

pubs.acs.org/OrgLett Letter

Vanadium-Catalyzed Oxidative Intramolecular Coupling of Tethered Phenols: Formation of Phenol-Dienone Products

Philip H. Gilmartin and Marisa C. Kozlowski*

ABSTRACT: A mild and efficient method for the vanadium-catalyzed intramolecular coupling of tethered free phenols is described. The corresponding phenol-dienone products are prepared directly in good yields with low catalyst loadings. Electronically diverse tethered phenol precursors are well tolerated, and the catalytic method was effectively applied as the key step in syntheses of three natural products and a synthetically useful morphinan alkaloid precursor.

Bisphenols constitute an important class of molecules with utility as both complex molecule precursors and biologically active natural products. Such biologically active compounds often incorporate the bisphenol biaryl motif as part of a polycyclic system (Figure 1A). Other phenol-

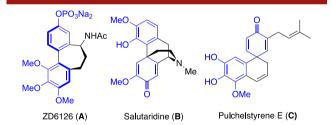
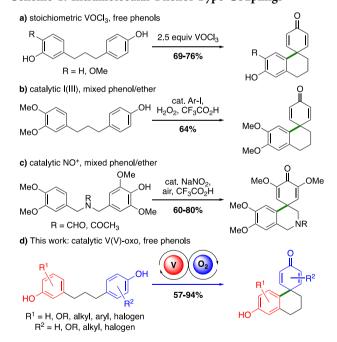



Figure 1. Compounds derived from linked phenols.

containing natural products arise from the direct oxidative coupling of tethered free phenols to afford a phenol-dienone motif (Figure 1B,C). Since the discovery that direct phenol oxidation plays a critical role in the biosynthesis of such compounds, analogous reagent-based approaches have been of considerable interest for their potential application in the synthesis of plant metabolites.

There are several reports on intermolecular oxidative phenol coupling, including transition metal-mediated^{9–13} and electrochemical^{14,15} phenol homocoupling and cross-coupling reactions. Despite this, the intramolecular coupling of tethered free phenols for the formation of phenol-dienone products is not well studied. Schwartz et al. disclosed one of the first examples of this transformation, coupling propyl-tethered phenols with stoichiometric VOCl₃ in good yield (Scheme 1a). ¹⁶ This work

Scheme 1. Intramolecular Phenol-Type Couplings

Received: February 13, 2020 Published: March 31, 2020

with stoichiometric VOCl₃ was also utilized in the formation of N-(ethoxycarbonyl)-2-hydroxynorsalutaridine, ¹⁷ an analogue of salutaridine (\mathbf{B} , Figure 1), a key intermediate in the biosynthesis of morphine. In addition to V(V), phenol-dienone products have been prepared directly from tethered free phenols using stoichiometric Fe(III)^{18,19} or Tl(III)^{20,21} as the oxidant. Despite success with these stoichiometric reagents, limitations include the air sensitivity of VOCl₃, the toxicity of Tl(III), the need for a significant excess of oxidant, and reduced yields in converting electron-neutral and electron-deficient substrates. A catalytic variant of this direct transformation using stable, easily accessible reagents would therefore be of great utility from the perspective of atom economy and accessing structurally diverse phenol-dienone substrates.

An alternative approach for the formation of phenol-dienone products proceeds via oxidation of the corresponding tethered aryl ethers or mixed phenol/ether species, followed by subsequent deprotection. Considerable work in this area has shown that stoichiometric $Mo(V)^{22}$ and $I(III)^{23}$ are competent in the intramolecular oxidative coupling of tethered aryl ethers. The stoichiometric nature of the I(III)-mediated transformation was addressed by Kita et al. in 2008, as they coupled mixed tethered phenol/ethers with catalytic amounts of aryl iodide, which is activated to I(III) by H₂O₂ in the presence of trifluoroacetic acid (Scheme 1b).²⁴ A complementary approach was also disclosed by Wang et al., wherein they oxidized similar substrates using a catalytic system of sodium nitrite in the presence of air and Brønsted acid (Scheme 1c).²⁵ While both of these reports reflect catalytic variants of the intramolecular coupling of tethered arenes, both require the use of electron-rich substrates. Additionally, both approaches utilize mixed tethered phenol/ether substrates, which precludes the direct formation of the phenol-dienone motif. Deprotection of aryl ethers to generate the phenoldienones can be challenging in the presence of the newly formed dienone motif, which is sensitive to acidic and reducing conditions. The orthogonality of protecting groups also becomes a challenge when multiple ether moieties are present in the ether-dienone product.

An important distinction should be made among bis-ether, mixed ether/phenol, and bisphenol intramolecular coupling reactions. These transformations are fundamentally different and are proposed to proceed via different mechanisms. In the case of ether systems, a polar, two-electron mechanism invoking a cationic intermediate is often proposed. In the case of tethered bisphenol cyclizations to form phenol-dienone products, the reaction is more likely to proceed through sequential single-electron oxidation of both coupling partners, akin to the mechanisms proposed in the biosynthesis of phenol-derived polycyclic natural products. To the best of our knowledge, there have been no reports detailing the catalytic oxidation of tethered free phenols for the formation of phenol-dienone products.

Inspired by the work of Schwartz^{16,17} and our prior work with vanadium Schiff base catalysts, 12,26 we envisioned the development of a catalytic system for the oxidation of tethered free phenols to form phenol-dienone products directly (Scheme 1d). Initial reaction studies were conducted with substrate 1a, 20 mol % vanadium catalyst V1, and O_2 as the cooxidant (Table 1). When 1,2-dichloroethane (DCE) was utilized as the solvent, there was little consumption of 1a and the catalyst system failed to form 2a (Table 1, entry 1).

Table 1. Optimization of Reaction Conditions^a

entry	X	loading (mol %)	time (h)	2a (%) ^b
1 ^c	OEt	20	24	<5
2	OEt	20	24	56
3	OEt	20	48	$(89)^{d}$
4	OEt	10	18	24
5	Ot-Bu	10	18	12
6	F	10	18	<5
7	$OCH(CF_3)_2$	10	18	70
8	$OCH(CF_3)_2$	10	24	$(80)^{d}$
9	$OCH(CF_3)_2$	5	24	31

"Reaction conditions: 1a (0.10 mmol), V (10–20 mol %), HFIP (0.1 M), O_2 (1 atm) for 18–48 h. "Determined by ¹H NMR spectroscopy with an internal standard (4,4'-di-*tert*-butylbiphenyl). "DCE as the solvent. "Isolated yield.

1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) was identified as a suitable solvent for this reaction because of its unique ability to stabilize electron-deficient reaction intermediates.²⁷ The reaction in HFIP showed good conversion to **2a** over 24 h (Table 1, entry 2), with full conversion observed in 48 h affording an isolated yield of 89% (Table 1, entry 3). Interestingly, only para—para coupled products were observed in this reaction, despite the fact that prior work with this catalyst uncovered a preference for *ortho* coupling.¹² We hypothesize that the *ortho—para* coupled product is not formed because of unfavorable steric interactions between phenoxybound vanadium and the other aryl partner during the C–C bond-forming step.

Efforts to reduce reaction time and catalyst loading focused on the catalyst counterion. Vanadium Schiff base catalysts bearing the *tert*-butoxy and fluoride counterions were shown to form product more slowly over 18 h than the corresponding ethoxy catalyst over the same time period (Table 1, entries 5 and 6 vs entry 4). The observation that catalyst activity tracks with the lability of the counterion led to the preparation of a catalyst bearing HFIP as the counterion. Gratifyingly, V2 proved to be more effective in the transformation, forming 2a in 70% yield over the same reaction time (Table 1, entry 7). Reaction for a full 24 h with 10 mol % V2 led to full conversion of 1a and an 80% isolated yield of 2a (Table 1, entry 8). A reaction profile for the conversion of 1a to 2a with V2 (see the Supporting Information, control A) is consistent with firstorder decomposition through 90% conversion with neither a significant burst nor a significant induction period. Independent experiments in which 2a was added in variable amounts prior to reaction of 1a indicate that no product inhibition is occurring, because 1a is converted to the same extent with various excesses of 2a. Even so, further reduction of the catalyst loading led to poor conversion over the 24 h reaction period (Table 1, entry 9). A screen of solvents (Table S2) and standard oxidants (Table S3) revealed that HFIP was the optimal solvent for the transformation and that O₂ is the most

effective oxidant, outperforming an atmosphere of air, inorganic persulfates, and organic peroxides.

With the optimized conditions for the formation of phenoldienone products in hand, the substrate scope of this transformation was examined (Scheme 2). In the simplest,

Scheme 2. Scope of V-Catalyzed Intramolecular Coupling of Tethered Free Phenols a

^aReaction conditions: 1 (0.10–0.20 mmol), **V2** (10 mol %), HFIP (0.1 M), O₂ (1 atm) for 24–44 h; yields of the isolated material. ^bOn a larger scale (5.00 mmol, 1.14 g). ^cWith 20 mol % catalyst. ^dHFIP/DCE (0.1 M, 1:1) as the solvent. ^cYield in parentheses based on recovery of the starting material.

unactivated case, the unsubstituted precursor was oxidized in good yield to its corresponding cyclized product (2a). In the case of substitution on the ring where the tether is attached at C3 (red ring in Scheme 2), electron-releasing and electron-withdrawing groups were well-tolerated (2b-2h). Bromocontaining (1d) and chloro-containing (1e) substrates were oxidized to phenol-dienone products in fair yields requiring an increased catalyst loading. Additionally, substitution is tolerated at all positions of this ring with no loss of coupling efficiency (2c, 2g, and 2h). A direct assessment against prior art was undertaken to further validate the method. (1) With Tl(O₂CCF₃), and 30% yield of 2c was obtained with 79% consumption of 1c. (2) With VOCl₃, a 39% yield was

obtained after 85% consumption and several other byproducts were observed. (3) With the method reported here, a 76% yield was obtained with 85% consumption. Overall, our catalytic method was easier to undertake [Tl(III) and VOCl₃ need special handling], gave a higher yield, provided a much cleaner reaction profile, and resulted in more facile purification.

In the case of substitution on the ring where the tether is attached at C4' (blue ring in Scheme 2), similar results were obtained (2i-2p). Electron-releasing and electron-withdrawing groups were well tolerated. Notably, dimethoxy-substituted 1p was converted to its corresponding highly substituted phenol-dienone product in good yield. Fluoro-substituted 2n was also obtained in fair yield, revealing that deactivated substrates are capable of undergoing oxidation by V2 to form product. Additionally, substitution is tolerated at other positions of this ring (2m and 2o) with no loss of efficiency. Even though V2 is a chiral catalyst, no enantioenduction was observed for 2j-2m, likely due to the catalyst binding phenols that are distal to the site of C-C bond formation. The overall substrate scope establishes that this catalyst system is capable of oxidizing a wide variety of tethered phenol compounds and that the transformation is not limited by a need for electronrich, nucleophilic arenes as is the case for other methods. 24,25 Efforts to increase the reaction scale were successful, with a gram-scale reaction of 2a giving a nearly identical outcome.

To further outline the utility of this method, several natural products were identified as synthetic targets due to the presence of the phenol-dienone moiety in their core structure. The natural product pulchelstyrene D (3)²⁸ differs from the simple substrates prepared above (Scheme 2) only in the unsaturation of the propyl tether. Attempts to prepare a version of the substrate with an alkenyl tether were unsuccessful, so an alternative route through the saturated precursor was envisioned. As a result, dimethoxy-substituted substrate 1q was coupled in good yield to generate saturated phenol-dienone product 2q (Scheme 3a). Efforts to

Scheme 3. Formation of Spiro-dienone Natural Products, Pulchelstyrene D and Spirolouveline, via Intramolecular Oxidative Coupling

directly convert 2q into the natural product 3 were unsuccessful. To overcome this issue, 2q was subjected to a three-step sequence of acetylation, radical-mediated bromination/elimination, and deacetylation to form natural product 3 in 34% yield over three steps (see the Supporting Information). This synthetic effort represents the first preparation of this naturally occurring compound.

A further natural product, spirolouveline (4),²⁹ is also closely related to the simple substrates prepared in Scheme 2. In addition to a single methoxy group, the compound contains a free hydroxyl group on the dienone moiety. To directly access 4, a catechol-containing precursor was prepared and subjected to the vanadium-catalyzed oxidation conditions. Unfortunately, a poor reaction profile was observed, likely due to the presence of multiple oxidizable phenolic hydroxyl groups. An alternative approach utilizing a protected form of the catechol was envisioned, and 1r was coupled successfully in good yield to generate bis-alkoxy phenol-dienone 2r (Scheme 3b). Selective removal of the more labile *iso*-propoxy group of 2r with Lewis acid furnished racemic 4. This synthetic effort also represents the first reported preparation of this naturally occurring compound.

The dracaenone natural products represent a tetracyclic variant of the tethered phenol-dienone motif. The natural product 10-hydroxy-11-methoxydracaenone (6) has been prepared previously via direct coupling of the bisphenol in 37% yield^{20,21} or by coupling of the protected aryl ether followed by deprotection with 62% yield over the two steps.²¹ In each case, a stoichiometric oxidant is required for the key intramolecular coupling step. Using the optimized conditions with **V2**, natural product 6 was obtained in a single step from its corresponding free phenol precursor in 78% yield (Scheme 4a). This preparation represents a protecting group-free synthesis of 6 with improved efficiency in the key intramolecular phenol coupling step.

Scheme 4. Formation of Bicyclic Systems, a Dracaenone Natural Product and a Salutaridine Analogue, via Intramolecular Oxidative Coupling

Lastly, a synthetically useful salutaridine derivative was prepared using the newly developed catalytic method (Scheme 4b). Reticuline derivative 7 was coupled directly to form salutaridine phenol-dienone product 8 in good yield. Remarkably, only small quantities of the *ortho-ortho* coupled aporphine-type product were observed. It has been hypothesized that products of this type are not observed due to an unfavorable *peri*-interaction between the approaching hydroxyl groups in the C–C bond-forming step. ¹⁷ Compound 8 is of significant interest in the context of alkaloid synthesis, ³⁰ because the coupling reaction establishes the B ring of the classic morphine scaffold with limited prefunctionalization. Considerable precedent exists for conversion of these phenol-

dienone products to downstream morphinan alkaloids. ^{17,31,32} The efficiency of the coupling reaction to form 8 compares well to that of the stoichiometric variant reported by Schwartz et al. ¹⁷ and offers a complementary approach to state-of-the-art electrochemical couplings of the related aryl ethers. ^{31,32}

A series of control experiments were conducted to aid in understanding the mechanism of the vanadium-catalyzed coupling reaction (see the Supporting Information). Reactions run without V2 in the presence of dioxygen showed limited conversion of the substrate and no product formation, indicating that the catalyst is key in oxidizing the substrate (Supporting Information, control C). Additionally, a study concerning catalyst ligand identity (Supporting Information, control E) showed that electron-rich ligands (V1, with t-Bu in place of NO₂) led to slower reaction rates. This result points away from catalyst reoxidation [V(IV) to V(V)] being ratelimiting and suggests substrate-catalyst binding or oxidation by the catalyst [V(V)] to V(IV) as the turnover-limiting step. Attempts to couple mixed phenol/ether substrates (Supporting Information, control F) showed decomposition of the starting material with no detectable phenol-dienone product formation, indicating that oxidation likely occurs through covalent activation by V2, as opposed to outer-sphere electron transfer from V(V). Furthermore, no homocoupled dimeric products were observed during a standard reaction with tethered phenols, supporting a mechanism that proceeds through vanadium species (see structure II in Scheme 5), as opposed to free radical forms of oxidized 1a.

Scheme 5. Proposed Mechanism

These control results, combined with prior findings, 12,33 support a proposed mechanism (Scheme 5) in which a phenoxide-bound substrate (I) is oxidized by 2 equiv of V2. Prior work indicated the formation of a V(IV)-V(V) intermediate (II), which undergoes intersystem crossing to react via a triplet. We propose that the radical on the blue ring forms first first, as the presence of the tether at the *para*-position better stabilizes the electron-deficient species formed

upon oxidation. The subsequent intramolecular coupling followed by substrate displacement affords bis-dienone intermediate IV and reduced catalyst species III. Bis-dienone intermediate IV undergoes a tautomerization to form the phenol portion of the final phenol-dienone product. Catalyst intermediate III is then reoxidized in the presence of dioxygen to re-form active catalyst V2. Additional mechanistic studies are ongoing, with an emphasis on identifying the nature of the species involved in the key C–C bond-forming step.

In summary, a new vanadium Schiff base catalyst was developed for use in the catalytic intramolecular coupling of tethered phenols to form phenol-dienone products. Modifications to the catalyst counterion revealed that an HFIP-coordinated V(V)—oxo catalyst was superior in mediating the coupling reaction. In total, 20 oxidatively coupled adducts were prepared in yields up to 94%, including three natural products and a morphinan alkaloid analogue. This newly developed catalytic method for intramolecular phenol-dienone coupling serves as a valuable addition to the rich field of oxidative phenol C—H functionalization³⁴ and represents an effective small molecule catalytic approach to the biomimetic coupling of tethered phenols. Further studies of the mechanism and enantioselective variants of these processes are underway.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.0c00577.

Experimental procedures, reaction optimization, reaction controls, characterization data, and spectral data (PDF)

■ AUTHOR INFORMATION

Corresponding Author

Marisa C. Kozlowski — Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; o orcid.org/ 0000-0002-4225-7125; Email: marisa@sas.upenn.edu

Author

Philip H. Gilmartin – Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.0c00577

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors are grateful to the National Science Foundation (NSF) (CHE1764298) and the National Institutes of Health (NIH) (R35 GM131902) for financial support of this research. Partial instrumentation support was provided by the NIH and NSF (1S10RR023444, 1S10RR022442, CHE-0840438, CHE-0848460, 1S10OD011980, and CHE-1827457) as well as the Vagelos Institute for Energy Science and Technology. P.H.G. thanks the NSF for fellowship support (DGE-1845298). Dr. Charles W. Ross III (University of Pennsylvania) is acknowledged for obtaining accurate mass data.

■ REFERENCES

- (1) Whiting, D. A. Natural Phenolic Compounds 1900–2000: A Bird's Eye View of a Century's Chemistry. *Nat. Prod. Rep.* **2001**, *18*, 583–606
- (2) Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning, M. Atroposelective Total Synthesis of Axially Chiral Biaryl Natural Products. *Chem. Rev.* **2011**, *111*, 563–639.
- (3) Joncour, A.; Liu, J.-M.; Décor, A.; Thoret, S.; Wdzieczak-Bakala, J.; Bignon, J.; Baudoin, O. Synthesis of Anti-Microtubule Biaryls and Preliminary Evaluation as Vascular-Disrupting Agents. *ChemMedChem* **2008**, *3*, 1731–1739.
- (4) Barton, D. H. R.; Kirby, G. W.; Steglich, W.; Thomas, G. M.; Battersby, A. R.; Dobson, T. A.; Ramuz, H. 444. Investigations on the Biosynthesis of Morphine Alkaloids. *J. Chem. Soc.* **1965**, No. 0, 2423–2438
- (5) Zong, Y.; Zhong, M.; Li, D.-M.; Zhang, B.-J.; Mai, Z.-P.; Huo, X.-K.; Huang, S.-S.; Zhang, H.-L.; Wang, C.; Ma, X.-C.; et al.etal Phenolic Constituents from the Roots of Phyllodium Pulchellum. *J. Asian Nat. Prod. Res.* **2014**, *16*, 741–746.
- (6) Barton, D. H. R.; Cohen, T. In Festschrift Prof. Dr. Arthur Stoll Zum Siebzigsten Geburstag, 8; Birkhäuser: Basel, Switzerland, 1957.
- (7) Aldemir, H.; Richarz, R.; Gulder, T. A. M. The Biocatalytic Repertoire of Natural Biaryl Formation. *Angew. Chem., Int. Ed.* **2014**, 53, 8286–8293.
- (8) Tang, M.-C.; Zou, Y.; Watanabe, K.; Walsh, C. T.; Tang, Y. Oxidative Cyclization in Natural Product Biosynthesis. *Chem. Rev.* **2017**, *117*, 5226–5333.
- (9) Reiss, H.; Shalit, H.; Vershinin, V.; More, N. Y.; Forckosh, H.; Pappo, D. Cobalt(II)[Salen]-Catalyzed Selective Aerobic Oxidative Cross-Coupling between Electron-Rich Phenols and 2-Naphthols. *J. Org. Chem.* **2019**, *84*, 7950–7960.
- (10) Shalit, H.; Dyadyuk, A.; Pappo, D. Selective Oxidative Phenol Coupling by Iron Catalysis. *J. Org. Chem.* **2019**, *84*, 1677–1686.
- (11) Esguerra, K. V. N.; Fall, Y.; Petitjean, L.; Lumb, J.-P. Controlling the Catalytic Aerobic Oxidation of Phenols. *J. Am. Chem. Soc.* **2014**, *136*, 7662–7668.
- (12) Kang, H.; Lee, Y.-E.; Reddy, P. V. G.; Dey, S.; Allen, S. E.; Niederer, K. A.; Sung, P.; Hewitt, K.; Torruellas, C.; Herling, M. R.; Kozlowski, M. C. Asymmetric Oxidative Coupling of Phenols and Hydroxycarbazoles. *Org. Lett.* **2017**, *19*, 5505–5508.
- (13) Nieves-Quinones, Y.; Paniak, T. J.; Lee, Y. E.; Kim, S. M.; Tcyrulnikov, S.; Kozlowski, M. C. Chromium-Salen Catalyzed Cross-Coupling of Phenols: Mechanism and Origin of the Selectivity. *J. Am. Chem. Soc.* **2019**, *141*, 10016–10032.
- (14) Kirste, A.; Schnakenburg, G.; Waldvogel, S. R. Anodic Coupling of Guaiacol Derivatives on Boron-Doped Diamond Electrodes. *Org. Lett.* **2011**, *13*, 3126–3129.
- (15) Röckl, J. L.; Schollmeyer, D.; Franke, R.; Waldvogel, S. R. Dehydrogenative Anodic C–C Coupling of Phenols Bearing Electron-Withdrawing Groups. *Angew. Chem., Int. Ed.* **2020**, *59*, 315–319.
- (16) Schwartz, M. A.; Rose, B. F.; Holton, R. A.; Scott, S. W.; Vishnuvajjala, B. Intramolecular Oxidative Coupling of Diphenolic, Monophenolic, and Nonphenolic Substrates. *J. Am. Chem. Soc.* **1977**, 99, 2571–2578.
- (17) Schwartz, M. A.; Zoda, M. F. Biomimetic Approaches to Morphine Alkaloids. Total Synthesis of (.+-.)-2-Hydroxycodeine and (.+-.)-Noroxycodone. *J. Org. Chem.* **1981**, *46*, 4623–4625.
- (18) Tobinaga, S.; Kotani, E. Intramolecular and Intermolecular Oxidative Coupling Reactions by a New Iron Complex [Fe(DMF)-3Cl2][FeCl4]. *J. Am. Chem. Soc.* **1972**, *94*, 309–310.
- (19) Takasugi, M.; Niino, N.; Anetai, M.; Masamune, T.; Shirata, A.; Takahashi, K. Structure of Two Stress Metabolites, Spirobroussonin a and b, from Diseased Paper Mulberry. *Chem. Lett.* **1984**, *13*, 693–694.
- (20) Cordell, G. A.; Blaskó, G. Biomimetic Total Synthesis of Dracaenone Derivatives. *Heterocycles* **1988**, 27, 445–452.
- (21) Li, M.-M.; Wu, Y.; Liu, B. Synthesis and Configuration of Natural Dracaenones. *Org. Lett.* **2019**, *21*, 575–578.
- (22) Schubert, M.; Wehming, K.; Kehl, A.; Nieger, M.; Schnakenburg, G.; Fröhlich, R.; Schollmeyer, D.; Waldvogel, S. R.

Molybdenum Pentachloride Mediated Synthesis of Spirocyclic Compounds by Intramolecular Oxidative Coupling. *Eur. J. Org. Chem.* **2016**, 2016, 60–63.

- (23) Hamamoto, H.; Anilkumar, G.; Tohma, H.; Kita, Y. A Novel and Useful Oxidative Intramolecular Coupling Reaction of Phenol Ether Derivatives on Treatment with a Combination of Hypervalent Iodine(III) Reagent and Heteropoly Acid. *Chem. Eur. J.* **2002**, *8*, 5377–5383.
- (24) Dohi, T.; Minamitsuji, Y.; Maruyama, A.; Hirose, S.; Kita, Y. A New H2O2/Acid Anhydride System for the Iodoarene-Catalyzed C—C Bond-Forming Reactions of Phenols. *Org. Lett.* **2008**, *10*, 3559—3562.
- (25) Su, B.; Deng, M.; Wang, Q. Bioinspired Construction of a Spirocyclohexadienone Moiety via Sodium Nitrite Catalyzed Aerobic Intramolecular Oxidative Phenol Coupling. *Org. Lett.* **2013**, *15*, 1606–1609.
- (26) Neuhaus, W. C.; Jemison, A. L.; Kozlowski, M. C. Vanadium-Catalyzed Selective Oxidative Homocoupling of Alkenyl Phenols To Synthesize Lignan Analogs. *ACS Catal.* **2019**, *9*, 11067–11073.
- (27) Colomer, I.; Chamberlain, A. E. R.; Haughey, M. B.; Donohoe, T. J. Hexafluoroisopropanol as a Highly Versatile Solvent. *Nat. Rev. Chem.* **2017**, *1*, 0088.
- (28) Shen, C.-C.; Wang, S.-T.; Tsai, S.-Y.; Yang, H.-C.; Shieh, B.-J.; Chen, C.-C. Cinnamylphenols from Phyllodium Pulchellum. *J. Nat. Prod.* **2005**, *68*, 791–793.
- (29) Beldjoudi, N.; Mambu, L.; Labaïed, M.; Grellier, P.; Ramanitrahasimbola, D.; Rasoanaivo, P.; Martin, M. T.; Frappier, F. Flavonoids from Dalbergia Louvelii and Their Antiplasmodial Activity. *J. Nat. Prod.* **2003**, *66*, 1447–1450.
- (30) Blakemore, P. R.; White, J. D. Morphine, the Proteus of Organic Molecules. *Chem. Commun.* **2002**, *0*, 1159–1168.
- (31) Lipp, A.; Ferenc, D.; Gütz, C.; Geffe, M.; Vierengel, N.; Schollmeyer, D.; Schäfer, H. J.; Waldvogel, S. R.; Opatz, T. A Regio-and Diastereoselective Anodic Aryl—Aryl Coupling in the Biomimetic Total Synthesis of (—)-Thebaine. *Angew. Chem., Int. Ed.* **2018**, *57*, 11055—11059.
- (32) Lipp, A.; Selt, M.; Ferenc, D.; Schollmeyer, D.; Waldvogel, S. R.; Opatz, T. Total Synthesis of (–)-Oxycodone via Anodic Aryl—Aryl Coupling. *Org. Lett.* **2019**, *21*, 1828–1831.
- (33) Kang, H.; Herling, M. R.; Niederer, K. A.; Lee, Y. E.; Vasu Govardhana Reddy, P.; Dey, S.; Allen, S. E.; Sung, P.; Hewitt, K.; Torruellas, C.; Kim, G. J.; Kozlowski, M. C. Enantioselective Vanadium-Catalyzed Oxidative Coupling: Development and Mechanistic Insights. J. Org. Chem. 2018, 83, 14362–14384.
- (34) Huang, Z.; Lumb, J.-P. Phenol-Directed C-H Functionalization. ACS Catal. 2019, 9, 521-555.