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Abstract

Despite having several distributed graph processing frameworks, scalable iterative
processing of large graphs is a challenging problem since the graph and intermedi-
ate data need a global view of the graph topology in distributed memory. Although
some systems support out-of-core iterative computations, they use a single machine
and often require fast storage. In this paper, we present a new distributed iterative
graph computation framework, called GraphMap, that utilizes a disk-based NoSQL
database system for scalable graph processing while ensuring competitive perfor-
mance. Extensive experiments on several real-world graphs show that GraphMap is
more scalable and often faster than existing distributed memory-based systems for
various graph processing workloads.

Keywords Graph processing - Distributed systems - NoSQL

1 Introduction

In this era of big data, various distributed big data systems, such as Apache Hadoop
and Spark, are processing a massive amount of information generated from hetero-
geneous data sources, including online social networks, smartphones, and Internet of
Things (IoT) devices such as smart light bulbs and thermostats, at an unprecedented
rate. Among various kinds of data, graph data are getting a lot of attention because
graphs are everywhere (e.g., online social networks, brain networks, transportation
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networks) and, more importantly, people can get deeper insights into big data based
on the explicit and implicit relationships among real-world entities. For example,
in bioinformatics, scientists are building a De Bruijn graph or an overlap graph to
construct a whole genome sequence based on short reads generated from a next-
generation sequencing machine [9, 32].

Even though graph data are invaluable in most disciplines and applications, graph
data processing has several technical challenges that need to be addressed for effi-
cient large-scale graph-based analytics. First, the sizes of real-world graphs are
already huge and, more importantly, increasing at a tremendous rate. For example,
if we represent each social network user as a vertex, there are more than 2 billion
vertices in the friendship graph of Facebook [6]. Therefore, large-scale graph pro-
cessing requires massive computing and storage resources. To make matters worse,
most graph-based applications generate a huge amount of intermediate data, and the
size of the intermediate data is usually much larger (in some cases, several orders
of magnitude bigger) than the original input graph size. Secondly, graph data have
complicated relationships among data entities, and these relationships are essen-
tial for graph analytics to gain a deeper insight into big graph data. However, these
complex relationships make it hard to partition the graph data for distributed graph
data processing. Last but not the least, most real-world graph data have an extremely
skewed distribution in terms of the number of connected edges. In other words, most
real-world graphs have some vertices that have a huge number of connected edges.
These high-degree vertices make it hard to ensure load balancing during large-scale
graph data processing.

To address the challenges for efficient large-scale graph data processing, system
researchers have devoted much effort to the study of big graph systems in recent
years. Existing graph systems for iterative computations can be categorized into two
types based on their system architecture: 1) centralized disk-based systems and 2)
distributed memory-based systems. The disk-based systems on a single machine
(e.g., GraphChi [15], X-Stream [25], PathGraph [31], TurboGraph [10], Flash-
Graph [34], GraphTwist [35], Mosaic [20]) focus on maximizing parallelism among
computing cores and designing graph representations optimized for HDD or SSD
accesses. Even though they demonstrate significant performance improvements
for iterative graph computations on a single machine, they have limited scalabil-
ity because they are incapable of processing a graph whose computing and storage
requirements are bigger than the available resources on the single machine.

As for scalable solutions, several distributed memory-based systems on a cluster
of commodity servers (e.g., Pregel [21], Giraph [1], Hama [2], GraphLab [19], Pow-
erGraph [7], Giraph++ [27], GraphX [8], Pregelix [5]) have been developed. Even
though they are designed to handle larger graphs by adding more compute nodes
into the cluster, they heavily rely on distributed memory to store not only the entire
input graph but also all intermediate data and communication messages. In graph-
based applications, it is not uncommon that the size of the intermediate data is sev-
eral orders of magnitude bigger than the original input graph size. Furthermore,
since the input graph is partitioned and distributed among compute nodes, existing
systems can fail when the least powerful compute node on the cluster cannot accom-
modate its graph partition, all intermediate results, and communication messages in
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its main memory. Even though a few distributed systems, such as Giraph and Prege-
lix, support out-of-core computations to utilize external memory for processing
large graphs, these systems typically focus only on decreasing the memory footprint,
not on effectively utilizing the external memory for improving the performance of
iterative computations, or require native storage modules lacking in fault tolerance.

In this paper, we claim that well-designed out-of-core graph systems for iterative
computations can handle large-scale graphs while ensuring competitive performance
by effectively partitioning and accessing graph data based on data locality. Such sys-
tems will enable us to run iterative graph computations on large-scale graphs using
a small and affordable cluster (e.g., tens of nodes), instead of a huge and expensive
cluster (e.g., hundreds or thousands of nodes) that is required by most existing graph
systems to accommodate not only input graph data but also all intermediate results
in its distributed memory. To validate this claim, we present a new distributed itera-
tive graph computation framework, called GraphMap, that effectively utilizes a disk-
based NoSQL database system for scalable graph processing while ensuring com-
petitive performance.

GraphMap has four salient features for scalable and efficient iterative graph pro-
cessing. First, it separates read-only graph data from modifiable data to maximize
sequential accesses and minimize random disk accesses during iterative graph com-
putations. By holding modifiable data in memory and immutable data in a disk-
based NoSQL system, GraphMap can scale to large-scale graphs while demon-
strating competitive performance through optimized disk I/O. Second, GraphMap
is equipped with two-level graph data partitioning (inter-worker and intra-worker
partitioning) for locality-optimized data placement and balanced workloads. In the
inter-worker partitioning (level 1), vertices and their connected edges are parti-
tioned and distributed among compute nodes for balanced graph processing. In the
intra-worker partitioning (level 2), each level-1 partition is further split into smaller
chunks based on ranges to efficiently support not only sequential accesses but also
random accesses. Third, in the inter-worker partitioning, GraphMap supports vari-
ous graph partitioning techniques including hash- and mincut-based partitioning so
users can choose one based on their requirements and workloads. Lastly, GraphMap
implements a collection of locality-aware optimization techniques to further improve
the overall performance of iterative graph processing, including dynamic access pat-
terns based on the number of active vertices, locality-based disk block accesses,
partition-aware identifier assignments and message batching, and worker-partition
colocation. Through the proposed techniques, GraphMap can utilize the secondary
storage by reducing random disk I/O and demonstrate competitive performance for
various iterative algorithms. We compare the experimental results of GraphMap
generated using several real-world graphs for various iterative algorithms with those
of state-of-the-art distributed graph frameworks. The evaluation results demonstrate
not only the improved scalability of GraphMap but also competitive performance
compared to the existing in-memory systems.

The rest of the paper is organized as follows. We first summarize the related
works of this paper in Sect. 2. In Sect. 3, we provide a detailed overview of Graph-
Map’s design and architecture. We describe the data placement scheme used in
GraphMap in Sect. 4 and the locality-based dynamic optimization scheme in Sect. 5.
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In Sect. 6, we present a strategy to move computation to data to reduce the network
traffic. Lastly, we evaluate GraphMap in Sect. 7 and conclude the paper in Sect. 8.

2 Related works

Iterative graph algorithms have been studied extensively, and a number of graph
processing frameworks have been developed specifically for them. Most of these
frameworks can be broadly categorized into two groups. The first group is char-
acterized by in-memory distributed programs built for commodity clusters. These
frameworks [7, 8, 19, 21, 26] typically have to load entire graphs in memory so they
require huge memory for large-scale graphs. Apache Hama and Giraph are two of
the most popular examples built on the Pregel-like BSP paradigm with the “think
like a vertex” programming model. On the contrary, systems like GraphX [8] and
Pregelix [5] are implemented using a general-purpose distributed in-memory data-
flow network where the graphs are stored as tables so the algorithms take advantage
of database-style queries. Trinity [26] is another framework that utilizes a distributed
in-memory key-value store for storing graphs and intermediate data. GraphLab [19]
and PowerGraph [7] represent yet another type of distributed frameworks based on
the asynchronous communications. PowerGraph can also be used synchronously.
Although some frameworks such as Pregelix have out-of-core execution capabili-
ties built in them, they are not optimized for slow storage media, and their execu-
tion times can be prohibitively high when using external storage while running large
datasets.

The second group consists of disk-based standalone frameworks such as Graph-
Chi [15], X-Stream [25], and a few others [10, 31, 34], which focus on optimizing
performance of algorithms when the graphs are too large to fit in main memory.
However, these frameworks are not designed to run on clusters. GraphChi, which
is built on the “think like a vertex” model, divides the graph among several shards
and accesses them in parallel using a sliding-window model. On the other hand,
X-Stream uses an edge-centric model where the edges are partitioned and then
streamed in memory. Contrary to the ones mentioned before, PathGraph [31] uses
a path-centric approach that lets them utilize the access locality in both disk and
memory. Yet another group of frameworks including FlashGraph [34] and Turbo-
Graph [10] are designed to exploit the parallel I/O capabilities of SSDs. In addition,
there are several graph frameworks optimized for GPUs such as graph analytics on
multiple GPUs [23], Lux [12], and DiGraph [33].

Chaos [24] is another graph processing framework that uses secondary storage
over a distributed cluster. However, unlike GraphMap that is designed for commod-
ity clusters, Chaos does not handle fault tolerance and is not tailored to recover from
storage failures. Another aspect in which Chaos differs from GraphMap is that it
assumes the underlying network interconnects have a high bandwidth and does not
depend on locality of access. This is in contrast to GraphMap because we try to
extract as much locality as possible in order to reduce the dependency on the net-
work. Specifically, Chaos reports their results on a 40 GigE network while we evalu-
ate GraphMap on a 1 GigE network. In addition, for running Chaos on a distributed
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system, the end user is required to split the input into roughly equal parts and store
them on the different machines. GraphMap automatically handles this by effectively
utilizing a distributed file system and a NoSQL database system. GraphD [30] is a
newest out-of-core graph processing system. Unlike GraphMap, GraphD is not built
atop general-purpose tools such as HDFS and HBase, and hence it lacks several
important features for distributed computing such as fault tolerance.

A preliminary version of this paper appeared in [17]. In this extended version, we
have new contributions as follows. First, we newly propose and develop a worker-
partition colocation technique and experimentally demonstrate its benefits. Second,
we extend GraphMap to support other types of graph partitioning techniques in
addition to the hash-based partitioning, and so users can choose one based on the
characteristics of graphs and workloads. We implement minimum cut-based parti-
tioning in particular and experimentally compare its performance with that of hash-
based partitioning. Moreover, we report our experimental results using a new type of
compute nodes to show the effects of different machine specifications.

3 GraphMap overview

In this section, we first introduce the preliminaries of our design features and then
present an overview of the proposed framework, including the partitioning tech-
niques, programming model, and system architecture.

3.1 Preliminaries

In GraphMap, information networks are modeled as directed graphs, and undirected
edges are converted into directed edges having opposite directions.

Definition 1 (Graph) A graph G consists of a set of vertices (V;) and a set of
directed edges (E;) where E; C V; X V,;. For an edge e = (u,v) € E;, u is called
the source vertex, and v is called the destination vertex. u and v have e as an out-
edge and in-edge, respectively. | V| and |E;| mean the number of vertices and edges,
respectively.

Each vertex has a unique vertex identifier and a set of attributes that characterize
the properties of the vertex. In this paper, we interchangeably use the terms “attrib-
ute” and “state” of a vertex. If the edges have modifiable, user-defined values, we
model them as attributes of source vertices. This permits us to treat all vertices as
mutable data and edges as immutable data while processing the graphs.

The separation of mutable from immutable data lets GraphMap exploit a stor-
age scheme where the mutable vertex data are compactly placed in memory and the
immutable edge data are stored in a locality-aware fashion on disk. As most graphs
generally have much more edges than vertices (e.g., up to 100 times more edges in
datasets in Table 1), this scheme lets us significantly reduce the memory required to
load and process large graphs. In subsequent sections, we show that by using this
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clear separation between mutable and read-only components in a graph, we can sub-
stantially reduce random disk I/O for several iterative graph algorithms.

To optimize the access of edges in a graph, we categorize them into three classes
based on their relative direction to a vertex as follows.

Definition 2 (Out-edges, In-edges, and Bi-edges) In graph G, the out-edges of ver-
tex v € V;; are defined as E? = {(v,V)|(v,V') € E;}. Conversely, the in-edges
of v are defined as E™ = {(,v)|(V,v) € E;}. The bi-edges of v are defined as
E" = Eo'y E™ (i.e., the union of out-edges and in-edges).

For each vertex in the graph, we build a vertex block (VB) consisting of an
anchor vertex and the edges directly connected to it with their properties. Since
different iterative graph algorithms can have different computation characteristics,
GraphMap supports three kinds of VBs based on the edge direction from the anchor
vertex: out-edge vertex block (out-VB), in-edge vertex block (in-VB), and bi-edge
vertex block (bi-VB). An out-VB comprises of a source vertex and the adjacency list
of destination vertex IDs to which it has an out-edge. Similarly, an in-VB consists of
a destination vertex and the adjacency list of source vertex IDs from which it has an
in-edge. We formally define the concept of VBs as follows.

Definition 3 (Vertex block) In graph G, the out-edge vertex block of v eV
is a 2-tuple that consists of v as its anchor vertex and the set of its out-edges,
defined as VB = (V", E9"") such that V' = {v} U {(v*|(v,v*) € E2"'}. Simi-
larly, the in-edge vertex block of v is denoted by VB’V” = (Vé”,Ef}") such that
vir={viu{"|(",v) €E}. We define the bi-edge vertex block of v as
VB’v’i = (Vfi, Efi) such that Vfi = Vé” u Vo,

Figure 1 depicts the ideas described above using an unweighted directed graph in
Fig. la. The numbers inside the vertices are the vertex identifiers (IDs). Figure 1b

In-edge|Out-edge
VB VB

0, {2, 6}| 0, {1, 5}
1,{} | 1,{}
2,{3, 4}| 2, {0, 3}
3,{2, 4} 3,{2,5}
4,{5, 6}| 4, {2, 3}
5,{0,3}| 5, {4}
INF | 6,{} | 6,{0,4}

Vertex|State

=N W W ~=|O

A || W IN =[O

(a) A sample graph (b) States and vertex blocks

Fig.1 A sample graph, its set of vertex blocks and the states of the vertices at the convergence of the
single-source shortest path algorithm from vertex ID 0
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shows how the graph is conceptually represented in GraphMap. Each vertex has a
state that may change after each iteration. In this case, the state represents the dis-
tance from the source vertex with ID O at the end of the last iteration. The corre-
sponding in-edge VB and out-edge VB for each vertex are also shown in Fig. 1b.
These vertex blocks store the topology information of the graph in an adjacency-list
format. Note that if an algorithm does not use the incoming edge information for
sending the updated state of vertices (as in the case of the single-source shortest
path), it may be sufficient to store only the out-VB of a vertex.

3.2 Two-level graph partitioning

GraphMap uses two-level graph data partitioning (inter-worker and intra-worker
partitioning) for locality-optimized data placement and balanced workloads. In the
inter-worker partitioning (level 1), the graph is partitioned using edge-cuts, and the
partitions are distributed among the compute nodes for balanced processing. A par-
tition is composed of vertices and their corresponding vertex blocks. While verti-
ces are stored in memory, their vertex blocks are stored in a distributed file system.
In the intra-worker partitioning (level 2), each level-1 partition is further split into
smaller chunks based on ranges to efficiently support not only sequential accesses
but also random accesses on the level-1 partition. This is done by sorting the vertex
blocks in each level-1 partition by their anchor vertex IDs and partitioning them into
smaller chunks based on ranges so that each chunk is indexed by its smallest and
largest vertex IDs. We perform the range-based intra-worker partitioning at all work-
ers in parallel.

Figure 2 depicts the partitioning scheme employed by GraphMap running on a
2-node cluster when applied to the sample graph in Fig. 1a. In the level-1 partition-
ing where the vertices are distributed among the compute nodes, vertices with IDs
0, 2, 4, and 6 are assigned to node 0 and the rest are assigned to node 1. The vertices
and their attributes are stored in memory as a 2-tuple. Next, in the level-2 partition-
ing where the VBs are sorted by their IDs and split into ranges, VBs corresponding
to vertices 0 and 2 are assigned to level-2 partition 0.0, and those corresponding to
vertices 4 and 6 are assigned to 0.1.

Compute Node 0 Compute Node 1
Workers '3) &) 0P E‘O
Memory (07 0) (21 3) (41 2) (67 INF) (17 1) (3v 3) (57 1)
Distributed (0, {1,5) (4,1{2,3) ) . {4})
File System (2, {0, 3} (6, {0, 4}) (3,{2,5) !
Partition 0.0 Partition 0.1 Partition 1.0 Partition 1.1

Fig.2 GraphMap’s 2-level partitioning scheme
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In the inter-worker partitioning (level 1), GraphMap supports various graph par-
titioning techniques including hash- and mincut (minimum cut)-based partitioning
so users can choose one based on their requirements and workloads. By default,
GraphMap performs hash-based partitioning using the hash value of vertex IDs
and assign their vertex block (VB) to one of the worker machines corresponding to
the hash value. Hash-based partitioning is fast and lightweight because we do not
need to maintain any additional data structure for storing the partition ID of each
vertex. In addition to the hash-based partitioning, GraphMap also supports mincut-
based partitioning to assign close vertices (and their vertex blocks) into the same
partition. By using this locality-aware graph partitioning scheme, we can reduce the
amount of inter-partition communication because it is likely that two connected ver-
tices are located in the same worker machine. However, unlike the hash-based par-
titioning, this scheme requires a pre-processing step for minimum cut, and we also
need to store the mapping information between vertices and partitions. GraphMap
is designed to be equipped with other partitioning techniques such as SHAPE [16].

3.3 Supporting vertex-centric API

A clear majority of the iterative graph processing frameworks adopt a vertex-centric
(“think like a vertex”) programming model [7, 19, 21]. The implementation of an
iterative graph algorithm (e.g., PageRank, single-source shortest path computations,
triangle counting) in the vertex-centric model requires the users to write a function
that defines what each vertex performs for each iteration of the algorithm. At every
iteration, all vertices of the graph run the same function in parallel. Each vertex typi-
cally performs three steps during an iteration. (1) It gathers the states of its neigh-
boring vertices, typically along its in-edges. (2) Depending on some user-defined
logic, it updates its value based on its current state and that of its neighboring ver-
tices. (3) If its status value is modified, it propagates the updated status value to its
neighboring vertices, typically along its out-edges.

Every vertex is in one of two states during the lifetime of the program—active
or inactive. During an iteration, only those vertices that are in an active state can
execute the vertex program. The number of active vertices varies between the dif-
ferent classes of algorithms as well as from iteration to iteration within the same
algorithm. For instance, all vertices are active in PageRank during all the iterations
whereas, in case of connected components (CC), the percentage of active vertices
starts from 100% and tends toward 0% as the program advances. In case of single-
source shortest path (SSSP), the number of active vertices at a particular iteration
may vary even within the same graph depending on the choice of the source vertex.
A vertex can deactivate itself, typically at the end of an iteration, but can be reacti-
vated through messages from other vertices. The program terminates when either all
vertices become inactive or it satisfies a predefined condition for convergence (e.g.,
the number of iterations).

Most of the existing distributed vertex-centric graph processing frameworks are
based on the Bulk Synchronous Parallel (BSP) [28] model of computation designed
for shared-nothing architectures. Applications based on the BSP model typically
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start with an initialization step in which the input graph is read and scattered across
the cluster nodes. In each subsequent iteration, worker processes execute the user
program in parallel and independent of each other. At the end of each iteration, the
workers perform a global barrier synchronization during which they communi-
cate with each other to merge their results with those of their peers. Since vertices
communicating with each other may reside on different machines, most distributed
graph processing frameworks provide some mechanism of interaction between ver-
tices, usually along their edges. For instance, Pregel [21] operates in a pure message
passing model in which vertices send messages along their outgoing edges at the
end of an iteration. During iteration i, each vertex processes all incoming messages
received during iteration i — 1. On the other hand, in GraphLab/PowerGraph [7,
19], vertices can directly access the data within their neighboring vertices through
a shared state.

ALGORITHM 1: SSSP Program in the Vertex-Centric model

1 Function Compute (messages):

2 if getSuperstepCount() == 0 then setValue(INFINITY)

3 int minDistance = isStartVertex() ? 0 : INFINITY

a foreach message € messages do minDistance = min(minDistance, message)

5 if minDistance < getValue() then

6 setValue(minDistance)

7 foreach edge € getFdges() do sendMessage(edge,
minDistance+edge.getValue())

end

9 voteToHalt()

o

11 Function Combine (messages):
12 ‘ return min(messages)

Algorithm 1 shows pseudo-code for a SSSP program based on the vertex-centric
and BSP model. At the very first iteration (also known as superstep), each vertex ini-
tializes its value with infinity (line 2). In the following iterations, each vertex updates
its value using the smallest value of all the incoming messages (line 4) and its own
previous value (lines 5, 6) and broadcasts the updated value to all its neighboring
vertices along its out-edges (line 7). At the end of each iteration, the vertex changes
its status to inactive (line 9) and will be reactivated again in subsequent iterations if
it gets incoming messages from other vertices. To minimize the volume of messages
transferred over the network, we often create a combiner that merges the messages
bound for a particular destination (lines 11-12).

3.4 GraphMap system architecture

Figure 3 shows the architectural overview of GraphMap. It is built on the BSP com-
putation paradigm using the message passing model.

The system consists of a master node and a set of worker nodes. The master
node is responsible for accepting user requests and coordinating with the worker
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Mutable vertices

0000;
e (in local memory)

Graph

BSP Engine
Partitions

Master
Node

GraphMap Messaging
Worker Engine
Graph Engine

... W JON) Region Servers

worker §J0Q elele Hbase Regions
Nodes HHHN gHEN &
GraphMap _ Immutable edges
Workers : (on distributed
filesystem)

Fig.3 GraphMap system architecture

machines. The worker nodes synchronize and communicate with each other through
messages.

For a task-level parallelism, every worker node has multiple slots for running
worker tasks, and each of which is assigned a single partition. The worker tasks keep
the mutable vertex data in memory and update them at every iteration by reading the
immutable VBs from disk. To store VBs on disk, GraphMap utilizes HBase, a disk-
based NoSQL database system (further explained in Sect. 4). Additionally, worker
tasks communicate between themselves with the help of a messaging engine that is
responsible for coalescing messages sent to the same worker. A global barrier syn-
chronization is performed by the workers at the end of every iteration with the help
of a BSP engine. Moreover, GraphMap is equipped with an optimization scheme
that dynamically switches between sequential and random accesses at every iteration
depending on the computation patterns at each GraphMap worker (further explained
in Sect. 5). GraphMap also provides a worker-partition colocation technique that
allows workers to process partitions that reside in the same machine for reducing the
amount of data transferred through the network (further explained in Sect. 6).

4 Locality-aware data storage

This section introduces the storage scheme that GraphMap uses to exploit the local-
ity in graph datasets. As mentioned before, most of the iterative graph algorithms
only modify the vertex state whereas the edges remain unchanged throughout the
entire computation. Thus, through a clean separation between the mutable and
immutable parts of the graph, we can keep most or all of the mutable data in mem-
ory and access the immutable data from disk thereby minimizing non-sequential
I/O. Contrary to the existing distributed BSP-based frameworks where workers store
the entire graph as well as the intermediate data in memory, GraphMap judiciously
integrates secondary storage in memory-intensive graph algorithms.
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Figure 4 depicts GraphMap’s storage scheme. The anchor vertices and their
data are stored in a vertex data map in memory. The disk contains the correspond-
ing vertex blocks automatically sorted by HBase and split in multiple ranges (two
ranges in Fig. 4), which are then indexed in a region-index block. Lastly, incom-
ing and outgoing messages are buffered in in-memory queues so that they can be
delivered to their targets at the end of each iteration.

More specifically, GraphMap stores all anchor vertices along with their states
in memory whereas their vertex blocks consisting of the edges along with their
properties (such as edge weights) are maintained on disk. The advantages of this
storage scheme are twofold: (1) By storing only the mutable data in memory and
consequently reducing the memory requirement, we can process larger graphs
using fewer nodes, and; (2) By storing the vertex blocks belonging to the same
partition in contiguous locations on disk, we can access the immutable data using
sequential accesses thereby improving I/O performance. Since most graphs have
a much higher number of edges than that of vertices, and their degree distribution
is often very skewed, representing the edges as immutable data and storing them
on disk reduces the memory required to load the graph.

The mutable vertex data are stored in a mapping table in memory and is used
to update the values of anchor vertices. For instance, in case of SSSP, the map-
ping table stores the current minimum distance of each vertex from the source.
Likewise, in case of PageRank, it stores the current rank of each vertex. For the
immutable edge data that are stored in the vertex blocks of anchor vertices, there
are two types of access characteristics that we exploit to reduce the cost of read-
ing them from disk in every iteration:

1. Edge access locality—edges of a vertex are accessed together to modify its state.

T e Homores
|>\| Vertex ID | Data Ll Worker 1 emsStores
[ 1 6 2 I
()
=3 11 7 Worker n |
!_ _!_ Vertex Data Map Message gue_ue_s o _ _!
Ei mog || miog |
:%‘: 8 [R11 :
I‘é)l X 51R2116 StoreFile StoreFile |
=y ~ &[.1.] vB1[ (1,E) | VB16 [(16,Es) |
|§ 1K ¥ Region VB6 | (6,E¢) | VB26 | (26, Ez) |
12 = Index VB11 |(11,E;;)| VB31 |(31,Es)) |
12| HBase Region  HBase Region |l
|_Q_|__________g ______ gi__l

Fig.4 Storage scheme in GraphMap (single worker)
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2. Vertex access locality—the same anchor vertices are accessed by a worker in
every iteration.

The edge access locality is utilized by packing all edges of a vertex into a single
vertex block. On the other hand, the vertex access locality is used by storing the ver-
tex blocks of all anchor vertices belonging to a partition in contiguous locations on
disk, allowing the worker to read them sequentially at each iteration. Moreover, to
improve the performance of random accesses, the vertex blocks are sorted by their
anchor vertex identifiers and indexed by storing them in regions and retaining the
addresses of the first vertex block of each region.

5 Locality-based optimizations

Although the storage scheme used in GraphMap is designed to minimize non-
sequential I/O on slower storage media commonly found in commodity clusters, we
keep in mind that there exists a class of graph algorithms where the data access pat-
terns do not comply with only sequential reads/writes. A consequence of this can be
observed in Fig. 5, which shows the number of active vertices in a partition of the
Orkut graph [22] at every iteration during the execution of three algorithms—SSSP,
CC, and PageRank. In case of algorithms like PageRank where all the vertices are
active during every iteration, the sequential access pattern used to read the vertex
blocks from disk would be the most efficient option. On the other hand, in algo-
rithms similar to CC and SSSP where the number of active vertices may exhibit
large variations between iterations, sequential access at every iteration may not be
ideal especially during the ones in which only a few vertices are active and yet all
the vertex blocks must be read from disk.

Based on this observation, we propose an optimization scheme that dynamically
switches between sequential and random accesses at every iteration depending on
the computation patterns at each GraphMap worker. This adaptation not only lets us
gradually filter out the non-active vertices at every iteration but also avoids unneces-
sary disk accesses. Recall that on disk, the vertex blocks are sorted by their anchor
vertex identifiers and are indexed into regions for efficient random accesses. Dur-
ing an iteration, if the number of active vertices is less than a system-defined (and

[
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vertices at each iteration -#-SSSP  8CC <4rPageRank

— -
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user-modifiable) threshold 0, the vertex blocks are read with random accesses using
the index block, which is cached in main memory. Since the index block contains
the first vertex ID and the address of each region, when querying for a vertex v
belonging to some partition p, we consult the index block of p and obtain the region
b; such that the vertex ID of v is greater or equal to that of the first vertex at b, but
less than the first vertex ID at b, ;. Thus, we can perform a scan on the region b, to
find the vertex block of v. When the number of active vertices is greater or equal to
0, we read all vertex blocks sequentially irrespective of whether the corresponding
vertex is active or not.

Since disk access latency can vary widely across clusters and even within the
same cluster, the threshold 6 dynamically adapts itself on each worker node. At
every iteration, we compare the latency of sequential and random disk accesses and
calculate the number of vertices (i.e., 8) such that the total time required to randomly
access 6 vertex blocks is equal to the time required to sequentially access all vertex
blocks in a partition. Specifically, we determine the value of 6 as follows. Let 6,,,
S T and a;,, denote the threshold, the total time required to sequentially read all
VBs, the total time required to randomly access all active VBs, and the total number
of vertices that are active on worker w during iteration i, respectively. The thresh-
old before the start of the first iteration 6, is obtained empirically as described
before. We define m and n (m,n € Z) to store the IDs of latest iteration where
vertex blocks were read using a sequential access (range scan) and random accesses,
respectively. Before the start of each iteration i (i € Z,), we update the threshold
using the following rule.

0 _{B(i_la)w, ifm=0orn=0

w = s,,,2%, otherwise.

6 Moving computation to data

In GraphMap, each partition of the graph is assigned to a worker, and the number
of workers launched by the master equals the number of partitions. Each partition
is composed of anchor vertices, their states, and their vertex blocks. All vertices
(and their states) belonging to a partition reside in the memory of the same com-
pute node as the worker assigned to the partition. However, since the corresponding
vertex blocks are stored in a distributed file system, the workers are oblivious of
the physical locations of the vertex blocks. This is useful when the cluster contains
dedicated storage servers underneath the distributed file system, which are differ-
ent from the compute nodes. However, in situations where the local disks in com-
pute nodes are used to make up the distributed file system (as is commonly done in
HDES), the storage transparency has the unintended consequence that the anchor
vertices and their VBs may physically reside on different machines. In such cases,
the workers have to fetch the vertex blocks corresponding to the anchor vertices in
the partition assigned to it from a remote node at every iteration before processing
can commence. On commodity clusters where the nodes may not be connected by
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high-speed networks, these data migrations can have a significant impact on the total
execution times.

In order to avoid this network overhead in GraphMap, we move the computation
toward the data instead of the other way around. Ideally, this would imply that each
worker will process a partition that resides on the same machine. However, the dif-
ficulty in this approach is presented by the location transparency of the underlying
distributed storage system, which abstracts the low-level details from the workers.
To get around this impediment, we partition the graph and store the partitions in a
distributed NoSQL database in a way that each partition (both vertices and vertex
blocks) is completely contained in a single node. We also maintain a globally acces-
sible data structure (distributed in-memory key-value store), which stores the loca-
tions of the individual partitions. The NoSQL database is split in such a way that the
number of regions equals the number of graph partitions (and the number of Graph-
Map workers), and the regions are distributed among the nodes in the cluster. When
the partitions are loaded into the database, each of them is uniquely mapped to a
single region in the database, and the mapping information is stored in the global
key-value store.

During the iterative graph processing stage, when the GraphMap master launches
its workers, each worker consults the key-value store to find out the list of parti-
tions residing it its node and selects one that has not yet been selected by its peers
running on the same node. Next, workers update the store with 2-tuples consisting
of their worker IDs and their assigned partition IDs, and this information is used in
later stages to facilitate inter-worker message passing. Throughout the entire life-
time of the graph algorithm, a worker continues to work on the same local partition,
hence the step of selecting a partition and transmitting the mapping information to
the peers is a one-time process. Moreover, this scheme limits the network traffic to
relatively smaller mutable vertex data that are maintained in memory as opposed to
the much larger immutable edge data that have to be accessed from disk.

It is worth noting that, to ensure fault tolerance and provide a higher throughput,
it is likely that the distributed file system will replicate the partitions into multiple
nodes. Besides, workers can only interact with the database using its APIs and have
no control on the physical location from where a partition is fetched. Still, it is fair to
assume that, if a partition is present in the same node as the worker requesting it, the
database will try to use the local copy before it decides to fetch a remote one unless
working with the remote copy is faster due to issues such as disk contention at the
local node.

7 Experimental evaluation

This section presents an experimental analysis of GraphMap using various itera-
tive algorithms on real graph datasets of different sizes. We begin by explaining the
characteristics of the graphs used for evaluating GraphMap. Next, we perform a set
of experiments that can be classified into six categories: (1) We show the execution
times of GraphMap for several iterative graph algorithms and compare them with
those of a Pregel-like system; (2) We show the performance improvement incurred
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by moving the computation closer to data; (3) We present the consequences of the
dynamic access scheme when applied to the different datasets; (4) We demonstrate
GraphMap’s scalability on different cluster configurations; (5) We show the effi-
ciency of the hash-based global partitioning scheme by comparing execution times
of several algorithms after partitioning the graph using hash-based and minimum
cut-based scheme, and; (6) We compare GraphMap against other state-of-the-art
graph processing frameworks.

7.1 Datasets and iterative graph algorithms

To evaluate GraphMap, we use several real-world graph datasets of different sizes,
as summarized in Table 1. The experiments are performed using three classes of
iterative graph algorithms to adequately examine the various computation and com-
munication characteristics shown in Fig. 5. The first category of algorithms is illus-
trated using PageRank where all vertices are active throughout all the iterations in
the algorithm. The second category is illustrated using Connected Components (CC)
where the ratio of active vertices to the total number of vertices is close to 1 during
the first few iterations but quickly becomes close to 0 as the algorithm approaches
convergence. The final type is illustrated using Single-Source Shortest Path (SSSP)
where most vertices are inactive during the first and last few iterations and about
half of them are active during the intermediate ones.

7.2 Setup and implementation

The testbed we use to evaluate GraphMap consists of a cluster of 21 nodes (1 master
and 20 workers) on Emulab [29] in which we consider two types of nodes. The first
type (d710) is equipped with 12 GB RAM, one quad-core Intel Xeon E5530 proces-
sor, and two 7200 rpm SATA disks (500 GB and 250 GB). They run CentOS 5.5 and
are connected to each other with a 1 Gbps Ethernet network. The second type (d430)
has 64 GB RAM, two 8-core Intel Xeon E5-2630 processors with two threads per
core, and a 162 GB local hard drive. It has access to network-mounted storage but
was not used in our experiments. Each worker machine runs three JVM processes,
each with a maximum heap size of 3 GB and 16.5 GB in the d710 and d430 nodes,
respectively, unless stated otherwise.

Table 1. Graph datasets for Graph # Vertices # Edges

evaluation
hollywood-2011 [4] 22M 229 M
orkut [22] 3.1 M 224 M
cit-Patents [18] 3.8 M 16.5M
soc-LiveJournall [3] 48 M 69OM
uk-2005 [4] 39M 936 M
twitter [14] 42 M 15B
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GraphMap utilizes the BSP and messaging modules of Apache Hama (version
0.6.3), an open source implementation of Pregel, so in view of fairness, we directly
compare the performance of GraphMap with Hama. The vertex blocks are repre-
sented as key-value pairs and stored on disk using Apache HBase (Version 0.96),
which is an open source wide-column key-value store running on Apache Hadoop’s
(Version 1.0.4) Distributed File System (HDFS). There are multiple reasons for
choosing HBase as the underlying NoSQL database. Firstly, HBase on top of HDFS
provides replication and fault tolerance, which aligns with GraphMap’s philosophy
of running on cheaper commodity clusters. Secondly, HBase is well suited for both
non-sequential and sequential accesses of vertex blocks since it indexes the keys on
disk by sorting them using a log-structured merge (LSM) tree. This implies that a
chunk of adjacent keys is stored contiguously in the same block in HDFS, which can
be read sequentially using a range-scan operation. Lastly, HBase tables can be split
into regions where the key-value pairs in the same region will be stored in the same
machine (or in a single region server in HBase terms). Therefore, if each partition in
the graph can be mapped to an HBase region, the VBs in it will be stored in a single
node. This makes it convenient to partition the graph globally since we can rename
the vertex identifiers in a way that they can be mapped to one of the regions. Specifi-
cally, when we perform the inter-worker partitioning (level 1), we create one HBase
table that is pre-split into regions, one for each level-1 partition. For the intra-worker
partitioning (level 2), we combine the level-1 partition ID with the vertex ID as an
HBase key to store all vertex blocks belong to the same level-1 partition together,
sorted by their vertex IDs. Thus, both the layers of our two-level partitioning scheme
are on top of HBase—first by distributing vertices to different regions according to
their assigned partition ID (inter-worker partitioning) and then sorting and indexing
the keys on each region (intra-worker partitioning).

7.3 lterative graph computations

Since GraphMap uses the Hama’s BSP engine, we compare the total execution times
of both frameworks in Table 2 using the algorithms and datasets mentioned earlier.

Table 2 Total execution time of GraphMap compared to that of Apache Hama on d430 nodes

Datasets Total execution time (s)
SSSP CcC PageRank
Hama GraphMap Hama GraphMap Hama GraphMap

hollywood-2011 75.690  11.732(6.5x) 90.698 23.709 3.8 x) 135.771  35.711 (3.8 X)

orkut 36.664 11.737(3.1x) 60.653  23.744 2.6 X)  81.963 35.759 2.3 %)
cit-Patents 15.622  8.747 (1.8 x) 15.638  8.706 (1.8 x) 24.769 14.747 (1.7 x)
soc-LiveJournall ~ 30.688  11.755 (2.6 x) 42.636  20.745 (2.1 X)  54.690 26.769 (2.0 x)
uk-2005 * 59.743 * 302914 * 215.899
twitter * 74.838 * 167.938 * 420.051

*Failed because of out of memory
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In case of SSSP, for each of the datasets except uk-2005, the vertex with the largest
number of outgoing edges is chosen as the source vertex. For uk-2005, we choose
the one with the third highest out-degree since only about 0.01% are reachable from
the first two. In case of PageRank, we set the termination condition to ten iterations.
The execution times reported in Table 2 are obtained from the fastest of five runs,
clearing the cache before each run, and we also report their variation in Table 3.

It is evident from the results that not only does GraphMap consistently outper-
form Hama in all the algorithms on all the datasets, but is also more memory effi-
cient than Hama. Even for the smaller datasets such as cit-patents and soc-LiveJour-
nall having 16.5 and 69 million edges, respectively, GraphMap is about twice as fast
as Hama. The performance gap widens with an increase in the number of edges as
seen in the cases of orkut and hollywood-2011 datasets with 224 and 229 million
edges, respectively. This can be observed especially in case of SSSP where Graph-
Map is about 6 times faster than Hama. The most noteworthy results are in the cases
of the uk-2005 (936 million edges) and twitter (1.5 billion edges) datasets where
Hama fails to execute altogether. This demonstrates the impact of the memory and
I/O efficient elements used in designing GraphMap.

For a more fine-grained examination of the difference in execution times between
Hama and GraphMap, we have broken down and analyzed each individual iteration in
both frameworks while running PageRank on the Orkut dataset. The time spent by a
worker during an iteration was split into two parts—time taken for processing and for
synchronization. The processing time is the total time taken by vertices to process mes-
sages received in the previous iteration, update their state by running the user program,
and queue outgoing messages. In case of GraphMap, the processing time also includes
the HBase access time. On the other hand, the synchronization time comprises of the
time spent waiting for other nodes to synchronize as well as the time taken for transfer-
ring messages to peers. We observed that the average processing time of all workers in
case of Hama was consistently about twice as long as that of GraphMap in every itera-
tion of PageRank (the closest one being 1.7 X). On the other hand, the average synchro-
nization time of workers in Hama was 2.5 X to 3.7 X longer than that of GraphMap.
On the whole, each iteration of Hama was about 2.2 to 2.5 times slower than that of
GraphMap. Note that, even though Hama stores all its edge data in memory, its vertex

Table 3 Maximum, mean, and standard deviation of five runtimes of GraphMap for various algorithms
and datasets on d430 nodes

Datasets SSSP CC PageRank

Max  Avg StDev  Max Avg StDev  Max Avg StDev

hollywood-2011 11.81 11.77 0.03 23.80 2377 0.04 35.82 35.78 0.04

orkut 11.83 11.80 0.04 26.74 2437 1.32 35.88 35.81 0.05
cit-Patents 8.83 8.79 0.04 8.83 8.78 0.05 14.78 14.76 0.01
soc-LiveJournall 11.84 11.80 0.03 20.86  20.79 0.05 26.82  26.79 0.02
uk-2005 62.86 61.62 1.68 312.04 308.40 3.95 227.92  220.71 6.57
twitter 77.85 76.08 1.62 188.83 17571 8.61 447.04 430.86 11.35

@ Springer



S. Goswami et al.

processing time was longer than that of GraphMap, which has to access the disk at each
iteration. Even though this might seem counter-intuitive at first, this is expected since
HBase utilizes a block cache, which keeps a data-block resident in memory even after
its read. This is done so that adjacent records that reside in the same block can be read
without multiple disk accesses, thereby improving sequential access performance. This
reaffirms the validity of GraphMap’s data layout and the choice of HBase for imple-
menting it.

Figure 6 offers a closer look at the iterations in GraphMap to show how long the
different components take in the different classes of algorithms on the uk-2005 data-
set. Note that the time taken to update the vertex is relatively small compared to the
other components. This is because the execution time is dominated by disk accesses.
In case of PageRank, since all vertices are active, each worker executes the vertex pro-
gram the same number of times and processes the same number of messages at every
iteration (except the first and the last one). Moreover, since messages are passed along
every edge in the graph, there are a lot of inter-worker messages, which increases the
synchronization time. In case of SSSP and CC, the number of active vertices differs
between iterations and so does the HBase access time. However, depending on the
number of active vertices, GraphMap decides to perform sequential reads (iterating
over range-scans), which is what happens from iterations 5 through 15 in SSSP. This is
evident from the fact that the total disk access times in those iterations are similar even
though the vertex update times vary.

7.4 Effects of worker-partition colocation

Table 4 demonstrates the performance improvements that result from the colocation
of data and workers in GraphMap. On small datasets such as cit-Patents and orkut, we
do not observe much improvement in performance with colocation, and for some algo-
rithms such as SSSP and CC, we even notice a deterioration in the execution times.
This is because, when the partitions are small, the overhead of fetching the locations of
partitions for colocating workers is non-negligible compared to the time taken to fetch
and process the partitions from remote peers.

However, as the size of the data (and also the partitions) increases, the access local-
ity starts to yield noticeable performance improvements. For instance, in case of twitter
and uk-2005 graphs, we can observe that for algorithms such as SSSP and CC which
require a large number of iterations, the execution times with worker-data colocation
are about 1.5 to 2 times faster than those without it.

The efficiency of worker-partition colocation is reinforced by the difference in net-
work traffic per node per iteration in the two scenarios as shown in Table 5. Depending
on the graph algorithm and the dataset, this scheme reduces the network traffic by up to
an order of magnitude, with the highest performance gain in case of graphs containing
a large number of edges.
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7.5 Effects of dynamic access methods

To evaluate the impact incurred by dynamically switching between sequential and
random disk accesses, we compare the execution times of GraphMap for the CC

and SSSP algorithms with two baseline results using only sequential and only

random accesses as shown in Fig. 7. We do not include PageRank in the study
since all vertices remain active during every iteration of PageRank, and therefore

sequential access always performs the best. We can see that using the dynamic
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AR



S. Goswami et al.

Table 4 Execution time (in seconds) of algorithms on different datasets with and without worker-data
colocation

Datasets SSSp CcC PageRank

Colocated  Dispersed Colocated  Dispersed  Colocated  Dispersed

cit-Patents 8.747 6.407 8.706 6.405 14.747 15.404
soc-LiveJournall 11.755 15.347 20.745 21.406 26.769 30.377
orkut 11.737 15.411 23.744 24.466 35.759 42.421
hollywood-2011 11.732 12.409 23.709 27.418 35.711 69.428
uk-2005 59.743 123.547 302914 433.063 215.899 336.648
twitter 74.838 114.5 167.938 225.587 420.051 705.801

Table 5 Average data transferred (in MB) per node per iteration and the number of iterations (Iter) in
various algorithms on different datasets with and without worker-data colocation (Col and Disp, respec-
tively)

Datasets SSSP CC PageRank
Iter Col Disp Iter Col Disp Iter  Col Disp
cit-Patents 15 0.32 0.42 13 1.25 222 10 6.41 19.21
soc-LiveJournall 16 1.80 12.68 17 6.06 2226 10 16.92 51.25
orkut 17 2.19 17.06 10 1543 4532 10 2477 75.44
hollywood-2011 11 3.37 26.98 14 10.05  51.78 10 22.45 105.84
uk-2005 198 1.16 26.70 203 10.13  63.65 10 128.52  577.82
twitter 15 17.82  217.10 48 13.16 9096 10 170.73  915.93
twiter 335557 S
uk,zoos % - %
soc-LiveJournall %ﬂ %m
cit-Patents EIEIIA Eynjmlc
kaad Random
orkut 5557 e Sequential
hollywood-2011 % %
0 2 4 6 8 0 2 4 6 8
SSSP cC

Fig.7 Normalized execution times using different access schemes

access type yields the best performance compared to the baselines since it makes
a more informed decision on how to read data from the disk based on the hard-
ware performance as well as algorithmic characteristics.
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We can also observe from Fig. 7 that, in case of cit-Patents, the vertex blocks
are accessed in a random pattern in all the iterations as opposed to a full sequen-
tial scan because only a tiny fraction of the vertices is active throughout the com-
putation. We can also witness a huge performance gain (about 8 x) for SSSP on
uk-2005 compared to the baseline using only sequential accesses because it has a
large number of iterations (198 iterations) until it converges, and most iterations
have only a few active vertices.

Figure 8 presents a more fine-grained analysis of the dynamic access on a
worker with the uk-2005 dataset (iterations 0-40). We can see that the choice of
access type corresponds to the number of active vertices for most iterations. An
interesting observation here is that in iterations 5 and 15, even though random
accesses are faster, GraphMap selects the full sequential scan, which signifies that
there is still room for improvement. One way this can be done is by fine-tuning
the value of 8, which was set to 2% for all experiments performed.

7.6 Scalability

In this part of the evaluation, we begin by demonstrating GraphMap’s scalability
in Table 6 by running SSSP on all the datasets using different worker configu-
rations. We perform three sets of experiments, each time changing the number
of workers (60, 120 and 180) but keeping the heap size the same (1 GB). As
expected, GraphMap requires less memory than Hama and can process the input
graph using fewer workers. Increasing the number of workers decreases the sizes
of the partitions and consequently the number of active vertices handled by each
worker. This is shown in Fig. 9a, b. However, an increase in the number of work-
ers will incur a higher inter-worker communication cost especially on commodity
clusters with slower network interconnects, resulting in diminished performance
improvements. As shown in Fig. 9c, d, if we raise the number of workers, the
vertex update time decreases but at the cost of longer synchronization time for
coordinating more workers.

S
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Fig. 8 Effects of dynamic access methods
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Table 6 Scalability of Hama

Total execution time (sec
versus GraphMap with SSSP on (sec)

d430 machines Dataset Framework — #Workers
60 120 180
hollywood-2011 Hama 75.690  48.721 54.729
GraphMap 12.383 12.399 12.393
orkut Hama 36.664 33.688 45.705
GraphMap 15.395 12.474 15.375
cit-Patents Hama 15.622 18.683 24.724
GraphMap 9.388 9.429 12.407
soc-LiveJournall Hama 30.688 33.714 42.753
GraphMap 15.371 12.415 12.427
uk-2005 Hama * * 201.955
GraphMap 78.426 45.464 42.463
twitter Hama * * *

GraphMap 81.438 57.447 48.476

*Failed because of out of memory

7.7 Effects of partitioning scheme on performance

In the following set of experiments, we demonstrate the efficiency of hash-based
partitioning scheme used in GraphMap by comparing it against the performance
of minimum cut-based partitioning. For the minimum cut-based partitioning, we
use Metis [13] to find the minimum edge-cuts in our graphs and then distribute the
resulting partitions among GraphMap workers. For the hash-based partitioning, we
assign vertices to workers based on the result of hashing their vertex identifiers.
Next, we run the various graph algorithms on both partition assignments and gather
the execution times and the total number of messages sent by all workers to their
peers (both local and remote) as shown in Tables 7 and 8 respectively. Note that we
do not use the worker-partition colocation during these experiments to isolate the
effect of inter-node messages on the total execution times.

As expected, the number of messages in the graph partitioned using minimum
cuts is much smaller (up to 8 times) than that using hash-based partitioning because
connected vertices are typically assigned to the same partition. However, we observe
that, for most of the datasets, the minimum cut-based partitioning scheme provides
no improvement in execution times. For some algorithms (e.g., PageRank on twit-
ter), the minimum cut-based partitioning scheme is even slower (by about four
times) than the hash-based one. Note that the execution time does not include the
time taken to calculate the minimum cuts using Metis.

The reason behind the diminished performance when using mincut-based parti-
tioning lies in the degree distribution and small-world property of real-world graphs
combined with the bulk synchronous nature of GraphMap. More specifically, while
trying to reduce the number of edges across partitions, the mincut-based partition-
ing may inadvertently assign two connected hubs (i.e., vertices with a large number
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Table 7 Effects of various partitioning schemes on total execution time (d430 nodes without the worker-
partition colocation)

Datasets SSSP CC PageRank
Mincut Hash Mincut Hash Mincut Hash

hollywood-2011 24.419 12.409 63.485 27.418 111.51 42.811
orkut 21.418 15.411 39.427 24.466 69.453 39.818
cit-Patents 9.447 6.407 7.231 6.405 18.378 18.632
soc-LiveJournall 15.415 15.347 24.391 21.406 39.427 33.408
uk-2005 204.561 123.547 517.255 433.063 280.266 229.351
twitter 354.681 114.5 694.493 225.587 2060.011 531.716

Table 8 Average number of messages transferred between all workers (running on same or different
compute nodes) per iteration in various algorithms on different datasets with mincut and hash-based par-
titioning

Datasets SSSP CC PageRank

Mincut Hash Mincut Hash Mincut Hash
hollywood-2011 1.40M 7.30M 4.35M 24.87TM 10.23M 56.05M
orkut 1.65M 4.58M 11.49M 38.56M 18.42M 62.11M
cit-Patents 11.87K 14.07K 0.39M 1.16M 4.527TM 13.487TM
soc-LiveJournall 2.90M 3.20M 12.68M 14.28M 36.08M 40.36M
uk-2005 0.37M 2.25M 3.26M 25.41M 37.68M 308.3M
twitter 18.90M 39.01M 13.57M 31.17M 174.1IM 422.0M

of edges) to the same partition. This means that a few partitions can have a much
higher number of edges than the rest and may need to process a much larger num-
ber of messages per iteration. This can be observed in Fig. 10, which depicts the
skewness in the edge distribution for the three largest datasets across a fixed number
of partitions (60) for both partitioning schemes. In a bulk synchronous processing
model where all workers must synchronize before every iteration, the execution time
for each iteration is determined by the workers taking the longest processing time.
Therefore, when the number of edges is skewed, the execution time of an iteration is
dominated by the worker processing the partition containing the largest number of
edges.

7.8 Comparison with state-of-the-art systems

In this part, we evaluate GraphMap’s performance against the popular distributed
graph processing frameworks such as Hama, GraphX, PowerGraph (GraphLab 2.2),
Giraph, and Giraph++, as shown in Table 9. For the comparisons, we show the
results of running CC and PageRank on two of the largest datasets, twitter and uk
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Fig. 10 Distribution of total number of incoming and outgoing edges per partition

datasets. To prevent the effects of our sub-optimal system configurations, we adopt
the results reported in literature [8, 31]. Moreover, since Chaos [24] reports normal-
ized runtimes, we use the ones reported by GraphD [30]. The results are annotated
with the hardware configurations used to generate them.

The results provide some interesting observations. Firstly, the other frameworks
were evaluated on clusters with larger aggregate main memory and processing
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Table 9 Comparison of GraphMap on thin (d710) nodes with other systems

System Settings CC (s) PageRank (sec./iteration) Type
twitter uk-2005 (*uk-2007) twitter uk-2005 (*uk-2007)

GraphMap on Hadoop 21 nodes (21 X 4 = 84 cores, 319 695 83 46 Out-of-core
21 x 12 = 252 GB RAM)

Hama on Hadoop 21 nodes (21 x 4 = 84 cores, Fail Fail Fail Fail In-memory
21 x 12 = 252 GB RAM)

GraphX on Spark 16 nodes (16 x 8 = 128 cores, 251 800* 21 23* In-memory
16 x 68 = 1088 GB RAM)

GraphLab 2.2 (PowerGraph) 16 nodes (16 X 8 = 128 cores, 244 714% 12 42% In-memory
16 x 68 = 1088GB RAM)

Giraph 1.1 on Hadoop 16 nodes (16 x 8 = 128 cores, 200 Fail* 30 62* In-memory
16 x 68 = 1088 GB RAM)

Giraph++ on Hadoop 10 nodes (10 x 8 = 80 cores, No result reported 723 No result reported 89 In-memory
10 x 32 = 320 GB RAM)

Chaos 15 nodes (15 x 12 = 180 cores, No result reported No result reported 470 No result reported ~ Out-of-core
15 x 48 = 720 GB RAM)

GraphD 16 nodes (16 X 4 = 64 cores, No result reported No result reported 46 No result reported ~ Out-of-core

16 x 8 = 128 GB RAM)

‘|@ 13 IWeMS0D) °§
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power. For instance, Giraph, GraphLab, and GraphX were evaluated on an aggregate
memory of 1 TB and 128 cores whereas GraphMap was tested using 84 cores on
256 GB RAM. In case of CC, GraphMap’s performance is comparable to that of the
other frameworks even while using fewer resources than the rest. In case of the uk
dataset, GraphMap is even faster than some of the others. GraphMap demonstrates
competitive performance by effectively accessing disk through a set of optimization
techniques such as the dynamic disk access scheme and worker-partition coloca-
tion. In case of PageRank, the difference in execution times is more noticeable since
GraphMap has to read all vertex blocks from disk at every iteration while using
fewer cores than the rest. Note that Chaos takes significantly longer than GraphMap
since it admittedly performs well only on high-speed networks, whereas all experi-
ments reported on Table 9 were performed on 1 Gbps links. GraphD is a newest
out-of-core graph processing system. Unlike GraphMap, GraphD is not built atop
general-purpose tools such as HDFS and HBase and hence it does not have to incur
the performance costs that come with them due to several important features such
as fault tolerance. Moreover, GraphD is programmed in C++, which automatically
puts GraphMap at a disadvantage since it is programmed in Java that can be 2-3
times slower than C++ [11]. These results and observations exhibit the efficacy of
GraphMap in iterative processing of large datasets on constrained environments.

8 Conclusion

In this work, we present GraphMap, a distributed iterative framework capable of
processing large graphs on a small cluster by effectively utilizing secondary stor-
age through access locality-optimized techniques. This paper makes the following
contributions. Firstly, we propose a clean separation of storage between mutable and
immutable graph data during the lifetime of the computation. With this approach,
we can optimize the storage scheme to exploit the access locality in graphs thereby
increasing sequential rather than random disk I/O. Secondly, we present a two-level
graph data partitioning scheme (inter-worker and intra-worker partitioning) for
locality-optimized data placement and balanced workloads. Moreover, we introduce
a collection of optimization techniques based on the access locality to improve I/O
performance and execution time. Lastly, we demonstrate GraphMap’s performance
through a comprehensive set of experiments and establish that it even outperforms
distributed in-memory graph processing frameworks for several classes of graph
algorithms.
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