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1. Introduction

Nonlinear gyrokinetic theory provides a self-consistent descrip-
tion of low-frequency kinetic turbulence in strongly magnetized
plasmas [1-3]. Its domain of application ranges from magnetic fu-
sion experiments to the solar wind and the interstellar medium.
As such, it is a theory capable of describing much of the matter
in the observable universe. Although it is a kinetic model, gyroki-
netics does not track the detailed evolution of the one-particle
distribution function. Instead, the theory is formulated in terms of
a quasi-particle distribution function defined on a reduced phase
space. The quasi-particles, known as gyrocenters, move on a time
scale that is long compared with the cyclotron period, and carry
nontrivial electric and magnetic multipole moments [4-6].

Up to now [1], gyrokinetic models have been derived by gy-
rocenter phase-space transformations that involved the perturbed
electromagnetic potentials (®1,A1), in terms of which the per-
turbed electromagnetic fields E; = — Vd, — c‘18A1/8t and By =
V x A; are defined. Since these potentials are not invariant un-
der the gauge transformation ®; — ®; —c~19x;/dt and A; —
A1 + Vx1, where x;(x,t) represents an arbitrary scalar field, the
current formulation of gyrokinetic theory (based on electromag-
netic potentials) is not explicitly gauge independent (although it is
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gauge invariant). In particular, the equations of motion for individ-
ual gyrocenters involve the potentials in an essential manner.

The purpose of the present Letter is to derive a new gauge-
free gyrokinetic theory, where the gyrocenter Hamiltonian is ex-
pressed explicitly in terms of simple integrals of the perturbed
electromagnetic fields (Eq, B1). These gauge-free gyrokinetic equa-
tions can thus be used, for example, in hybrid kinetic models (e.g.,
Refs. [7,8]) in which one particle species is described in terms of
a gauge-free gyrokinetic description and all other particle species
are modeled in terms of a fully-kinetic particle description. In addi-
tion, the new equations will make it possible to calculate the mo-
tion of individual gyrocenters based on knowledge of the directly-
observable electromagnetic fields. This capability should aid in the
design and interpretation of new in situ diagnostics for turbulent
space and laboratory plasmas. Finally, we note that the present
work retains the standard low-frequency gyrokinetic space-time-
scale orderings [1] for the perturbed electromagnetic fields as well
as the ordering |Eq)| < |[E1L| for the component of the perturbed
electric field parallel to the unperturbed magnetic field compared
to the perpendicular components.

2. Theory

We begin our work by noting that the perturbed minimal-
coupling electromagnetic Lagrangian L; = (e/c) A1 - X —e &1 trans-
forms as L1 — Ly + (e/c)dxy/dt under a gauge transformation (in
what follows, we consider particles of mass m and charge e). Since
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Lagrangian mechanics is invariant under the addition of an exact
time derivative to the Lagrangian, the Lagrangian L is thus gauge-
invariant, although not gauge-free. We will next consider how this
basic gauge invariance property manifests itself after moving to the
guiding center phase space, which is an intermediate step in the
passage to gyrocenter phase space.

Recall that the guiding center coordinate transformation [9] is
given by (x,v) = (X, py, J,0) = zg, where | = uBo/Qq is the
guiding center gyroaction, and the guiding center position X is
displaced from the particle position x by the guiding center gy-
roradius vector p(J,0) according to x(X, J,0) = X + p. Instead
of directly calculating L; in guiding center phase space, we per-
form a partial guiding-center transformation by replacing p with
€p, where € is a dimensionless parameter ranging from 0 (no
shift in position) to 1 (the full guiding center transformation). The
partially-transformed minimal coupling Lagrangian is then given

by
Lie = (e/c)Are - X+ € p) —e D, (1)

where ®1¢ = 91(X+€p,t) and Aje =A1 (X + €p,t). Next, we ob-
serve that the parametric derivative dLq/de is given by

dlic _, 5. [g +lXtep) xB
= . — X
de p 1e c 14 1€
d
+dt( P A“)

where Ej¢ = —(V®; + ¢ 18A;/0t)c and Bie = (V x Ap)e. We
now use the simple identity Ligc = L1 + fol (dL1¢/de) de, where
the zero-Larmor-radius (ZLR) gauge-invariant Lagrangian L =
(e/0)A1(X,t) + X —ed(X,t) is evaluated at the guiding-center
position X, to obtain the alternative expression for Lyg:

e B(l)
Lge=- (A1—p xBY) X - J L4
c Bg
0
—e(@1-p-E), (2)
where we have neglected the total time derivative and defined the
multipole-integrated fields

1
E{(X, J.6) / €"Exe
=@ de, 3
(Bi”)O(,J,e) @+ D [ eg, (3)
0
with Bﬂ‘) =D - B(l) In the ZLR limit, we find (IE(O) Bgo)) ~

(E1,B1) and Bg )~ B;. For the sake of simplicity in deriving
Eq. (2), we have used the assumption that the background mag-
netic field is uniform. There is no conceptual difficulty in extending
this discussion to non-uniform background fields, although the cal-
culations do become heavier.

Using the definitions (2)-(3), the total perturbed guiding-center
Lagrangian Lgc = Logc + €5 L1gc is expressed in terms of the un-
perturbed guiding-center Lagrangian Logc = (e/c)Aj - X+ J6 —
Hogc, where the effective vector potential is given by (e/0)Aj =
(e/c)Ag+py o (we ignore the higher-order gyrogauge terms here)
and the guiding-center Hamiltonian is Hoge = pj 272m + J Qo (we
ignore terms proportional to derivatives of the {Jackground mag-
netic field). We note that, while the unperturbed guiding-center
Lagrangian Logc is independent of the gyroangle 6, the perturbed
part of the guiding-center Lagrangian (2) is now written as the
sum of the gyroangle-independent, gauge-invariant term L1, and a
manifestly gauge-free correction that is gyroangle dependent.

We will now use a gyrocenter phase-space transformation to
remove the dependence on the gyroangle 6 introduced by the

gauge-free part of Eq. (2). The ZLR minimal coupling Lagrangian
introduces no #-dependence, so we may easily choose our transfor-
mation so that it does not alter this term. The strategy suggested
here, i.e., focusing on the gauge-free part of the perturbed La-
grangian and leaving the minimal coupling term alone, proves to
be the key to achieving a manifestly gauge-free theory to all orders
in perturbation theory.

The result of the gyrocenter transformation is a new set of
phase-space coordinates, (X, 5”,7, 0) = Zgy, in which the gyrocen-
ter Lagrangian is given by

e .
Loy =-Agy - X+ J0 - Hgy. (4)

where Agy = 1_\3 + €5A; (an overbar is used to denote gyrocenter
coordinates as well as dependence on these coordinates), and the
gyroangle-independent gyrocenter Hamiltonian is given by

Hgy = Kgy + €s5€ ®1. (5)

Here, the gyrocenter kinetic energy has the asymptotic expansion

Kgy = Kogy + €5 K1gy + €2 Kagy + O (€3), (6)

where Kogy = ﬁﬁ /2m + W By denotes the lowest-order (guiding-
center) kinetic energy. We will soon show explicitly that the
higher-order terms Kygy (n > 1) are gauge-free, which ensures that
this new formulation of gyrokinetic theory is manifestly gauge-
free.

To first-order in €;, the gauge-free gyrocenter transformation is
given explicitly by zgy = zgc — €5 &1, where the first-order compo-
nents are

b ~ 3S
X 0 0) 1
= VS —P bo —, 7
&= gy * (V51 =) + B )
&' =—Bo - (vS1 - P?), (8)
(@]
9S B
J 1 1]
= - — —_— !, 9
& o9 + ]< Bo> (9)
351

Here, ]P’l(o) =(e/c)p x Bgo), and the gyroangle-dependent function
S is determined by the inhomogeneous linear equation

doS1 1)) 0s¢ 0 . Pbo 0\1°"
d =(nBy) " —elo- (B + me XBU)| . an

where Q°¢= Q — (Q) denotes the gyroangle-dependent part of

any function Q, and do/dt = 9/0t + (p”/m)'ﬁo -V 4+ Qpd/00 is

the uniform-background guiding-center evolution operator, which

is approximated as dg/dt ~ Q03/90 in accordance with the stan-
dard low-frequency gyrokinetic ordering [1].

The first two terms in the asymptotic expansion (6) of the gy-

rocenter kinetic energy are given by

0

<By)). (12)

_ |=A _ 0 VO
where vgyo = (P /m)Bg is the leadmg—order gyrocenter velocity
[see Eq. (15)], and
1g M © bo [=(0)
> (Blll> <P1 > : (ngl ™y <P1II ))
1 (0) -~ X d0$1
+ ﬁ <(P1”) > ibo . <QOE] X —dt

e 0 Vogy 5O do&
+Qo<p (BY + =2 xB) =L ). (13)

Kogy =

dt
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9K1gy/9] = — (Fige - 9p/0]) and

(0) N
)\ bo do(P; ) bo
Vgy1 = <P1||> + ((F]gc> e e m<%

where Q1gy =

are the first-order corrections to the gyrofrequency and gyrocenter
velocity, respectively, with

a
Fige =eEjgc + = <p|| bo + 0 %) X Bigc.
In the ZLR limit (for a uniform magnetic field), we obtain the sim-
plified expression for Eq. (13):

me> . , _ cbp - =
Kogy ~ — ?ﬂilﬂ + D B2 -E1 x By
0 0
_ by Biyl
+ (ZBo— — , 14
(M 0 m) 252 (14)

which is a standard result in gyrokinetic theory [1].
The physical meaning of the first-order terms in Eq. (12)
is given in terms of lowest-order gyrocenter electric and mag-

. . . . — =@ . e .
netic multipole contributions: (Bﬁ”)> yields the intrinsic multi-

S o . _ =0
pole moment contribution to magnetization while — (ep - [Eg ) +

(5||60/mc) X Eﬁo)]) yield the electric multipole moment contri-
bution to polarization and the moving electric-multipole moment
contribution to magnetization, respectively [see Eq. (18)]. The
physical meaning of the second-order terms in Eq. (13) is given
in terms of higher-order contributions to polarization and intrin-
sic magnetization [e.g., first and third terms in Eq. (14)] and the
moving-electric-dipole contribution to magnetization [e.g., second
term in Eq. (14)].

By applying Hamilton’s principle to the gyrocenter Lagrangian
(4), phase-space-conserving gyrocenter equations of motion may
be derived. In their general form, these consist of the gyrocenter
velocity equation

dKgy B _ = cby
=8 % | (g5eE) — VKgy) x —, (15)
9P| Bigy eBjgy
and the gyrocenter parallel-force equation
Bgy ) N2
Majgy = 5= - (eseEr —VKgy), (16)
gy

where Bjgy EBO * Bgy EBO . (EE + €5B1) appears in the definition
of the gyrocenter Jacobian Jgy = (e/c) B|jgy. Note that, by construc-
tion, the gyrocenter gyroaction J is conserved by the Hamiltonian
gyrocenter dynamics (although it is still an adiabatic invariant with
respect to the exact Hamiltonian particle dynamics), and the gyro-
center evolution for the gyroangle 6 is decoupled from the reduced
gyrocenter dynamics represented by Eqs. (15)-(16). In addition, the
gyrocenter Jacobian Jgy satisfies the gyrocenter Liouville Theorem:
0Tgy /Ot +V + (Vgy Tgy) + d(magy Tgy) /9P = 0.

As is well-known in the context of equilibrium thermodynam-
ics, the polarization or magnetization of a material is given by
differentiating the material’s free energy with respect to the elec-
tric or magnetic field [10]. In Refs.[11,12], the non-equilibrium
analogue of this fact is shown to involve functional derivatives
of the net gyrocenter kinetic energy Kgy = fgy Kgy F, which may
therefore be regarded as a non-equilibrium analogue of the free
energy of a gyrocenter gas. Here, fgy =Y [dzg denotes a sum
over particle species and an integration over gyrocenter phase
space, and the gyrocenter distribution F includes the gyrocenter

Jacobian Jgy. In particular, the polarization and magnetization den-
sities (Pgy, Mgy) of a distribution of gyrocenters F are given by

Pey®) ) _ / Tev® ) F, (17)
ng(x) ”‘gy(x)
gy
where X denotes an arbitrary field point, while mg(X) =
eg]SI(gy/éEl(x) and Poy(X) = —6518Kgy/5B1 (x) are the gyro-
center electric and magnetic dipole moments, respectively, derived

from the gyrocenter Hamiltonian (6). Using the first-order Hamil-
tonian (12), we find

Togy(X) =e (poy)
— ) — (0) (18)
Mogy(X) = —bg (0x ") +e(pdx ') X Vogy/C

where 8(") n+1) fo €"83(X+€p —x) de. Using the second-order
Hamiltonian (13), on the other hand, we find the first-order correc-
tions

mgy—< (ep8(°)>>, (19)

Q1gy
Qo

- e_
+<£.g (— 1bo s + P 5 x VOgy)>,

Rigy = M <8(])> + - c (p (S( )> X Vigy (20)

where the first-order Lie derivative £z = élx v+ Ep” pu + El

sf dg is defined in terms of the first-order components (7)- (10)
and contributions from By are omitted in Egs. (19)-(20) since they
appear at higher-order in the FLR expansion [i.e., By is absent in
Eq. (14)]. Here, at each order, the magnetic dipole is given as the
sum of the intrinsic part (first term) and the moving electric dipole
part (second term).

The polarization and magnetization densities, together with the
gyrocenter equations of motion, completely specify our new gauge-
free gyrokinetic theory. The gyrocenter distribution function F
obeys the gyrokinetic equation

dF /3t +V - (Vgy F) + d(maygyF)/dp = 0. (21)

The electromagnetic fields obey Maxwell’s equations with charge
and current densities 0(X) = Qgy(X) — V- Pgy(X) and J(X) = Jgy (X) +
€V x Mgy(X) + 9:Pgy(X), where the gyrocenter contributions
0gyX¥) = Jg, FeSX—%) (22)
Joy(X) = fgy Fevgy §(X—X)

include the delta function §(X — X) = 8p, thereby guaranteeing that
only gyrocenters located at the field position X = X contribute to
the charge and current densities. We note that the gyrocenter ve-
locity vgy, given by Eq. (15), includes first-order and second-order
contributions through the gyrocenter kinetic energy (6).

By using the identity p - VB,((O) = 8gc — 8o, where 8gc = SX +
P —X), the charge density becomes

o(x) = /F[e (8gc) + €5 (£ (e 8gc))] . (23)

8y

which corresponds exactly to the standard gyrokinetic expression
[1], except that the generating vector-field components (7)-(10) in
Eq. (23) are now gauge-free. Next, we use the identity EBO X
VS,(( = —edgcVL/C+ Qof%(eéw)p/c), and we find the current
density
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Jx) = / F [e (VOgy + €5 Vlgy) (8gc) + Gg eVagy 8o
gy

3
+e (R + € Qgy) <£ 5gc> (24)

+ees (Es [(Vogy +V1)8ge — 9035@8’(‘0))]>] ’

where the gyrocenter polarization current density d;Pgy has been
omitted as a higher-order correction. Approximate expressions for
the charge and current densities (23)-(24) can be used in the trun-
cated delta- f formulation of gyrokinetic theory:

— =(0) osc
/<<%) eagc> Fu (25)

0 %/(eSgJ F +es
gy gy

I~ / <e (Vogy +Vy) 5gc> F
gy

Qigy =
+€3/€ (Q—(g)y(vj_ 3gc>+V1gy (Sgc)> Fu, (26)
8y

where the gyrocenter Vlasov distribution F is approximated by
a local Maxwellian distribution F); whenever first-order effects
are considered, and second-order effects are omitted. Complete
variational derivations of full and truncated gauge-free gyrokinetic
models will be presented in a future publication. Here, we simply
note that the total energy (Hamiltonian) functional for the gauge-
free gyrokinetic Vlasov-Maxwell equations is expressed as [12]

H —/F K E OKgy
gy — gy 1 5E1

gy
d3x
+ f (IR + 1B, (27)
81
where B =By + €5 B; denotes the total magnetic field.
3. Discussion

An important application of these results is building a gauge-
free hybrid gyrokinetic electron-Lorentz ion model. As was ex-
plained for instance in Ref.[8], present-day turbulence simulations
that employ gyrokinetic electrons and ions are often forced to re-
solve timescales that are near the ion cyclotron period. Therefore,
not much is gained, and much is lost, when applying gyrokinet-
ics to both species. A hybrid model would have the obvious ad-
vantages of simpler equations for the ions and the capability of
resolving the ion-cyclotron range of frequencies. While there is
an established hybrid model described in Ref.[7], it is based on

the electromagnetic potentials instead of the fields. The success of
the gauge-free hybrid drift-kinetic electron-Lorentz ion model for-
mulated in Ref.[8] motivates extending the gauge-free approach
beyond the drift-kinetic approximation. Such a model will be the
subject of future publications.

In summary, the gauge-free formulation of gyrokinetic theory
presented here has an underlying Hamiltonian structure that was
described in Ref.[12], as well as a variational structure in the spirit
of Refs.[13-16]. Therefore the formalism introduced in Ref.[17]
may be used to develop finite-dimensional truncations of our new
theory that also possess a Hamiltonian structure. Such truncations
may be used to develop structure-preserving schemes for simulat-
ing kinetic turbulence, much as was done for the Vlasov-Maxwell
system in Refs.[18-20].
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