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Background: The current gold standard for measuring sleep is polysomnography (PSG),
but it can be obtrusive and costly. Actigraphy is a relatively low-cost and unobtrusive
alternative to PSG. Of particular interest in measuring sleep from actigraphy is prediction
of sleep-wake states. Current literature on prediction of sleep-wake states from actigraphy
consists of methods that use population data, which we call generalized models. However,
accounting for variability of sleep patterns across individuals calls for personalized models of
sleep-wake states prediction that could be potentially better suited to individual-level data
and yield more accurate estimation of sleep.

Purpose: To investigate the validity of developing personalized machine learning models,
trained and tested on individual-level actigraphy data, for improved prediction of sleep-wake
states and reliable estimation of nightly sleep parameters.

Participants and methods: We used a dataset including 54 participants and systematically
trained and tested 5 different personalized machine learning models as well as their general-
ized counterparts. We evaluated model performance compared to concurrent PSG through
extensive machine learning experiments and statistical analyses.

Results: Our experiments show the superiority of personalized models over their generalized
counterparts in estimating PSG-derived sleep parameters. Personalized models of regularized
logistic regression, random forest, adaptive boosting, and extreme gradient boosting achieve
estimates of total sleep time, wake after sleep onset, sleep efficiency, and number of
awakenings that are closer to those obtained by PSG, in absolute difference, than the same
estimates from their generalized counterparts. We further show that the difference between
estimates of sleep parameters obtained by personalized models and those of PSG is statis-
tically non-significant.

Conclusion: Personalized machine learning models of sleep-wake states outperform their
generalized counterparts in terms of estimating sleep parameters and are indistinguishable
from PSG labeled sleep-wake states. Personalized machine learning models can be used in
actigraphy studies of sleep health and potentially screening for some sleep disorders.

Keywords: actigraphy, polysomnography, personalized, machine learning, sleep parameters

Introduction

Sleep health plays a critical role in both physiological and psychological health. Poor
sleep is associated with an increased chance of cardiovascular disease,' * Type 2
diabetes,’ cognitive problems,® attention-deficit hyperactivity disorder (ADHD),” depres-
sion, and performance.* " Addressing such problems requires reliable assessment of
sleep.'> ™" The current gold standard to measure sleep is polysomnography (PSG) which
can be burdensome. Actigraphy is a relatively low-burden alternative to PSG'®'® for
estimating sleep parameters such as total sleep time, sleep efficiency, wake after sleep
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onset, and the number of awakenings. However, comparisons
of sleep parameters obtained from actigraphy to those from
PSG rely on algorithms with low specificity (ie, are limited in
detecting wake epochs reliably). Thus, the current manuscript
develops and validates both personalized and general machine
learning approaches to improve upon currently available and
widely used algorithms.

The literature of detection and prediction of sleep-wake

states from actigraphy includes many sleep scoring

algorithms'® 7 3843

and machine learning-based methods
developed at the population-level. Such population-level
studies have focused on developing a single predictive
model or algorithm, which we call generalized models.
Generalized models are trained using population data and
are used to detect or predict sleep-wake states in individuals.
Such population-level models assume similarity between
individuals that may not be true. Considerable variability in
sleep patterns across individuals** can be due to differences
in personal characteristics such as age, environmental and
genetic factors, lifestyle, etc. Personalized models for sleep-
wake states prediction trained and tested on specific indivi-
duals (ie, using only individual-level data) could better
account for individual-level characteristics that might yield
classes of individuals for whom a class of algorithms could
be used.

In our previous work, we investigated and established
the feasibility of developing reliable personalized machine
learning models trained on individual data matching the
performance of their generalized counterparts for sleep-
wake states prediction from actigraphy.*’ In this paper, we
extend this approach via machine learning experiments to
test the superiority of personalized machine learning mod-
els over their generalized counterparts in estimation of
night-level sleep parameters from actigraphy.

Materials and Methods

Data

Actigraphy data were collected simultaneously with PSG
recordings, at every 30 s, in a sleep laboratory, as previously
described.”®> AW-64 (Minimitter, Inc, Bend, OR) and
Actiwatch Spectrum (Philips/Respironics, Murrysville, PA)
were used for actigraphy collection. PSG recordings were
scored by Registered Polysomnographic Technologists and
recoded as sleep or wake, movement artifact as wake, and
missing data as missing. Data collection included a total of
81 participants across the following studies: a study on
healthy adults (baseline) whose sleep was disturbed by

noise, henceforth referred to as the Acoustics (AC)

study; 4648

ication (henceforth TT) [unpublished data, for description, see

a study including older adults on Tiagabine med-

Ref. 25]; a sleep restriction (SR) study on healthy partici-
pants (all collected sleep recordings were in controlled stan-
dardized conditions and study participants received no
medication or placebo on individual nights);** and daytime
sleep in night-workers (NW).”° In all of the studies but SR,
participants spent 8.5 hrs in bed. In the SR study, participants
spent 10 hrs in bed on sleep-replete nights and 5 hrs on sleep
restricted nights. In all of the studies, for each participant, we
have data collected from multiple sleeping periods (ie, days
in the NW study and nights in other studies), with each
sleeping period consisting of roughly 1000 epochs of data,
each of 30-s duration. For each epoch (ie, at every 30 s) in
each participant’s data, we have an activity counts value from
actigraphy that is labeled as either sleep or wake based on
expert annotation of the corresponding (temporally aligned
as previously described®®) PSG recording epoch. All proce-
dures were approved by the Brigham and Women’s Hospital
Institutional Review Board and all participants provided
informed written consent.

To factor out night-specific effects on the performance of
sleep-wake states predictors and the design of our machine
learning experiments, we worked with at least 2 sleeping
periods to train and 1 additional sleeping period to test our
machine learning sleep-wake states predictors. Hence, we
limited our analyses to 54 participants on whom we had
collected data from >3 sleeping periods (see Table 1). We
randomly partitioned the data of the 54 participants into 3
disjoint groups each with 18 participants. In each group, one
sleeping period was designated as the source of test data and
the remaining sleeping periods were used as the sources of
training data. The different groups used different nights (1, 2,
or 3) among the first 3 nights, for testing the sleep-wake states
predictors. In SR data, a random selection of sleep-replete and

Table | Number of Participants and the Number of Their
Available Sleeping Periods in the Data

Number of Number of Available Sleeping
Participants Periods
8 |
19 2
29 3
8
10
14 I
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sleep-restricted nights was used for training; ie, we have
trained our classifiers on both sleep-replete and sleep-
restricted nights and then tested them on 1 randomly chosen
night out of the first 3 (sleep-replete) nights. Our rationale was
that classification of sleep-wake is more difficult in sleep-
replete nights because there is a longer period of time in bed,
and because of that there are many “wake states” to be
detected by the machine learning model. In contrast, on sleep-
restricted nights with 5 hrs of time in bed, participants are
mostly asleep, and there would not be many wake state
epochs. Sleep-replete nights were also longer (10 hrs time in
bed) and thus included more epochs.

Data Normalization
In order to minimize the effect of scale variability between
devices and participants, the raw actigraphy values were nor-
malized per sleeping period as follows: Let a = {ay, ..., a}
be the sequence of actigraphy measurements in a given sleep-
ing period. The normalized actigraphy measurement »; corre-
sponding to a; is given by:

a; — min(a)

= max(a) — min(a)’

(M

Feature Extraction

Consistent with our previous study,* we extracted features
from the actigraphy data using a sliding window of 21 epochs
centered at the target actigraphy value. We then used the
extracted features as input to our sleep-wake states predic-
tors. For each sliding window (which represents each acti-
graphy value), we extracted the following features used in
previous works:>>>! 10th, 20th, 50th, 5th, and 90th percen-
tiles, mean, sum of values, standard deviation, coefficient of
variation, peak-to-peak amplitude, interquartile range, skew-
ness, kurtosis, signal power, peak intensity, median crossings
(ie, the number of times actigraphy values cross the median
of the sliding window), time above threshold (ie, the number
of actigraphy values >15), and maximum value, along with
the 21 normalized actigraphy measurements within the win-
dow. Therefore, each sliding window was represented with
a 39-tuple of feature values and was assigned either a PSG-
defined wake or sleep label.

Predictive Models

We experimented with 5 commonly used machine learning
algorithms all using Python’s sklearn (version 0.17.1) imple-
mentations with default parameters unless stated otherwise:

1. Naive Bayes (NB): The NB is a generative classifier

that is provably optimal when the features are condi-
tionally independent given the class label. NB is often
quite effective in practice and works as follows: Let
x = (x1,x2, ...,x,) be an instance, with n features, to
be classified. Assuming that the features are condi-
tionally independent given the class, for any possible
class label y, the conditional probability that the sam-
ple x belongs to the class y is given by the posterior
probability: P(y|x) o< P(y) [1:_, P(x:|y). NB assigns
x to the class with the largest posterior probability.>
The parameters defining P(y) (ie, the prior distribution
of the classes) and P(x;|y) (ie, the conditional distribu-
tion of each attribute x; given the class, also known as
the likelihood) are estimated from the labeled training
data. Herein, we use a multi-variate Bernoulli model
for P(x;|y) and default sklearn discretization scheme
for continuous values.

. Regularized logistic regression (RLR): Logistic

regression (LR)™ is the discriminative counterpart of
2-class NB model where a binary logistic model is
used to directly estimate the probability of a binary
response. Here, P(y[x) = —.

= {7 » Where the para-

meters (w,b) are estimated from the training data
using maximum likelihood estimation which in the
case of LR reduces to least square regression. RLR
adds a regularizer to the least square objective func-
tion to counteract the tendency of the model to overfit
the training data. We used L2 regularizer and the
resulting objective function was optimized using sto-
chastic gradient descent (SGD).

. Random forest (RF) is an ensemble of decision tree

classifiers. The members of the ensemble are obtained
by applying bootstrap aggregation (“bagging”) to
decision tree learners.® The process of bagging
works as follows: Given a training set, bagging repeat-
edly selects B random samples (with replacement) of
the same size, each time uses the randomly selected
data as the training set, and fits a decision tree to the
training sample, resulting in an ensemble of
B decision trees (ie, a forest). Test samples are then
classified by taking a majority vote over the class
labels produced by the trees of the forest. In this
work, we used RF classifiers with B=100.

. AdaBoost (AB)> is an adaptive boosting meta-

algorithm. Suppose each training sample x; has a label
vi € {—1,1}. After m — 1 iterations, AB produces an
ensemble classifier of the linear form
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m—1

Coi(xi) = 1;1 akcr(xi), @)

where each ¢, is a (weak) classifier that assigns a label
cr(x;) € {—1,1}. At the m" iteration, AB augments
the ensemble to obtain C,(x;) = Cp_1(x;) + oy
¢m(x;). AB chooses the classifier weight @, and the
classifier ¢,, so as to minimize the exponential loss of
C,, given by E = Zie’}’fcm(x'). We use AB with an
ensemble size of 100 where each classifier in the
ensemble is a decision tree classifier.

5. Extreme gradient boosting (XGB)*® is a scalable var-
jant of gradient boosting.’” XGB produces an ensem-
ble of classification or regression models, typically
decision trees. Like AB, it builds the ensemble in
a stage-wise fashion, using any arbitrary differentiable
objective function that includes a loss function and
a regularization term. We used XGB to generate an
ensemble of 100 classification trees with a logistic loss
function and L2 regularization term.

Performance Evaluation and Statistical

Analyses

We trained and evaluated personalized sleep-wake states
predictors (ie, classifiers), one for each individual, using the
training and test data for each individual. In contrast, we
trained generalized sleep-wake states predictors using the
training data for the entire population. We evaluated the
resulting predictors on the test data for each individual so
as to allow direct comparison of personalized and general-
ized predictor counterparts in terms of classifier performance
evaluation metrics. We further compared the estimates of
sleep parameters obtained by personalized and generalized
sleep-wake states predictors to those obtained by PSG in
estimation of sleep parameters (see Sections Classifier per-
formance evaluation and Sleep parameters). We also con-
ducted statistical analyses as described below.

Classifier Performance Evaluation

We used standard performance measures for evaluating the
performance of sleep-wake states predictors. Let the num-
ber of test samples belonging to the wake class correctly
labeled as wake (true positives) be TP; the number of
wake instances classified incorrectly as sleep (false nega-
tives) be FN; the number of sleep instances classified
correctly by the classifier as sleep (true negatives) be

TN; and the number of sleep instances that are labeled
incorrectly as wake (false positives) be FP. Then, accuracy
(ACC), sensitivity (SN), specificity (SP), and Matthews
correlation coefficient (MCC) are given by:

ACC = TP + TNTP + FP + TN + FN, 3)
SN = TPTP + FN, @)
SP = TNTN + FP, (5)

TP*TN — FP*FN
/(TP + FP)(TP + FN)(IN + FP)(TN + FN)
(6)

In general, it is possible to trade-off SP against SN by

MCC =

adjusting the classification threshold used to convert pre-
dicted class probabilities into class labels. Hence, it is useful
to plot the Receiver Operating Characteristic (ROC) curve™®
to visualize the performance of a classifier over all possible
choices of classification thresholds. The ROC curve is
a two-dimensional plot in which the true positive rate
(TPR), that is, SN, is plotted on the Y-axis, and the false-
positive rate (FPR), that is, (1-SP) is plotted on the X-axis.
Each point on the ROC curve represents the behavior of the
classifier at a specific choice of the threshold. Thus, if one
classifier has higher TPR for all FPR as compared to
another, then we can conclude that the former outperforms
the latter for any choice of the classification threshold, or
equivalently, the trade-off between TPR and FPR. The areca
under ROC curve (AUC), the probability that a randomly
chosen wake sample is scored higher than a randomly cho-
sen sleep sample by the classifier, is often used as
a summary statistic to compare classifiers. An AUC score
higher than 0.5 is considered better than random guessing.
A perfect classifier will have an AUC of 1.

Sleep Parameters

We used the following 5 standard sleep parameters: total
sleep time (TST), the amount of time in minutes that the
person is asleep during a sleeping period; sleep onset
latency (SOL), the time in minutes that it takes for the
person to fall asleep for the first time since the start of the
data recording in a given sleeping period; wake after sleep
onset (WASQO), the amount of time in minutes the person
spends awake, starting from when they first fall asleep to
when they become fully awake and do not attempt to go
back to sleep; sleep efficiency (SE), the percentage of total
time in bed actually spent in sleep; and number of
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awakenings (NA), the number of transitions from sleep to
wakefulness.

Statistical Analyses

We applied paired #-tests to assess the statistical significance
of the observed differences in performance. When assessing
such difference among multiple classifiers at the same time
(eg, when simultaneously comparing classifiers based on
classifier performance metrics), we used paired #-tests with
the Bonferroni corrected significance level to avoid the
family-wise Type I error.”” In our case, to test for statistical
significance at a significance level of «, the p-values would
have to be compared with m(#l) where m is the total

number of predictive models under consideration. If we
choose of a = 0.05, since m = 10 (because we have 5 per-
sonalized and 5 generalized classifiers) we have to compare
p-values with % ~ 0.0005. On the other hand, when asses-
sing the difference in performance of two observed out-
comes (eg, the difference between a classifier’s estimated
TST and that of PSG, same for other sleep parameters), we
used paired #-test with significance level 0.05 and hence,

compared the p-values accordingly.

Variability Across Individuals

Let x; and x; be two participants. Let ¢; and ¢; be the
personalized classifiers trained on the training data for indi-
viduals i and j, respectively. Let ¢ be the concatenation of ¢;
and #;, where #; and #; denote the test data for individuals i
and j, respectively. Finally, let p; and p; be the sequences of
predicted probabilities for the positive class (wake) pro-
duced by ¢; and c¢; on the sequence . We say that two
individuals are similar if the corresponding personalized
classifiers ¢; and ¢; yield similar sequences of predicted

probabilities for the positive (or negative) class. We define
S, a measure of similarity between individuals i and j, as
simply the Pearson correlation coefficient between p; and p;.
We used this similarity measure to examine the usefulness of
personalized classifiers for sleep-wake states detection.

Results

In this section, we proceed to report results of experiments
designed to compare personalized sleep-wake states pre-
dictors with their generalized counterparts over all studies
and considering each study separately. We statistically
compare the predictors both in terms of how well they
estimate sleep parameters (See Section Sleep parameters)
and in terms of classifier performance evaluation metrics
(See Section Classifier performance evaluation).

Sleep Parameters Estimation:

Personalized vs Generalized Predictors
We report results of our comparison averaged over all
participants and all studies in Table 2 (see Supplementary
Tables S1-S6 for detailed results on each participant and
all studies). We observe personalized sleep-wake states
predictors outperform their generalized counterparts
overall in estimation of night-level sleep parameters of
TST, WASO, SE, and NA compared to PSG. We further
observe among the five classifiers used in this work,
estimates of sleep parameters obtained from RF are over-
all, closer to those estimates obtained from PSG, than the
obtained estimates from other classifiers.

We analyzed the effect of different classification cut-offs
(ie, the threshold used to convert predicted wake or sleep
probabilities into their corresponding class labels) on
sleep parameters estimates obtained from our developed

Table 2 Estimates of Sleep Parameters Obtained with Personalized and Generalized Sleep-Wake States Predictors and PSG, Averaged

Over all Participants Across All Studies Combined. In Each Column, the Boldface Number Indicates the Estimated Sleep Parameter

Closest to That of PSG

Classifier Personalized Approach Generalized Approach
TST SOL WASO SE NA TST SOL WASO SE NA

NB 347.72 20.30 159.09 64.23 16.44 359.24 18.37 147.63 66.7 14.46
RLR 486.50 9.37 38.72 89.90 6.56 500.19 8.83 26.13 92.55 5.17
RF 457.67 10.00 66.83 84.57 25.59 474.54 9.35 50.87 87.83 29.20
AB 464.98 8.94 60.35 85.95 27.67 487.65 8.57 38.74 90.27 18.04
XGB 467.91 9.00 57.26 86.49 2272 486.54 9.1 39.20 90.04 1591
PSG 436.83 15.67 73.26 80.71 26.65 436.83 15.67 73.26 80.71 26.65

Abbreviations: NB, Naive Bayes; RLR, regularized logistic regression; RF, random forest; AB, adaptive boosting; XGB, extreme gradient boosting; PSG, Polysomnography;
TST, total sleep time; SOL, sleep onset latency; WASO, wake after sleep onset; SE, sleep efficiency; NA, number of awakenings.
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personalized predictors. Specifically, we chose our two best
performing classifiers, RF and XGB, and obtained their esti-
mates of sleep parameters with the following cutoffs: 0.1, 0.2,
0.3, 04, and 0.5. We report the results (averaged over all
participants across all studies) in Table 3. We observe for
TST, WASO, SE, and NA, the most reliable (as compared to
PSG estimates) estimates by classifiers are obtained with
a threshold of either 0.4 or 0.5. For SOL, however, our results
suggest 0.2 for both RF and XGB.

To statistically analyze the estimates of sleep para-
meters obtained by our classifiers, we ran paired z-tests
on (i) the difference between estimates of sleep parameters
obtained by personalized models and those obtained by
PSG and (ii) the difference between estimates of sleep
parameters obtained by generalized models and those
obtained by PSG. We report the results in Table 4;
a p-value < 0.05 shows the classifier estimates are statis-
tically different than those obtained by PSG. Interestingly,
we observe that none of the estimates of TST, WASO, SE,
and NA, obtained by personalized RF, are statistically
different than those obtained by PSG. We further observe

personalized AB and XGB outperform their generalized
counterparts for sleep parameters WASO and NA. In terms
of SOL, both personalized and generalized NB obtained
estimates that are not statistically different than those
obtained by PSG. Overall estimates of sleep parameters
by generalized models are statistically different than those
obtained by PSG.

Performance of Classifiers: Personalized

vs Generalized Predictors

We report results of our comparison, in terms of classifier
performance evaluation metrics (see Section Classifier perfor-
mance evaluation), averaged over all participants across all
studies in Table 5 (see Supplementary Tables S7-S12 for
detailed results on each participant and all studies). The per-

formance of personalized classifiers is comparable to that of
their generalized counterparts in terms of AUC (see Table 5,
Figure 1). XGB sleep-wake states predictors outperform their
NB, RLR, AB, and RF counterparts with an AUC of 0.84.
Interestingly, in the case of 16 out of the 54 participants, or

roughly 30% of the population under -consideration,

Table 3 Estimates of Sleep Parameters Obtained with Different Classification Thresholds via Personalized RF and XGB Sleep-Wake
States Predictors, Averaged Over All Participants Across All Studies Combined. In Each Column, the Boldface Number Indicates the

Estimated Sleep Parameter Closest to That of PSG

Threshold TST SOL WASO SE NA

RF XGB RF XGB RF XGB RF XGB RF XGB
0.1 295.11 294.80 18.59 25.61 21343 203.33 54.53 54.43 4291 35.48
0.2 382.85 398.89 14.31 12.06 132.50 119.89 70.77 73.71 41.02 37.07
0.3 415.00 430.91 11.37 10.43 105.72 91.20 76.67 79.66 36.96 33.17
0.4 438.93 45231 10.44 9.78 84.22 71.07 8l.11 83.60 3117 28.06
0.5 457.67 46791 10.00 9.00 66.83 57.26 84.57 86.49 25.59 22.72

Abbreviations: RF, random forest; XGB, extreme gradient boosting; TST, total sleep time; SOL, sleep onset latency; WASO, wake after sleep onset; SE, sleep efficiency;

NA, number of awakenings.

Table 4 P-Values of the T-Tests Between Estimates of Sleep Parameters Obtained with Personalized and Generalized Sleep-Wake
States Predictors Compared to Those Obtained by PSG. Significance Level Is 0.05. Boldface Numbers Indicate Statistically Non-

Significant Values

Classifier Personalized Approach Generalized Approach

TST SOL WASO SE NA TST SOL WASO SE NA
NB <0.01 0.13 <0.01 <0.01 <0.01 <0.01 0.36 <0.01 <0.01 <0.01
RLR <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
RF 0.11 0.0l 0.49 0.07 0.64 <0.01 <0.01 <0.01 <0.01 0.29
AB 0.02 <0.01 0.14 <0.01 0.65 <0.01 <0.01 <0.01 <0.01 <0.01
XGB 0.01 <0.01 0.07 <0.01 0.07 <0.01 <0.01 <0.01 <0.01 <0.01

Abbreviations: NB,

Naive Bayes; RLR, regularized logistic regression; RF, random forest; AB, adaptive boosting;

SOL, sleep onset latency; WASO, wake after sleep onset; SE, sleep efficiency; NA, number of awakenings.

XGB, extreme gradient boosting; TST, total sleep time;
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Table 5 Performance of Personalized and Generalized Sleep-Wake States Predictors Averaged Over All Participants Across All
Studies Combined. In Each Column, tThe Boldface Number(s) Indicate(s) the Highest Value Obtained for the Corresponding Metric

Classifier Personalized Approach Generalized Approach

ACC SN SP MCC AUC ACC SN SP MCC AUC
NB 0.75 0.74 0.74 0.38 0.83 0.75 0.69 0.77 0.36 0.83
RLR 0.86 0.29 0.98 0.36 0.82 0.86 0.26 0.99 0.35 0.83
RF 0.85 0.45 0.93 0.40 0.8l 0.86 0.41 0.96 0.41 0.80
AB 0.86 0.46 0.95 0.44 0.80 0.87 0.37 0.98 0.45 0.85
XGB 0.86 0.45 0.95 0.45 0.84 0.87 0.38 0.98 0.45 0.85

Notes: © 2018 IEEE. Reprinted, with permission, from Khademi A, El-Manzalawy Y, Buxton OM, Honavar V. Toward personalized sleep-wake prediction from actigraphy. In
2018 |IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2018 (Vol. 2018-March, pp. 414-417). Institute of Electrical and Electronics Engineers

Inc. https://doi.org/10.1109/BHI.2018.8333456.*

Abbreviations: NB, Naive Bayes; RLR, regularized logistic regression; RF, random forest; AB, adaptive boosting; XGB, extreme gradient boosting; ACC, accuracy; SN,

sensitivity; SP, specificity; MCC, Matthews correlation coefficient; AUC, area under curve.

personalized XGB significantly outperforms generalized XGB
in terms of AUC (p-value <0.00014 in ¢-test). Moreover, in the
case of 8 individuals, personalized XGB performs as well as
generalized XGB (performances can be observed in

Supplementary Table S7). Thus, in approximately 44% of the

population under consideration, personalized XGB outper-
forms or matches the performance of generalized XGB, and
underperforms in the majority of individuals.

We compare performance of personalized and general-
ized predictors averaged over test data from each study
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Figure | ROC curves of personalized and generalized XGB sleep-wake states
predictors. The two darker ROC curves show the performance of the generalized
predictor (blue) and personalized predictors (orange) averaged over all individuals
across all studies. The lighter curves show performance of the generalized XGB
predictor and personalized XGB predictors tested on each individual. © 2018 IEEE.
Reprinted, with permission, from Khademi A, El-Manzalawy Y, Buxton OM, Honavar
V. Toward personalized sleep-wake prediction from actigraphy. In 2018 IEEE EMBS
International Conference on Biomedical and Health Informatics, BHI 2018 (Vol.
2018-March, pp. 414-417). Institute of Electrical and Electronics Engineers Inc.
https://doi.org/10.1109/BHI.2018.8333456.*

separately (ie, test data from participants from the same
study) and report the results in Table 6. Interestingly,
personalized and generalized models are consistently com-
parable to each other in all four studies.

Supplementary Table S13 shows the results of our

statistical analysis on the significance in difference
between personalized and generalized predictors’ perfor-
mances in our experiments. Interestingly, the difference in
performance of personalized and generalized predictors is
not statistically significant in any of the predictors except
for AB. One possible justification is that AB is more prone
to over-fitting when training data belong to only one
participant (ie, the personalized case).

Finally, to assess whether differences in performances
of predictive models could be attributed to differences in
sizes of training data, we experimented with two training
datasets of different sizes. Results (see Supplementary
Tables S14-S16) suggest that training predictive models
with more than two sleeping periods yields no significant
improvements in their performance compared to when
trained with only two sleeping periods.

How Do the Difference in Performances
of Predictors Relate to Participants’

Characteristics?

To determine whether the differences in predictive perfor-
mance (in terms of AUC) between personalized and general-
ized XGB predictors (chosen because of their highest
achieved AUC among other classifiers) could be attributed
to differences in individuals’ age, gender, sleep disorder, or
time in bed (in minutes) on test data, we computed Pearson’s
correlation coefficients between each of these variables and
difference in AUC between personalized and generalized
XGB predictors. No significant correlation with any of
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Table 6 Performance of Personalized and Generalized Sleep-Wake States Predictors Averaged Separately Across Individuals Within
Each Study. In Each Column of Each Study, the Boldface Number(s) Indicate(s) the Highest Value Obtained for the Corresponding

Metric
Study Classifier Personalized Approach Generalized Approach
ACC SN SP MCC AUC ACC SN SP MCC AUC

SR NB 0.76 0.75 0.75 0.40 0.85 0.68 0.79 0.66 0.34 0.85
RLR 0.88 0.32 0.98 0.42 0.86 0.88 0.33 0.98 0.41 0.86
RF 0.87 0.47 0.94 0.44 0.85 0.87 0.50 0.95 0.47 0.85
AB 0.88 0.49 0.95 0.49 0.85 0.88 0.46 0.97 0.50 0.89
XGB 0.84 0.43 0.94 0.42 0.88 0.89 0.48 0.97 0.51 0.89

Tl NB 0.80 0.67 0.80 0.38 0.84 0.75 0.74 0.75 0.39 0.83
RLR 0.86 0.23 1.00 0.35 0.85 0.85 0.20 0.99 0.27 0.84
RF 0.89 0.52 0.95 0.49 0.84 0.87 0.40 0.96 0.41 0.83
AB 0.90 0.48 0.98 0.53 0.86 0.87 0.37 0.98 0.45 0.87
XGB 0.80 0.27 0.95 0.32 0.88 0.88 0.37 0.98 0.46 0.88

AC NB 0.60 0.70 0.57 0.24 0.70 0.72 0.41 0.83 0.25 0.69
RLR 0.76 0.13 0.98 0.18 0.67 0.77 0.10 1.00 0.23 0.68
RF 0.72 0.26 0.88 0.17 0.64 0.76 0.17 0.96 0.21 0.63
AB 0.75 0.26 0.92 0.22 0.62 0.77 0.15 0.98 0.25 0.69
XGB 0.87 0.47 0.96 0.48 0.66 0.77 0.16 0.98 0.25 0.69

NwW NB 0.82 0.79 0.82 0.45 0.90 0.83 0.75 0.84 0.45 0.90
RLR 0.91 0.40 0.98 0.44 0.89 0.91 0.33 0.99 0.42 0.90
RF 0.91 0.53 0.95 0.49 0.88 0.91 0.49 0.96 0.48 0.86
AB 0.91 0.55 0.95 0.50 0.84 0.92 0.44 0.99 0.54 0.92
XGB 0.91 0.55 0.96 0.52 0.91 0.92 0.45 0.99 0.54 0.92

Notes: © 2018 IEEE. Reprinted, with permission, from Khademi A, El-Manzalawy Y, Buxton OM, Honavar V. Toward personalized sleep-wake prediction from actigraphy. In
2018 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2018 (Vol. 2018-March pp. 414-417). Institute of Electrical and Electronics Engineers

Inc. https://doi.org/10.1109/BHI.2018.8333456.*

Abbreviations: SR, sleep restriction; T, tiagabine; AC, acoustics; NW, night working, NB, Naive Bayes; RLR, regularized logistic regression; RF, random forest; AB, adaptive
boosting; XGB, extreme gradient boosting; ACC, accuracy; SN, sensitivity; SP, specificity; MCC, Matthews correlation coefficient; AUC, area under curve.

these variables is observed. In agreement with a previous
analysis,” the highest Pearson’s correlation coefficient of
0.264 with p-value = 0.53 was found for age.

Do the Different Studies (Sources of
Data) Impact the Relative Performance of
the Generalized vs Personalized
Sleep-Wake Predictors?

To examine whether there are systematic differences in the
relative performance of the personalized vs generalized
sleep-wake states predictors, we repeated our analyses sepa-
rately for each study (ie, source of experimental data) and
report the results in Table 7. We refer to such predictive
models as study-specific ones, each trained only using data
from a specific study and tested on the data from that study.

In the SR study of young adult males and TI study of
older adults, all personalized models, with the exception of
XGB, outperform their generalized counterparts in terms

of ACC. Also, we see that in all studies, personalized
models are comparable with their study-specific counter-
parts in terms of AUC. The performance of both persona-
lized and generalized models on data from the Acoustics
study is lower than that in the case of other studies. On the
Acoustics study, personalized XGB model outperforms its
generalized counterpart in terms of ACC by a margin of
nearly 11%. All personalized predictors, except for NB
and LR, have higher SN than their generalized counter-
parts. However, in terms of AUC, barring one exception
(NB), the personalized predictors do not outperform their
generalized counterparts.

Does Testing on Different Sleeping
Periods Impact the Test Results?

We ran paired #-tests on the AUC of all sleep-wake states
predictors (see Section pred models) obtained on test data.
Specifically, let y; be the mean of performance (ie, AUC)
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Table 7 Performance of Personalized and Study-Specific Sleep-Wake States Predictors Averaged Separately Across Individuals Within
Each Study. In Each Column of Each Study, the Boldface Number(s) Indicate(s) the Highest Value Obtained for the Corresponding

Metric
Study Classifier Personalized Approach Study-Specific Approach
ACC SN SP MCC AUC ACC SN SP MCC AUC

SR NB 0.76 0.75 0.75 0.40 0.85 0.74 0.76 0.74 0.39 0.85
RLR 0.88 0.32 0.98 0.42 0.86 0.87 0.38 0.97 0.44 0.86
RF 0.87 0.47 0.94 0.44 0.85 0.86 0.59 0.91 0.48 0.86
AB 0.88 0.49 0.95 0.49 0.85 0.88 0.53 0.95 0.51 0.89
XGB 0.84 0.43 0.94 0.42 0.88 0.88 0.57 0.95 0.53 0.89

Tl NB 0.80 0.67 0.80 0.38 0.84 0.80 0.70 0.8l 0.43 0.84
RLR 0.86 0.23 1.00 0.35 0.85 0.86 0.22 0.99 0.29 0.84
RF 0.89 0.52 0.95 0.49 0.84 0.87 0.49 0.95 0.48 0.84
AB 0.90 0.48 0.98 0.53 0.86 0.88 0.44 0.98 0.49 0.88
XGB 0.80 0.27 0.95 0.32 0.88 0.88 0.45 0.97 0.50 0.88

AC NB 0.60 0.70 0.57 0.24 0.70 0.52 0.82 0.43 0.22 0.70
RLR 0.76 0.13 0.98 0.18 0.67 0.83 0.52 0.89 0.44 0.85
RF 0.72 0.26 0.88 0.17 0.64 0.73 0.25 0.89 0.17 0.62
AB 0.75 0.26 0.92 0.22 0.62 0.76 0.19 0.96 0.24 0.69
XGB 0.87 0.47 0.96 0.48 0.66 0.76 0.18 0.97 0.23 0.68

NwW NB 0.82 0.79 0.82 0.45 0.90 0.83 0.75 0.83 0.44 0.90
RLR 0.91 0.40 0.98 0.44 0.89 0.91 0.39 0.98 0.43 0.89
RF 0.91 0.53 0.95 0.49 0.88 0.91 0.57 0.95 0.52 0.88
AB 0.91 0.55 0.95 0.50 0.84 0.92 0.55 0.97 0.56 0.91
XGB 0.91 0.55 0.96 0.52 0.91 0.92 0.56 0.97 0.57 0.92

Abbreviations: SR, sleep restriction; Tl, tiagabine; AC, acoustics; NW, night working, NB, Naive Bayes; RLR, regularized logistic regression; RF, random forest; AB, adaptive
boosting; XGB, extreme gradient boosting; ACC, accuracy; SN, sensitivity; SP, specificity; MCC, Matthews correlation coefficient; AUC, area under curve.

on test data in group i, where i € {1,2,3}. For each
trained predictor, we ran three -tests each with the null
hypothesis Hy : u; = p; where i#j and i,j € {1,2,3}. For
example, rejecting Hy : u; = u, would mean results of
testing on test data in group 1 are significantly different
from testing on test data in group 2. We report results of
our ¢-tests in Supplementary Table S17. Since none of the

p-values are significant, there is not enough evidence to
reject Hy for any of the predictors. We conclude resulting
performance of the predictors does not depend on which
sleeping period to use as test data.

Discussion

Existing work on developing methods to estimate sleep
parameters from actigraphy has focused on developing
a single model for all individuals, ie, a generalized
model. The considerable variation in sleeping patterns
across individuals** implies that person-specific models
could account for such variation across individuals and
yield superior models. We develop and show the validity

of 5 families of personalized machine learning models
for predicting sleep-wake states from actigraphy and
compare their performance with that of generalized mod-
els using PSG as the gold standard. Our results show that
the performance of personalized models, as evaluated by
standard classifier performance measures for epoch-level
sleep-wake states prediction, yields slightly worse per-
formance than generalized models. Personalized models
match or outperform their generalized counterparts in
approximately 44% of the population, ie, underperform
generalized models in 56% of the population. In contrast,
results of our experiments also show personalized mod-
els significantly outperform their generalized counter-
parts in estimating the night-level sleep parameters of
total sleep time, wake after sleep onset, sleep efficiency,
and number of awakenings, compared to PSG. Our ana-
lyses show that differences between estimates of sleep
parameters obtained by personalized models are statisti-
cally indistinguishable from sleep parameters obtained
by PSG, whereas nearly all generalized model sleep
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parameters differed from PSG. Among our personalized
machine learning models, ensemble methods, including
random forest and extreme gradient boosting, have
superior performance compared to other predictive meth-
ods. Our results lay the groundwork for development of
classes of reliable personalized machine learning models
able to estimate sleep parameters on an individual-level
basis and capable of coping with personal characteristics
and variability of sleep patterns across individuals.
With recent advances in technology, the public have
access to multiple types of actigraphy-collecting devices on
the market. These consumer devices provide individuals with
measures of their sleep often via phone-based apps. However,
all of the currently available devices are equipped with
a priori trained and developed (usually non-transparently)
generalized sleep assessment models and hence, are not per-
son-specific. The “black box” models also may be changed
via non-transparent software updates. We note that these
devices can collect individual-level actigraphy data very con-
veniently and over time. Such availability of data will open
up the potential to equip individuals’ devices with persona-
lized models of sleep parameter estimation. Research-grade
data could be used to cluster individuals by patterns of sleep

HTiagabineH Sleep Restriction ‘

| Acoustics |  Night Work

to select the closest and most appropriate validated model
rather than repeat PSG validations for every individual.
Performances of our developed classifiers on the
Acoustics study were lower than the performances on other
studies (see Section data for explanation of studies). In the
Acoustics study, sleep was occasionally disrupted by envir-
onmental noise. A heat map of the similarity between sub-
jects (Figure 2) (see Section Variability across individuals)
illustrates the difference between subjects in the Acoustics
study. Not only are they different from participants in other
studies but also from each other. We speculate the high
degree of variability across participants in the Acoustics
study explains the difference in performance of the predictive
models on the Acoustics study compared to other studies.
Interestingly, our analyses on how size of training data
would impact performances of our developed classifiers
demonstrate sufficiency of 2 sleeping periods of annotated
actigraphy data for training reliable personalized and gen-
eralized classifiers. Specifically, considering training classi-
fiers using 2 sleeping periods as baseline, we observed no
significant improvement on test data in performances of
either personalized or generalized classifiers when trained
with more than 2 sleeping periods. We conclude developing

04

02

| | ‘Sleep Restriction “ Tiagaine H

Night Work

| Acoustics |

Figure 2 Heatmap of the similarity between participants obtained according to the defined similarity measure. Axes group participants based on the study they were in.
Each pixel corresponds to one participant. Dark blue means maximum similarity and yellow means minimum similarity. Participants from the Acoustics study are observed to
be different than each other and those from other studies potentially explaining the difference in the performance of our predictive models on them.
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reliable personalized and generalized machine learning pre-
dictive models of sleep-wake states from actigraphy data is
viable with only data from 2 sleeping periods.

To our knowledge, current work along with* are the first
comprehensive machine learning-based approaches to sleep-
wake states prediction from actigraphy with 5 families of
developed reliable personalized and population-level machine
learning models. We systematically developed our machine
learning models and tested them with various measures of
classifier performance and statistical analyses through exten-
sive machine learning experimentation on high resolution (30-
s epoch) data. We achieve a high sensitivity using a Naive
Bayes classifier. As we denote wake states to be a positive class
label in our study, sensitivity reflects the predictive model’s
ability to detect wake states. We pinpoint a high sensitivity, ie,
ability to detect wake states, while noting that from a machine
learning perspective, there is a trade-off between sensitivity
and specificity with higher sensitivities potentially lowering
specificities and vice versa. We argue that in using any sleep-
wake states prediction or scoring algorithm (and binary classi-
fication in general), one can trade-off sensitivity and specificity
by changing the threshold used to convert predicted probability
of class labels.®® The trade-off can be application and context
dependent. Hence, we suggest the use of the Receiver
Operating Characteristics (ROC) curves capturing all possible
trade-offs (see Section Classifier performance evaluation).

Using actigraphy in measuring sleep has several advan-
tages over PSG. Recording and collecting PSG over an
extended period of time can be inconvenient and costly,
making it impractical®' in settings where longitudinal mea-
sures of sleep are of interest. Using actigraphy, one can
relatively conveniently collect movement data over time
and this provides us with the opportunity to measure sleep
in longitudinal settings with relatively low-cost. The inex-
pensive and unobtrusive nature of actigraphy, as opposed to
PSG, makes actigraphy a valuable tool to increase the
amount of collected data. Actigraphy devices are usually
small in size and light in weight making them an unobtrusive
alternative to PSG recordings that can be cumbersome for
patients. These advantages of actigraphy over PSG pave the
way for choosing actigraphy over PSG in developing perso-
nalized models of measuring sleep.

We use actigraphy data from®> collected during sleep
laboratory sessions, but we note such data may not reflect
actigraphy behavior in home settings. The population
under consideration comprise a wide range of ages which
entails both advantages and disadvantages. To our
strength, sufficient classifier performance on such age

diversity shows the reliability, validity, and applicability
of our developed machine learning models on people with
a variety of ages. We observed no statistically significant
correlation between age and the difference between our
developed personalized and generalized predictive models.
As a limitation, the age range calls for elucidation of sleep
patterns across people in different age categories and
development of reliable personalized machine learning
models for sleep quality assessment in each category.
Some directions for future research include, but are not
limited to: (1) The data used in our work do not contain 24
hrs of sleep screening and are limited to night time (sleeping
period). Development of reliable personalized machine
learning models of sleep-wake states prediction using 24-hr
data is a promising next step, (2) PSG annotation is a non-
trivial task and is not always available along with actigraphy
data. A fruitful future research direction is developing perso-
nalized variants of the unsupervised (not using the PSG
labels) machine learning models of sleep-wake states predic-
tion using actigraphy,*' (3) We considered at least 3 sleeping
periods of data from each participant: 2 or more to train and 1
to test our predictive models. However, in situations such as
clinical sleep studies, it is conceivable that only 1 sleeping
period of data may be available. Future work can develop
personalized models that are trained and tested using only 1
sleeping period of actigraphy data, and (4) Developing per-
sonalized machine learning models for sleep-stages predic-
tion as well as for that of physical activity recognition.”"
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