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Abstract

Hyaluronic acid injections have been a mainstay of arthritis treatment for decades. However,
much controversy remains about their clinical efficacy and their potential mechanism of
action. This approach to arthritis therapy is often called viscosupplementation, a term which
is rooted in the elevated viscosity of the injected solutions. This terminology also suggests a
mechanical pathway of action and further implies that their efficacy is dependent on viscos-
ity. Notably, previous studies of the relationship between viscous properties of hyaluronic
acid solutions and their clinical efficacy have not been definitive. Recently we developed an
experimental and analytical framework for studying cartilage lubrication that captures the
Stribeck-like behavior of cartilage in an elastoviscous transition curve. Here we apply this
framework to study the lubricating behavior of six hyaluronan products currently used for
injectable arthritis therapy in the US. Despite the fact that the source and chemical modifica-
tions endow these products with a range of lubricating properties, we show that the lubricat-
ing effect of all of these materials can be described by this Stribeck-like elastoviscous
transition. Fitting this data to the elastoviscous transition model enables the calculation of
effective lubricating viscosities for each material, which differ substantially from the viscosi-
ties measured using standard rheometry. Further we show that while data from standard
rheometry are poor predictors of clinical performance of these materials, measurements of
friction coefficient and effective lubricating viscosity correlate well (R® = 0.77; p < 0.005) with
assessments of improved clinical function reported previously. This approach offers both a
novel method that can be used to evaluate potential clinical efficacy of hyaluronic acid for-
mulations and provide new insight on their mode of action.

Introduction

Intra-articular injections of hyaluronic acid has been a mainstay of arthritis treatment since
initial trials of such therapies more than 30 years ago [1,2]. This course of therapy was termed

PLOS ONE | https://doi.org/10.1371/journal.pone.0216702 May 10,2019

1/15


https://doi.org/10.1371/journal.pone.0216702
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216702&domain=pdf&date_stamp=2019-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216702&domain=pdf&date_stamp=2019-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216702&domain=pdf&date_stamp=2019-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216702&domain=pdf&date_stamp=2019-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216702&domain=pdf&date_stamp=2019-05-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216702&domain=pdf&date_stamp=2019-05-10
https://doi.org/10.1371/journal.pone.0216702
https://doi.org/10.1371/journal.pone.0216702
http://creativecommons.org/licenses/by/4.0/
http://www.nsf.gov

@ PLOS|ONE

Hyaluronic acid lubrication of cartilage

Farmaceutici SpA and played a role in study design
and preparation of the manuscript.

Competing interests: | have read the journal’s
policy and the authors of this manuscript have the
following competing interests: Authors LJB and
EDB are consultants for Fidia Pharma USA, LUBis a
consultant for Fidia Farmaceutici SpA, and authors
DG and GS are employees of Fidia Farmaceutici
SpA. This does not alter our adherence to PLOS
ONE policies on sharing data and materials.

Abbreviations: A, Carreau-Yasuda fitting
parameter; d, friction fitting parameter; G’, storage
modulus; G”, loss modulus; HA, hyaluronic acid; N,
normal load; n, Carreau-Yasuda fitting parameter;
S, Sommerfeld number; S;, Sommerfeld transition
number; v, sliding speed; WOMAC, Western
Ontario and McMaster Universities Osteoarthritis
Index; y, shear rate; 5, phase angle; n, viscosity; ng,
zero shear rate viscosity; n.., infinite shear rate
viscosity; nes, effective lubricating viscosity; A,
Carreau-Yasuda fitting parameter; y, friction
coefficient; g, boundary friction coefficient; pmin,
minimum friction coefficient; w, angular frequency.

“viscosupplementation” based on the restoration of viscosity observed after delivery to patho-
logic synovial fluid [3]. Significant controversy persists around the clinical efficacy and pro-
posed underlying mechanisms of these therapies. Recently, conflicting consensus statements
were released from multiple clinical societies based on meta-analyses of clinical studies, which
show either no statistical effect of hyaluronic acid injections over placebo [4], or beneficial
effects at reducing pain and restoring function in cases of mild to moderate osteoarthritis
[5,6], particularly in patients with knee OA who have not had an adequate response to non-
pharmacologic modalities and full-dose acetaminophen [7-9]. Despite this controversy, use of
such products is widespread, and annual sales are expected to surpass $2.6 billion in the near
future [10].

This controversy is rooted in the fact that it is difficult to prove clinical efficacy versus pla-
cebo and that there is no consensus concerning the mechanism of action. Many studies report
that hyaluronic acid has a protective effect on cartilage explants and chondrocytes through
multiple biological mechanisms. As a critical component of the cartilage extracellular matrix,
hyaluronic acid interacts with chondrocytes through the CD44 receptor [11]. This binding is
thought to be both anabolic and anti-catabolic, inhibiting expression and activity of inflamma-
tory cytokines [12] and degradative proteinases in vitro [13], and reducing matrix damage
[14], fibrosis [15], and expression of inflammatory markers in vivo [16]. Although such poten-
tial biological mechanisms exist, the FDA classifies hyaluronic acid injections as class III medi-
cal devices, implying that a primary mode of action is mechanical. Indeed, the lubricating role
of hyaluronic acid in synovial fluid has been known for decades [17]. Addition of hyaluronic
acid is known to lower friction coefficients of whole joints [18,19] and in ex vivo studies of car-
tilage-on-cartilage [20] and cartilage-on-glass [21] interfaces. Although injecting hyaluronic
acid is commonly referred to as ‘viscosupplementation’, there has been relatively little direct
investigation of the extent to which the viscosity of hyaluronic acid governs its lubricating abil-
ity and clinical efficacy.

Many studies, focusing on either lubricating properties or in vivo efficacy, have compared
hyaluronic acid solutions based on molecular weight, which is typically related to intrinsic vis-
cosity via a power law relationship (i.e., the Mark-Houwink equation). However, inferring the
effect of viscosity from such studies can be challenging, as the Mark-Houwink coefficients for
hyaluronic acid solutions vary with molecular weight [22]. Further, the relationship between
molecular weight and intrinsic viscosity can change when the molecule is modified or partially
crosslinked. While molecular weight correlates with improved lubrication in experiments
using isolated cartilage tissue [20,23] and whole joints [18], the relationship between molecular
weight and clinical outcomes is less clear. Several studies report that high molecular weight for-
mulations improve outcomes, both in preclinical studies [24-26] and in human trials [27]. In
contrast, several studies report no clinical benefit of increasing molecular weight [28-34] or
crosslinking [35], while others suggest that low molecular weight formulations may be supe-
rior [36] due to their ability to more effectively penetrate the cartilage matrix [37]. Addition-
ally, the relationship between rheological and viscoelastic properties and clinical outcomes is
complicated due to the complex mechanical properties of HA formulations. Although it is well
understood that these solutions are described by non-Newtonian, shear thinning behavior
[22], their mechanical properties are not be fully captured by conventional rheology. Recent
evidence suggests that standard rheologic analyses are confounded due to the interfacial vis-
cosity [38], and consequently, the in vivo situation is even further confounded as HA is known
to interact with the proteins at the articular surface [21,39,40]. Because of these factors, the

relationship between HA mechanical properties and clinical efficacy has not been well
established.
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The lack of clarity from these above studies suggests that a new framework is needed to
understand the action of hyaluronic acid and to develop tools to predict both lubricating abil-
ity and clinical outcomes. Several studies have attempted to understand cartilage tissue and
joint lubrication in the context of classic lubrication framework using a Stribeck curve
[19,41,42], where distinct lubrication modes are mapped as a function of sliding speed, normal
load, sample geometry, and lubricant viscosity. Classically, for hard permeable materials in
specific geometries, the curve maps a frictional transition from boundary mode marked by
solid-solid contact, to partial separation of surfaces by pressurized fluid, to full separation by a
fluid film, which results in extremely low friction. Recently, it was shown that soft, permeable
materials [43], including articular cartilage [21] undergo a similar “elastoviscous transition” in
lubrication behavior. Using this framework, the transition of cartilage tissue through different
lubrication modes was shown to be predicted by the viscosity of hyaluronic acid solutions.

The goals of the current study were to evaluate the lubricating properties of 6 hyaluronan
formulations that are currently used in the US and to determine the extent to which their rheo-
logical and viscoelastic properties measured by traditional means, and frictional properties are
correlated with their clinical function. Here, we show that commercial formulations of hyal-
uronic acid produce speed-dependent friction of cartilage, but these friction coefficients are
not well described by standard rheological techniques. Further, using a Stribeck-like frame-
work enables the calculation of an effective lubricating viscosity for each formulation that is
distinct from the measured dynamic viscosity. Finally, we show that the effective lubricating
viscosity and friction coefficient measured in vitro correlate with changes in clinical outcome
data aggregated from previous clinical trials.

Results

Clinically approved HA formulations exhibit a wide range of rheological
behavior

To test the hypothesis that the clinical efficacy of HA injections is related to its mechanical
properties, we tested six clinically-approved HA formulations (Synvisc, Monovisc, Hyalgan,
Euflexxa, Supartz, and Hymovis) using a commercial rheometer. In brief, we conducted exper-
iments in which shear rate was increased from 0.1 to 100 s ' using a cone-plate rheometer con-
figuration. As expected, we found shear thinning behavior in each of the formulations, but
viscosities varied by orders of magnitude between the products (Fig 1A). To more fully charac-
terize these results, we fit this rheological data to a Carreau-Yasuda model given by the equa-
tion:

i LGN (Eq 1)

Ny = N
Where, 7 is dynamic viscosity, 7., is the dynamic viscosity at infinite shear rate, 7, is the
dynamic viscosity at zero shear rate, } is shear rate, and A, n, and a are fitting parameters (S1
Fig). Data from all commercial formulations were described well by the Carreau-Yasuda
model, with coefficients of variation <10% for all fits (Table 1). Additionally, we characterized
the viscoelastic properties of each of these products in oscillatory shear (3% strain from 0.1 to
100 rad/sec). Overall, we found that the rheological properties of all of these HA formulations
varied by orders of magnitude. Specifically, the storage and loss moduli ranged from under 0.1
Pa to over 100 Pa and under 1 Pa to 100 Pa, respectively. Additionally, there was a range of
phase angles observed at low shear rates (0.1 rad/s) that ranged from 28° to 83" indicating that
the HA formulations exhibit a range of elastic versus viscous behavior (Table 2).
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Fig 1. Rheology of clinical HA formulations. (A) Flow sweep experiments revealed shear thinning behavior of all HA
formulations, but orders of magnitude variations in dynamic viscosity were evident. (B,C) Storage and loss moduli of
the same HA formulations as a function of angular frequency.

https://doi.org/10.1371/journal.pone.0216702.9001
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Table 1. Carreau-Yasuda model parameters for 6 clinically approved HA viscosupplements. Interestingly, the zero shear viscosities (i.e., o) of these formulations

spanned more than two orders of magnitude.

Lubricant Mo (Pa-s)

Euflexxa 100.09
Hymovis 190.37
Hyalgan 0.50
Monovisc 6.46
Supartz 2.11
Synvisc 124.85

https://doi.org/10.1371/journal.pone.0216702.t001

N (Pas) A a n CV(RMSD)
0.45 1.91 0.94 0.02 0.08
0.00 13.16 0.40 0.39 0.08
0.00 2117.20 0.60 0.88 0.09
0.00 0.25 0.60 0.48 0.03
0.00 0.09 0.60 0.39 0.05
0.00 3.86 0.60 0.21 0.03

Frictional behavior of HA formulations is not fully described by standard
rheology

Classically, clinical HA injections have been considered mechanical interventions with shock
absorbing and lubricating modes of action. To test this hypothesis that HA is effective in low-
ering the friction coefficient of cartilage, we utilized a previously described tribometer to evalu-
ate the ability of these HA formulations to lower cartilage friction. Briefly, neonatal bovine
articular cartilage cylinders were mated against a polished glass counterface, compressed to
25% axial strain, and allowed to equilibrate for 60 minutes while bathed in one of the HA for-
mulations or PBS. The glass slide was then reciprocated through a speed sweep from 0.1 to 10
mm/s, and both normal and shear loads were recorded using a custom biaxial load cell. For
each speed, the friction coefficient was recorded as the ratio of the shear load to normal load at
the end of the sliding cycle when the friction coefficient reached a steady value. As with visco-
elastic properties, the ability of HA formulations to lubricate cartilage varied widely, with fric-
tion coefficients ranging from over 0.2 to under 0.05 (Fig 2). Additionally, speed-dependence
was observed for all lubricants, as would be expected for sliding within highly viscous lubri-
cants. Because of the speed-dependence, we examined friction as a function of the Sommerfeld
number, S.

g_vmd
N

(Eq2)
This normalization presents friction as a function of v sliding speed, 77 lubricant viscosity, d
contact width, and N normal load. In performing this analysis, the question emerges as to the
appropriate viscosity to use for each formulation as they all exhibit viscoelastic, non-

Table 2. Viscoelastic properties of the HA formulations for three different angular frequencies, w.

w = 0.1 rad/s w = 1.0 rad/s w = 10. rad/s
Formulation G’ (Pa) G” (Pa) 8 (%) G’ (Pa) G” (Pa) 3 (%) G’ (Pa) G” (Pa) 3 (%)
Euflexxa 5.17 10.00 62.68 31.90 26.11 39.35 80.84 34.88 24.70
Hyalgan 0.45 0.41 42.65 0.43 0.55 55.58 0.67/7 1.497 160.95/
Hymovis 36.03 19.01 27.82 63.23 17.01 15.07 85.44 15.13 10.65
Monovisc 0.08 0.66 83.26 1.33 522 76.26 15.41 28.01 69.61
Supartz 0.35 0.54 57.04 0.52 2.41 78.88 7.13 14.15 81.43
Synvisc 30.93 23.18 36.86 71.68 27.67 21.12 111.51 24.39 12.90
G’, storage modulus; G”, loss modulus; 6, phase angle
Alndicates that inertial effects of the rheometer head likely dominate this measurement due to low mechanical properties.
https://doi.org/10.1371/journal.pone.0216702.t002
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https://doi.org/10.1371/journal.pone.0216702.g002

Newtonian, shear thinning behavior. We have recently shown that the lubricating behavior of
such HA formulations can be described by low shear viscosities [21], thus we incorporated the
zero-shear rate viscosities (i.e., 775, Table 1) obtained from the Carreau-Yasuda curve fitting.
However, upon inspection of the normalized data (Fig 2B), it was evident that normalization
to this viscosity was not sufficient to collapse the data onto a master curve of friction versus
Sommerfeld number. This fact should not be entirely surprising as it is clear that all of the for-
mulations have different shear thinning and elastic properties (Fig 1 and S2 Fig). Additionally,
we and others have recently reported that HA interacts with the articular surface through
bound lubricin, and it is possible that chemical modifications of these HA formulations can
alter this interaction [21,39,40].

Thus, to better understand the lubricating behavior of these HA formulations, we allowed 7
to vary when calculating S to determine an effective lubricating viscosity, 7.4 To calculate this
parameter for each lubricant, we compared each friction sweep to a friction curve we previ-
ously obtained in the absence of HA. Specifically, we collapsed the data onto an elastoviscous
curve obtained for 2 MDa dextran lubricating cartilage (Fig 3). This was conducted by mini-
mizing RMS error between the data and the model curve. This curve of friction coefficient y,
as a function of S is given by:

_ d
/,t(s) = :umin + (:uB - tumin)e (/5 (Eq 3)

Where, pt,i, is the minimum friction coefficient, yp is the boundary friction coefficient, S, is
the Sommerfeld number at the mid-point of the transition from high to low friction, and dis a
fitting parameter controlling the slope of the transition. The values obtained for 2 MDa dex-
tran are: f,,,;, = 0.04, up = 0.21, S, = 2.7-107%, and d = 0.62. For each lubricant, the effective vis-
cosity was lower than the measured viscosity, in some cases by orders of magnitude. This
difference, which was highly variable between the HA formulations, highlights the fact that
chemical modifications of HA formulations can alter the lubricating properties in a manner
not fully predicted by the measured viscosity.

Traditional rheological and viscoelastic characterization does not predict
clinical outcome, but friction does
We aggregated clinical trial data for each of these HA formulations tested and extracted the

change in WOMAC pain score from baseline. First, we inspected correlations between the rhe-
ological properties and maximum WOMAC change from baseline. While some rheological
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properties were predictive of other rheological properties [e.g., R* = 0.92 between n(j = 0.1)
and G”], none of the rheological properties were predictive of clinical outcomes (Fig 4 and Fig
5A and 5B). In fact, the highest correlation coefficient observed was between the phase angle,
6, and change in WOMAC (R? = 0.3), but this comparison fell well short of significance

(p = 0.2). Interestingly, the rheological properties of the formulations were not predictive of
the frictional behavior either. The strongest correlation; however, was between the zero shear
viscosity and the friction coefficient at 0.1 mm/s (R* = 0.61, p = 0.04, Fig 4). Additionally, in
stark contrast to the rheological data, the measured friction coefficients and the effective vis-
cosity calculated from the frictional analysis were much more predictive of the change in
WOMAC scores (Fig 4, Fig 5C and 5D). In fact, low speed friction [u(v = 0.1 mm/s)], high
speed friction [p(v = 10 mm/s)], and the effective viscosity (n.g) all provided significant corre-
lations with the aggregated clinical outcome data (R* = 0.70, p = 0.019; R* = 0.77, p = 0.009;
and R? = 0.78, p = 0.008, respectively).

Discussion

Here, we assessed both the rheological and tribological properties of clinically approved hyal-
uronic acid viscosupplements and found that data obtained from cartilage friction measure-
ments are significantly more predictive of published clinical outcomes than either rheological
or viscoelastic properties as measured by traditional means. Indeed, despite the colloquial use
of the term ‘viscosupplementation’, we found little evidence that these products can be judged
in a pre-clinical context solely by their rheological properties measured with standard
techniques.

A major question remains as to connection between frictional properties of these formula-
tions and the maximum reduction of pain reported by the WOMAC scores (Fig 4 and Fig 5C
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and 5D). There is currently growing evidence that chondrocytes are susceptible to dysfunction
as a direct result of altered friction levels within a joint [44-46]. Additionally, there is a strong
association between cartilage friction and wear of the articular surface [47,48]. While these fac-
tors may provide possible clues to the relationships found in this study, there is a host of possi-
ble explanations for this correlation.

One particularly interesting finding of this study revealed that the widely varying viscosities
of these formulations did not predict the frictional properties. In fact, the measured viscosities,
Mo, varied by orders of magnitude from effective viscosities, N, in an unpredictable manner.
This result may be linked to difficulties in measuring rheological properties in a robust and
physiologically relevant manner. For highly viscous polymeric solutions such as the ones stud-
ied here, factors such as wall slip and interfacial effects may lead to this disconnect [38,49].
Thus, standard techniques that do not account for such interfacial effects may not accurately
measure mechanical properties. It should be noted that for other biomolecules such as mucin
[50], adsorption to a surface causes an increased local viscosity that enhances lubricating prop-
erties, and we have recently shown that a similar mechanism can occur for HA [21]. In fact,
tuning the affinity of HA to the cartilage surface can drastically alter the lubricating response
[51]. With this in mind, it is currently unclear how HA-stainless steel interfaces in rheological
configurations mimic the physiologically relevant cartilage-HA interface. Further, we and
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https://doi.org/10.1371/journal.pone.0216702.9g005

others have recently reported that HA interacts with molecules such as lubricin bound to the
articular surface [21,39,40]. This interaction with lubricin is not specific to HA and can be rep-
licated by another viscous polysaccharide, dextran. It is hypothesized that facilitating the
aggregation of HA at the articular surface allows viscous surface layers to develop, which in
turn facilitate lubrication through a mechanism called viscous boundary lubrication [50]. It is
possible that the molecular weight variations and the chemical modifications of the HA formu-
lations in the present study alter such interactions with the articular surface that can either
promote or inhibit effective lubrication leading to the disparities observed.

While this study revealed a strong connection between lubricating properties and clinical
data, there are several limitations that must be addressed. This study utilized healthy, neonatal
bovine cartilage to mitigate sample to sample variations that could occur during testing. We
have previously shown, however, that both injury and degeneration alter the lubrication of car-
tilage by HA [52,53], thus the frictional properties reported may not fully describe the lubricat-
ing effect of the HA formulations on clinically relevant tissue, and the reported friction
coefficients may not fully recapitulate the in vivo situation. While HA and other synovial fluid
molecules lower the cartilage friction coefficient, the structure of cartilage is also crucial to the

PLOS ONE | https://doi.org/10.1371/journal.pone.0216702 May 10,2019

9/15


https://doi.org/10.1371/journal.pone.0216702.g005
https://doi.org/10.1371/journal.pone.0216702

@ PLOS|ONE

Hyaluronic acid lubrication of cartilage

low friction surfaces as the low permeability of the tissue allows substantial interstitial fluid
pressurization [54,55]. Additionally, the rheological techniques used do not necessarily repre-
sent the state of the art, but represent standard techniques that may not capture the complex
mechanical properties of these HA solutions. These techniques may not fully convey rheologi-
cal phenomenon that occur at higher or lower strains, strain rates and oscillation frequencies
in addition to interfacial effects that likely contribute to the frictional response. Further, the
clinical trial data was not aggregated from studies conducted in an identical manner. Aspects
including doses, timing of administration, timing of maximum efficacy, and study inclusion/
exclusion criteria all varied between the clinical trials. It is also noted that the studies aggre-
gated for this analysis are not exhaustive of the clinical data, but represent a subset of studies
where both the clinical data were available and the lubricant was available for in vitro testing.
Additionally, it should be noted that despite the strong correlations, causation is not necessar-
ily implied. Other factors that can trend with lubricating efficacy may also play a vital role. For
example, altering the chemical structure to promote effective lubrication can have a parallel
effect of altering the residence time of these molecules. Thus promoting aggregation of HA at
the articular surface could promote lubrication and enhance residence time simultaneously.
Despite these stated limitations, this study revealed that rheological and viscoelastic properties
are less predictive of clinical efficacy compared to lubricating ability.

Materials and methods
Rheological testing

To determine the role of viscosity, a commercial rheometer (TA Instruments DHR3 Rheome-
ter, New Castle DE) was used to measure the shear rate-dependent viscosity of the lubricant
baths. For the HA-based lubricants, a 40 mm diameter cone-plate set up with a 2° angle and
50 pm truncation was used in a shear rate sweep of y = 0.1 to 1000 s™' to determine dynamic
viscosities based on standard protocols from the manufacturer built into the Trios software
package. To determine the pseudoplastic properties of the lubricating solutions, the shear rate
(p) dependent dynamic viscosity (77) was fit to a Carreau-Yasuda model given by Eq 1. The
parameters were determined by minimizing the root-mean-square error between the data and
the model fit using a custom Excel template. Goodness of fit was reported for each curve based
on the coefficient of variation of the RMS error. Additionally, this rheometer configuration
(40 mm cone-plate) was utilized to determine viscoelastic properties of the solutions (i.e., stor-
age and loss moduli, and phase angle). Preliminary evidence suggested that the linear regime
for HA and modified HA solutions extends past 10% strain [56,57]. To capture this behavior,
these analyses were conducted using 3% oscillatory shear strain with an angular frequency
sweep from w = 0.1 to 100 rad/sec based on protocols in the Trios software. Data are reported
for a single replicate from the same lubricant formulation batch used in the tribological testing
described below.

Tribological testing

Tribological testing was conducted as described recently [21,52,53]. Friction coefficients of
cartilage-against-glass were measured on a custom tribometer. Cartilage samples were
extracted from the patellofemoral groove of neonatal (1-3 day old) bovine stifles. These carti-
lage samples were extracted using a 6 mm diameter biopsy punch and sized to 2 mm thick cyl-
inders. Cartilage was mated against a polished glass flat counterface while bathed in a lubricant
bath in a tilt-pad bearing configuration [58]. Friction coefficients were measured in a station-
ary contact area configuration. That is, cartilage was compressed against a flat surface and
reciprocated in a manner that mitigates the effects of interstitial fluid pressurization on friction
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coefficient measurements that can arise from active deformation of the cartilage matrix. Prior
to friction coefficient measurements, samples were compressed to 25% axial strain and allowed
to depressurize over the course of 1 hour resulting in equilibrium normal loads on the order of
2.5 N. Following normal force equilibrium, the glass counterface was reciprocated at predeter-
mined speeds ranging from 0.1 to 10 mm/s, and friction coefficients were calculated as the
ratio of shear load to normal load measured by a biaxial load cell. Coefficients were calculated
at the end of sliding when friction had reached an equilibrium value to mitigate effects of the
static friction coefficient and inertial effects that are present at the beginning of sliding at ele-
vated speeds. To account for any misalignments, the friction coefficient was averaged for both
the forward and reverse sliding directions.

Lubricant formulations and cartilage surfaces

Lubricants used in this study were phosphate buffered saline (PBS; Corning, Manassas VA).
Sodium hyaluronate with 500-730 kDa molecular weight obtained from Streptococcus Equi fer-
mentation and formulated to a final solution of 10 mg/mL in PBS (Hyalgan, Fidia Farmaceutici,
Padua Italy) was used as the HA solution. Hymovis (Fidia Farmaceutici, Padua Italy), which is
based on HYADDA4, a hydrophobic partial hexadecyl derivative of HA with a degree of substitu-
tion ~ 2% mol/mol with respect to the polysaccharide repeating unit, provided a lubricant bath
with increased viscosity at a concentration of 8 mg/mL in PBS. Additionally, other commer-
cially available viscosupplements were tested at their clinically relevant concentrations. These
solutions were Supartz (trademark of Seikugaku Corporation), Monovisc (trademark of Anika
Therapeutics), Synvisc (trademark of Genzyme Corporation), and Euflexxa (trademark of Fer-
ring BV) (Gifts from Drs. Scott Rodeo and John Kennedy, Hospital for Special Surgery).

Comparison to clinical trial data

To assess the extent to which data from friction studies and rheological characterization corre-
lated with clinical outcomes, data was collected from published clinical trials [32,59-64]. For
all data sets, the parameter chosen to represent clinical efficacy was the maximum percentage
improvement in WOMAC score compared to baseline, regardless of the time point at which
such maximal improvement occurred. Because placebo effects due to saline injections are
often quite high, the comparison of clinical efficacy to tribological and rheological studies also
included data on saline injection, using measured parameters on the properties of PBS to
enable inclusion of such data in correlation analyses [9].

Statistical analysis

Rheological data from flow sweep experiments were fit to a Carreau-Yasuda model to deter-
mine the zero shear rate viscosity (Eq 1). These calculations were conducted in a custom excel
file that determined the five fitting parameters through root-mean-squared error minimiza-
tion. Additionally, the coefficient of variation of the RMS error were calculated and reported.
Friction data were plotted as a function of S (Eq 2) and fit to a friction transition curve (Eq 3)
by minimizing RMS error. Correlations between measured parameters and clinical trial data
were conducted through linear regression and R” values were reported in Fig 4 for each com-
parison. Significance was determined using a Pearson correlation coefficient.

Supporting information

S1 Fig. Example flow sweep viscosity data along with the associated Carreau-Yasuda fit.
(TIF)
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S2 Fig. Oscillatory shear data for all HA formulations. A cross-over frequency was not evi-
dent within the operating conditions for all of the formulations.
(TIF)
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