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A new gauge-free electromagnetic gyrokinetic theory is developed, in which the gyrocenter equations 
of motion and the gyrocenter phase-space transformation are expressed in terms of the perturbed elec-
tromagnetic fields, instead of the usual perturbed potentials. Gyrocenter polarization and magnetization 
are derived explicitly from the gyrocenter Hamiltonian, up to first order in the gyrocenter perturbation 
expansion. Expressions for the sources in Maxwell’s equations are derived in a form that is suitable for 
simulation studies, as well as kinetic-gyrokinetic hybrid modeling.

© 2019 Published by Elsevier B.V.
1. Introduction

Nonlinear gyrokinetic theory provides a self-consistent descrip-
tion of low-frequency kinetic turbulence in strongly magnetized 
plasmas [1–3]. Its domain of application ranges from magnetic fu-
sion experiments to the solar wind and the interstellar medium. 
As such, it is a theory capable of describing much of the matter 
in the observable universe. Although it is a kinetic model, gyroki-
netics does not track the detailed evolution of the one-particle 
distribution function. Instead, the theory is formulated in terms of 
a quasi-particle distribution function defined on a reduced phase 
space. The quasi-particles, known as gyrocenters, move on a time 
scale that is long compared with the cyclotron period, and carry 
nontrivial electric and magnetic multipole moments [4–6].

Up to now [1], gyrokinetic models have been derived by gy-
rocenter phase-space transformations that involved the perturbed 
electromagnetic potentials (�1, A1), in terms of which the per-
turbed electromagnetic fields E1 ≡ − ∇�1 − c−1∂A1/∂t and B1 ≡
∇ × A1 are defined. Since these potentials are not invariant un-
der the gauge transformation �1 → �1 − c−1∂χ1/∂t and A1 →
A1 + ∇χ1, where χ1(x, t) represents an arbitrary scalar field, the 
current formulation of gyrokinetic theory (based on electromag-
netic potentials) is not explicitly gauge independent (although it is 
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gauge invariant). In particular, the equations of motion for individ-
ual gyrocenters involve the potentials in an essential manner.

The purpose of the present Letter is to derive a new gauge-
free gyrokinetic theory, where the gyrocenter Hamiltonian is ex-
pressed explicitly in terms of simple integrals of the perturbed 
electromagnetic fields (E1, B1). These gauge-free gyrokinetic equa-
tions can thus be used, for example, in hybrid kinetic models (e.g., 
Refs. [7,8]) in which one particle species is described in terms of 
a gauge-free gyrokinetic description and all other particle species 
are modeled in terms of a fully-kinetic particle description. In addi-
tion, the new equations will make it possible to calculate the mo-
tion of individual gyrocenters based on knowledge of the directly-
observable electromagnetic fields. This capability should aid in the 
design and interpretation of new in situ diagnostics for turbulent 
space and laboratory plasmas. Finally, we note that the present 
work retains the standard low-frequency gyrokinetic space-time-
scale orderings [1] for the perturbed electromagnetic fields as well 
as the ordering |E1‖| � |E1⊥| for the component of the perturbed 
electric field parallel to the unperturbed magnetic field compared 
to the perpendicular components.

2. Theory

We begin our work by noting that the perturbed minimal-
coupling electromagnetic Lagrangian L1 = (e/c) A1 · ẋ− e �1 trans-
forms as L1 → L1 + (e/c) dχ1/dt under a gauge transformation (in 
what follows, we consider particles of mass m and charge e). Since 
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Lagrangian mechanics is invariant under the addition of an exact 
time derivative to the Lagrangian, the Lagrangian L1 is thus gauge-
invariant, although not gauge-free. We will next consider how this 
basic gauge invariance property manifests itself after moving to the 
guiding center phase space, which is an intermediate step in the 
passage to gyrocenter phase space.

Recall that the guiding center coordinate transformation [9] is 
given by (x, v) 	→ (X, p‖, J , θ) ≡ zgc, where J = μB0/�0 is the 
guiding center gyroaction, and the guiding center position X is 
displaced from the particle position x by the guiding center gy-
roradius vector ρ( J , θ) according to x(X, J , θ) = X + ρ . Instead 
of directly calculating L1 in guiding center phase space, we per-
form a partial guiding-center transformation by replacing ρ with 
ερ , where ε is a dimensionless parameter ranging from 0 (no 
shift in position) to 1 (the full guiding center transformation). The 
partially-transformed minimal coupling Lagrangian is then given 
by

L1ε = (e/c)A1ε · (Ẋ+ ε ρ̇) − e�1ε, (1)

where �1ε ≡ �1(X + ερ, t) and A1ε ≡ A1(X + ερ, t). Next, we ob-
serve that the parametric derivative dL1ε/dε is given by

dL1ε
dε

= eρ ·
[
E1ε + 1

c
(Ẋ+ ε ρ̇) × B1ε

]
+ d

dt

(e

c
ρ · A1ε

)
,

where E1ε ≡ −(∇�1 + c−1∂A1/∂t)ε and B1ε ≡ (∇ × A1)ε . We 
now use the simple identity L1gc ≡ L1 + ∫ 1

0 (dL1ε/dε) dε , where 
the zero-Larmor-radius (ZLR) gauge-invariant Lagrangian L1 ≡
(e/c) A1(X, t) · Ẋ − e �1(X, t) is evaluated at the guiding-center 
position X, to obtain the alternative expression for L1gc:

L1gc = e

c

(
A1 − ρ × B(0)

1

)
· Ẋ − J

B(1)
1‖
B0

θ̇

− e
(
�1 − ρ · E(0)

1

)
, (2)

where we have neglected the total time derivative and defined the 
multipole-integrated fields(
E(n)

1 (X, J , θ)

B(n)
1 (X, J , θ)

)
≡ (n + 1)

1∫
0

(
εnE1ε
εnB1ε

)
dε, (3)

with B(1)
1‖ ≡ b̂0 · B(1)

1 . In the ZLR limit, we find (E(0)
1 , B(0)

1 ) 

(E1, B1) and B(1)

1 
 B1. For the sake of simplicity in deriving 
Eq. (2), we have used the assumption that the background mag-
netic field is uniform. There is no conceptual difficulty in extending 
this discussion to non-uniform background fields, although the cal-
culations do become heavier.

Using the definitions (2)-(3), the total perturbed guiding-center 
Lagrangian Lgc = L0gc + εδ L1gc is expressed in terms of the un-
perturbed guiding-center Lagrangian L0gc = (e/c) A∗

0 · Ẋ + J θ̇ −
H0gc, where the effective vector potential is given by (e/c) A∗

0 ≡
(e/c) A0 + p‖ b̂0 (we ignore the higher-order gyrogauge terms here) 
and the guiding-center Hamiltonian is H0gc = p2‖/2m + J �0 (we 
ignore terms proportional to derivatives of the background mag-
netic field). We note that, while the unperturbed guiding-center 
Lagrangian L0gc is independent of the gyroangle θ , the perturbed 
part of the guiding-center Lagrangian (2) is now written as the 
sum of the gyroangle-independent, gauge-invariant term L1, and a 
manifestly gauge-free correction that is gyroangle dependent.

We will now use a gyrocenter phase-space transformation to 
remove the dependence on the gyroangle θ introduced by the 
gauge-free part of Eq. (2). The ZLR minimal coupling Lagrangian 
introduces no θ -dependence, so we may easily choose our transfor-
mation so that it does not alter this term. The strategy suggested 
here, i.e., focusing on the gauge-free part of the perturbed La-
grangian and leaving the minimal coupling term alone, proves to 
be the key to achieving a manifestly gauge-free theory to all orders 
in perturbation theory.

The result of the gyrocenter transformation is a new set of 
phase-space coordinates, (X, p‖, J , θ) ≡ zgy, in which the gyrocen-
ter Lagrangian is given by

Lgy = e

c
Agy · Ẋ+ J θ̇ − Hgy, (4)

where Agy ≡ A
∗
0 + εδ A1 (an overbar is used to denote gyrocenter 

coordinates as well as dependence on these coordinates), and the 
gyroangle-independent gyrocenter Hamiltonian is given by

Hgy = Kgy + εδ e�1. (5)

Here, the gyrocenter kinetic energy has the asymptotic expansion

Kgy = K0gy + εδ K1gy + ε2
δ K2gy + O (ε3

δ ), (6)

where K0gy = p2‖/2m + μ B0 denotes the lowest-order (guiding-
center) kinetic energy. We will soon show explicitly that the 
higher-order terms Kngy (n ≥ 1) are gauge-free, which ensures that 
this new formulation of gyrokinetic theory is manifestly gauge-
free.

To first-order in εδ , the gauge-free gyrocenter transformation is 
given explicitly by zgy = zgc − εδ ξ1, where the first-order compo-
nents are

ξX
1 = b̂0

m�0
×

(
∇ S1 − P (0)

1

)
+ b̂0

∂ S1
∂p‖

, (7)

ξ
p‖
1 = − b̂0 ·

(
∇ S1 − P (0)

1

)
, (8)

ξ
J
1 = − ∂ S1

∂θ
+ J

〈
B(1)
1‖
B0

〉
, (9)

ξθ
1 = ∂ S1

∂ J
. (10)

Here, P (0)
1 ≡ (e/c)ρ × B(0)

1 , and the gyroangle-dependent function 
S1 is determined by the inhomogeneous linear equation

d0S1
dt

=
(
μB(1)

1‖
)osc − e

[
ρ ·

(
E(0)

1 + p‖̂b0

mc
× B(0)

1

)]osc

, (11)

where Q osc ≡ Q − 〈Q 〉 denotes the gyroangle-dependent part of 
any function Q , and d0/dt ≡ ∂/∂t + (p‖/m) ̂b0 · ∇ + �0 ∂/∂θ is 
the uniform-background guiding-center evolution operator, which 
is approximated as d0/dt 
 �0 ∂/∂θ in accordance with the stan-
dard low-frequency gyrokinetic ordering [1].

The first two terms in the asymptotic expansion (6) of the gy-
rocenter kinetic energy are given by

K1gy = μ
〈
B

(1)
1‖

〉
−

〈
eρ ·

(
E

(0)
1 + v0gy

c
×B

(0)
1

)〉
, (12)

where vgy0 = (p‖/m) ̂b0 is the leading-order gyrocenter velocity 
[see Eq. (15)], and

K2gy = J
�1gy

B0

〈
B

(1)
1‖

〉
+

〈
P

(0)
1

〉
·
(
vgy1 − b̂0

m

〈
P

(0)
1‖

〉)
+ 1

2m

〈(
P

(0)
1‖

)2
〉
+ m

2
b̂0 ·

〈
�0ξ

X
1 × d0ξX

1

dt

〉

+ e

�0

〈
ρ ·

(
E

(0)
1 + v0gy

c
×B

(0)
1

) d0ξθ
1

dt

〉
, (13)
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where �1gy ≡ ∂K1gy/∂ J = − 〈F1gc · ∂ρ/∂ J 〉 and

vgy1 =
〈
P

(0)
1‖

〉 b̂0

m
+

(
〈F1gc〉 − d0〈P (0)

1 〉
dt

)
× b̂0

m�0

are the first-order corrections to the gyrofrequency and gyrocenter 
velocity, respectively, with

F1gc = e E1gc + e

c

(
p‖
m

b̂0 + �0
∂ρ

∂θ

)
× B1gc.

In the ZLR limit (for a uniform magnetic field), we obtain the sim-
plified expression for Eq. (13):

K2gy 
 − mc2

2 B2
0

|E1⊥|2 + p‖
ĉb0

B2
0

· E1 × B1

+
(
μ B0 − p2‖

m

)
|B1⊥|2
2 B2

0

, (14)

which is a standard result in gyrokinetic theory [1].
The physical meaning of the first-order terms in Eq. (12)

is given in terms of lowest-order gyrocenter electric and mag-

netic multipole contributions: μ 〈B(1)
1‖ 〉 yields the intrinsic multi-

pole moment contribution to magnetization while − 〈eρ · [E(0)
1 +

(p‖̂b0/mc) × B
(0)
1 ]〉 yield the electric multipole moment contri-

bution to polarization and the moving electric-multipole moment 
contribution to magnetization, respectively [see Eq. (18)]. The 
physical meaning of the second-order terms in Eq. (13) is given 
in terms of higher-order contributions to polarization and intrin-
sic magnetization [e.g., first and third terms in Eq. (14)] and the 
moving-electric-dipole contribution to magnetization [e.g., second 
term in Eq. (14)].

By applying Hamilton’s principle to the gyrocenter Lagrangian 
(4), phase-space-conserving gyrocenter equations of motion may 
be derived. In their general form, these consist of the gyrocenter 
velocity equation

vgy = ∂Kgy

∂p‖
Bgy

B‖gy
+ (

εδ e E1 − ∇Kgy
) × ĉb0

eB‖gy
, (15)

and the gyrocenter parallel-force equation

ma‖gy = Bgy

B‖gy
· (

εδ e E1 − ∇Kgy
)
, (16)

where B‖gy ≡ b̂0 · Bgy ≡ b̂0 · (B
∗
0 + εδB1) appears in the definition 

of the gyrocenter Jacobian Jgy ≡ (e/c) B‖gy. Note that, by construc-
tion, the gyrocenter gyroaction J is conserved by the Hamiltonian 
gyrocenter dynamics (although it is still an adiabatic invariant with 
respect to the exact Hamiltonian particle dynamics), and the gyro-
center evolution for the gyroangle θ is decoupled from the reduced 
gyrocenter dynamics represented by Eqs. (15)-(16). In addition, the 
gyrocenter Jacobian Jgy satisfies the gyrocenter Liouville Theorem: 
∂Jgy/∂t + ∇ · (vgyJgy) + ∂(m a‖gyJgy)/∂p‖ = 0.

As is well-known in the context of equilibrium thermodynam-
ics, the polarization or magnetization of a material is given by 
differentiating the material’s free energy with respect to the elec-
tric or magnetic field [10]. In Refs. [11,12], the non-equilibrium 
analogue of this fact is shown to involve functional derivatives 
of the net gyrocenter kinetic energy Kgy = ∫

gy Kgy F , which may 
therefore be regarded as a non-equilibrium analogue of the free 
energy of a gyrocenter gas. Here, 

∫
gy ≡ ∑∫

dzgy denotes a sum 
over particle species and an integration over gyrocenter phase 
space, and the gyrocenter distribution F includes the gyrocenter 
Jacobian Jgy. In particular, the polarization and magnetization den-
sities (Pgy, Mgy) of a distribution of gyrocenters F are given by(

Pgy(x)
Mgy(x)

)
=

∫
gy

(
πgy(x)
μgy(x)

)
F , (17)

where x denotes an arbitrary field point, while πgy(x) ≡
− ε−1

δ δKgy/δE1(x) and μgy(x) ≡ − ε−1
δ δKgy/δB1(x) are the gyro-

center electric and magnetic dipole moments, respectively, derived 
from the gyrocenter Hamiltonian (6). Using the first-order Hamil-
tonian (12), we find

π0gy(x) = e 〈ρ δ
(0)
x 〉

μ0gy(x) = −μ b̂0 〈δ(1)
x 〉 + e 〈ρ δ

(0)
x 〉 × v0gy/c

}
, (18)

where δ(n)
x = (n +1) 

∫ 1
0 εnδ3(X+ερ −x) dε . Using the second-order 

Hamiltonian (13), on the other hand, we find the first-order correc-
tions

π1gy =
〈
£ξ

(
eρ δ

(0)
x

)〉
, (19)

μ1gy = −μ b̂0 〈δ(1)
x 〉 �1gy

�0
+ e

c

〈
ρ δ

(0)
x

〉
× v1gy (20)

+
〈
£ξ

(
−μ b̂0 δ

(1)
x + e

c
ρ δ

(0)
x × v0gy

)〉
,

where the first-order Lie derivative £ξ ≡ ξX
1 · ∇ + ξ

p‖
1 ∂p‖ + ξ

J
1 ∂ J +

ξθ
1 ∂θ is defined in terms of the first-order components (7)-(10)
and contributions from B1‖ are omitted in Eqs. (19)-(20) since they 
appear at higher-order in the FLR expansion [i.e., B1‖ is absent in 
Eq. (14)]. Here, at each order, the magnetic dipole is given as the 
sum of the intrinsic part (first term) and the moving electric dipole 
part (second term).

The polarization and magnetization densities, together with the 
gyrocenter equations of motion, completely specify our new gauge-
free gyrokinetic theory. The gyrocenter distribution function F
obeys the gyrokinetic equation

∂ F/∂t + ∇ · (vgy F ) + ∂(ma‖gyF )/∂p‖ = 0. (21)

The electromagnetic fields obey Maxwell’s equations with charge 
and current densities 
(x) = 
gy(x) −∇ ·Pgy(x) and J(x) = Jgy(x) +
c ∇ ×Mgy(x) + ∂tPgy(x), where the gyrocenter contributions


gy(x) = ∫
gy F e δ(X− x)

Jgy(x) = ∫
gy F e vgy δ(X− x)

}
(22)

include the delta function δ(X− x) ≡ δ0, thereby guaranteeing that 
only gyrocenters located at the field position X = x contribute to 
the charge and current densities. We note that the gyrocenter ve-
locity vgy, given by Eq. (15), includes first-order and second-order 
contributions through the gyrocenter kinetic energy (6).

By using the identity ρ · ∇δ
(0)
x ≡ δgc − δ0, where δgc ≡ δ(X +

ρ − x), the charge density becomes


(x) =
∫
gy

F
[
e 〈δgc〉 + εδ

〈
£ξ

(
e δgc

)〉]
, (23)

which corresponds exactly to the standard gyrokinetic expression 
[1], except that the generating vector-field components (7)-(10) in 
Eq. (23) are now gauge-free. Next, we use the identity μ b̂0 ×
∇δ

(1)
x ≡ − e δgc v⊥/c + �0∂θ (e δ

(0)
x ρ/c), and we find the current 

density
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J(x) =
∫
gy

F
[
e
(
v0gy + εδ v1gy

) 〈δgc〉 + ε2
δ e v2gy δ0

+ e
(
�0 + εδ �1gy

) 〈
∂ρ

∂θ
δgc

〉
(24)

+e εδ

〈
£ξ

[(
v0gy + v⊥

)
δgc − �0∂θ (ρδ

(0)
x )

]〉]
,

where the gyrocenter polarization current density ∂tPgy has been 
omitted as a higher-order correction. Approximate expressions for 
the charge and current densities (23)-(24) can be used in the trun-
cated delta- f formulation of gyrokinetic theory:


 ≈
∫
gy

〈
e δgc

〉
F + εδ

∫
gy

〈(
eρ ·E(0)

1

T

)osc

e δgc

〉
F M (25)

J ≈
∫
gy

〈
e (v0gy + v⊥) δgc

〉
F

+ εδ

∫
gy

e

(
�1gy

�0

〈
v⊥ δgc

〉 + v1gy 〈δgc〉
)

F M , (26)

where the gyrocenter Vlasov distribution F is approximated by 
a local Maxwellian distribution F M whenever first-order effects 
are considered, and second-order effects are omitted. Complete 
variational derivations of full and truncated gauge-free gyrokinetic 
models will be presented in a future publication. Here, we simply 
note that the total energy (Hamiltonian) functional for the gauge-
free gyrokinetic Vlasov-Maxwell equations is expressed as [12]

Hgy =
∫
gy

F

(
Kgy − E1 · δKgy

δE1

)

+
∫

d3x

8π

(
ε2
δ |E1|2 + |B|2

)
, (27)

where B = B0 + εδ B1 denotes the total magnetic field.

3. Discussion

An important application of these results is building a gauge-
free hybrid gyrokinetic electron-Lorentz ion model. As was ex-
plained for instance in Ref. [8], present-day turbulence simulations 
that employ gyrokinetic electrons and ions are often forced to re-
solve timescales that are near the ion cyclotron period. Therefore, 
not much is gained, and much is lost, when applying gyrokinet-
ics to both species. A hybrid model would have the obvious ad-
vantages of simpler equations for the ions and the capability of 
resolving the ion-cyclotron range of frequencies. While there is 
an established hybrid model described in Ref. [7], it is based on 
the electromagnetic potentials instead of the fields. The success of 
the gauge-free hybrid drift-kinetic electron-Lorentz ion model for-
mulated in Ref. [8] motivates extending the gauge-free approach 
beyond the drift-kinetic approximation. Such a model will be the 
subject of future publications.

In summary, the gauge-free formulation of gyrokinetic theory 
presented here has an underlying Hamiltonian structure that was 
described in Ref. [12], as well as a variational structure in the spirit 
of Refs. [13–16]. Therefore the formalism introduced in Ref. [17]
may be used to develop finite-dimensional truncations of our new 
theory that also possess a Hamiltonian structure. Such truncations 
may be used to develop structure-preserving schemes for simulat-
ing kinetic turbulence, much as was done for the Vlasov-Maxwell 
system in Refs. [18–20].
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