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Abstract:  Glasses are topologically disordered materials with varying degrees of fluctuations in 

structure and topology. This study links statistical mechanics and topological constraint theory to 

quantify the degree of topological fluctuations in binary phosphate glasses. Since fluctuations are 

a potential mechanism enabling self-organization, we investigated the ability of phosphate 

glasses to adapt their topology to mitigate localized stresses, e.g., in the formation of a stress-free 

intermediate phase. Results revealed the dependency of both glass composition and temperature 

in governing the ability of a glass network to relax localized stresses and achieve an ideal, 

isostatic state; also, the possibility of a second intermediate phase at higher modifier content was 

found.  
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I. Introduction  

Designing new glass compositions requires accurate structural understanding; however, 

the complex chemical composition and disordered structure of glasses complicate achievement 

of this objective. As a result, most previous descriptions of glass structures and properties have 

only been in terms of their mean or expectation values. The understanding of spatial fluctuations, 

including fluctuations in glass structure and network topology, can offer a more complete 

description of a glass. Prior work by Kirchner et al. proposed a generalized approach for 

modeling topological fluctuations as a function of temperature and chemical composition 

through the use of statistical mechanics and topological constraint theory.1 Such a model couples 

the composition-structure relations (from statistical mechanics) with the structure-property 

relations (through topological constraint theory) to optimize new glass compositions effectively.2  

Structural and topological fluctuations directly impact several important glass properties. 

For example, Rayleigh scattering is a function of localized density fluctuations.3-4 Also, the 

relaxation modes in a glass are dependent on atomic scale fluctuations;5-8 crack propagation is 

affected by localized changes in bonding,9 and nucleation and phase separation are also triggered 

by local fluctuations.10-13 The scope of the current paper includes structural and topological 

fluctuations in binary phosphate glass systems. 

Within the study of topological constraint theory, there is growing interest in the ability 

of a glass network to adapt its topology to achieve isostaticity in nominally overconstrained 

systems. In an overconstrained disordered network, the number of geometrically independent 

constraints exceeds the number of translational degrees of freedom of the atoms. Since the 

network is disordered, these rigid constraints are mutually incompatible. This incompatibility of 

the constraints leads to localized stresses, which, in turn, provide a thermodynamic driving force 
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for relaxation, i.e., to eliminate the localized stresses and create a stress-free network. The 

stresses from incompatible constraints can be eliminated either (a) via crystallization, i.e., 

through the imposition of geometric order, where geometrically independent (incompatible) 

constraints become dependent (compatible); or (b) via topological fluctuations that enable 

adaptation of the disordered network to reduce the number of incompatible constraints while 

maintaining a disordered structure.  Hence, topological fluctuations can enable the atoms to self-

organize into a stress-free state while maintaining a non-crystalline structure. These structural 

rearrangements relieve local stresses, driving the nominally overconstrained system back toward 

isostaticity.14-15 

In the mean-field description of glass topology, a glass network is isostatic when the 

number of rigid constraints per atom, n, equals the number of translational degrees of freedom.16 

Hence, for a system in three-dimensional space, 〈n〉 = 3 is the condition for achieving an isostatic 

network.17 If 〈n〉 > 3 the system is overconstrained and considered stress rigid due to the presence 

of mutually incompatible rigid constraints in the disordered glass network. If 〈n〉 < 3 the system 

is underconstrained and contains floppy modes.17   

In the original work by Phillips and Thorpe, the isostatic state was considered to occur at 

a single point;18 however, in 1999, Boolchand et al. performed Raman scattering and 

temperature-modulated differential scanning calorimetry (MDSC) experiments, which concluded 

a finite width of isostatic compositions in which the system can maintain optimal stability. 

Boolchand coined this finite width the intermediate phase (IP).14-15 

Within the glass community, there is a controversy surrounding the existence of this 

phenomenon. One such objection is the lack of a structural signature apparent in experimental 

results.19 Lucas et al. hypothesized that the phase could be an artifact resulting from single 
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modulated frequency in the MDSC experiments.20 However, subsequent computational 

evaluations showed a non-reversing heat flow independent of the modulation of frequency.21 

Further research is required to clarify the controversy regarding this topic. Previous work by 

Kirchner and Mauro has explored topological fluctuations and their impact on revealing more 

information about this proposed intermediate phase for arbitrary glass-forming systems.22 This 

paper extends that work and applies the theory to binary phosphate systems.  

Phosphate glasses are remarkable for their low glass transition temperatures, high thermal 

expansion coefficients, high rare earth solubility, and optical properties including high ultraviolet 

light transparency.23-24 These properties make phosphate glasses attractive for applications in 

solid state lasers, biocompatible bone replacement materials, solid-state ionic devices, and glass-

to-metal seals.23-24  Previous work by Bødker et al. presents a statistical description of the 

compositional evolution of the mean structural units (Qj-speciation) within phosphate glasses.25 

Here, we extend their work to explore the fluctuations in structural units and thereby the ability 

of glasses to rearrange. 

This paper investigates the structural and topological fluctuations of binary phosphate 

glasses as a function of modifier concentration and temperature for five systems: xCs2O(1-

x)P2O5, xNa2O(1-x)P2O5, xLi2O(1-x)P2O5, xMgO(1-x)P2O5, and xZnO(1-x)P2O5. We also 

consider the ability of the phosphate glass networks to adapt their topology to eliminate stresses, 

in order to study the origin of the intermediate phase experimentally reported in these glassy 

systems.26 

 

II. Theory 
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Although glass-forming systems lack long-range order, the connectivity of the phosphate 

network is described by short-range structures, denoted by Qj species, where j is the number of 

bridging oxygens (BO) bonded to the phosphorus atom.27 Pure P2O5 is nominally composed 

exclusively of phosphate tetrahedra with three BOs and one double-bonded terminal oxygen 

(TO); therefore, this unit is denoted as Q3. Addition of a modifier ion causes one BO to be 

converted to a non-bridging oxygen (NBO), where the NBO coordinates to modifier ions.2 This 

new unit has two BOs and is denoted as Q2. Due to electron delocalization, as the Q3 unit 

becomes a Q2 unit, the TO on the Q3 unit also becomes an NBO.23 The addition of more modifier 

ions follows this similar pattern from Q3 to Q2, Q2 to Q1, and Q1 to Q0.23 These structural units are 

shown in Figure 1. The units themselves are considered to be bonded in a random manner 

throughout the network.23 

 

Figure 1. The four structural building blocks that constitute phosphate glasses. 

 

The transition among Qj species is based on the competition between entropy and 

enthalpy, which can be modeled using statistical mechanics. The probability of occupying site 

type 𝑖, where each site is considered a type of Qj unit, with the 𝑚𝑡ℎ modifier atom is given by,28-

29 

𝑝𝑖,𝑚 =
(𝑔𝑖− 𝑎𝑖,𝑚−1) exp(− 

𝐻𝑖
𝑘𝑇𝑓

)

∑ ∑ (𝑔𝑖− 𝑎𝑖,𝑗) exp(− 
𝐻𝑖

𝑘𝑇𝑓
)𝑚−1

𝑗=𝑜
Ω
𝑖=1

  .     (1) 
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The entropic contribution to the bonding preferences is given by the 𝑔𝑖 −  𝑎𝑖,𝑚−1 prefactor, 

where 𝑔𝑖 is the number of available network former sites of type i, and 𝑎𝑖,𝑚−1 is the number of 

type 𝑖 sites previously occupied after modifier 𝑚 − 1. The exponential term is the Boltzmann 

weighting factor, which accounts for the enthalpic contribution to the bonding statistics. 𝐻𝑖 is the 

relative enthalpy change associated with occupying site type 𝑖, 𝑘 is Boltzmann’s constant, 𝑇𝑓 is 

the fictive temperature of the glass, and the denominator normalizes the probability distribution. 

Due to the incorporation of the Boltzmann weighting factor, Eq. (1) yields a noncentral 

hypergeometric distribution of site occupation probabilities, thus providing a means for 

calculating the complete statistics of glass structure as a function of composition and fictive 

temperature.29 Previous work by Bødker et al. has explored the mean Qj speciation in binary 

phosphate glasses to fit the 𝐻𝑖 values associated with each transition against experimental data.25 

This paper utilizes the enthalpy values from Bødker et al. as inputs for our statistical model 

investigating the topological fluctuations.  

The topology of phosphate glasses is based on the structure and interactions of Qj species, 

BO, NBO, and modifier ions (𝑀𝜃+), where 𝜃 is the valance number. For the alkali ions (e.g., 

Li2O, Na2O, Cs2O) 𝜃 = 1 and for the divalent ions (e.g., MgO, ZnO) 𝜃 = 2. Therefore the 

composition of phosphate system under exploration can be written as 𝑥M2/𝜃O(1-x)P2O5.  

The number of rigid constraints in the network is based on counting the number of 

constraints per atom for the given network topology. To calculate the fraction of Qj species per 

phosphorus atom, a scaling factor s is used. For the alkali phosphates, xM2O(1-x)P2O5, the 

fraction of phosphorus atoms is 

𝑠 =
2−2𝑥

7−4𝑥
  ,       (2) 

and the fraction of alkali modifier cations is 
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𝑀+(𝑥) =
2𝑥

7−4𝑥
  .      (3) 

where the denominator is the total number of atoms in the chemical formula.  

For phosphates modified with divalent cations, xMO(1-x)P2O5, the fraction of phosphorus 

atoms is 

𝑠 =
2−2𝑥

7−5𝑥
  ,       (4) 

and the fraction of divalent modifying cations is 

𝑀2+(𝑥) =
𝑥

7−5𝑥
  .      (5) 

In the limit of infinite temperature, there is enough thermal energy to break any 

constraint, i.e., the system has zero rigid constraints per atom. As temperature decreases, more 

constraints become rigid. The total number of rigid constraints per atom is given by the sum of 

constraints that provide rigidity at the temperature of interest:23 

𝑛(𝑥) = ∑ 𝑛𝑐(𝑥)      (6) 

where 𝑛𝑐(𝑥) is the number of each type of constraint c. There are six types of constraints to 

consider within these phosphate systems: in order of decreasing strength, 𝛼 > 𝛽 > 𝛾 > 𝛿 > 𝜀 > 𝜁. 

The 𝛼 constraint represents the O-P-O angular constraint, given by,23 

𝑛𝛼(𝑥) = 3𝑠𝑄3(𝑥) + 5𝑠[𝑄2(𝑥) + 𝑄1(𝑥) + 𝑄0(𝑥)]    (7) 

There are two linear constraints to consider; 𝛽 is the P-O linear constraint given by,23 

𝑛𝛽(𝑥) = 2𝐵𝑂(𝑥) + 𝑁𝐵𝑂(𝑥) .    (8) 

Note that no constraints are counted at the TOs, as they are only bonded to one other atom and 

are hence not an integral part of the glassy network. The second linear constraint is 𝛾, the 

𝑀𝜃+ −O bond. The structure of the modifier ion and NBO bond depends on the concentration of 

modifier ions. At a critical cation concentration, 𝑥𝑐𝑟𝑖𝑡, 𝑀𝜃+ begins to form corner or edge 
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sharing tetrahedra with NBO nearest neighbors.23 This change in structure alters the number of 

constraints in the network. For Na+, Li+, Mg2+, and Zn2+, this critical modifier concentration is 

𝑥𝑐𝑟𝑖𝑡 = 0.2.23 Due to the large ionic radius of Cs+, its threshold is found to be 𝑥𝑐𝑟𝑖𝑡 = 0.17.30 The 

structural changes present above this threshold necessitate the use of a piecewise function for the 

𝛾 constraint, given by,23 

𝑛𝛾(𝑥) = {

2

𝜃
𝑀𝜃+(𝑥);   0 ≤ 𝑥 ≤ 𝑥𝑐𝑟𝑖𝑡

𝐶𝑁𝑀𝜃+(𝑥 − 𝑥𝑐𝑟𝑖𝑡) +  
2

𝜃
𝑀𝜃+(𝑥𝑐𝑟𝑖𝑡);  𝑥𝑐𝑟𝑖𝑡 < 𝑥 

    (9) 

where CN is the coordination number of the modifier ion to other network former atoms.  

The remaining three types of constraints are all angular constraints. The P-O-P 𝛿 angular 

constraint occurs at each bridging oxygen (BO) given by,23 

𝑛𝛿(𝑥) = 𝐵𝑂(𝑥) .       (10) 

The P-O-𝑀𝜃+ 𝜀 angular constraint incorporates the non-bridging oxygens (NBO) given by,23  

𝑛𝜀(𝑥) =  {
𝑁𝐵𝑂(𝑥);    0 ≤ 𝑥 ≤ 𝑥𝑐𝑟𝑖𝑡

2𝑁𝐵𝑂(𝑥 − 𝑥𝑐𝑟𝑖𝑡) + 𝑛𝜀(𝑥𝑐𝑟𝑖𝑡);   𝑥𝑐𝑟𝑖𝑡 < 𝑥 
  ,   (11) 

and the O-𝑀𝜃+-O 𝜁 angular constraint is given by,23 

𝑛𝜁(𝑥) = {
𝑀𝜃+(𝑥);    0 ≤ 𝑥 ≤ 𝑥𝑐𝑟𝑖𝑡

5𝑀𝜃+(𝑥 − 𝑥𝑐𝑟𝑖𝑡) +  𝑛𝜁(𝑥𝑐𝑟𝑖𝑡);   𝑥𝑐𝑟𝑖𝑡 < 𝑥
 .   (12) 

Eqs. (7)-(12) can be substituted into Eq. (6) to calculate the total number of constraints per atom 

in the system.  

 The degree of topological fluctuations in the glass depends on both composition and 

thermal history. For a standard cooling rate of ~10 K/min, the fictive temperature 𝑇𝑓 of the glass 

is equal to its glass transition temperature 𝑇𝑔, i.e., 𝑇𝑓 = 𝑇𝑔. A polynomial fit from Bødker et al. 

approximates 𝑇𝑔 as a function of 𝑥.25 Preliminary testing confirmed that the accuracy of the 
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approximated 𝑇𝑔 is insignificant in altering the calculation of the approximated intermediate 

phase or extent of fluctuations.  

The intermediate phase represents a range of glass compositions having an ideal isostatic 

network. There are two boundaries that determine the width of isostatic compositions: the 

rigidity threshold and the stress threshold. The rigidity threshold represents the transition from a 

flexible to an isostatic network and it occurs when  

   〈𝑛〉 = 3 ,      (13) 

where 𝑛 is the number of constraints per atom and three is the dimensionality of space.   

 The stress threshold is the boundary between the isostatic region and the stressed-rigid 

regime. The ability of an overconstrained system to rearrange itself into a stress-free state, and 

hence yield an intermediate phase of nonzero width, is based on 𝑃(𝑛), the probability density of 

the rigidity distribution n. The stress transition is thus based on the probability of the system 

being able to rearrange its topology to achieve an average atomic rigidity less than or equal to 3. 

We denote this probability as 𝑓, which is given by 

   𝑓 = ∫ 𝑃(𝑛) 𝑑𝑛
3

0
 .     (14) 

Since different degrees of self-organization may be accessible to a given system, we define a 

threshold value, 𝑓𝑡ℎ𝑟𝑒𝑠, which indicates the minimum value of f for which the system can adapt its 

network to eliminate localized stresses. The physical meaning of 𝑓𝑡ℎ𝑟𝑒𝑠 is to capture the 

adaptability of a glassy network to rearrange its configuration in response to localized stresses. As 

mentioned in the Introduction, these localized stresses result from mutually incompatible 

constraints in the glass network and provide a thermodynamic driving force for relaxation, i.e., to 

achieve a stress-free configuration. In other words, the condition 𝑓 = 𝑓𝑡ℎ𝑟𝑒𝑠 defines the point of 

the stress transition. If 𝑓 > 𝑓𝑡ℎ𝑟𝑒𝑠, the system can rearrange itself into a stress-free isostatic state, 
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but once 𝑓 < 𝑓𝑡ℎ𝑟𝑒𝑠, the stresses in the network are too high to fully relax, so the system remains 

in a stress-rigid state. The number of constraints at the stress transition is given by  

 𝑛𝑠𝑡𝑟𝑒𝑠𝑠 = 〈 𝑛(𝑥, 𝑓𝑡ℎ𝑟𝑒𝑠) 〉 .     (15) 

The width of the intermediate phase is the difference between the two boundaries established in 

Eq. (13) and Eq. (15). This width in terms of composition, 𝑤𝑥, is based on the difference 

between 𝑥1, the composition at the rigidity percolation threshold 𝑛 = 3, and 𝑥2, the composition 

at 𝑛𝑠𝑡𝑟𝑒𝑠𝑠, given by  

 𝑤𝑥 =  𝑥2 ( 𝑛𝑠𝑡𝑟𝑒𝑠𝑠, 𝑓𝑡ℎ𝑟𝑒𝑠) − 𝑥1 (𝑛 = 3) .    (16) 

Evidence of the IP has been experimentally confirmed through numerical studies,31 

analysis of finite size clusters,32 MDSC,15,33-35 and Raman scattering.15,34-37 In one such 

experiment, Boolchand et al. used modulated DSC to investigate the intermediate phase present 

in sodium phosphate glasses.26 Results concluded 𝑤𝑥 = 8.5 mol %, with the rigidity transition 

occurring at 𝑥1 = 37.5 mol % and the stress transition occurring at 𝑥2 = 46.0 mol %.26 

 

III. Results and Discussion  

Previous work by Bødker et al. determined the mean predicted Qj species as a function of 

modifier concentration, 𝑥.25 By iterating over Eq. (1) we can calculate the standard deviation of 

each structure being present, and therefore determine the fluctuations of Qj species as a function 

of 𝑥. We consider the structural speciation of the glass as having been frozen from the liquid 

state at 𝑇𝑓 = 𝑇𝑔. The resulting concentration of Qj species as a function of modifier concentration 

𝑥 is plotted in Figure 2. The fluctuations of the Qj species is described using the standard 
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deviation (STD), as shown as error bars in Figure 2. The mean Qj fractions are validated by 

NMR experimental results.38-44 A clearer representation of the fluctuations is shown in Figure 3 

by plotting STD as a function of 𝑥. 

 

(a) (b)  

(c)  

(d)  (e)  
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Figure 2. Validation of the mean Qj species and representation of the fluctuation of Qj species as 

a function of modifier concentration for (a) Cs2O, (b) Na2O, (c) Li2O, (d) MgO, and (e) ZnO 

phosphate glasses. Errors bars represent the standard deviation of Qj species over 3000 iterations, 

which are seen clearly at 400% enlargement. The symbols represent experimental NMR data, 

which validates the mean Qj fraction.38-44  

 (a) (b)  

(c)  

(d) (e)  
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Figure 3. Standard deviation (STD) of Qj species for (a) Cs2O, (b) Na2O, (c) Li2O, (d) MgO, and 

(e) ZnO phosphate glasses over 3000 iterations. 

 

 Figures 2-3 reveal the impact of the competition between entropy and enthalpy dictating 

site occupation and the amount of fluctuations. Starting with low concentration of modifier, i.e., 

low x values, enthalpy dominates the speciation. Q3 becoming Q2 requires the least energy so 

that transition is preferred almost entirely, as shown by the small amount of fluctuations.  

As the population of Q3 sites decreases, the contribution of entropy becomes more dominate 

allowing the transition from Q2 to Q1 to occur. The amount of fluctuations consequently 

increases. Once 𝑥~0.5 mol fraction there are no more Q3 species present in the network, 

therefore the modifiers can no longer form Q2 and the amount of fluctuations dramatically 

decreases. Without Q3 sites, the modifiers must form either Q1 or Q0 species. Q1 and Q0 species 

reduce the amount of BO, i.e., create shorter chains of P2O5 and reduce the rigidity of the 

network. With less rigidity, atoms can more easily rearrange, enabling the maximum amount of 

fluctuations in Qj fraction. Once all Q2 species are removed from the system, there is a singular 

transition available (e.g., Q1 to Q0), therefore the amount of fluctuations goes to 0. 

Figure 2-3 also reveal the impact of modifier ion, more specifically presenting a 

correlation between decreasing cation size and increasing amount of structural fluctuations. 

Smaller alkali cations have smaller magnitude enthalpy values associated with each Qj transition, 

i.e., the cations more easily rearrange, hence enabling a greater extent of fluctuations. Divalent 

modifiers have even smaller magnitude enthalpy values associated with each transition,25 

enabling an even larger extent of fluctuations.  
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Previous investigations with chalcogenides and oxide glasses show similar correlation 

between modifier cation size and smaller reversibility windows, where a proposed mechanism is 

topological fluctuations. These investigations have explored glasses with various bonding types, 

ionic-covalent (silicates),45 covalent (Ge-Se),46 and semi-metallic (Ge-Te-In-Ag).47 Additionally, 

previous explorations in topological fluctuations have revealed that smaller magnitude enthalpy 

transitions enable a larger competition between entropy and enthalpy, enabling larger topological 

and structural fluctuations.1  

With a known Qj speciation, we can determine the number of each species per formula 

unit within 𝑥M2/𝜃O(1-x)P2O5 for both the monovalent (𝜃 = 1) and divalent (𝜃 = 2) modifier 

systems, as shown in Figure 4.  

(a) (b)  

Figure. 4. The number of each network forming species per formula unit for (a) monovalent 

oxide phosphate glasses and (b) divalent oxide phosphate glasses. 

 

Linking the results from Figure 4 and Eqs. (6)-(12) determines the mean value and 

amount of fluctuations of n as shown in the abstract image where the number of constraints per 

atom and the amount of fluctuations (i.e., the standard deviation of constraints) are plotted 

against the mole % of Na2O. n is also temperature dependent, where the amount of rigid 
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constraints decreases with increasing temperature. To represent this impact of temperature, 

Figure 5 plots n for various types of constraints, where the ensemble is either fully rigid of fully 

flexible. This discrete counting of constraints is an approximation because for a given type of 

constraint, the ensemble can have partial rigidity, i.e., some occurrences can be rigid while others 

are flexible. In Figure 5, note that the kink at 𝑥 ~ 0.2 occurs due to the piece wise functions of 𝛾, 

𝜀, and 𝜁, as introduced in Section II.  

(a) (b)  

(c)  
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(d) (e)  

Figure 5. The mean value and fluctuations in the number of constraints per atom, n, as a function 

of composition and temperature for (a) Cs2O, (b) Na2O, (c) Li2O, (d) MgO, and (e) ZnO 

phosphate glasses. The fluctuations are represented as the error bars, which is the standard 

deviation of n (number of rigid constraints per atom) over 3000 iterations. 

 

The boundaries of the intermediate phase can be deduced based on the temperature 

regime in Figure 5, where the number of atomic constraints crosses the rigidity percolation 

threshold at 𝑛 = 3. Thus, for the monovalent modifiers in Figures 5(a)-(c), the relevant 

temperature regime is represented by the cyan colored plot where 𝑇𝜁 < 𝑇 < 𝑇𝜀. For the divalent 

modifiers in Figure 5(d)-(e), the temperature range of interest is represented by the magenta 

colored plot where 𝑇 < 𝑇𝜁 .  

Wherever the number of constraints per atom crosses 𝑛 = 3, the system passes through a 

rigidity transition, inferring that an intermediate phase could be present. One of the interesting 

results from Figure 5 is the possible existence of a second intermediate phase at high modifier 

concentrations. Prior experimental studies have focused their investigations around 28-50 mol % 

modifier oxide.15,26,31-37 However, in Figure 5 there appears to be a second IP phase around 60 
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mol % in both the monovalent and divalent systems. Future experimental results will be 

necessary to investigate this possible second IP.  

To quantify the widths of these intermediate phases, the value of 𝑓𝑡ℎ𝑟𝑒𝑠 is necessary, 

which we can determines using the modulated DSC results from Boolchand et al. for the sodium 

phosphate system.26 From Figure 5(b), our model found the rigidity transition to be at 𝑥1 ≈

28 mol %. With an assumed width of 𝑤𝑥 = 8.5 mol %, the stress transition must then occur at 

𝑥2 ≈ 36.5 mol %, which marks the modifier composition of 𝑛𝑠𝑡𝑟𝑒𝑠𝑠 and 𝑓𝑡ℎ𝑟𝑒𝑠. At 𝑥2 the 

standard deviation 𝜎 = 1.2 ∗ 10−4 and the mean number of constraints 𝜇 = 3.103. Using Eq. 

(14), 𝑓𝑡ℎ𝑟𝑒𝑠 ≈ 0. The 𝑓𝑡ℎ𝑟𝑒𝑠 calculated from our model is therefore too small to physically 

represent an intermediate phase as wide as that reported by Boolchand et al.26 Additionally, our 

model underestimates 𝑥1 and 𝑥2 compared to the corresponding results from Boolchand et al.26  

These inconsistences point toward a need for another physical response contributing to 

the experimentally observed intermediate phase width. The modulated DSC results from 

Boolchand et al. were obtained at a scan rate of 3°C/min, modulation amplitude of ±1°C, and 

modulation time of 100 s.26 On the other hand, our model for isostaticity assumes constant 

temperature. Therefore, we hypothesize that the underestimation of 𝑥1 and 𝑥2 comes from 

neglecting the modulation over a wide range of temperatures. To properly represent the 

experimental results, our model must incorporate the continuous modulation of temperature that 

is present in the experimental results. 

Specifically, our underestimation may be a result of assuming discrete constraint onset 

functions. As the temperature of the 𝑇𝜁 < 𝑇 < 𝑇𝜀 system increases, constraints break, hence 

transitioning to 𝑇𝛿 < 𝑇 < 𝑇𝜁. This continuous transition will shift the x-intercept with 𝑛 = 3 to 

higher modifier concentrations. Higher x values also correspond with larger amount of 

https://en.wikipedia.org/wiki/Plus-minus_sign
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fluctuations, enabling a wider IP. Therefore, the proposed rationale for the discrepancy between 

our model and the results from Boolchand et al. is that our model fails to incorporate the 

continuous modulation of temperature.  

Without a correlated 𝑓𝑡ℎ𝑟𝑒𝑠 value, the IP width must be represented in terms of an 

arbitrary allowed standard deviation, as shown in Figure 6. Note that the values for the IP width 

are very small because the model is underestimating the x value, and therefore calculating the IP 

width at a composition with smaller amounts of fluctuations. Similar to Figure 3, Figure 6 

confirms that smaller cation atomic radii enable larger extents of topological fluctuations. With 

more probabilistic atomic rearrangement comes larger intermediate phase widths.  

 

Figure 6.  The IP width surrounding 𝑥 ≈ 0.2 − 0.3 in units of the mole fraction x versus the 

allowed number of standard deviations, σ, shown for varying modifier cations in binary 

phosphate glasses. Note the IP width for Cs2O is ~5−6.  

 

IV. Conclusions 

 This paper has established a statistical mechanical model to measure topological 

fluctuations and the ability of networks to rearrange in binary phosphate glasses. The 

competition between entropy and enthalpy of the network dictates speciation and the amount of 
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fluctuations. The size and charge of the modifier ion alters this competition since the smaller 

cation radius, the lower the enthalpy associated with changes in Qj speciation, and therefore the 

larger the extent of topological fluctuations and a larger IP width. To model the intermediate 

phase, a key conclusion is the necessity to incorporate a continuous change in temperature as 

well as the current continuous change in modifier concentration. Future work will incorporate the 

continuous modulation of temperature that is present in the experimental results to improve the 

accuracy of the phosphate statistical model. Future work will also continue to refine the model 

by comparing other glass forming systems with their experimentally observed intermediate 

phases. The simulation results also reveal the presence of a second intermediate phase. Future 

experimental investigations will need to be conducted at ~ 60 mol % of modifier oxide to 

investigate the presence and impact of this second IP.  
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