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Abstract: Glasses are topologically disordered materials with varying degrees of fluctuations in
structure and topology. This study links statistical mechanics and topological constraint theory to
quantify the degree of topological fluctuations in binary phosphate glasses. Since fluctuations are
a potential mechanism enabling self-organization, we investigated the ability of phosphate
glasses to adapt their topology to mitigate localized stresses, e.g., in the formation of a stress-free
intermediate phase. Results revealed the dependency of both glass composition and temperature
in governing the ability of a glass network to relax localized stresses and achieve an ideal,
isostatic state; also, the possibility of a second intermediate phase at higher modifier content was

found.


mailto:jcm426@psu.edu

I. Introduction

Designing new glass compositions requires accurate structural understanding; however,
the complex chemical composition and disordered structure of glasses complicate achievement
of this objective. As a result, most previous descriptions of glass structures and properties have
only been in terms of their mean or expectation values. The understanding of spatial fluctuations,
including fluctuations in glass structure and network topology, can offer a more complete
description of a glass. Prior work by Kirchner et al. proposed a generalized approach for
modeling topological fluctuations as a function of temperature and chemical composition
through the use of statistical mechanics and topological constraint theory.! Such a model couples
the composition-structure relations (from statistical mechanics) with the structure-property
relations (through topological constraint theory) to optimize new glass compositions effectively.?

Structural and topological fluctuations directly impact several important glass properties.
For example, Rayleigh scattering is a function of localized density fluctuations.>* Also, the
relaxation modes in a glass are dependent on atomic scale fluctuations;>® crack propagation is
affected by localized changes in bonding,” and nucleation and phase separation are also triggered
by local fluctuations.'%!* The scope of the current paper includes structural and topological
fluctuations in binary phosphate glass systems.

Within the study of topological constraint theory, there is growing interest in the ability
of a glass network to adapt its topology to achieve isostaticity in nominally overconstrained
systems. In an overconstrained disordered network, the number of geometrically independent
constraints exceeds the number of translational degrees of freedom of the atoms. Since the
network is disordered, these rigid constraints are mutually incompatible. This incompatibility of

the constraints leads to localized stresses, which, in turn, provide a thermodynamic driving force



for relaxation, i.e., to eliminate the localized stresses and create a stress-free network. The
stresses from incompatible constraints can be eliminated either (a) via crystallization, i.e.,
through the imposition of geometric order, where geometrically independent (incompatible)
constraints become dependent (compatible); or (b) via topological fluctuations that enable
adaptation of the disordered network to reduce the number of incompatible constraints while
maintaining a disordered structure. Hence, topological fluctuations can enable the atoms to self-
organize into a stress-free state while maintaining a non-crystalline structure. These structural
rearrangements relieve local stresses, driving the nominally overconstrained system back toward
isostaticity. 41

In the mean-field description of glass topology, a glass network is isostatic when the
number of rigid constraints per atom, 7, equals the number of translational degrees of freedom. !¢
Hence, for a system in three-dimensional space, (n) = 3 is the condition for achieving an isostatic
network.!” If (n) > 3 the system is overconstrained and considered stress rigid due to the presence
of mutually incompatible rigid constraints in the disordered glass network. If (n) < 3 the system
is underconstrained and contains floppy modes.!”

In the original work by Phillips and Thorpe, the isostatic state was considered to occur at
a single point;'® however, in 1999, Boolchand et al. performed Raman scattering and
temperature-modulated differential scanning calorimetry (MDSC) experiments, which concluded
a finite width of isostatic compositions in which the system can maintain optimal stability.
Boolchand coined this finite width the intermediate phase (IP).!*1°

Within the glass community, there is a controversy surrounding the existence of this
phenomenon. One such objection is the lack of a structural signature apparent in experimental

results.!” Lucas et al. hypothesized that the phase could be an artifact resulting from single



modulated frequency in the MDSC experiments.?’ However, subsequent computational
evaluations showed a non-reversing heat flow independent of the modulation of frequency.?!
Further research is required to clarify the controversy regarding this topic. Previous work by
Kirchner and Mauro has explored topological fluctuations and their impact on revealing more
information about this proposed intermediate phase for arbitrary glass-forming systems.?? This
paper extends that work and applies the theory to binary phosphate systems.

Phosphate glasses are remarkable for their low glass transition temperatures, high thermal
expansion coefficients, high rare earth solubility, and optical properties including high ultraviolet
light transparency.?*2* These properties make phosphate glasses attractive for applications in
solid state lasers, biocompatible bone replacement materials, solid-state ionic devices, and glass-
to-metal seals.”>** Previous work by Bedker et al. presents a statistical description of the
compositional evolution of the mean structural units (Q/-speciation) within phosphate glasses.?
Here, we extend their work to explore the fluctuations in structural units and thereby the ability
of glasses to rearrange.

This paper investigates the structural and topological fluctuations of binary phosphate
glasses as a function of modifier concentration and temperature for five systems: xCs2O(1-
x)P20s, xNaxO(1-x)P20s, xLi20O(1-x)P20s, xMgO(1-x)P20s, and xZnO(1-x)P20s. We also
consider the ability of the phosphate glass networks to adapt their topology to eliminate stresses,
in order to study the origin of the intermediate phase experimentally reported in these glassy

systems.?6

II. Theory



Although glass-forming systems lack long-range order, the connectivity of the phosphate
network is described by short-range structures, denoted by @’ species, where j is the number of
bridging oxygens (BO) bonded to the phosphorus atom.?’ Pure P,Os is nominally composed
exclusively of phosphate tetrahedra with three BOs and one double-bonded terminal oxygen
(TO); therefore, this unit is denoted as Q>. Addition of a modifier ion causes one BO to be
converted to a non-bridging oxygen (NBO), where the NBO coordinates to modifier ions.” This
new unit has two BOs and is denoted as Q. Due to electron delocalization, as the Q? unit
becomes a Q? unit, the TO on the Q? unit also becomes an NBO.?* The addition of more modifier
ions follows this similar pattern from Q°to Q?, Q*to Q!, and Q' to Q°.2*> These structural units are
shown in Figure 1. The units themselves are considered to be bonded in a random manner

throughout the network.?
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Figure 1. The four structural building blocks that constitute phosphate glasses.

The transition among Q' species is based on the competition between entropy and
enthalpy, which can be modeled using statistical mechanics. The probability of occupying site

type i, where each site is considered a type of Q’ unit, with the m*"* modifier atom is given by,**
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The entropic contribution to the bonding preferences is given by the g; — a; ,,—1 prefactor,
where g; is the number of available network former sites of type i, and a; ,,—4 is the number of
type i sites previously occupied after modifier m — 1. The exponential term is the Boltzmann
weighting factor, which accounts for the enthalpic contribution to the bonding statistics. H; is the
relative enthalpy change associated with occupying site type i, k is Boltzmann’s constant, T is
the fictive temperature of the glass, and the denominator normalizes the probability distribution.
Due to the incorporation of the Boltzmann weighting factor, Eq. (1) yields a noncentral
hypergeometric distribution of site occupation probabilities, thus providing a means for
calculating the complete statistics of glass structure as a function of composition and fictive
temperature.?’ Previous work by Badker ef al. has explored the mean @’ speciation in binary
phosphate glasses to fit the H; values associated with each transition against experimental data.?
This paper utilizes the enthalpy values from Beadker ef al. as inputs for our statistical model
investigating the topological fluctuations.

The topology of phosphate glasses is based on the structure and interactions of Q' species,
BO, NBO, and modifier ions (M%), where 8 is the valance number. For the alkali ions (e.g.,
Li»0, Nay0, Cs>0) 8 = 1 and for the divalent ions (e.g., MgO, ZnO) 8 = 2. Therefore the
composition of phosphate system under exploration can be written as xM, ,0O(1-x)P20s.

The number of rigid constraints in the network is based on counting the number of
constraints per atom for the given network topology. To calculate the fraction of QY species per
phosphorus atom, a scaling factor s is used. For the alkali phosphates, xM>O(1-x)P>0s, the

fraction of phosphorus atoms is

) )

and the fraction of alkali modifier cations is
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where the denominator is the total number of atoms in the chemical formula.

For phosphates modified with divalent cations, xMO(1-x)P20Os, the fraction of phosphorus

atoms is
2—-2x
S=— “4)
and the fraction of divalent modifying cations is
2+ - _~x
M2 () = 5)

In the limit of infinite temperature, there is enough thermal energy to break any
constraint, i.e., the system has zero rigid constraints per atom. As temperature decreases, more
constraints become rigid. The total number of rigid constraints per atom is given by the sum of
constraints that provide rigidity at the temperature of interest:**

n(x) = xnc(x) (6)
where n.(x) is the number of each type of constraint c. There are six types of constraints to
consider within these phosphate systems: in order of decreasing strength, a > >y > 6§ >¢e> (.
The a constraint represents the O-P-O angular constraint, given by,?

ng(x) = 3sQ°(x) + 5s[Q*(x) + Q*(x) + Q°(x)] (7
There are two linear constraints to consider; f is the P-O linear constraint given by,*
ng(x) = 2B0(x) + NBO(x) . ()
Note that no constraints are counted at the TOs, as they are only bonded to one other atom and
are hence not an integral part of the glassy network. The second linear constraint is y, the
M®+ —0 bond. The structure of the modifier ion and NBO bond depends on the concentration of

modifier ions. At a critical cation concentration, X, M®* begins to form corner or edge



sharing tetrahedra with NBO nearest neighbors.?® This change in structure alters the number of
constraints in the network. For Na*, Li", Mg?", and Zn?", this critical modifier concentration is
Xorie = 0.2.2 Due to the large ionic radius of Cs”, its threshold is found to be x,;; = 0.17.3° The
structural changes present above this threshold necessitate the use of a piecewise function for the

y constraint, given by,

2
5M9+(x); 0 <x < Xepir

)

ny(x) = 0+ 2,0+
CyM (x - xcrit) + EM (xcrit); Xerit < X

where Cl is the coordination number of the modifier ion to other network former atoms.
The remaining three types of constraints are all angular constraints. The P-O-P § angular
constraint occurs at each bridging oxygen (BO) given by,
ng(x) = BO(x) . (10)

The P-O-M®* ¢ angular constraint incorporates the non-bridging oxygens (NBO) given by,?

NBO(x); 0<x < Xqit
n(Xx) = B 11
S( ) {ZNBO(X - xcrit) + ne(xcrit); Xerie < X ( )
and the O-M?*+-0 ¢ angular constraint is given by,?
MP*(x); 0 <x < xepie
ne(x) = ) 12
¢ {5M9+(X — Xerie) T Mg (erie); Xerie < X (12

Egs. (7)-(12) can be substituted into Eq. (6) to calculate the total number of constraints per atom
in the system.

The degree of topological fluctuations in the glass depends on both composition and
thermal history. For a standard cooling rate of ~10 K/min, the fictive temperature Ty of the glass
is equal to its glass transition temperature Ty, i.e., Tr = T4. A polynomial fit from Bedker ez al.

approximates Ty as a function of x.2 Preliminary testing confirmed that the accuracy of the



approximated Ty is insignificant in altering the calculation of the approximated intermediate
phase or extent of fluctuations.

The intermediate phase represents a range of glass compositions having an ideal isostatic
network. There are two boundaries that determine the width of isostatic compositions: the
rigidity threshold and the stress threshold. The rigidity threshold represents the transition from a
flexible to an isostatic network and it occurs when

(n) =3, (13)
where n is the number of constraints per atom and three is the dimensionality of space.

The stress threshold is the boundary between the isostatic region and the stressed-rigid
regime. The ability of an overconstrained system to rearrange itself into a stress-free state, and
hence yield an intermediate phase of nonzero width, is based on P(n), the probability density of
the rigidity distribution n. The stress transition is thus based on the probability of the system
being able to rearrange its topology to achieve an average atomic rigidity less than or equal to 3.

We denote this probability as f, which is given by

f=/[ Pmadn. (14)

Since different degrees of self-organization may be accessible to a given system, we define a
threshold value, fixes, Which indicates the minimum value of f for which the system can adapt its
network to eliminate localized stresses. The physical meaning of fip,es 1S to capture the
adaptability of a glassy network to rearrange its configuration in response to localized stresses. As
mentioned in the Introduction, these localized stresses result from mutually incompatible
constraints in the glass network and provide a thermodynamic driving force for relaxation, i.e., to
achieve a stress-free configuration. In other words, the condition f = f;p,.s defines the point of

the stress transition. If f > fin,s, the system can rearrange itself into a stress-free isostatic state,



but once f < finres, the stresses in the network are too high to fully relax, so the system remains

in a stress-rigid state. The number of constraints at the stress transition is given by

Nstress = ( N(X, fenres) ) - (15)

The width of the intermediate phase is the difference between the two boundaries established in
Eq. (13) and Eq. (15). This width in terms of composition, w,, is based on the difference
between x4, the composition at the rigidity percolation threshold n = 3, and x,, the composition

at nstress, glVeIl by

Wy = X (nstress: fthres) — X1 (Tl = 3) . (16)

Evidence of the IP has been experimentally confirmed through numerical studies,*!
analysis of finite size clusters,>> MDSC,!>*-% and Raman scattering.'>**3” In one such
experiment, Boolchand et al. used modulated DSC to investigate the intermediate phase present
in sodium phosphate glasses.?® Results concluded w, = 8.5 mol %, with the rigidity transition

occurring at x; = 37.5 mol % and the stress transition occurring at x, = 46.0 mol %.2°

I1I. Results and Discussion

Previous work by Badker et al. determined the mean predicted Q’ species as a function of
modifier concentration, x.%° By iterating over Eq. (1) we can calculate the standard deviation of
each structure being present, and therefore determine the fluctuations of @ species as a function
of x. We consider the structural speciation of the glass as having been frozen from the liquid

state at Ty = T,. The resulting concentration of Y species as a function of modifier concentration

x is plotted in Figure 2. The fluctuations of the QY species is described using the standard

10



deviation (STD), as shown as error bars in Figure 2. The mean (' fractions are validated by

NMR experimental results.>®** A clearer representation of the fluctuations is shown in Figure 3

by plotting STD as a function of x.
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Figure 2. Validation of the mean Y/ species and representation of the fluctuation of  species as
a function of modifier concentration for (a) Cs20, (b) NaxO, (¢) Li20, (d) MgO, and (e) ZnO
phosphate glasses. Errors bars represent the standard deviation of Q/ species over 3000 iterations,
which are seen clearly at 400% enlargement. The symbols represent experimental NMR data,

which validates the mean Q/ fraction.’%44
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Figure 3. Standard deviation (STD) of ¥ species for (a) Cs20, (b) NaxO, (c) Li20O, (d) MgO, and

(e) ZnO phosphate glasses over 3000 iterations.

Figures 2-3 reveal the impact of the competition between entropy and enthalpy dictating
site occupation and the amount of fluctuations. Starting with low concentration of modifier, i.e.,
low x values, enthalpy dominates the speciation. Q® becoming Q? requires the least energy so
that transition is preferred almost entirely, as shown by the small amount of fluctuations.

As the population of Q° sites decreases, the contribution of entropy becomes more dominate
allowing the transition from Q? to Q' to occur. The amount of fluctuations consequently
increases. Once x~0.5 mol fraction there are no more Q* species present in the network,
therefore the modifiers can no longer form Q? and the amount of fluctuations dramatically
decreases. Without Q7 sites, the modifiers must form either Q! or Q° species. Q' and Q° species
reduce the amount of BO, i.e., create shorter chains of P,Os and reduce the rigidity of the
network. With less rigidity, atoms can more easily rearrange, enabling the maximum amount of
fluctuations in QY fraction. Once all Q? species are removed from the system, there is a singular
transition available (e.g., Q' to Q°), therefore the amount of fluctuations goes to 0.

Figure 2-3 also reveal the impact of modifier ion, more specifically presenting a
correlation between decreasing cation size and increasing amount of structural fluctuations.
Smaller alkali cations have smaller magnitude enthalpy values associated with each Q’ transition,
i.e., the cations more easily rearrange, hence enabling a greater extent of fluctuations. Divalent
modifiers have even smaller magnitude enthalpy values associated with each transition,?

enabling an even larger extent of fluctuations.
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Previous investigations with chalcogenides and oxide glasses show similar correlation
between modifier cation size and smaller reversibility windows, where a proposed mechanism is
topological fluctuations. These investigations have explored glasses with various bonding types,
ionic-covalent (silicates),*> covalent (Ge-Se),*® and semi-metallic (Ge-Te-In-Ag).*’ Additionally,
previous explorations in topological fluctuations have revealed that smaller magnitude enthalpy
transitions enable a larger competition between entropy and enthalpy, enabling larger topological

and structural fluctuations.'

With a known Y/ speciation, we can determine the number of each species per formula

unit within xM; ;9 O(1-x)P>Os for both the monovalent (6 = 1) and divalent (6 = 2) modifier

systems, as shown in Figure 4.
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Figure. 4. The number of each network forming species per formula unit for (a) monovalent

oxide phosphate glasses and (b) divalent oxide phosphate glasses.

Linking the results from Figure 4 and Egs. (6)-(12) determines the mean value and
amount of fluctuations of n as shown in the abstract image where the number of constraints per
atom and the amount of fluctuations (i.e., the standard deviation of constraints) are plotted

against the mole % of NaxO. n is also temperature dependent, where the amount of rigid
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constraints decreases with increasing temperature. To represent this impact of temperature,
Figure 5 plots n for various types of constraints, where the ensemble is either fully rigid of fully
flexible. This discrete counting of constraints is an approximation because for a given type of
constraint, the ensemble can have partial rigidity, i.e., some occurrences can be rigid while others
are flexible. In Figure 5, note that the kink at x ~ 0.2 occurs due to the piece wise functions of y,

€, and {, as introduced in Section II.

H T<r, H T<7T,
H L <T<rT H L <T<T,
FH T.<T<T; |{ FH T.<T<T; |4
c I,<T<T || T, <T<T, ||
H 1,<T<T, H 1,<T<7,
M 1, <T<1,|| M 17, <T<1,|]
- T, <T T, <T
0.0 02 04 0.6 0.8 1.0 12 0.0 0.2 0. 0.6 0.8 L0 12
x [Cs,0] x [Na, 0]
(a) (b)
H T<T1,
H T <T<T.
H 7. <T<T; |4
c T,<T<T, ||
H 7 <T<1
H 7, <T<1]|
FTo<T
0.0 02 0. 0.6 0.8 Lo 12

x [Li,O]

(©)

15



4.0 ‘ 4.0
H T<T; H T<T;
FH T, <T<T || FH T, <T<T ||
H T.<T<T; | H T.<T<T; [

T<T<T, || T<T<T, |]

H 7. <T<T, H 7 <T<T,
H <7<, H <7<zl
7. <T 7. <T

. . . . X l.‘O l.‘2 . 0.‘8 l.‘O l.‘2

X [ZnO]
(d) ©)

Figure 5. The mean value and fluctuations in the number of constraints per atom, », as a function
of composition and temperature for (a) Cs20, (b) Na2O, (c) Li20, (d) MgO, and (e) ZnO
phosphate glasses. The fluctuations are represented as the error bars, which is the standard

deviation of n (number of rigid constraints per atom) over 3000 iterations.

The boundaries of the intermediate phase can be deduced based on the temperature
regime in Figure 5, where the number of atomic constraints crosses the rigidity percolation
threshold at n = 3. Thus, for the monovalent modifiers in Figures 5(a)-(c), the relevant
temperature regime is represented by the cyan colored plot where T; < T < T. For the divalent
modifiers in Figure 5(d)-(e), the temperature range of interest is represented by the magenta
colored plot where T < Tz.

Wherever the number of constraints per atom crosses n = 3, the system passes through a
rigidity transition, inferring that an intermediate phase could be present. One of the interesting
results from Figure 5 is the possible existence of a second intermediate phase at high modifier
concentrations. Prior experimental studies have focused their investigations around 28-50 mol %

modifier oxide.!*2%*1-37 However, in Figure 5 there appears to be a second IP phase around 60
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mol % in both the monovalent and divalent systems. Future experimental results will be
necessary to investigate this possible second IP.

To quantify the widths of these intermediate phases, the value of f;j,s 1S necessary,
which we can determines using the modulated DSC results from Boolchand et al. for the sodium
phosphate system.?® From Figure 5(b), our model found the rigidity transition to be at x; =~
28 mol %. With an assumed width of w,, = 8.5 mol %, the stress transition must then occur at
x, = 36.5 mol %, which marks the modifier composition of ng¢yess and fipres. At x5 the
standard deviation ¢ = 1.2 * 10~* and the mean number of constraints u = 3.103. Using Eq.
(14), finres = 0. The fipres calculated from our model is therefore too small to physically
represent an intermediate phase as wide as that reported by Boolchand et al.?¢ Additionally, our
model underestimates x; and x, compared to the corresponding results from Boolchand et al.*

These inconsistences point toward a need for another physical response contributing to
the experimentally observed intermediate phase width. The modulated DSC results from
Boolchand ef al. were obtained at a scan rate of 3°C/min, modulation amplitude of £1°C, and
modulation time of 100 s.%® On the other hand, our model for isostaticity assumes constant
temperature. Therefore, we hypothesize that the underestimation of x; and x, comes from
neglecting the modulation over a wide range of temperatures. To properly represent the
experimental results, our model must incorporate the continuous modulation of temperature that
is present in the experimental results.

Specifically, our underestimation may be a result of assuming discrete constraint onset
functions. As the temperature of the T; < T < T, system increases, constraints break, hence

transitioning to Ts < T < T¢. This continuous transition will shift the x-intercept with n = 3 to

higher modifier concentrations. Higher x values also correspond with larger amount of
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fluctuations, enabling a wider IP. Therefore, the proposed rationale for the discrepancy between
our model and the results from Boolchand ef al. is that our model fails to incorporate the
continuous modulation of temperature.

Without a correlated fip,-o5 Value, the IP width must be represented in terms of an
arbitrary allowed standard deviation, as shown in Figure 6. Note that the values for the IP width
are very small because the model is underestimating the x value, and therefore calculating the IP
width at a composition with smaller amounts of fluctuations. Similar to Figure 3, Figure 6
confirms that smaller cation atomic radii enable larger extents of topological fluctuations. With

more probabilistic atomic rearrangement comes larger intermediate phase widths.
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Figure 6. The IP width surrounding x = 0.2 — 0.3 in units of the mole fraction x versus the
allowed number of standard deviations, ¢, shown for varying modifier cations in binary

phosphate glasses. Note the IP width for Cs20 is ~57°.

IV. Conclusions
This paper has established a statistical mechanical model to measure topological
fluctuations and the ability of networks to rearrange in binary phosphate glasses. The

competition between entropy and enthalpy of the network dictates speciation and the amount of
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fluctuations. The size and charge of the modifier ion alters this competition since the smaller
cation radius, the lower the enthalpy associated with changes in Y speciation, and therefore the
larger the extent of topological fluctuations and a larger IP width. To model the intermediate
phase, a key conclusion is the necessity to incorporate a continuous change in temperature as
well as the current continuous change in modifier concentration. Future work will incorporate the
continuous modulation of temperature that is present in the experimental results to improve the
accuracy of the phosphate statistical model. Future work will also continue to refine the model
by comparing other glass forming systems with their experimentally observed intermediate
phases. The simulation results also reveal the presence of a second intermediate phase. Future
experimental investigations will need to be conducted at ~ 60 mol % of modifier oxide to

investigate the presence and impact of this second IP.
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