby, followed
by developing a motion characteristic of that emotion. A
complete list of kinemes along with their meanings can be
found in Table I, as well as in the video submitted with this
work.

3) Implementation: Implementation of kinemes was done
using Epic Game’s Unreal Engine™ to animate a 3D mesh
of the Aqua AUV going through the selected motions. While
physics simulation was not used to produce the kinemes, all
kinemes were created by researchers familiar with the motion
of the AUV in question and is achievable by the physical
robot. The motion of Aqua’s flippers was implemented as
the forward swimming gait, regardless of the motion actually
being executed. This is unlikely to have had an effect on
participants, as none of them had experience with the Aqua
robot, and almost all had never even seen it swim.

B. Lights System

1) Guiding Principles of Design: While the light system
was designed as a baseline to compare to the kineme system,
care was taken to make the light system as robust as possible.
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(a) Unreal Engine”™ prototype. (b) Arduino prototype.

Fig. 2: Experimental platforms for Kineme and Light Codes.

To be used as a baseline system, the same meanings for the
kineme system were selected. To guide the development of
the light codes, a number of principles were used, based on
human perception of color [35] and blink frequency [36].

o Use natural color mappings (green = good, red = bad)

e The faster the blinking, the more time sensitive the
communication.

« For related information, share a portion of the light code
(i.e., both battery info light codes have a single solid
yellow light).

The list of light codes can also be found in Table I, as

well as in the video submitted with this work.

2) Implementation: The light codes were chosen after the
development of the kinemes and were implemented using an
Arduino controlling 3 LEDs of each color. Blink frequencies
were selected subjectively, with a duration of five seconds on
for solid lights, 1 Hz blinking for five seconds for slow blink
rates, and 5 Hz blinking for four seconds for fast blink rates.

IV. EXPERIMENTAL SETUP

To evaluate the kineme communication system as a
method of robot-to-human communication, a user study was
conducted using the color light system as a baseline. This
section describes the hypothesis being tested, the population,
design of the study, and experimental methods.

A. Hypotheses

The hypotheses we wish to test are simple: the accuracy
of kinemes will be higher than that of light codes at all
education levels (see Section IV-C) and the operational ac-
curacy (accuracy of answers with confidence > 3 on a scale
of 1 to 5) of kinemes will be higher than light codes at all
education levels. We also hypothesize that the confidence of
participants will be higher with kinemes than with light codes
and that the time-to-answer for kinemes will be significantly
longer than light codes at low education, but eventually fall to
approximately the same time as the education of participants
increases.

B. Population

The population for this study was 24 participants (16 male,
8 female), largely undergraduate and graduate students at
the University of Minnesota. The mean age of participants
was 22 (std_dev=3.3). To ensure that the participants were

representative of non-expert users, participants were asked
to rate their experience with robots on a scale of one to
five (u = 1.54, 0 = 0.5), as well as their experience with
nonverbal communication (¢ = 1.33, o = 0.7).

Participants were split into three groups, based on the
amount of preparation for the communication task they
would receive. We designate these groups EDUO, EDUI1, and
EDU?2, each with 8 participants. Within each group, the order
in which the systems were displayed was alternated, so that
half would see the kinemes first and half would see the light
codes first.

C. Experimental Methods

After being enrolled in the study and providing basic
demographic information from a survey, each participant
was provided with the same basic information about the
problem, namely that the purpose of the study was to develop
underwater communication for robots. Next, participants
received the appropriate level of education:

« EDUQO: Participants were told the communication vector
(motion, lights).

o EDUL: Participants were told the communication vector
as well as the list of possible meanings.

o EDU2: Participants were told the communication vector
and shown videos of each kineme and light code while
being told the meaning.

Education was offered directly before testing each system.
Once a participant was oriented and educated to a system,
they were shown videos of the kinemes or light codes in
a random order. The random order of the videos limits
the order dependencies of the kinemes and light codes and
produces independent measurements of each kineme.

For each video, three pieces of data were recorded: the
user’s understanding of what was communicated, the time
taken from the start of the video to the start of the participant
answering, and their confidence in their answer from 1 to 5,
with five being positive. After-the-fact correctness for each
answer was assigned according to some simple heuristics by
an expert user.

D. Additional Modality

A third communication system employing messages dis-
play on an LCD screen was also tested in the study. The
results from the LCD are not reported here, because it was
not a realistic test of an LCD for underwater use. The purpose
of the LCD in this study was simply to act as a control
by which reaction times and confidence distributions for
participants could be considered, as well as acting as a filter
for participants who completely misunderstood the purpose
of the experiment.

V. RESULTS
A. Comparison Criteria and Methods

The kineme and light system are compared on the basis
of the following criteria:
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o Accuracy — The accuracy of a participant’s understand-
ing of a kineme or light code, rated from O to 10 in order
of increasing accuracy.

« Confidence — The confidence a participant has in their
understanding of a kineme or light code, rated from 1
to 5, in order of increasing confidence.

o Operational Accuracy — The same metric as accuracy,
but only taking answers rated at a confidence level of
3 or higher, representing the answers that participants
would be likely to act on.

o Time To Answer — The time it takes a participant to
give the meaning of a kineme or light code, measured
in seconds from the beginning of the signal to the
beginning of their answer.

We use the Mann-Whitney test [37] to evaluate the
hypotheses we set out in Section IV-A. We also use the
Mann-Whitney test to validate that there is no statistically
significant improvement in accuracy regardless of which
system was shown to participants first and that there is no
statistically significant difference between the accuracies of
male and female participants.

The Mann-Whitney test is ideal for measuring the statis-
tical effects of using the different systems in our trials, as it
does not require normally-distributed data, while providing
hypothesis testing capabilities. For each Mann-Whitney test,
we report the p-value p, which is the probability under the
null hypothesis of obtaining a result equal to or more extreme
than what was observed. We also report the z-statistic z,
which is used to calculate the approximate p-value. z is
defined as
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Fig. 5: Average Confidence per education level.
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Fig. 6: Average Time To Answer per education level.

where W is the Wilcoxon rank sum. Unless otherwise
noted, all hypothesis tests are conducted at significance level
a = 0.005.

B. Statistical Results

1) Accuracy and Operational Accuracy Between Educa-
tion Levels: We compare kineme and light code accuracies
at each education level, using a right-tailed Mann-Whitney
test with this hypothesis:

Hy = Kineme accuracy does not have a higher median.

H, = Kineme accuracy has a higher median than lights.

When testing accuracy, we find statistically significant
increases in accuracy when comparing kinemes to light codes
for EDUO (p = 0.0113, z = 2.282), EDUI (p = 0.0009, z =
3.114), and EDU2 (p = 0.000009,4.27). For operational
accuracy, we again find statistically significant increases for
EDUO (p = 0.029,z = 1.890), EDU1 (p = 0.007,z =
2.418), and EDU2 (p = 0.0006, z = 3.221). In all of these
cases, we can reject the null hypothesis in favor of the
alternative. We can also see this visually in the plots of these
statistics in Figures 3 and 4.

2) Confidence and Time-To-Answer Between Education
Levels: We also test the median of confidence participants
reported in their answers, and here we find that while there is
no statistically significant increase in confidence in kinemes
vs light codes at EDUO (p = 0.156,z = 1.01), there is
a statistically significant increase present at EDUL (p =
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Fig. 7: Average Accuracy and Operational Accuracy per
meaning.

0.006,z = 2.496) and EDU2 (p = 0.0004,z = 3.297).
Finally, when considering the time to answer, we must
slightly reformulate our test to be a left tailed test, testing the
null hypothesis that the median time to answer for light codes
is not lower than for kinemes, with the alternative being that
the median for lights is lower. Here, we show that there is
a statistically significant reduction in time when comparing
lights to kinemes for EDUO (p = 0.0000002, z = —5.031)
and EDUI (p = 0.0003,z = —3.39), but at EDU2 (p =
0.4074, z = —0.828) there is no significant reduction. This
indicates that time to answer for kinemes drops with higher
education, while time to answer for light codes remains
approximately the entire length of the light code at all levels.
These trends can be seen in Figures 5 and 6.

3) Comparison Between Specific Kinemes and Codes:
For kineme-by-kineme comparison, we direct the reader to
Figures 7a and 7b. We can see a particularly high accuracy
for those kinemes in the spatial category, paired with low
light-code accuracy for those same meanings. Conversely,
we see that situation concepts such as Danger Nearby and
Malfunction work better with flashing lights, likely due to a
lifetime of being taught that flashing red lights mean danger.
Operational accuracy figures are much closer between light
codes and kinemes, but whether the kineme or light codes are
the most accurate system does not change between accuracy
and operational accuracy.

4) Internal Validation For Order and Gender: We validate
these results by checking for a statistically significant bias
based on system order. We find no statistically significant
difference between the accuracy of kinemes when shown first
or when shown second (p = 0.449, z = —0.756), nor do we

find a statistically significant change in the accuracy of the
light codes (p = 0.748, z = —0.320).

C. Opinion-Based Results

1) Participant Opinions: In their exit survey, participants
were asked to rate the kineme and lights systems on a
scale of 1 to 10 for several metrics. Participants rated
kinemes easier to understand (¢ = 5.6, 0 = 2.2) than lights
(uw = 3.5,0 = 3.3). They also considered kinemes easier
to learn (u = 7,0 = 2.1) than lights (u = 5.5,0 = 3.5).
When asked, 71.4% of participants also preferred the kineme
system overall and 66.7% felt it would be most effective from
a significant distance. Lastly when asked whether kinemes,
light codes, or an LCD would be best for an underwater
communication system, 45.6% preferred the kineme system,
compared to 37.5% for lights and 16.7% for the LCD.

VI. CONCLUSION

In this paper, we proposed a unique motion-based com-
munication for underwater robots, which we call kinemes,
and implemented a version of these kinemes in Unreal
Engine 7™ for testing. We evaluated the use of kinemes
versus the use of colored light codes and found statistically
significant superiorities in accuracy and operational accuracy,
while remaining within an acceptable speed of recognition.
Additionally, in our study, users preferred the kineme system
over the light code system, and even over an LCD screen,
especially when considering use at a distance or underwater.

We have also found that certain concepts related to
3-dimensional space are especially easy to communicate
through motion via perceived gaze directions, as are concepts
with a direct human analog by mimicking that human analog.
It is noted that to properly express these types of concepts,
estimating the pose of the interactant will be a necessary
capability of any AUV using this communication scheme.

Future work must explore further into the related control
(how to make the motions look correct on physical robots)
and perception (how to ground interactions by determining
the interactant’s pose and state) problems. We plan to extend
this concept to other robotic systems and implement kinemes
on the physical Aqua robot, further validating our findings by
running studies involving fully closed-loop interaction tests
and more participants. Testing our desiderata in more depth
is another focus of future work, as interaction at distance
and with different angles is not considered in this study.
Furthermore, we plan to integrate light and sound alongside
motion to create a communication system which fuses these
communication vectors to effectively communicate informa-
tion to human collaborators in underwater environments.
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