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The study of gapped quantum many-body systems in three spatial dimensions has uncovered the existence
of quantum states hosting quasiparticles that are confined, not by energetics but by the structure of local
operators, to move along lower dimensional submanifolds. These so-called “fracton” phases are beyond the
usual topological quantum field theory description, and thus require new theoretical frameworks to describe
them. Here we consider coupling fracton models to topological quantum field theories in (3 + 1) dimensions
by starting with two copies of a known fracton model and gauging the Z, symmetry that exchanges the two
copies. This yields a class of exactly solvable lattice models that we study in detail for the case of the X-cube
model and Haah’s cubic code. The resulting phases host finite-energy non-Abelian immobile quasiparticles with
robust degeneracies that depend on their relative positions. The phases also host non-Abelian string excitations
with robust degeneracies that depend on the string geometry. Applying the construction to Haah’s cubic code in
particular provides an exactly solvable model with finite energy yet immobile non-Abelian quasiparticles that

can only be created at the corners of operators with fractal support.
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I. INTRODUCTION

The last several decades in condensed matter physics has
seen substantial progress in our understanding of gapped
quantum many-body systems, ranging from topologically or-
dered systems [1], such as fractional quantum Hall states
and quantum spin liquids, to symmetry protected topological
states, such as topological insulators. While such phases can
be described through the framework of topological quantum
field theory (TQFT), it has more recently been understood
that in three and higher spatial dimensions there are also
possible gapped states that are beyond the usual TQFT de-
scription. These states [2—11], which are now referred to as
having “fracton order,” share a number of features in com-
mon with more conventional topological orders, including
topologically nontrivial quasiparticle excitations and robust
topology-dependent ground-state degeneracies.

In contrast to conventional topological orders, fracton
phases possess a strong geometry dependence, most notably
in that local operators can create or destroy excitations only in
certain geometric patterns, which implies that the mobility of
excitations is highly constrained. For example, quasiparticles
may be confined to move along certain lower dimensional
submanifolds, or perhaps may even be completely immobile,
despite the energy of a state with well-separated quasiparticles
being finite. Importantly, these restrictions do not arise from
energetics, but rather from the structure of local operators in
the Hilbert space. Particles that are fully immobile are referred
to as fractons. Such mobility restrictions can also occur for
electric and magnetic charges in gapless U(1) gauge theories
[12-14], though we focus on the gapped case.

Since the original fracton model by Chamon [2,4] was
presented, an intriguing development was the discovery that
there are states, such as the ground states of Haah’s cubic
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code [5] and several others [15-17], that do not support any
mobile topologically nontrivial quasiparticles; in other words,
the system does not support any string operator that creates a
pair of quasiparticles at its ends. Instead, in Haah’s code the
well-separated nontrivial quasiparticles can only be created at
the corners of “fractal operators,” which are operators with
support on a fractal subsystem.

These developments raise the question of how to develop
a general theoretical framework to describe the set of al-
lowed gapped states in (3 + 1) dimensions. Given the rich
mathematical structure of topological quantum field theory
and in particular the understanding of unitary modular tensor
categories for (2 + 1) dimensional states, it is possible that the
understanding of gapped fracton orders may similarly uncover
a rich mathematical structure.

The Hamiltonians for Chamon’s model and Haah’s code
both consist entirely of Pauli operators. Reference [7] has
since provided a classification of commuting Pauli Hamilto-
nians, and there has been a flurry of recent activity [18-38]
studying various aspects of the possible fracton phases of mat-
ter. Since commuting Pauli Hamiltonians can only give rise
to Abelian topological quasiparticles, which have a unique
fusion outcome when fused with themselves, a natural chal-
lenge is to understand models that can give rise to non-
Abelian fractons. Such phases would arise from Hamiltonians
that are necessarily beyond the commuting Pauli Hamiltonian
classification.

To date, there have been two approaches to developing
fracton models with non-Abelian quasiparticles. The first
is through a layer construction [39-42], where layers of
non-Abelian (2 + 1)D topological orders are stacked and
subsequently strings of particles from different layers are
condensed in various geometrical patterns. However, in this
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approach, in all known cases the non-Abelian quasiparticles
are mobile in at least one direction. The second approach
[43] proceeds by considering generalized gauge theories
with Abelian gauge group, but combined with an analog of
a Dijkgraaf-Witten cohomological twist, which renders the
excitations non-Abelian. In this latter approach, immobile
non-Abelian quasiparticles can be created at the corners of
membrane operators. To date, phases containing immobile
non-Abelian quasiparticles that can only be created by fractal
operators have not been found.

A powerful way of obtaining conventional non-Abelian
topological order from Abelian topological order is to gauge a
global symmetry that permutes quasiparticle types [44—48],
such as the permutation symmetry of multiple copies of a
topological phase. After gauging, any quasiparticle with a
nontrivial orbit under the symmetry becomes non-Abelian,
as are the fluxes of the symmetry (the twist defects). It
is well-known that gauging subsystem symmetries of more
conventional phases can produce fracton phases [10,49-51],
and fracton phases in the presence of additional symmetries
[52,53] and symmetry defects [54] are an active area of
current research. It is a natural question, then, to ask whether
gauging a global symmetry of an Abelian fracton phase pro-
duces non-Abelian fractons.

In this paper, we consider coupling fracton phases to
topological quantum field theories by gauging the permutation
symmetry of multiple copies of a given fracton phase. Such
a construction allows us to obtain an exactly solvable model
where we couple N copies of a fracton phase to any discrete
G gauge theory, where G is a subgroup of the permutation
group on N copies, although we specialize to N = 2. The
interplay of fracton order and topological order is an inter-
esting topic, as it is not a priori clear whether, for example,
the subdimensional excitations of the fracton system would
survive when coupled in a nontrivial way to a system with
topologically nontrivial mobile, deconfined excitations. We
find that gauging global symmetries of Abelian fracton mod-
els indeed leads to models with non-Abelian subdimensional
excitations. Notably, the gauging procedure does not affect the
mobility of the excitations of the ungauged theory. Gauging
symmetries in models with immobile excitations, including
fractons created at the corners of fractal operators, leads to
non-Abelian immobile excitations created by operators with
similar support. We show explicitly that the robust degen-
eracy associated with these excitations depends in a highly
nontrivial way on the relative positions of those excitations.
The models we construct, which are based on the X-cube
model [3,10] and Haah’s code, have another unusual feature:
flexible, dynamical stringlike excitations which carry topolog-
ical degeneracy which depends on the geometry of the string.
This is in contrast to conventional topological order, where the
degeneracy associated to string excitations is independent of
their geometry.

Our work, in particular a non-Abelian extension of Haah’s
code, may also be of interest for quantum information ap-
plications. Our model allows the encoding of topologically
protected degeneracy in fully immobile excitations (a benefit
unique to fractons), with some logical operations on the
degenerate manifold implemented via a fractonic analog of
braiding. This is in contrast to Haah’s original code, where

qubits would have to be encoded in the ground-state subspace
of the system on a topologically nontrivial manifold such as a
3-torus.

The structure of this paper is as follows. In Sec. II, we
explain the gauging procedure in a more familiar context by
gauging the layer-swap symmetry in the bilayer (2 4 1)D toric
code. Although the results are already well-understood from
the perspective of topological order, we go into considerable
detail because the technical framework is precisely the same
as the one which we use in Sec. III to gauge the layer-swap
symmetry of the bilayer X-cube model. We then use Sec. IV
to discuss some of the phenomenology of the gauged bilayer
X-cube model, including computing topological degeneracies
and non-Abelian fracton braidinglike procedures. In Sec. V,
we apply the gauging procedure to gauge the layer-swap
symmetry of the bilayer Haah’s code model. Finally, Sec. VI
contains discussion and conclusions. Exhaustive lists of prop-
erties of our models and some technical calculations are
relegated to several appendices.

II. WARMUP: GAUGING THE (2 + 1)D BILAYER
TORIC CODE

In this section, we will gauge the layer-swap symmetry of
the bilayer toric code to obtain a model with the same topo-
logical order as the [Z, x Z,] X Z, ~ D4 quantum double
model (here D is the symmetry group of a square). Although
the resulting topological order is well-understood, at least at
an abstract level, understanding the procedure in detail and at
the level of explicit exactly solvable Hamiltonians generalizes
directly to the fracton models. As such, it is useful to study this
example in considerable depth before considering the fracton
case.

Before proceeding, we comment that, at the level of ex-
actly solvable models, there are several ways in which the
gauging procedure can be performed. One method explicitly
reproduces the D4 quantum double model [55]. Although
such a result is desirable and natural for (2 + 1)D topological
order, the required procedure does not appear to generalize
easily to the (higher dimensional) fracton models, so we
relegate that choice of gauging procedure to Appendix A and
instead implement a gauging procedure that leads to a more
convenient generalization.

A. Building the model

We start from two copies of the usual toric code. The
Hilbert space for the ungauged model is two qubits per link
of the square lattice, with ungauged Hamiltonian

Ho = H, + H,, ey
Hi=-% A"-%"BY. 2
s p

Here, A" = ®,0" and B\ = ®no/” are the usual star and
plaquette operators shown in Fig. 1. As usual, o, and o,
are Pauli operators. The ungauged Hamiltonian Hj has the
global symmetry ) SWAP, where SWAP is the local two-
spin operator which exchanges the state of a single spin in
layer 1 with the spin on the same link in layer 2, and the tensor
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FIG. 1. Hamiltonian terms for each layer of the bilayer (2 + 1)D
toric code. There are two spins per link of the lattice, and the
superscripts refer to which layer the operator acts on.

product is over all links. In order to gauge the symmetry, we
introduce extra “gauge” spins and modify the Hamiltonian so
that some operator involving SWAP on a single link commutes
with every term in the new Hamiltonian.

First we decompose the Hamiltonian into terms of definite
parity under local SWAPs. The decomposition is done using
the operators 0 = (o1 4+ ¢?)/+/2 for a = x, z. In what
follows, we will need the following algebraic facts about o+
witha = x, z:

SWAPsH'SWAP = 40
@ o@® — 1+ D@

o PgF =0

e ®o® = —¢ e
G)fi)oz(_) = —O'Z(+)O')§:F). 3)
One can check straightforwardly that
1
1 2 v
B +BY =5 Y. Qo 4)

{sel [Tse=+1} redd

where s, = £. The product is over the four different edges
in a plaquette, and the condition in the sum enforces an even
number of minus signs; see Fig. 2(a). We have suppressed the
explicit position index on the o{*) operators. An even number
of minus signs is required to maintain invariance under the
global SWAP operation.

) Uz(i) GZ(+) O'z(+) GZ(_)
25 5,08 40,0 = az“)[:} o 4 GZ(+>E}GZ(—> .\ az(‘)[:}az(" .
i=1 ; _ _
o) oy o0 o0
(a)
AN A
LRk
 J | ] [ J T' [ ] L ] . .
L} [ ] L ] [ ] L] [ ] SWAP
LR
[ J L] [ ] L ] [ ] L ] . .
I_. [ ] L ] [ ] L ] ._I TX TX
(b) (c)
O'Z("') O'Z(+) GZ(_)
[
2Bp - UZ(+) UZ(+) UZ(+) T a (_) + UZ(_) TZ T GZ(_) +
[ [
O'Z("') GZ(_) GZ(_)
(d)

FIG. 2. Gauging procedure for the bilayer toric code. (a) Rewriting of the ungauged sum of plaquette operators in Eq. (4). The sum on the
right-hand side is over all choices of signs with an even number of o~ operators. (b) Hilbert space for the gauged bilayer toric code. There are
two of the original “matter” qubits per link (light grey circles) and four additional “gauge” qubits per site (dark circles), one per orange link.
(¢) Generator of the gauge symmetry in the gauged bilayer toric code. (d) Gauge-invariant version B, of (a). Distinct pairs of o~ operators

are connected by t, operators.
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FIG. 3. Commutation properties of example terms in the gauged bilayer toric code’s A, and B, operators. Here s labels the same lattice site.

We implement the gauging procedure by adding “gauge”
qubits T which live halfway between nearest-neighbor “mat-
ter” qubits o as shown in Fig. 2(b). We then define the Z,
gauge symmetry generator

Co = SWAP, (X) Tu.r.

re+

&)

Here e is an edge of the lattice of ¢ spins and the product of
7, 1s taken over the four gauge spins surrounding that edge.
This operator is shown in Fig. 2(c). We also define the Z,
flux operator on both the sites and plaquettes of the original

(matter) lattice by
Do = Q) ter,

red

(6)

where the product is over the four gauge spins surrounding
a site or within a plaquette. We demand that C, generate a
gauge symmetry by modifying every term in the Hamiltonian
(using 1,s) so that they commute with all C,. For example, the
term with four + signs in Fig. 2(a) commutes with all the C,
and is unmodified, while the other terms in Fig. 2(d) require
7,5 next to every o) (since o~ anticommutes with SWAP).
The gauged Hamiltonian Hg,ygeq has the form

Hgauged = _ZAS_ZBP_ZCE_ZDO' @)
s P e O

Here, A, and B, are the gauge-invariant versions of the star
and plaquette terms from the original bilayer model and are
each the sum of eight terms, three of which are shown in
Fig. 2(d). As before, C, is the local symmetry generator shown
in Fig. 2(c); we enforce this gauge symmetry energetically.
The flux term D, energetically penalizes the presence of Z,
flux.

B. Algebraic properties of Hy,ygeq

The Hamiltonian Hgayeeq is not a stabilizer model. Never-
theless, it has considerable structure. First, it is straightfor-
ward to check that

A" =2(1+®40V0?). (8)

This operator has eigenvalues 0 and 4, so A, has eigenvalues
£2 and 0. The same sort of computation holds for B,,.
Furthermore,

[Am Bp] =0. (9)

To understand this fact when A, and B, have overlapping
support, we isolate single terms in each of A, and B; consider,
for example, the product of one plaquette term, which we

call B;f), and one star term, which we call A{"), which have

only ax(? operators, as shown in Fig. 3. Using the algebraic
properties in Eq. (3), it is straightforward to check that

A ) () () _(+) () _(+) _(+) _(+)

Bp As - O—z,l 01,2 UZ,S 0.4 Ux,S ox,4 O’x,S Gx,6 (10)
) ) BB () () (=) ()
=0,30;40,50,60:10:29%30x4 (1)
_ (=) (=) (+) _(+) _(+) _(+) _(—) (=)
= 0,3 T340,4 0,5 0,6 0,1 0,50, 3T340, 4 (12)

where in the last line we simply inserted 75,75, = 1. This
equation is shown pictorially in Fig. 3. Here the numbers in
the subscript indicate labels for links. This is a product of a
different term in A, with a different term in B,; in commuting
these operators past each other, the terms in the Hamiltonian
have been permuted. Using a similar computation for each
term, it is easy to check that indeed [A,, B,] = 0.

By construction, both C, and D, commute with every indi-
vidual summand in A and B, and with each other. Therefore,
although A and B, are not projectors, all four types of terms
in the Hamiltonian commute.

C. String-net wave-function picture

We now describe a simple string-net wave-function picture
for the ground states of the gauged bilayer toric code which
will be convenient to use both for computing the ground-state
degeneracy and for understanding its excitations.

The ground states of the toric code can be understood as
condensates of closed strings on (say) the links of the lattice;
that is, a superposition of all possible closed strings on the
lattice. In our convention, presence of a string means o, has
eigenvalue —1 and absence means o, has eigenvalue +1.
These strings can be thought of as e-strings, because an open
string induces violations of the star operators, which corre-
spond to the e particles (Z, charges) of the toric code. The
topologically degenerate ground states can thus be labeled
by the parity of the number of closed strings wrapping the
various noncontractible cycles of the space. The (ungauged)
bilayer toric code is understood similarly; the only difference
is that the strings have a color which corresponds to their layer,
and strings of different colors can occupy the same link. We
will use orange and blue to denote strings in layers 1 and 2,
respectively.

Before gauging the SWAP symmetry, consider a pair of
extrinsic twist defects, corresponding to the end-points of a
branch cut across which the two layers are glued to each other.
Whenever a string crosses the branch cut, it changes colors.
The twist defects correspond to the Z, flux of the global Z,
SWAP symmetry. A string which makes a full loop around
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(a)

(b)

FIG. 4. String-net configurations before and after gauging the
SWAP symmetry of the bilayer toric code. Orange and blue strings
correspond to the original toric code string-net wave functions.
(a) Example string-net configuration in the presence of twist defects
(grey circles labeled t). Dashed purple line is a branch cut for the
layer-swap symmetry. (b) Example ground-state string-net configu-
ration for the gauged bilayer toric code. Solid purple strings are the
proliferated branch cuts.

the twist defect must change colors since it gets transformed
by the action of the symmetry, as in Fig. 4(a).

Gauging the SWAP symmetry means that the ground state
is now also a condensate of closed branch cuts. Therefore the
ground state for the gauged model corresponds to a string-net
condensate with three different colored strings—the strings
in the original two layers of toric code (orange and blue),
corresponding to the o and o® spins, and the branch
cut or “twist defect” strings (which we denote with purple),
corresponding to the t spins. Note that since the open twist
defect strings corresponded to Z, fluxes, the purple strings
should be thought of as m strings associated with the t spins;
thus here the presence or absence of a string corresponds to
whether 7, = £1.

Given a particular configuration of the purple string con-
densate, we can still write down a string-net wave function for
the orange and blue strings, but with the rule that whenever an
orange or blue string crosses a purple string, it changes colors.
An example string configuration is given in Fig. 4(b). Note
in particular that we may start with a configuration with no
purple strings, create a closed purple string from the vacuum,
wrap it all the way around the system (or bring it out to
infinity if the system is on a plane), and then annihilate it. This
implements a global SWAP operation; therefore, all ground
states must be invariant under a global SWAP.

D. Ground-state degeneracy

The string-net wave function picture is helpful to under-
stand the ground-state degeneracy of the gauged model on a
torus by considering topologically nontrivial strings.

(a) (b)

FIG. 5. String-net configurations in the gauged bilayer toric code
in the presence of a symmetry flux through one handle of the
torus. Orange (respectively, blue) is a string in the first (respectively,
second) layer of toric code and the purple dashed line is the branch
cut implementing the symmetry twist due to the symmetry flux. All
topologically trivial strings are omitted. (a) Nontrivial Wilson loop
around the x handle of the torus. (b) Nontrivial Wilson loop around
the y handle of the torus. A nontrivial red string is equivalent to a
nontrivial blue string by the process of moving the string all the way
around the torus (black arrow).

Before gauging, there are 2* ground states labeled by the
parity of the number of nontrivial strings winding around each
handle of the torus in each layer.

After gauging, all states must be invariant under the global
SWAP symmetry since the twist defects proliferate. Moreover,
we are now allowed configurations where there are an odd
number of twist defect strings (purple loops) wrapping around
any handle of the torus. In the presence of an odd number
of topologically nontrivial twist defect strings, the original
strings acquire twisted boundary conditions; they must wind
twice around the torus (since a layer 1 string becomes a layer 2
string and vice versa after winding once around the torus), as
shown in Fig. 5(a). It is therefore most convenient to compute
the ground-state degeneracy by separately considering each
topological sector for the purple strings (i.e., boundary condi-
tions for the orange/blue strings), a task to which we now turn.

In the untwisted sector, we simply select the states of the
ungauged theory which are symmetric under the global SWAP
symmetry. It is straightforward to check that there are 10 such
states.

In the sector with twisted boundary conditions around the
x handle only, a state can either have no string around the x
handle or have one string which winds twice around the x
handle, as in Fig. 5(a). We also note that a string which winds
around the y (untwisted) handle in layer 1 can be translated
all the way around the x handle, in which case it becomes
a string in layer 2, as in Fig. 5(b). This also implies that
the state with both colors of strings winding around the y
handle is equivalent to the state with no string around that
handle. The superposition |layer 1 string) + |layer 2 string) of
strings winding around the x handle is, however, topologically
distinct and invariant under a global SWAP. In total, there are
thus four states in this sector, and another four when the twist
is instead only around the y handle.

Finally, in the sector with twists around both handles of the
torus, there are four states (each handle either has no string or
a doubly-wound string).

In total, this means the ground-state degeneracy is 10 +
4+ 444 =22. This calculation can be straightforwardly
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TABLE 1. Nontrivial pure charges and pure fluxes of D4 quantum double topological order, which correspond to irreps and conjugacy
classes of Dy, respectively, their quantum dimensions d,,, and a specification Uy, V1, W_ of the string operators that create those excitations.

See Sec. IIE 1 for the construction of the string operators.

Label Conjugacy Class C Irrep of Z(C) d, U, Uu_ Vi V_ Wy W_
& (1) (a,c) — (1, —1) 1 1 1 1 1 Z, L,
eDe? (1} (a,¢) = (—=1,1) 1 oo @ oVg@ 1 1 1 1
peVe® (1} (a,c) = (—1,—1) 1 Vo @ oVg@ 1 1 T T
[e] {1} 2D irrep of Dy 2 o a?) 1 1 1 T,
mPm® {ab} Trivial 1 1 1 oMo oM@ 1 1
[m] {a, b} Trivial 2 1 1 o™ o> 1 T,
o) {c, abc} Trivial 2 1 (I;l)az(z) 1+ ox(l)axm 1— J)ﬁl)qu) Ty Ty
Om {ac, bc} Trivial 2 1 o Vg o™ o™ T, T

extended to closed surfaces of any genus g, which then
allows extraction of the quantum dimensions of each of the
topologically nontrivial quasiparticles through the formula

: 1 2-2
dim H () = — > odiE,

a

(13)

H(X,) is the ground-state subspace on a closed genus g
surface, X,, D is the total quantum dimension, and d,, is the
quantum dimension of the quasiparticle labeled a.

E. Excitations and string operators

The elementary excitations of the D4 quantum double
model are labeled by conjugacy classes C and irreducible
representations (irreps) of the centralizer Z(C), where the
trivial conjugacy class corresponds to pure charges and the
trivial irrep corresponds to pure fluxes. For labeling purposes,
we give a convenient presentation of Dy as (a, b, c|a2 =b =
¢? = 1, cac = b). The nontrivial pure charges and pure fluxes
in this topological order are listed in Table I; all other anyons
are dyons obtained from various fusions of the pure charges
and pure fluxes. In total, there are 22 topologically distinct
quasiparticles.

Their properties can be understood systematically using
the theoretical framework developed in Ref. [47]. Here we
briefly mention how to think of some of the quasiparticles.
We can label the quasiparticles of the bilayer toric code
model as aVb?®, where a,b=1,e,m, are Z, charge,
flux, and fermion of the toric code. After gauging, the re-
maining quasiparticles are as follows. We have the invariant
Abelian particles 1, eMe®, mMm?® and Dy, which
retain their braiding and fusion properties even after gauging.
The particles that are not invariant under the SWAP symmetry
are grouped into orbits, [ab] ~ aVb® + bVa®, with a # b,
leading to the particles [e] ~ eV + @ [m] ~ mD 4+ m?,
etc. Each of these particles is non-Abelian, with quantum
dimension 2, and there are six such particles in total. Here,
the ~ means that these particles can be roughly thought of as
superpositions of the original particles, as seen in more detail
in the next section.

In addition, we have the Z, charge associated with the
T degrees of freedom, which is an Abelian particle labeled
by ¢. We also have a Z, flux o; that corresponds to the

twist defect after gauging, which also has quantum dimension
2. In total we can obtain eight twist defects o, and ¢oy,,
for a = 1, e, m, yr, which arise in the fusion outcomes of o
with the other particles. The 22 particles thus correspond to
¢5a(1)a(2), [ab], and ¢*c,, witha, b =1,e,m, ¥ ands =0, 1,
which gives a total of 22 particles. The particles ¢*aVa® are
all Abelian, with quantum dimension 1, while [ab], and ¢°c,
are non-Abelian, with quantum dimension 2. In Table I, we
list how the pure charges and pure fluxes of the D4 quantum
double model can be related to this labeling.

In the next section, we will describe how these excitations
can be understood in terms of gauging two copies of the toric
code model, and we will explicitly construct the string opera-
tors that create the pure charge and pure flux excitations. The
techniques used to construct the string operators in this model
will carry over nicely to the fractonic case. In particular, we
will develop an understanding of why some of the particles,
such as [e], are non-Abelian with quantum dimension 2. We
will explicitly see how the fusion rule

[e] x [e] = 1+ ¢ + ePe® + pele® (14)

arises, both at the level of operators and also from understand-
ing the string-net wave function picture.

Due to the structure of our model, there is no obvious
mapping to a system whose degrees of freedom are elements
of Dy (the degrees of freedom do not quite match—there are
two extra qubits per site), so we identify the excitations in the
lattice model using the following intuition. Since conjugation
by SWAP exchanges operators in the two layers, we will think
of the Pauli operators ai(]) (respectively, oi( ) as being related
to the group element a (respectively, b), while SWAP is related
to the group element c. Since C, anticommutes both with
anything odd under SWAP and with t,, we also think of t,
as being related to the group element c. This intuition can be
confirmed by examining the fusion rules.

1. Wave function picture of excitations

All of the Abelian excitations have simple string operators,
several of which arise from the original bilayer toric code. In
particular, string operators in the ungauged model which cre-
ate SWAP-invariant excitations are unaffected by the gauging
procedure. For example, the Abelian charge (a,c¢) — (—1, 1)
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FIG. 6. Abelian excitations in the string-net picture of the gauged bilayer toric code. Orange strings are 6"’ = —1, blue strings are o? =
—1, and purple strings are 7. = —1. (a) One term in the superposition for a pair of e"’e® excitations (green). A blue string and an orange string
both end at the excitation. (b) Some terms in the superposition for a pair of mVm® excitations (dark grey). (c) Some terms in the superposition

for a pair of Z, charges ¢ (light grey).

should be identified with the bound state e!"e® of e excita-
tions in both original toric code layers; it is straightforward to
check that a string of az(l)az(z) operators creates this charge,
just as it would in the ungauged model. In the string-net
picture, this excitation just looks like a bound state of an open
orange string and an open blue string, as in Fig. 6(a).

Likewise, the flux m(Vm® is simply the bound state of m
excitations in both of the original toric code layers, and is
created by a string of o{'o® operators on the dual lattice.
In our choice of string-net basis, whenever an odd number
of blue and orange strings surround an m®Mm® excitation,
the configuration enters the ground-state superposition with
a minus sign, as shown in Fig. 6(b).

The other Abelian charges are also simple; a string of t,
operators on the lattice of gauge qubits anticommutes with C,
and commutes with everything else, so it should be identified
as the Z, gauge charge (a,c) — (1, —1), which we denote
as ¢. In the string-net picture, configurations where an odd
number of purple strings surround the ¢ excitation enter the
ground-state superposition with a minus sign, as in Fig. 6(c).
The other pure charge is simply the fusion of ¢ and e"e®.

The operators which create non-Abelian anyons are more
interesting and quite instructive. Intuitively, the non-Abelian
charge (which we shall dub [e]) can be thought of schemat-
ically as superposition of e and e® from the ungauged
model, since it arises from the symmetry orbit of the ungauged
e particles. It should therefore be constructed using 0" and

o2, In the subsequent section, we explicitly construct string
operators for a variety of non-Abelian excitations and verify
their fusion rules.

In the string-net picture, a pair of [e] excitations (created
from vacuum) are shown in Fig. 7(a). The key point is that
due to the presence of the proliferated branch cuts, the color
of the string connecting the excitations is not definite, as
whenever the string crosses a branch cut (purple string), it
must change color. In this way, the excitation is, roughly
speaking, a superposition of an e’ (the end of an orange
string) and an e® (the end of a blue string).

We next provide a pictorial understanding from the string-
net wave function of why the non-Abelian [e] excitations have
the four fusion channels corresponding to the fusion rules in
Eq. (14). Let us consider four [e] excitations, corresponding
to a pair of open [e] strings, such that the overall fusion
channel of all four is the identity. There is a remaining
fourfold topological degeneracy in this case: depending on
the state, fusing the two open strings together leaves behind
an open string associated with 1, ¢, ee® | or geVe®. We
can understand this fourfold degeneracy as follows.

Since no open branch cuts (open purple strings) are present,
any string-net configuration can be deformed to a “reference”
configuration where no branch cut are present at all. Such
a reference configuration, which is unique up to a global
SWAP, must have an even number of anyons associated with
each layer to ensure that the configuration can be created
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0000) =

|0OBB) =

|0BBO) =

|IOBOB) =

FIG. 7. Example string-net configurations associated with [e] excitations (yellow). The outline on [e] indicates whether it is the end e of
a layer-1 string (orange) or the end e® of a layer-2 string (blue). The first term in each picture is the “reference” configuration with no branch
cuts (purple). (a) Two [e] excitations, demonstrating how [e] can be thought of as a superposition of ¢’ and ¢®. (b) A basis for the set of four
degenerate states associated to a set of four [e] excitations with overall fusion channel equal to the identity.

from vacuum. It is immediately clear that there are four in-
equivalent (modulo a global SWAP) reference configurations
consistent with these rules; they are shown as the first terms
in Fig. 7(b), along with several other terms in their string-net
superpositions. There are therefore four states, each labeled
by one of these inequivalent reference configurations, which
can easily be checked to be orthogonal. This is exactly the
desired topological degeneracy. To relate the degeneracy to
fusion, consider the particular superpositions

|1) = |0000) + |00BB), (15)

l¢) = |0000) — |00BB), (16)
leVe®) = |OBBO) + |OBOB), (17)
|peVe®) = |OBBO) — |OBOB), (18)

where normalization is ignored and the states are labeled on
the right-hand side as they are in Fig. 7(b), that is, O and
B refer to the color (orange or blue) of the excitations in
the reference configuration in clockwise order starting from
the top left. We claim that the labeling on the left-hand side
corresponds to the fusion channel for the top two and bottom

two particles, that is,

la) = a , (19)
[e] [e]

where a is an anyon label and the right-hand side is a fusion
diagram.

To check that these fusion channels are correct, note that
the two [e] particles being fused have the same color in the
reference configurations for |OO0O0O) and |OOBB). As we
allow the purple strings to fluctuate, the layer labels of the
[e] excitations change, but the color correlation remains. That
is, every time that both excitations are surrounded by the same
parity of purple strings, then the [e] particles carry the same
color label, and every time they are each surrounded by a
different parity of purple strings, they carry different color
labels. In particular, in every configuration in the superposi-
tion, moving these two excitations together (possibly crossing
branch cuts along the way) will always lead to an e meeting
an e from the same layer, so they can only fuse to the identity
or ¢. If instead we considered |OBBO) and |OBOB), bringing
the endpoints together always causes the [e]s to carry opposite
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Deform
branch cut

W, -
e—=0

FIG. 8. Action of W, on the reference configuration for |000O0).

layers, meaning that only eVe® and geVe® are allowed
fusion channels.

The presence or absence of a Z, charge in a fusion product
is measured with an operator W, which creates a pair of
twist defects o, braids them around the two excitations being
fused, and reannihilates said defects, leaving behind a closed
branch cut. This operator’s support is far from the excitations,
so it inserts this branch cut (modifying strings in the con-
densate as appropriate) without changing the color labels of
the excitations as shown in Fig. 8. Deforming the resulting
configuration to the reference configuration, also shown in
Fig. 8 we find that W, |0O0O0OO) = |OOBB) when W,, encloses
the bottom two anyons. A more delicate examination shows
that indeed W, |OBBO) = |OBOB) as well. Therefore W,, has
eigenvalue +1 in the states |1) and |eVe®)) and eigenvalue
—1 in the states |¢) and |peVe®), demonstrating that our
claimed fusion outcomes are indeed correct.

2. Explicit non-Abelian string operators

Here we explicitly construct string operators for the non-
Abelian excitations that correspond to pure charges and pure
fluxes of the D4 gauge theory. After constructing the oper-
ators, we then verify the resulting fusion rules of the non-
Abelian quasiparticles.

We begin by considering the string operator for the [e]
excitation. As remarked in the previous section, this should be
constructed using oz(l) and az(z). To ensure gauge invariance,
we should start with a string of oz(i) operators, where disjoint
pairs of (™) operators are connected pairwise by a string
of 7, operators. Such operators commute with B, and D

everywhere, but not with any Ay; this is a problem because
the fact that the quasiparticles are deconfined requires that
our string commute with all the A; away from the end of the
string. To ensure that this occurs, we use equations like the
one in Fig. 9(a), which arise directly from the commutation
relations Eq. (3). In particular, commuting a string of aéi)
operators permutes the various summands in A at the cost
of interchanging o) <> o~ on the edges touching site s
(and dressing W1th T, operators) Superposing over all op-
erators obtained by these interchanges, as in Fig. 9(b), will
therefore produce a string operator which commutes with the
Hamiltonian everywhere except at its endpoints; the resulting
excitation is the [e] particle.

If the local unitary o acts on the end of the string
operator, which 1nterchanges o) and o7 on that link only,
we obtain a new string operator which no longer commutes
with C, on the last link of the string, but still commutes
with all other terms along the length of the string. This new
operator therefore also creates [e] at its endpoints. There are
four such operators, specified by the four choices of sign at
the endpoints of the operator in Fig. 9(b), which we call S =
in accordance with Fig. 9(b). The two =+ signs refer to the left
and right endpoints of the string, respectively.

The string-net picture also gives us another way to un-
derstand the structure of the operator S[+ ]+ Suppose that we
consider configurations where the left end of the string in
Fig. 7(a) is orange, that is, we act with 0(1) where the lower
index indicates that it is the first link in the strm Then to
continue the string operator, we should act with O’ 2 if an odd
number of branch cuts pass between links 1 and 2, and act
with o 1f an even number do. This is expressed by acting
next W1th the operator

oD+ +03(0 -t ) xod + 105, (20)

where 7,5 is the product of 7, on a string of gauge spins
connecting links 1 and 2, because 7., measures the parity
of the number of branch cuts passing between links 1 and 2.

FIG. 9. Constructing string operators for the non-Abelian [e] particle in the gauged bilayer toric code. (a) Commutation relations between
one term in the superposition of string operators for [e] commuting with one star term in superposition making up A, in the Hamiltonian
Eq. (7). Moving the plaquette operator past the string operator turns the star term into a different term in the superposition forming A;. The
new string operator which results should be superposed with the original one. (b) Superposition making up the full string operator. There are
four such operators, obtained by choosing either the upper or lower sign on each end of the string. These operators commute with all terms in

the Hamiltonian except for A, (and possibly C,) at their endpoints.
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FIG. 10. Terms in the expression of string operators in the
gauged bilayer toric code as a superposition of products of local
operators. (a) Reference operator for a pure charge; each end can
have either ¢/, or U_. This freedom would move to the outermost V
operators for a pure flux. (b) Another term in the superposition for a
string operator that creates pure charges. At each site marked with
a purple square, we have interchanged all surrounding subscripts
+ < —. (¢) Another term in the superposition for a string operator
that creates pure fluxes. At each plaquette which is shaded purple, we
have interchanged all surrounding subscripts + <> —. This operator
has V. on both ends in its reference configuration.

Continuing, we obtain a string operator
1 — —
s = 0;,1)(‘7;,;) + Tz,lzdz(,z))(%(j) + Tz,121'1302(,3)) e (21

The same thing can be done starting from a blue link, i.e.,
beginning with az(zl), which, following the same logic, leads to
a string operator

2 2 - -
5@ = aj,f(ajj) - rz,ucrz(,z’)(o;j) - Tz,lZTISO—Z(ﬁ)) e
(22)

Adding these together (to obtain a globally SWAP-invariant
operator), one can check that

S 4+5@ =St (23)

The same idea of choosing a particular gauge-invariant
string operator and then interchanging local operators to en-
sure that the string has no tension can be used to find (largely
by inspection) the rest of the string operators in the theory.
Below we formalize this structure and give a list of the string
operators for all the pure charges and pure fluxes in the theory.
(Dyon string operators can of course be constructed by taking
products of the charge and flux operators.)

We specify the string operators as a superposition of prod-
ucts of local operators. For an Abelian anyon, there will only
be one term in the superposition, whereas for a non-Abelian
anyon, the superposition will contain 2°~! terms, where £ is
the length of the string. As we will explain shortly, the strings
all have a common structure which is specified by six local
operators. Their locations are shown in Fig. 10. Two, which
we shall call 24, and U/_, live on the square lattice links along
the length of the string. Two, which we shall call V; and

V_, live on the square lattice links jutting out from the string.
The last two, which we shall call WW_ and WW_, live on the
links. The choice of whether U/, V., and W, orU4_, V_, and
W_ appears at various positions on the string will specify the
different terms in the superposition.

A convenient way to explain the structure of the operators
is as follows. To form our superposition of local operators,
start from a “reference” operator where the body of the
string consists entirely of /4, V;, and W, operators, as in
Fig. 10(a). For non-Abelian quasiparticles, the operators with
the 4 signs should be chosen to commute with all gauge
generators C, and the operators with the — signs are chosen
to anticommute with any C, with overlapping support. This
ensures that the reference operator is gauge-invariant.

Next, for a length-£ string, construct 2°~! string operators
as follows. Given the reference string for a pure charge
(respectively, flux) excitation, proceed down the string from
site to site (respectively, plaquette to plaquette). At each site
(respectively, plaquette), choose whether or not to interchange
Uy < U,V < V_,and W, < W_ on the links surround-
ing that site (respectively, within that plaquette). After making
such a choice on every site (respectively, plaquette), we have
obtained a new product of local operators; our desired string
operator, which we denote S¥* (where a labels the anyon
type and the = signs indicate whether I/, is chosen on the left
and right ends of the string, respectively) is simply the super-
position over all such choices. An example term is shown in
Fig. 10(b) for the pure charge excitations and Fig. 10(c) for
the pure flux excitations. Obviously, if U, =U_, V, =V_,
and W, = W_, all of these terms are the same and there is
only one term in the superposition; such a string operator will
create Abelian anyons.

Given this structure, the U/, V, and WV operators are chosen
such that this superposition procedure causes S&* to com-
mute with the Hamiltonian everywhere except at its ends. In
the non-Abelian case, this is done with equations similar to
the one in Fig. 9(a) that we used for the [e] anyon.

The full set of operators, along with their identifications,
are listed in Table I. Note in particular that we have an explicit
form for the string operator for the twist defect 0.

The string operator algebra can also be used to obtain
(partial) information about the fusion rules of the theory.
Because the string operators, when acting on the ground
state, create excitations from the vacuum, every string oper-
ator obviously creates excitations which fuse to the vacuum
sector. Furthermore, given two string operators S, and S,
supported on the same region which create the anyons a
and b respectively at their ends, their product S,S, must
create fusion products a x b at each endpoint (we make no
distinction between particles and antiparticles here because in
D4 topological order, all particles are their own antiparticles).
The string operator algebra should thus contain operators S,
such that

Sux Sy=Y NyS. (24)

for any a and b, where Ny, are fusion multiplicities. Note that
if O is a local operator and defining

S, = 08,07, (25)
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then Eq. (24) still holds with S replaced by S. However, a
product like S,S), need not obey the same equation, so only
certain elements of the string operator algebra produce the full
list of fusion outcomes.

We defer an exhaustive enumeration of the string operator
algebra to Appendix B and presently consider some repre-
sentative examples to demonstrate the fusion rules. Consider
first fusing any of the Abelian charges with themselves. Their
string operators square to the identity, which means that,
as expected, these charges are Abelian and are their own
antiparticles.

Next, consider fusing the e!Ve®® charge with the non-
Abelian charge. Since "o Po/*) = +6/*), multiplying the
string operator in Fig. 9(b) by the string operator which creates
the e(e® excitations produces the same string operator for
the non-Abelian charge up to a possible minus sign (since the
number of oz(’) operators has the same parity for every term
in the sum). Therefore these charges fuse to the non-Abelian
charge, verifying the fusion rule

[e] x ePe® = [e]. (26)

This is also easy to see in the string-net wave function picture:
Fusing an open string of both colors onto the non-Abelian
string clearly just permutes the terms in the ground-state
superposition for the non-Abelian string (e.g., it switches the
terms with a purely orange string and a purely blue string),
thus giving us back the same picture.

Finally, consider fusing the non-Abelian charge [e] with
itself. Using the operator definitions in Fig. 9(b), a straightfor-
ward but tedious calculation shows that, up to normalization,

1 2 1 (2)

SH+8) =1+ QR+ ®oV0® + R oo
(27)
=148 + S + Spethe (28)

where the tensor products are over the full length of the
original string operator. The second line, where we identify
these operators with string operators for Abelian charges,
follows by inspection. That is, all of the Abelian charges
are possible fusion outcomes of two non-Abelian charges.
By counting the quantum dimension, one can check that this
exhausts all possible fusion outcomes. The operator algebra
for the individual S[f]i is listed in Appendix.

III. GAUGED BILAYER X CUBE

The X-cube model has been discussed elsewhere in consid-
erable detail [3,10]. We give a brief overview of its properties
in Appendix C. In this section, we construct the gauged
bilayer X-cube model, provide a cage-net picture for the
ground-state wave-functions, and sketch the calculation of
the ground-state degeneracy on a 3-torus, relegating technical
details of the calculation to Appendix E.

A. Construction of the model

The procedure is analogous to the bilayer toric code case.
The ungauged model consists of two layers of spins on

FIG. 11. Operators appearing in each layer of the bilayer X-cube
Hamiltonian.

the links of a cubic lattice with two copies of the X-cube
Hamiltonian:

Hy = H, + H,, (29)
==> > A ->"BY (30)
C

s p=x,yz
with A(’) =Q4, o(’) and B(’) = Qm 0(’) the usual star and
cube operators shown in F1g 11. Here s labels a site, p labels
the orientation of the star operators, and ¢ labels elementary
cubes. For each term in the ungauged model, we can rewrite
the sum of the two layers’ terms as a sum of products of
SWAP-even and SWAP-odd operators; for example,

> Qo 31

{se| [T se=1} redd

B" +B® =

where s, = +. As before, we have suppressed the explicit
position index on the UZ(") operators. To gauge the symmetry,
we add gauge qubits T connecting nearest-neighbor links. This
corresponds to adding an octahedral “cage” of gauge qubits
surrounding each site, as in Fig. 12(a). Next, we define a Z,
gauge symmetry generator

C, = SWAP, ® Ters (32)
restar

where the 7, act on the eight gauge qubits which neighbor an
edge e of the original cubic lattice; this operator is shown in
Fig. 12(b). We also define Z, gauge flux operators

Dy = Q) T, (33)
reA
Ds = ® Tr. (34)

reo

Here, D, acts on each face of the octahedron of gauge spins
surrounding each site and D, acts on the four 7 spins within a
face of the cubic lattice, as shown in Fig. 12(d).

We now modify the Hamiltonian so that the model is
invariant under the gauge symmetry generated by C,. This
invariance is obtained by putting t, operators into the Hamil-
tonian terms such that every o/~ term has an odd number
of t, operators acting on the qubits which surround it. This
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FIG. 12. Gauging the bilayer X-cube model. (a) Positions of
spins for the Hilbert space of the gauged model. There are two
“matter” spins (light) per link of the lattice and one “gauge” spin
(dark) per orange line connecting nearest-neighbor matter spins,
for a total of 18 spins per site. (b) Generator C, of local gauge
transformations. The operator acts as SWAP on the matter spins o
and acts with 7, on the eight surrounding gauge spins. (c) Gauged
cube term B.. The sphere color indicates whether oz(“ (green) or
azf*) (grey) acts on the matter spins, and t, acts on the orange gauge
spins. Three of the 2048 possible terms (which all have an even
number of az(*) operators) are shown. (d) Flux operators D, which
is a three-spin operator on the faces of the octahedra, and Dy, which
is a four-spin operator within each face of the cubic lattice.

can always be achieved by choosing disjoint pairs of o™

operators and connecting them with a path of r, operators.

Some examples of the 2048 terms are shown in Fig. 12(c).
The gauged Hamiltonian is

Hgauged = - Z Z As,n - ZBC - Zce
s e

§ n=x,.2 c

— ZDA —ZDf, (35)
A f

where A; , is the sum of the eight gauged star terms for each
orientation of the star and B, is the sum of the 2048 gauged
cube terms.

i

()

FIG. 13. (a) Example ground-state cage-net wave-function con-
figuration in the ungauged bilayer X-cube model. Orange and blue
are strings in different layers. (b) Cage-net configurations in the
presence of a twist defect (purple string, branch cut membrane in
light purple). Overlapping strings are displaced slightly for visibility.
(c) Example ground-state cage-net configuration in the gauged bi-
layer X-cube model. The purple membrane is one of the proliferated
closed branch cut membranes.

All of the algebraic computations for the gauged bilayer
toric code model carry through for the gauged bilayer X-cube
model. That is, C,, D, and Dy square to 1, while the A and B
operators square to 2(1 + ®c Do @), Likewise, Asn, Be, C,,
Dy, and Dy all mutually commute.

B. Wave-function picture of ground states

The basic building blocks of our wave-function picture for
the ground states is the cage-net picture for a single layer of
the X-cube model [42], which we now briefly review.

Configurations where o, = +1 on a link are drawn with no
string, whereas o, = —1 is represented by the presence of a
string on a link. In the ungauged model, strings are colored
to represent their layers (orange for layer 1, blue for layer 2)
and both colors can live on the same link. A configuration
with no strings is an eigenstate of all the Ag’)p operators with
eigenvalue +1, but not of the B’ operators. Requiring that
B = 41 amounts to superposing over all configurations of
closed ‘“cages” of strings of each color, where an elemen-
tary (i.e., minimal size) “cage” is the wire-frame outlining a
unit cell cube. An example configuration in a ground-state
superposition for the ungauged bilayer model is shown in
Fig. 13(a).

Distinct ground states on the 3-torus are labeled by the
presence or absence of strings which wrap all the way around
each handle of the torus. Not all such strings are independent;
we will discuss the constraints between them in Sec. III C.
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The system now supports extrinsic codimension 1 mem-
brane defects, whose boundary is a twist defect string. The
membrane acts as a branch sheet, such that excitations that
cross it go from one layer to the other. That is, any leg of a cage
which passes through a branch membrane associated with the
twist defect must change colors. Hence any cage which links
nontrivially with the twist defect must wrap the defect twice,
as shown in Fig. 13(b).

Upon gauging, the ground state now also consists of su-
perpositions of all possible closed branch membranes. We
therefore obtain two colors of cage-net condensates and a con-
ventional condensate of closed membranes, generally shown
in purple, which correspond to the t spins. The wave func-
tion for the membrane sector is the same as in conventional
(34 1)D Z, topological order. However, the cage nets are
subjected to the rule that if a leg of a cage crosses a membrane,
it changes colors. An example configuration in the ground-
state superposition is shown in Fig. 13(c).

As usual, a closed branch membrane can be nucleated
from the vacuum, wrapped all the way around the system,
and annihilated, which implements a global SWAP. Hence all
ground states should be invariant under a global SWAP.

C. Ground-state degeneracy on 3-torus

The detailed calculation of the GSD on an L, x L, x L,
3-torus is quite involved, requiring considerable constraint
counting. The full details of this calculation are relegated to
Appendix E; here we present an outline of the calculation and
its result.

In a copy of the ungauged X-cube model, ground states
are labeled by the eigenvalues of Wilson loop operators which
physically correspond to creating a particle-antiparticle pair
for a particle constrained to move in one dimension, winding
one around the torus, and then annihilating the particles. These
Wilson loops are products of ¢, operators. Since the quasipar-
ticles involved are one-dimensional, these Wilson loops are
rigid, naively leading to ) ,_ ;jLiL; distinct string operators
with i, j = x, y, z. However, there is a constraint; the product
of any four Wilson loop operators which live on the edges
of a rectangular prism, as shown in Fig. 14(a), is equal to
the identity in the ground state (in the wave-function picture,
any four such strings can disappear). This follows from the
energetic constraint that the product of o, over the edges of a
cube is equal to +1. Therefore, in the cage-net wave-function
picture, we may freely create or delete such a set of strings.

It is straightforward to show that a basis for the indepen-
dent z-oriented Wilson loop operators is all such strings which
are at x = xp and all such strings at y = y, for a fixed choice
of xo, Yo, as shown in Fig. 14(b). This leads to L, + L, — 1
independent z-oriented Wilson loop operators. Including also
the independent x and y oriented Wilson loop operators then
leads to a total of

N =2L, + 2L, + 2L, — 3. (36)

Wilson loops in each copy of the X-cube model. In the wave-
function picture, we represent a +1 eigenvalue as the absence
of a Wilson loop and a —1 eigenvalue as the presence of a
Wilson loop. Two copies of the X-cube model thus have 4"
ground states in total.

FIG. 14. Properties of strings in the X-cube model on the 3-
torus. Opposite faces of the cube are identified in all subfigures.
(a) Constraint on rigid, topologically nontrivial Wilson loops in the
cage-net wave-function picture of a single copy of the X-cube model;
four Wilson loops (orange) on the edges of a rectangular prism can
disappear into the vacuum. The black dashed lines are guides to the
eye. (b) Basis for topologically nontrivial Wilson loops oriented in
the z direction in a single copy of the X-cube model. Each orange
line is an independent Wilson loop.

For brevity, we call a particular string position and orienta-
tion its “type” and refer to the X-cube layer separately.

Upon gauging the bilayer model, we first restrict to
configurations of the ungauged model where all layer-twist
membranes are topologically trivial. The different states may
then be labeled by “reference configurations” where no topo-
logically trivial membranes or strings are present, as the other
states in the superposition are obtained by allowing local
fluctuations of membranes and cages. However, we must
project to ground states of the ungauged model which are
invariant under a global SWAP operation.

For each independent string type, if a configuration con-
tains either no strings or both layers’ strings, then the con-
figuration is obviously symmetric under SWAP; there are 2V
such configurations. Given any of the other 4V — 2V string
configurations |i), a global SWAP acts nontrivially, so only
the symmetric combination of |y) and SWAP|y) invariant.
Hence the total number of states in the untwisted sector is

GSDunwisied = 2V + 2(@¥ —2Vy = 22V-1 4 oV=10 (37)

However, due to the proliferated layer-twist defects, ad-
ditional ground states are available. In particular, the twist
defects, which are created by flexible membrane operators,
can extend all the way around the torus without costing
energy. In a ground state on the 3-torus, there are three
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FIG. 15. Topologically nontrivial cage-net wave-function strings
in the gauged bilayer X-cube model in the presence of twisted
boundary conditions (purple membrane is the branch cut) on the
3-torus. Opposite faces of the cubes are identified. (a) Strings which
pass through the branch cut must change layers (colors) and so must
circle the 3-torus twice in order to close. (b) Modification of the
prism constraint in Fig. 14(a) in the presence of the branch cut;
strings on the opposite side of the branch cut have opposite colors.
(c) Strings in layer 1 (orange) which are oriented in the y direction
at the same x position can be moved around the torus using the
constraint in (b) and end up in the other layer (dashed blue) after
passing through the branch cut.

independent possible twist defects corresponding to stretching
the layer-twist membrane around the x and y, x and z, and y
and z handles, an example of which is shown in Fig. 15(a).
These layer-twist defects are branch membranes for the
strings and substantially change the ground states because
a Wilson loop which passes through a layer-twist defect
changes layers. For example, in the presence of a twist defect
in the xy plane, a z-oriented string must wrap around the torus
twice in order to close, as shown in Fig. 15(a). Furthermore,
the set of constraints on strings which do not pass through a

twist defect also changes. The constraint that four strings on
the edges of a prism are equal to the identity [see Fig. 14(a)] is
modified in the presence of the twist defect to the one shown in
Fig. 15(b). Using these constraints, certain pairs of strings can
be translated in certain directions, e.g., two y-oriented strings
at the same x position can be translated in the z direction, as
shown in Fig. 15(c). If the strings are translated all the way
around a handle of the torus, in the presence of an appropriate
twist defect they change layers, as shown in Fig. 15(c). This
leads to additional constraints between the Wilson loops in
different layers. This is similar to the gauged bilayer toric
code; in that case, single strings around the untwisted handle
can swap layers by being translated around the twisted handle.
It is the same situation here, except only certain pairs of
strings can be translated around the twisted handle.

In Appendix E, we carefully account for the constraints
in all sectors of the ground-state subspace. The end result of
the calculation is that the total ground-state degeneracy on the
3-torus is

GSD = 2°¥*1 + 9 x 2"
+ Z (2N+2L,—1 —3x 2Nl 2L,+NT+')’ (38)

i=x,y,2

where N is defined in Eq. (36).

IV. EXCITATIONS OF THE GAUGED BILAYER
X-CUBE MODEL

In this section, we discuss at length the excitations of the
gauged bilayer X-cube model Eq. (35). In particular, we show
how the string operators for the non-Abelian excitations are
constructed. We then compute the degeneracy associated to
the stringlike twist defects and discuss some examples of bulk
braiding analogs associated to the non-Abelian fractons.

Similarly to the toric code case, the (ungauged) bilayer
X-cube model has excitations which can be labeled as a(Vb®,
where a, b =1, ¢;, fy, and bound states of those particles.
(See Appendix C for a review of the excitations of a single
layer of the X-cube model using the labeling of Ref. [35].)
Here, ¢;, for i = x,y, z, is a one-dimensional particle which
moves only in the ith direction, associated with exciting two
star operators on the same site, and fj is the fracton associated
with an excited cube operator. Note that we are suppressing
position indices since the true superselection sectors depend
in a complicated way on the positions of various excitations.
We will also occasionally refer to a two-dimensional particle
called m;;, where i, j = x, y, z are the directions of mobility;
this excitation is a bound state of two face-sharing cube
excitations separated in the k direction where k #£ i # j.

Upon gauging, any SWAP-invariant Particle remains
Abelian; in our case, these are 1, efl)e(,z) 0( ) (;2), and bound
states thereof. The noninvariant particles are grouped into
orbits [¢;] ~ egl) + efz) and [ fp] ~ (;1) + féz), which are non-
Abelian. As in the toric code case, ~ means a rough identi-
fication of the particle type with superpositions of the orig-
inal particles. The non-Abelian quasiparticles have quantum
dimension 2. Again, there is a Z, charge associated with the
T degrees of freedom, which we shall call ¢ and will turn out
to be fully mobile. Upon gauging, the stringlike twist defect
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TABLEII. Nontrivial simple excitations in the gauged bilayer X-cube model, their mobility, and their quantum dimensions d,,. Pure charges
are labeled by representations of D,4. Superscripts (1) and (2) label layers and subscripts i = x, y, z label directions in which quasiparticles are
mobile. Bound states of two point charges or point monopoles of the same type can have increased mobility, as in the ungauged X-cube model.
The quantum dimension of the flux string depends on its linear extent ¢; in the i direction and is computed in Sec. IV B.

Label Excitation Mobility d,
Point Z, charge (a, c) — (1, —1) 3D 1

ef»')eﬁz) Point charge (a,c¢) — (—1,1) 1D 1

pelVe? Point charge (a, ¢) — (—1, —1) 1D 1

[ei] Point charge 2D irrep of Dy 1D 2

fiD @ Abelian monopole Fracton 1

[fol Non-Abelian monopole Fracton 2

o Flux (twist) string Flexible string excitation Qb+l +l—l

becomes a flexible stringlike excitation o, which can bind
various point excitations.

The pure charge excitations of the gauged model can be
identified with representations of D4 in the same way as
in the gauged bilayer toric code case, but it is not clear
that it is particularly meaningful or useful to describe the
purely magnetic excitations in terms of conjugacy classes.
In general, monopoles (fractons) and fluxes are created by
membrane operators. The nontrivial simple excitations are
listed in Table II.

A. Quasiparticle excitations
1. Abelian excitations

The bound states of excitations in both layers are Abelian
and created in the same way as in the ungauged model; for
example, a (rigid) string of UZ(I)O'ZQ) operators creates the one-
dimensional particle ef-l)el@ associated to the irrep (a, c) —
(—1, 1), which are, in the cage-net picture, the endpoints of a
string of both colors, as in Fig. 16(a).

A rectangular membrane of oVo® operators creates four
Abelian fractons fo(l) féz). In the cage-net picture, this corre-
sponds to having a minus sign in the ground-state superposi-
tion whenever an odd number of cages surround the location
of the fracton, as shown in Fig. 16(b).

Similarly, the Z, charge ¢ is created by a string of 1,
operators acting on gauge qubits. Since this string commutes
with As, B, D, and Dy and anticommutes with C,, ¢ is
easily checked to be fully mobile. This is not surprising since
each 7 spin appears in exactly two C, operators. In the wave-
function picture, this excitation corresponds to minus signs in
the ground-state superposition whenever a branch membrane
surrounds the excitation in question, as in Fig. 16(c).

2. Non-Abelian fractons: Cage-net picture

We begin with a cage-net picture of the wave function in
the presence of the non-Abelian fracton [fy]. We will find
the remarkable result that the degeneracy in the presence of
many [fy] fractons depends on their relative positions. We
further use the wave function picture to understand how this
degeneracy can be understood in terms of fusion properties
of the fractons. Subsequently we demonstrate certain fusion
rules explicitly by studying the quasiparticle operator algebra.

The [fo] excitations are created in sets of four at the
corners of rectangular membrane operators. The local cage-
net configurations near a single fracton are shown in Fig. 17.
In particular, we start with a “reference” configuration where
the fracton excitation is labeled with a definite layer index
(color, in our pictures). When [fy] is surrounded by an odd
number of cages of its own color (in the absence of any
branch membranes), the term in the superposition switches
sign, as in the first two terms of Fig. 17. The [fy] excitation
also switches colors when surrounded by a branch membrane.
Note that since branch membranes do not preserve the color of
cages, the configuration where an orange cage surrounds both
a blue fracton and a branch membrane has the same sign as
the configuration where an orange cage surrounds an orange
fracton, as in the configurations in Fig. 17. This is because
these two configurations are related by deforming the branch
membrane through the fracton in question, which switches the
color of the fracton without introducing an additional minus
sign.

Let us now consider the degeneracy associated with the
excitations. It is important to realize that, just as in the
ungauged model, there is a constraint at the level of the Hilbert
space: in any reference configuration, the number of fractons
of each color in every plane perpendicular to a coordinate axis
is even. This follows from the operator identity

[] B =1 (39)

ceplane

That is, a cage of any fixed color which encloses an entire
plane is exactly the same as no cage at all.

Therefore the number of ground states for a given spatial
configuration of [ fy] fractons is given by the number of ways
of assigning layer labels to each fracton (modulo a global
SWAP), subject to the above constraint. The requirement of
satisfying the above constraints leads to a highly nontrivial
position dependence of the degeneracy, as we see explicitly in
the following examples.

In the presence of four [f] excitations at the corners of a
rectangle, there is only one allowed reference configuration
up to a global SWAP (in which all excitations have the same
color), so there is only one state.

Consider next eight [ fy] excitations on the corners of a cube
(or a rectangular prism). Then it is easy to check that, up to a
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FIG. 16. Sample terms in the cage-net wave function for Abelian quasiparticles in the gauged bilayer X-cube model. (a) ee® excitations.

(b) fél) 0(2) excitations. (c) Z, charge ¢.

global SWAP, there are eight possible reference configurations
consistent with the aforementioned identity and which are
inequivalent under proliferation of cage-nets. One example
reference configuration is given in Fig. 18(a) along with a few
terms in its cage-net superposition. Distinct configurations
are locally indistinguishable because the layer index for an
individual fracton is not a good quantum number, so there are
eight degenerate states associated with these fractons. This is
a general rule; the number of distinct reference configurations
up to global SWAPs equals the degeneracy. Generalizing this,
in the presence of 4N, fractons created in N, quartets of four
fractons in the geometry shown in Fig. 18(b), simple com-
binatorial arguments show that the number of inequivalent

reference configurations and therefore the number of locally
indistinguishable degenerate states is 8V~!.

When instead eight fractons are placed in the geometry
shown in Fig. 18(c), there are only four allowed reference
configurations, and in the geometry shown in Fig. 18(d),
there are only two allowed reference configurations. Hence
the number of states associated with eight [f;] excitations
depends strongly on their relative positions. This position-
dependence of the degeneracy is consistent with the fact that
in a fusion category description of fractons, their superselec-
tion sector of depends on their position [56].

The locally indistinguishable, degenerate states arising
from the [fy] fractons can be labeled in terms of fusion

FIG. 17. Cage-net configurations near a single [f;] excitation illustrating the interaction of branch membranes and cages. The sphere
color indicates whether layer-1 or layer-2 cages (in the absence of branch membranes) introduce minus signs into the wave-function layer in
that cage-net configuration. As before, orange (respectively, blue) indicates layer 1 (respectively, layer 2) cages and excitations and purple
are branch membranes. The third and fourth terms show the interaction between branch membranes and cages surrounding [fy]. All other
excitations in the system are assumed to be very far from everything in these pictures.
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FIG. 18. States associated to many [ f] excitations. Color coding is the same as Fig. 17, and dashed lines and grey rectangles are guides
to the eye. (b) A reference configuration for 4N, [fy] fractons created in N, “layers”; there are 8"~! degenerate states associated with these
fractons in this geometry. [(c) and (d)] Example reference configurations for eight [f;] fractons in different geometries from (a). In (c), there
are four degenerate states and in (d), there are only two. (¢) Example reference configuration in the geometry used to calculate the quantum

dimension of [fo].

properties of the fractons, as we now describe. We note
that a complete theory of fusion rules is complicated by the
fact that fractons at different spatial positions are in distinct
superselection sectors, and a complete theory of fusion should
properly take this into account. As such, here our discussion
of the fusion properties is limited to a description of how to
label the different states in terms of the eigenvalues of certain
extended cage or membrane operators that can measure cer-
tain topological charges associated with a given region. We
leave a more comprehensive theory of fusion rules in such
non-Abelian fracton models as an open problem.

Just as in the gauged bilayer toric code case, the layer
label for each fracton is not definite, but the layer parity
of any pair of fractons in a cage-net configuration depends
only on the corresponding layer parity in the relevant ref-
erence configuration and the number of branch membranes
surrounding those two fractons. Therefore an operator which
creates a cage of either color surrounding two excitations has
a definite eigenvalue of 1 in each of these eight reference
configurations. We interpret these two possible eigenvalues
as assigning to the given region an even or odd topological
charge of the Abelian fracton fo(l) féz).

One can also assign a Z, charge ¢ to certain regions, which
can be measured by the eigenvalue of a membrane operator
M, . However, not every region can be assigned such a definite
topological charge. The desired operator M,, creates a Z, flux
string, moves it around the region in question, and attempts
to re-annihilates the string. Analogous to the case of W, in
the gauged bilayer toric code case, M, does not change the
color of fractons inside the region it is associated with, since
its support is far from those excitations; nevertheless, it leaves
behind in the wave function a branch membrane. Suppose first
that M, surrounds two [ fy] excitations. After deforming back
to the reference configuration, two fractons switch colors,
which violates the constraint that all planes perpendicular to

coordinate axes contain an even number of fractons of each
color. Therefore such a process is actually not possible. This
process is depicted in Fig. 19(a). Stated differently, M, must
take us out of the degenerate manifold of states to a different
excited state rather than re-annihilating the string. A similar
phenomenon occurs in, for example, the (24 1)D Ising

¢ h * ) Deform
Cs o branch cut
/" 1 ¢ — >~
o J 4
L °
L (]
(a)
¢ * 2 Deform *
. " D
/ o o o branch cut |e |
/\{i s = f Ny |
o ¢ | .
¢ . &
L3

FIG. 19. Color coding is the same as Fig. 18. (a) Applying a
membrane operator M, which measures the Z, charge contained by
two fractons produces an “illegal” state which violates the Hilbert
space constraints. (b) Applying a membrane operator M/ which
measures the Z, charge contained by four fractons produces a valid
state. (c) States where the top (and bottom) four fractons fuse to two
fo(l) fo(z) fractons with (minus sign) and without (plus sign) a ¢.
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topological order, where a non-Abelian ¢ loop cannot enclose
a single non-Abelian o particle, because of the difference in
fusion channels between the initial and final state.

Nevertheless, there exist choices of four [fy] such that ap-
plying a membrane M that surrounds them, as in Fig. 19(b),
leads to a configuration which obeys the constraints. This
means that a definite Z, charge is only associated to certain
choices of four well-separated [ fy] excitations, not two.

Therefore any pair of fractons can be assigned a definite

(1) £(2) : ;

v fo~ parity, but only certain sets of four fractons can have
a definite ¢ parity. In particular, certain superpositions of the
reference configurations, such as the one shown in Fig. 19(c),
are cage-net states with definite fo(l) fo(2) (respectively, ¢)
parity for all pairs (respectively, quartets) of fractons in the
same xy plane. One can also check that this fusion information
is sufficient to distinguish all of the eight degenerate states.

Let us now turn to a discussion of quantum dimension. In
conventional topological order, the quantum dimension d,, of
a particle of type a can be defined by considering the degen-
eracy in the presence of N particles of type a, which scales
as d. However since in the present context the degeneracy
in the presence of N fractons [ fy] depends sensitively on their
relative position, the definition of the quantum dimension of
[fo] is more subtle.

In fact, because the superselection sector of fractons de-
pends on their positions, the geometries considered above
actually involve fusion of excitations in different superselec-
tion sectors. Thus, to define a quantum dimension for [fy],
we wish to create a set of excitations which are all in the
same superselection sector. This can be done by considering
a set of [fy] fractons in the geometry shown in Fig. 18(e).
In this geometry, there is a membrane operator which turns
the excitations in any one grey box into the excitations in any
other grey box—in particular, each one can independently be
turned into a copy of the grey box with a single [fy] inside.
This means that each grey box should be thought of as living
in the same superselection sector as the single [fy]. In this
geometry, for each reference configuration, all fractons in
each grey box must be in the same layer in order to obey the
global constraints. Simple counting shows that up to a global
SWAP, there are 2%~ degenerate states in this geometry,
where N}, is the number of grey boxes (provided N, is even,
or no states are allowed at all). Therefore we find that the
quantum dimension

dijyy = 2. (40)

3. Non-Abelian fractons: Explicit operators

With the cage-net understanding in hand, we now explicitly
construct the operators that create the non-Abelian fractons
[fo]. Following the intuition from the gauged bilayer toric
code, we expect that we should build a (gauge-invariant)
membrane operator from o*) and o~ since these commute
with C,. However, the membrane should commute with the
Hamiltonian everywhere except at its corners. Commuting B,
past a membrane of o™ operators will permute the various
summands of B, at the cost of interchanging o*) with (™
and dressing with some t, operators, as in Fig. 20(a). There-
fore superposing over all such interchanges will produce the
desired membrane operator. Some examples have the form

shown in Figs. 20(b) and 20(c); these operators create four
fractons [ fy].

There are in fact sixteen different such operators; they can
be obtained from the one shown in Fig. 20(b) by choosing any
subset of the corners of the membrane and exchanging o™
and o™ in every term of the sum at the chosen corners. These
operators differ from each other by the local action of X®
at the corners. For future reference, we call these operators
./\/l[i;i’)]i’i'i, where the signs refer to whether there is an o™
or an o{~) at each corner in the term in the sum with no T,
operators, as labeled in Fig. 20.

As a suggestive calculation for the fusion channels, we
explicitly compute products of the membrane operators. For
the full operator algebra, see Appendix D.

Let

k,,mn
M[fo] . 41

w- ¥

{k,l,m,n==%|klmn=-+}

This is a particular choice of membrane operator which cre-
ates four fractons at its corners. Applying M? to the ground
state creates two fractons at each corner of the membrane.
We can fuse the two fractons at each corner into simple
excitations; this amounts to re-expressing M? as a sum of
operators creating simple excitations at each corner of the
membrane. A tedious computation similar to the one done for
the bilayer toric code shows that

M2 = <1+®6)§1)0;2))

reld

X 1+Z®‘L’z+

i#] string;;

R x| (42)

string; ;, string,

where i, j, k, [ label distinct corners of the membrane and
“string;;” means any string connecting the corners i and j.
In particular, we can identify this as a sum of the identity, the
operator creating four fél) fo(z) fractons, an operator creating
any even number of Z, charges ¢, and the bound states
10} fo(l) féz). (Note that the string operators for ¢ can fluctuate
between connecting any choice of pairs of ¢ excitations.)
That is, there are four distinct outcomes for the fusion at
each corner of the membrane: 1, fo(l) féz), ¢, and ¢ fo(l) féz),
which can be chosen independently provided the total fusion
is the identity. This naively seems to “overcount” ¢ compared
to the cage-net picture, where a definite parity of ¢ is only
well-defined for a set of four fractons rather than a pair.
However, in the present calculation, the fractons being fused
are at the same location in space, so their fusion outcome can
be distinguished by local operators (i.e., by arbitrarily small
membrane/cage operators). It is not necessarily true that these
locally distinguishable states all correspond to distinct degen-
erate states when the fractons are widely separated, especially
given the geometry dependence of the non-Abelian degen-
eracy. However, when widely separated fractons are brought
close together, the final fusion channels will of course be con-
sistent with the fusion when the particles are well-separated.
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FIG. 20. Constructing membrane operators for [ fy] fractons. (a) Commutation relation between one term of B, (involving o, operators)
and a small membrane of aﬁ) operators. Operator legend is in the bottom left. (b) and (c) Two choices of membrane operator that create [fy]
fractons (purple cubes) in the gauged bilayer X-cube model. They differ only by the choice of operator (color) in the top right and bottom
right corners of the membrane. All terms with an even number of grey spheres appear in each sum. The grey membrane is a guide to the eye
representing the membranelike support of the operator. The operator legend in (a) applies to all of the figures.

4. General operator structure

We now exhibit the operators which create the full set of
simple excitations in this model, deferring the full enumera-
tion of their algebra to Appendix D.

There are four types of operators which we need to con-
sider: flexible string operators, which create Z, charges ¢
(discussed previously), rigid string operators, which create
excitations in the e sector, rigid membrane operators, which
create fractons, and flexible membrane operators, which cre-
ate twist defect strings. We handle each one in turn, starting
with string operators.

The structure of rigid string operators in the gauged
bilayer X-cube model is the same as the string operators
for pure charge excitations in the (2 + 1)D gauged bilayer
toric code case (see Appendix B); the only difference is
that the strings are rigid. In particular, the string operators
are constructed from a set of local operators {4y, Vi, W4},
although it so happens that in this sector the V. are the

identity. We will therefore ignore the V. for the rest of the
discussion.

As before, we start from a reference string as in Fig. 10(a)
with only ¢/, and W, appearing in the string except at its
ends; either /3 may be chosen at the end, which correspond
to local degrees of freedom of the quasiparticles, that is, this
choice can be modified via the action of a local operator. Next,
for every lattice site along the length of the string, we choose
whether to flip + <> — for all links surrounding that site, as in
Fig. 10(b), obtaining a new operator. We then superpose over
all such choices.

The quasiparticle types are: Abelian one-dimensional (1D)
quasiparticles egl)el(.z), where i = x,y, z labels the direction
of mobility, Abelian 1D quasiparticles ¢e§l)e§2), and non-
Abelian 1D quasiparticles [e;]. A specification of their string
operators is listed in Table III.

‘We next turn to the rigid membrane operators, which create
fractons, and describe them in a more systematic framework.
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TABLE III. Specification of string operators which create Z,
charge and e-sector particles in the gauged bilayer X-cube model.
The positions of the operators are exactly the same as in the (241)D
gauged bilayer toric code case in Fig. 10(a), and superpositions are
formed similarly. The V), are all 1 in this sector.

Label Excitation type U Uu- Wy W_
mobile boson 1 1 7, 7,
1) ,(2) : : D2 D2
e e Abelian 1D particle oM@ ohg® 1 1
pee®  Abelian 1D particle cWo® oWe® ¢ T,
[e:] non-Abelian 1D particle o o) 1 T,

4 <

The basic excitations in this sector are fél) féz) and ¢ fél) féz),
which are Abelian, and [ fy], which is non-Abelian.

We again take a reference operator and superpose flipped
versions of that reference operator, as described in previous
examples. The distinction is that this time, all of the local
operators which border an elementary cube of the cubic lattice
are affected by the flipping procedure. We again define U/,
Vi, and W, operators, which live now on the links in the
plane of the membrane (both on top and on the bottom of the
membrane), links puncturing the membrane, and t on half of
the links within the membrane, respectively, as in Fig. 21. In
the fracton sector, the U/ are always 1, so we ignore them in
what follows, but we have defined the U/ for the purposes of
discussing twist strings later.

The reference operators are defined to have V. and W,
everywhere on the membrane, except we allow either V. or
V_ at the corners of the membrane. This leads to sixteen
possible operators specified by four choices of V. in the
reference configuration; these sixteen operators will differ by
the action of local operators at the corners of the membrane,
that is, they specify purely local degrees of freedom of the
fractons.

Now form more membrane operators by, for each face
within the membrane, choosing whether or not to exchange
+ <> — on all the operators which touch that face. Finally,
superpose over all the membrane operators we have formed
from a given reference configuration.

The operator choices for the fractons and twist strings are
given in Table IV. Some example terms in the superposition
for the excitation [ fy] are given in Figs. 20(b) and 20(c).

FIG. 21. Local operator locations for membrane operator in the
gauged bilayer X-cube model. A superposition is formed from a
reference configuration where every operator is chosen to be + by
choosing whether or not to flip + <> — on every spin touching a face
(for an operator that creates fractons) or on an elementary cube (for
an operator that creates a twist string).

Finally, the flexible membrane operators which create twist
strings o are constructed similarly to the membranes which
create fractons, but with some important differences. First,
rather than only choosing between V. at the corners of the
membrane in the reference configuration, we may choose V.,
or V_ anywhere on the boundary of the membrane operator.
This is reasonable because the string excitation it creates may
generally have a local degree of freedom at each point on the
string. Second, instead of interchanging 4+ <> — on all oper-
ators touching a face within the membrane, we interchange
+ < — on all operators touching cubes within the membrane.
Each cube affects eight Vs, four U, and eight Ws. Otherwise,
the construction is the same. The appropriate operators for o
are listed in Table I'V.

B. String excitations and geometry-dependent degeneracy

In this section, we first argue that a string excitation
o} is indeed flexible (i.e., has no mobility constraints, then
show associated with a topological degeneracy that scales as
~QULAL+E-D) where ¢; is the linear extent of that excitation
in the 7 direction. This latter property is qualitatively different
from conventional topological order in (3 4+ 1)D, where non-
Abelian string defects carry a degeneracy that is independent
of their size and shape.

The fact that o} strings are free to move may be seen ex-
plicitly by somewhat involved but straightforward inspection
of our construction of the membrane operator which creates
them (see Table IV), which carries through with no additional
energy cost even if the membrane is bent. There is, however,
a more intuitive argument coming from the wave-function
picture. The string excitations occur on the boundaries of
open SWAP branch membranes. But closed SWAP branch
membranes, which arise from gauging a global Z, symmetry,
are proliferated. Therefore the 2D bulk of a branch membrane
of any shape, in particular a bent shape, should cost no energy.
In this sense, the string excitations, which lie on the edge of
an open branch membrane, are free to deform, only costing
energy proportional to the string’s length (and possibly with a
finite energy cost for each kink in the string). This is the same
behavior as string excitations in 3D topological order.

This may be contrasted with gauging a subsystem symme-
try. Taking the example [10] where the plaquette Ising model’s
planar subsystem symmetry is gauged to produce the X-cube
model, the proliferated objects are not branch membranes for
a global symmetry but are instead closed branch strings for a
subsystem symmetry, and thus each branch string can fluctu-
ate only within a plane. Accordingly, the pointlike excitations
which live at the endpoints of these branch strings (namely,
the Z, dipoles of the X-cube model) can only move in the
plane in which said branch strings can fluctuate.

We now consider the topological degeneracy. To do so, we
first consider an extrinsic twist defect in the ungauged model.
After gauging, the extrinsic twist defect becomes one of the
string excitations. We will first compute the degeneracy in the
ungauged case, with the degeneracy after gauging following
straightforwardly.

For simplicity, we consider our system to be a large but
finite-size cube. We choose boundary conditions where the
one-dimensional “e” particles (violations of star terms in H) in
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TABLE IV. Specification of membrane operators which create fractons and twist defects in the gauged bilayer X-cube model. The layout

of the operators U4, 1V, and WV is shown in Fig. 21. The excitation ¢ fo(l)

and fusing them onto fo(l) 0(2)

(2)

can be created using (flexible) string operators to create ¢ (in pairs)

excitations created by the membrane operator given in the table.

Label Excitation type U, Uu- Vi V_ Wi W_
i Abelian fracton 1 1 oMo® oMo® 1 1
[fol non-Abelian fracton 1 1 o o 1 T,
o non-Abelian twist string 1 oVg@ 1+oMe® 1—oMa® T, T,

both layers of the original X-cube model are condensed at the
boundary (“rough” boundary conditions). It is straightforward
to check (in the wave-function picture) that in the absence of
excitations, the ground state is unique because there are no
topologically nontrivial strings in the m sector (associated to
violations of the cube terms in H). Hence, any degeneracy
will be associated with excitations. The exact degeneracy will
depend on boundary conditions, as it does for conventional
topological order, but the quantum dimension is independent
of the boundary conditions.

Consider first two decoupled copies of the X-cube model
with an extrinsic £, x £, twist defect string inserted, as in
Fig. 22(a). We presently set notation. Call violations of the
AY terms [see Eq. (30)] as eg), where i = 1,2 labels a
layer and p = x, y, z labels the direction of motion of these
one-dimensional particles. Bound states of excitations of two

FIG. 22. (a) Wilson lines in the presence of an extrinsic string
defect (purple) in the bilayer X-cube model with open boundary
conditions where the e excitations are condensed. The e Wilson line
consists of o operators, where i = 1 when the line is orange and
i =2 when the line is blue, and the m{) Wilson line consists of
o1 operators. (b) Independent e, Wilson lines in the presence of
a twist defect. The colors may be exchanged to find another set of
independent Wilson lines. (c) Additional ¢ Wilson lines which appear
when the string bends.

face-sharing B terms are two-dimensional particles, which
we call mg;, where pg means that this excitation is mobile in
the pg plane.

Note that m{) quasiparticles have closed Wilson loop op-
erators (closed strings of o") associated to creating a pair
of quasiparticles, moving them in a loop, and reannihilating
them. Because m{) is mobile only in the pg plane, Wilson
loops can be deformed in the pq plane but not out of that plane.
On the other hand, e}’ can form Wilson lines by creating a pair
in the bulk, moving them to the boundary, and annihilating
them. These Wilson lines are completely rigid because e(pi) is
only mobile in one dimension.

With the notation set, consider a closed Wilson loop for an
m{) particle which surrounds the defect string, as shown in
Fig. 22(a). This Wilson loop cannot be deformed to the iden-
tity because, due to the subdimensional nature of the excita-
tions, the Wilson loop cannot be deformed out of the xz plane.
This is in contrast with conventional topological order, where,
thanks to the full mobility of the particles, Wilson loops can be
deformed arbitrarily. Such a Wilson loop anticommutes with
any e; Wilson line which passes through the defect in the same
xz plane because the e, particle changes layers when it passes
through the defect, as shown in Fig. 22(a). There are therefore
2¢, nontrivial m Wilson loops in the presence of the defect
(the 2 counts layers). The same holds for Wilson loops for mﬁ’z)
particles, so in total there are 2(£, + £,) nontrivial m Wilson
loops.

However, not all of these Wilson loops address independent
states; we must count independent e, Wilson lines as well. The
constraint discussed earlier also applies to Wilson lines which
pass through the defect—the product of any four Wilson lines
at the corners of a rectangle must equal the identity. Therefore
there are only 2(¢, + £, — 1) independent e, Wilson lines, as
shown in Fig. 22(b), and each of them anticommutes with (at
least) one m Wilson line. The degeneracy in the presence of
the defect is therefore 22(4+6=1,

We now wish to examine what happens when the loop
bends in the z direction as well, say in the yz plane as in
Fig. 22(c). It is easy to see that 2(£; + £, — 1) independent e,
Wilson lines pass through the defect. Likewise, there are 27,
additional m,, Wilson lines that surround the defect, which
each anticommute with an e, Wilson line. However, there is
no additional m,, Wilson loop which anticommutes with the
other e, Wilson lines; those are already being “used” as logical
operators which anticommute with the e, Wilson lines. We
therefore get an additional degeneracy of only 22%, leading to
a total degeneracy of 22(:+6+6=D),

Next, we briefly discuss what happens in the presence of
multiple defect strings. If the strings are not linked, it is not too
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FIG. 23. Wilson “lines” in the presence of two twist defect
strings (purple) when the strings are separated [(a) and (b)] and
linked [(c) and (d)]. The implication is that the e{" particles are
brought in from the boundary and annihilated on the opposite
boundary, where we have chosen open boundary conditions with
e excitations condensed everywhere. (The details of the Wilson
operators depend on the boundary conditions, although the number
of independent Wilson operators does not.) Operators within a figure
anticommute and operators in different figures (with the same defect
configurations) commute.

difficult to see that an independent set of m Wilson lines for
each string can be constructed, on the right side of Figs. 23(a)
and 23(b). There is also an independent set of e “Wilson lines”
for each string; in particular, by using the fact that e, can split
into an e, and an e_, the e particles can “go around” a string
defect in the way shown on the left side of Figs. 23(a) and
23(b). Therefore the degeneracies associated to each string are
independent.

If the strings are linked, the degeneracies are still indepen-
dent; this time, the fact that the ¢ Wilson lines are distinct
follows straightforwardly from the geometry, as in the left
sides of Figs. 23(c) and 23(d), and the independent mz Wilson
lines are obtained by wrapping around either one or both
strings, as shown on the right sides of Figs. 23(c) and 23(d).
Therefore, since each defect contributes independently to the
degeneracy regardless of the relative configuration of the
strings, the quantum dimension of the string defect is really
92(LAb,FE.~1)

Finally, we promote our understanding of the ungauged
model to the degeneracy in the gauged model. Before gauging,
the number of degenerate states associated with a string exci-
tation scales as 2%V = 22(t+6+6-D Because the degeneracy
is associated with the twist defect and not with the boundary
conditions (although the boundary conditions can affect the
total degeneracy), after gauging, all that happens is that we
restrict to the states which are symmetric under a global
SWAP. Following similar arguments used for the ground-state
degeneracy on the torus in Sec. III C, there are ~(22V~! +
2N=1y ~ 22V states associated with the string. The quantum
dimension is therefore 22V in the gauged model.

C. Non-Abelian braiding analog for subdimensional particles

Although a full theory of braiding for subdimensional
particles has not yet been developed, we can demonstrate that
our model possesses an analog of non-Abelian braiding of
subdimensional particles.

Let |0) be a ground state, and consider the state
W) = MGT T v MG vz +200(0), where
Mis(x,v,2) is a membrane in the xy plane centered at
(x,y,z) and zo is large. Physically, this corresponds to
creating eight [fy] excitations, one at each corner of a
rectangular prism. One can check from the operator algebra
(see Appendix D) that (y|) #£ 0. Next, let C be a closed
“cage” operator for the [e;] particles; physically, we create
from vacuum a triple of [e.], [ey], and [e;] at each corner of a
wire-frame cube, then move the particles and annihilate them
pairwise. Explicitly, C is shown in Fig. 24(b) and is simply an
“enlarged” version of B.. One can check that [C, Hgauged] = 0,
and therefore C|0) = |0) (assuming that the linear size of C
is small compared to the system size). One can also check
explicitly that if C is positioned so that it surrounds exactly
two fractons, as shown in Fig. 24(b), then

2 \2
CMfT ) =MfT)c (43)

Here the position indices on M, are suppressed for legibil-
ity. It immediately follows that

Cly) = (M5 7)70). (44)

so C|¥) and |¢) have the same type of excitations at the
same locations. Hence (again using the operator algebra in
Appendix D)

WICh) = OIMETTF) (METT)I0) (49)
=0. (46)

It is likewise straightforward to check that C|y) has
nonzero norm. Therefore C performs a nontrivial unitary
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FIG. 24. (a) Definition of the operator C. (b) “Braiding” of the
cage C (green) around a pair of [f;] particles (purple). The fractons
are all taken to be well-separated despite the fact the cubes represent-
ing the fractons are large in this figure.

transformation on the set of degenerate states associated with
the eight [ fp] excitations created by (M;H’J“Jr)z, such that
|) and C|v) are orthogonal. This is precisely a consequence
of an analog of non-Abelian braiding for subdimensional
excitations.

V. GAUGED BILAYER HAAH’S CODE

Our primary interest in gauging the layer-swap symmetry
of Haah’s code will be to show that there are non-Abelian
fractal-type fractons in the model. (We call quasiparticles
created at the corners of operators with fractal support, e.g.,
the quasiparticles in Haah’s code, “fractal-type.” Our model
does not fall cleanly into the “type-I”/“type-II” dichotomy
of Ref. [9] because our model has both fractal-type fractons
and a fully mobile quasiparticle, so we choose not to use
that language.) We will not attempt to discuss many more
properties of the model in detail. This is either because
they are extremely complicated (e.g., determining constraints
between different fractal Wilson operators in order to compute
the ground-state degeneracy) or because they are not well-
understood even for Abelian fractal-type fractons (e.g., the
analog of particle-particle braiding processes).

A. Construction of the model

The model is constructed in an analogous way to the previ-
ous cases, although due to the Hilbert space of the ungauged
model, the gauge qubits are a bit simpler than the X-cube case.

(LX) O—(x 1) (12)——(21)®
. (D11 RN 2V G0l
AW — | BW=1: ||
(¢ (XX)(’) .Elx)(i) c ‘11 ........... E lz)(i)
1X)—(x1)® (12)®, (Z21)®

FIG. 25. Operators appearing in the ungauged bilayer Haah’s
code model. The Hilbert space consists of two qubits per layer for
a total of four qubits per site. The Pauli operators are written as X
and Z for legibility.

The Hilbert space of the ungauged model consists of four
qubits per site, two per layer of Haah’s code. The model has
the Hamiltonian

Hungauged = - Z (Aﬁ.i) + Bi-i))s 47

i,c

where i labels a layer and AY) and BY are eight-qubit op-
erators shown in Fig. 25. The notation is that, for example,
(XX)% means a Pauli X operator on both spins in the ith layer.

We pick the particular SWAP operator which exchanges
both qubits in layer 1 with both qubits in layer 2, that is, on a
single site

SWAP|Y1Y2)1 ® [¢12) = [912)1 ® [Y1¥2)2,  (48)

where the outer subscript labels a layer and the inner subscript
labels a spin within a layer. Obviously a global SWAP of this
type is a global symmetry of the ungauged model. As before,
we can decompose the Hamiltonian into a sum of terms which
are even or odd under onsite SWAPs; 64 terms appear, a few
examples of which are shown in Fig. 26(a). Each is invariant
under a global SWAP. We have defined the (%) superscripts
as before; for any operator O within a layer,

1
OF = E((f)(l) + 0(2)) (49)

To gauge the symmetry, we again add gauge qubits 7, this
time one per link of the cubic lattice. We then demand that all
terms in the Hamiltonian commute with the local symmetry
generator

C, = SWAP, ® ¥, (50)

star

where s labels a site. This operator is shown pictorially in
Fig. 26(c). This is, as before, achieved by adding t* operators
on paths which connect disjoint pairs of SWAP-odd operators.
Some examples are shown in Fig. 26(d). This is always
possible because the ungauged Hamiltonian is invariant under
a global SWAP; this means that the number of operators in a
term which are odd under onsite SWAP is always even.

Finally, we define the usual Z, flux operators which are
associated with plaquettes p of the lattice

Dy = (X) .- (51)

rep

With these definitions, the gauged model has the Hamiltonian

Hgauged = - Z(Ac +B.) — ch - ZD”’ (52)
c s p
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(1)) (X1 (Lxjee (X1)tH (1X)D——(x1)(-)
(xny®—11" (X1)F—11 (X111
Q(Agl) .9 Aff)) = : + + g
(X'X)(H. (1X)) (XX)> .£1x)(+> (XX)(> .£1X)(+>
(1) H——(X1)H) (1X) H—— (X 1)) 1) ——(x1)
(a)
(b) (c)
(1X)) (X1)H (1){)@ ,(X1)<+) (1X)(->—Z'Z—(X1)<*>
(x1)H—11 (X1)F—11 (X111
24, = ; + .l + | P
N ‘(X'X)(Jr).‘.(l)()(ﬂ T(X)()(H- L(1X)H) TZT(X'X)HT)f -LIX)H)
: b ? > 2 -
(1X)H——(X1)) (1X)(+>—¥Z—(X1)(—) (1X)D——(x1)

(d)

FIG. 26. Gauging procedure for bilayer Haah’s code. (a) Decomposition of the ungauged Hamiltonian terms A" into terms even and odd
under local SWAPs [of the sort in Eq. (48)]. The sum is over all 64 terms with an even number of (—) operators; three are shown. (b) Hilbert
space arrangement for the gauged model. There are four “matter” spins (dark grey) per site of the lattice and one “gauge” spin (orange) per
link of the lattice. (c) Generator C; of local gauge transformations. (d) Gauged cube term A.. The only difference from (a) is the addition of t,

operators (orange) acting on gauge spins.

where A, and B, are the gauged versions of the ungauged cube
operators, each of which contains 64 different terms of the
sorts shown in Fig. 26(d).

B. Excitations and non-Abelian fractal-type fractons

Each layer of the ungauged Z, Haah’s code model has
three fracton excitations corresponding to AY) = —1, which
we shall call a®, BY") = —1, which we shall call b), and
the “dyonic” bound state (ab)®. Upon gauging, the pointlike
particles are organized into symmetry orbits a"a®, b(Vp),
[al, [p], and their dyonic bound states. The first two are
Abelian fractal-type fractons and the last two are non-Abelian
fractal-type fractons. There is also be a fully mobile Z, point

charge ¢ and a twist string excitation o. The properties of
these particles are tabulated in Table V.

We are not aware of a cage-net construction for Haah’s
code, so we are mostly forced to work entirely with the
explicit operators. However, before doing so, we can demon-
strate that the [a] and [b] excitations do carry nontrivial (pre-
sumably configuration-dependent) topological degeneracy, al-
though we only know how to lower-bound this degeneracy.
The reason is that although we do not have a cage-net picture
for Haah’s code, the Z, gauge sector of the theory can still
be represented by a membrane-net, so we can still consider
“reference” configurations where the membranes are all ab-
sent. In such configurations, the excitations have a definite
layer index. In these configurations, the Hilbert space-level

TABLE V. Nontrivial simple excitations in the gauged bilayer Haah’s code model, their mobility, and their quantum dimensions d,.

Label Excitation Mobility d,
Point Z, charge 3D 1

aVa® Abelian violation of A, constraint fractal-type fracton 1

bVp@ Abelian violation of B, constraint fractal-type fracton 1

[a] non-Abelian violation of A. constraint fractal-type fracton 27

[p] non-Abelian violation of B, constraint fractal-type fracton 2?

o Flux (twist) string Flexible string excitation Unknown
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FIG. 27. Reference cage-net-like configurations for [a] fractons
(spheres) in the gauged bilayer Haah’s code. In these configurations
which lack branch membranes, fractons can be assigned definite
layers (orange and blue for layers 1 and 2, respectively). Grey
tetrahedra have fractons at their corners and are guides to the eye [one
not shown for legibility in (b)]. Configuration (b) is only possible
when the four small tetrahedra of fractons are arranged at the corners
of a larger tetrahedron. (c) Geometry used to compute the quantum
dimension of [a]. Fractons within each grey prism fuse to the same
superselection sector.

constraints descend from those of the ungauged model. This
means that in these “reference” configurations, four fractons
of a fixed color at the corners of (Sierpinski) tetrahedra of
side length 2" for integer n is definitely a valid configuration,
just as they are in the ungauged model. If N; such tetra-
hedra of fractons are present, then there are at least 2V~!
reference configurations allowed up to global SWAPs wherein
all fractons on a given tetrahedron have the same color. An
example reference configuration is shown in Fig. 27(a). This
is sufficient to show that the fractons are non-Abelian.
Because it is not simple to understand the full set of
Hilbert space constraints, in an arbitrary geometry it is not
clear if there are additional configurations which are allowed.
However, some geometries definitely admit additional con-
figurations, in particular when four tetrahedra are placed at
the corners of a larger tetrahedron. In this geometry, there are
multiple ways to group the fractons into tetrahedra, leading to
additional reference configurations such as that in Fig. 27(b).
In this geometry, the two ways of grouping sixteen fractons
into four tetrahedra leads to a lower bound on the degener-
acy of 2* — 1 = 15 states, compared to the eight states for
four tetrahedra at generic positions. This strongly suggests,

although we cannot prove rigorously, that the degeneracy
associated with the non-Abelian fractons depends strongly on
the geometry in which they are created.

The quantum dimension of the non-Abelian fractons can
be lower-bounded in a similar manner. Since fractons can be
created on the corners of tetrahedra, in the geometry shown
in Fig. 27(c), all of the grey boxes contain excitations in the
same superselection sector as the box with a single [a] fracton
in it. We expect that the only valid reference configurations
are where all fractons in a given grey box are of the same
color. Hence the degeneracy in this configuration is lower
bounded by 2V=2, where N}, is the number of grey boxes, and
the quantum dimension of the [a] and [b] fractons is lower
bounded by 2. We expect that indeed dj,; = djp; = 2, but we
need a full understanding of the constraints in order to prove
this.

We now explicitly construct the operators which create
the excitations. As usual, ¢ is created by a string of t°
operators. The Abelian fractons, since they are manifestly
SWAP-symmetric, are created in the same way as in the
ungauged models; for example, aPa® is created by acting
with (1Z)M(1Z2)?® on a Sierpinski tetrahedron as shown in
Fig. 28(a). We call this operator T,a),e .

One of our main results is the existence of the [a] and
[b] fractons, that is, this model contains non-Abelian fractons
which correspond to the symmetry orbit of a fracton in only
one of the original layers. The operator creating [a] is con-
structed in an analogous way to the non-Abelian excitations
in the previous models. We begin with a “reference” operator
consisting of a Sierpinski tetrahedron of (1Z)™) operators,
as in the first term of Fig. 28(c). To ensure that there are
only excitations at the corners of the strings, we observe what
happens when commuting terms of A, past this operator; as
usual, the terms of A, are permuted at the cost of converting
(12)* « (1Z) and dressing with some 7. operators, as
shown in Fig. 28(b). Superposing all the fractal-shaped oper-
ators resulting from such interchanges produces the desired
fractal operator for [a], shown in Fig. 28(c).

One can check explicitly, at least for small operators,
that each term in the superposition is obtained by choosing
any even number of (1Z)") operators to turn into (1Z))
operators, then connecting disjoint pairs of (1Z)~) operators
by 1, strings. One can also check that every such term appears
with equal weight. By the self-similarity of the Sierpinski
tetrahedron, this should also be the case for arbitrarily large
operators, although we do not have a formal proof.

As in the previous cases, additional fractal operators can
be obtained by choosing at each corner of the tetrahedron
whether or not to interchange the (1Z)* and (12)™) op-
erators. By inspection, these different operators are locally
distinguishable, for example, by the action of (1X)~). There
are 2* such choices.

Analogously to the ungauged model, there are also op-
erators with fractal support built from a (Z1)™*) reference
operator which creates four [a] fractons in a slightly different
geometry; an example is shown in Fig. 28(d).

The calculation of the fusion rules is done in exactly
the same way as for the membrane operators for X cube.
In particular, label the sixteen different operators [a]’i’i’i

where the + refers to which of (1Z)® appears at each corner
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FIG. 28. (a) Operator which creates Abelian fractons (grey) in Haah’s code. (b) Commutation relations between one term in A, and a
small piece of a Sierpinski prism operator. (c) and (d) Operators which create non-Abelian [a] fractons (purple) in Haah’s code in different
geometries. The tetrahedra are guides to the fractal structure; the edges of the tetrahedra are not necessarily links of the cubic lattice. Hence in
(d) the dashed line consists of several edges of the actual lattice. In (a), (c), and (d), these operators do not commute with the A, terms in the

Hamiltonian at the location of the excitations.

of the Sierpinski tetrahedron in the reference configuration;
’7}5‘+‘+’+ is shown in Fig. 28(c).

Define T = 7}5’+’+’+ +T As in the X-cube case,
T? creates two of the non-Abelian [a] excitations at each
corner of the Sierpinski tetrahedron on which T has support.
This operator can be re-expressed as a sum of operators which
create simple excitations which correspond to fusion out-

comes of the pairs of fractons. A tedious but straightforward

calculation shows that

T? = 1+ Tme)| 1+ (53)

Q).

retwo strings

where the “two strings” of t, operators connect disjoint pairs
of corners of the tetrahedron. This means that the fractons
either all fuse to the identity, to a Z, charge ¢, to an Abelian
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fracton aVa®, or to ¢a'a®. As in the gauged bilayer
X-cube model, since these topological charges can be deter-
mined by local measurements, the number of fusion outcomes
when the fractons are at the same point in space does not map
directly onto degeneracy when the fractons are separated in
space, but it is suggestive.

The full operator algebra for the 7, operators (and like-
wise for the 7y operators) turns out to be identical to the
algebra given in Appendix D for the M operators in the
gauged bilayer X-cube model.

Finally, the flux string excitations o are created by mem-
brane operators which are constructed in a manner which
is spiritually similar to the analogous operator in the X-
cube model, but a systematic construction of the operator
is sufficiently complicated that we leave discussion of these
operators to Appendix F.

VI. DISCUSSION

We have exhibited a general method for obtaining new
classes of fracton models: start from a fracton model with a
global symmetry which permutes nontrivial excitations, and
then gauge the symmetry. This procedure produces a model
with non-Abelian versions of the excitations in the ungauged
model by identifying each excitation with its symmetry orbit.
Notably, the mobility of the excitations is not affected. This
allows us to generate models with, for example, non-Abelian
fractal-type fractons. This comes with a side effect which
places these models outside the simplest framework for frac-
tons: not only do our models generically have at least one
fully mobile particle (the pure symmetry charge), but they
also necessarily come with a non-Abelian stringlike excitation
which braids nontrivially with some of the subdimensional
particles. As such, these models in some sense lie between
conventional fracton models with only pointlike, subdimen-
sional excitations and TQFTs.

A number of extensions of our work follow naturally.
We have focused on gauging Z, SWAP symmetries, but the
generalization to, say, Z, subgroups of the permutation group
should be straightforward. Another simple generalization of
our results would be to gauge the Z, global symmetry in the
bosonic checkerboard model which exchanges the electric and
magnetic sectors (generated by a Hadamard transformation
on every spin); we expect this to lead to a fractonic version
of Ising x Ising* topological order. One could also gauge the
“charge conjugation” symmetry of the Z3 X-cube model or its
generalizations. Relatedly, a single layer of Haah’s code has a
symmetry consisting of a Hadamard transformation on every
spin combined with spatial inversion; although gauging a
symmetry which involves inversion is not obviously meaning-
ful, one could imagine that some other type-II fracton model
would have an internal Hadamard-type transformation which
could be gauged to produce a Haah-like Ising x Ising® model.
Our procedure can be further generalized to gauge any finite
subgroup G of the permutation group on n copies of a fracton
model, with a further choice of a Dijkgraaf-Witten twist
H*(G, U(1)); it would be interesting to develop an under-
standing of the properties of the models for more general G.

Our non-Abelian Haah’s code model is in itself of consid-
erable further interest. Many properties of the model apart are

challenging to compute, even numerically (since the Hilbert
space has seven qubits per site and is not a Pauli Hamiltonian,
even small system size calculations will be computationally
intensive). Its ability to serve as a topological quantum mem-
ory or qubit would also be worthy of investigation, particularly
since the interplay between mobile quasiparticles, immobile
fractons, and flexible non-Abelian strings in the model is
quite complicated. We generically expect that exchanging a
(fully mobile) ¢ particle between certain sets of fractons can
split the degeneracy associated with non-Abelian fractons, so
the full degenerate manifold of states does not inherit the
same robustness at finite temperature as, say, the ground-
state manifold of the Abelian model on a torus. However,
fully splitting the degenerate manifold of states associated
to non-Abelian fractons should require exchanging Abelian
fractons among non-Abelian fractons, so we expect that some
portion of the degeneracy would possess a memory lifetime at
finite temperature that diverges with the distance between the
non-Abelian fractons.

Finally, it would also be interesting to connect our models
to several constructions from the literature. For example,
the non-Abelian twisted fracton models in Ref. [43] do not
contain the unusual string excitations that we have found,
but one could imagine coupling them to conventional 3 +
1D topological order in a nontrivial way so that the string
excitations braid with fractons, perhaps producing a model
similar to our gauged bilayer X-cube model. It could also be
enlightening to see if, in the spirit of Refs. [39,40], coupling
layers of 2D D4 quantum double models in some way beyond
p-string condensation could also produce the gauged bilayer
X-cube model.

Note added. Recently, we learned of closely related, in-
dependent work [57] by A. Prem and D. Williamson, which
appeared in the same arXiv posting as our paper.
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APPENDIX A: ALTERNATE GAUGING PROCEDURE
FOR THE D4y QUANTUM DOUBLE MODEL

In this Appendix, we explain an alternate way to gauge
the SWAP symmetry of the bilayer 2 + 1D toric code model
(strictly speaking, the Z, x Z, quantum double model) which
explicitly produces the D4 quantum double model.

For later convenience, we choose to start with the Z, x Z,
quantum double model rather than decoupled toric codes. The
Hamiltonian is

v (s )

s i=1,2

X ().
P

i=1,2

(AD)
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FIG. 29. Operator definitions in the alternate gauging procedure
for the bilayer toric code. (a) Generator C; of the gauge symmetry and
orientation convention for links. (b) Star operator A;. (c) Plaquette
operator B,,.

where AV = &, 0 and B = @z 0/” as in Fig. 1. The
only difference from the decoupled bilayer toric code model
Eq. (1) are the A{VA® and B{"B{Y terms, which simply
makes the energy of single charges (respectively, fluxes) equal
to the energy of a bound state of the charges (respectively,
fluxes) in the two layers. We emphasize that this does not
change the eigenstates; it only changes the energies of some
of the excited states.

In this gauging procedure, we make a different choice for
the generator of local symmetries—the local SWAP operator
acts on two links, one oriented in each lattice direction, instead
of just one. Accordingly, we define the Hilbert space of the
gauged model to have three spins per link of the square lattice,
and define the generator of the local gauge symmetry C;,
where s is a site of the lattice, via

C, = ® SWAP (g) T
|_ +

as shown in Fig. 29(a). We have included an orientation on the
links for later convenience.

(A2)

ha ho

D _
Bz? (1) hlg:}hs = 5h1h2h3—1h4—1,1 hlE}m

}L4 }7,4

FIG. 30. Operator definitions for the D, quantum double
Hamiltonian (A6).

We again reexpress AV + AP +ANAP and B +
B 4+ B"BY in terms of the o™ operators, just as we did
in Eq. (4). The difference from Sec. II is in the way that the
matter spins are dressed by the gauge spins 7. The resulting
gauged operators A, and B, are shown in Figs. 29(b) and
29(c), respectively. The simplified form for A; on the bottom
line of Fig. 29(b) can be verified with straightforward algebra.
The Hamiltonian simplifies to

Hyngea = — Y A; =2 Ci— > B, — > Dy, (A3)
K s p p

where D, = @ 1, is the toric code flux operator on a pla-
quette. Since Ay, B, and D, commute with Cs and with D,,
the factor of 2, which we have added for convenience, only
changes the energy of Z, charge excitations without changing
any topological properties of the model.

We will now build the correspondence with the D4 quan-
tum double model, which we briefly review now. The Dy
quantum double model is defined on a Hilbert space where
group elements live on (oriented) links of the square lat-
tice. The states obey (g|h) = 8,4, and there are operators g;
and gg (L% in Kitaev’s notation) which implement left and
right group multiplication, respectively; these operators obey
gr|h) = |gh) and gg|h) = |hg), which implies

grhr = (gh)L, (A4)

grhr = (hg)r (A5)

for all g, h € Dy. We also need the operators 7 which have
the action T'f|h) = 8,4|h) and T#|h) = 8, ;-1|h). The model
is defined using star operators A(g) and plaquette operators
Bp(g) via

Hop=—> > A®(e)— Y B ().
s g p

(A6)

where

AP (g) = 21.0.82.0.83.R84.Rs (A7)

B[y, hy. s, ha) = 8, 0 1| b, hs ha). (AS)

where the numerical subscripts label different links and the
L/R indices/choice of #~' follow the link orientations as
shown in Fig. 30. We have included a “QD” superscript to
indicate that these are the star and plaquette operators in the
quantum double as opposed to the terms we have obtained
via gauging the bilayer toric code. Our goal is to map the
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TABLE VI. Identification of the three-spin Hilbert space
lo{Po@1,) with the Hilbert space labeled by elements of Dj.

Group element

g€y 1) gL &
! Tt 1 !

a 1411) o o) 4 17
b 1141) o® o) — gig)

c 1114) 7. SWAP .

ab Nit) oo® oo ®

ac = cb ) e SWAP (o) — 16Oz,
be = ca M) oPLSWAP (0 + 0l )r,
abe N4y oMo, SWAP sWo @z,

three-spin-per-link Hilbert space of the gauged bilayer toric
code model, for which we represent states in the basis of
lo{VoP1,), to the Hilbert space labeled by elements of Dy so
that the terms in Eq. (A3) directly map to A" (g) and BY°(1).

To construct this mapping, we use the group presentation
Dy = {(a, b, c|la®> = b' = ¢* = 1, cac = b); the distinct group
elements can be labeled {1, a, b, ¢, ab, ac, bc, abc}. We define
the mapping so that if a (respectively, b, c) is present in this
choice of labeling of the group elements, then 0" (respec-
tively, 0{?, 7.) is down; otherwise o) (respectively, /%, 7,)
is up. For example, || 1) — |ac). Using this mapping of
states, the operators gz g can simply be read off in the o, T
basis from their desired action on the states. Consistency with
the group multiplication rules, i.e., Egs. (A4) and (AS5) can be
checked straightforwardly. The explicit mapping is given in
Table VI.

The consistency with the group algebra can be checked.
Given these operator identifications, we immediately find that
the star terms in the Hamiltonian (A3) [shown in Figs. 29(a)
and 29(b)] can be rewritten

A=A+20==3" > (1+854P@.) (A9
s g=a,b,c,ab
so that the Hamiltonian in the D4 basis becomes
(A10)

Hgauged = - E Ag
s

From the standard algebra of the A?P(g) and B?P(h) op-
erators, one can check that A, = 3" _ . (1 4+ 8,)AP(9)
and B, commute with each other, so Eq. (A10) is indeed a
commuting projector model. However, it is not quite the Dy
quantum double model Eq. (A6). To understand the differ-
ence, note that adding a term such as A2 or A3 to the Hamil-
tonian does not change the eigenstates; it simply changes the
energy of some of the excitations. In fact, up to an overall
constant, one can check by brute force that

D Al = 1

A+ A2 - A
geDy

— Y (B, + D).
P

All
522 26" (All)

It can also be explicitly checked that eigenstates correspond-
ing to the largest eigenvalue of A, also correspond to the
largest eigenvalue of A;. Hence, replacing A; by A in the

gauged Hamiltonian Eq. (A10) only changes the energies of
some excitations without changing the eigenstates or ground-
state manifold. As for the plaquette terms, we note that B, and
D, commute with each other and with A,, and a very tedious
computation shows that

B,(1)=1+B,+D,+D,B,, (A12)
where the left-hand side is the D4 quantum double flux opera-
tor. Therefore, in Eq. (A10), replacing I?,, + D, by B,(1) only
changes the energies of some excitations without changing the
eigenstates or ground-state manifold.

Hence, the only difference between Eq. (A10) and the D4
quantum double model Eq. (A6) is changes to the quasiparti-
cle energies; the ground-state manifold and the eigenstates of
the models are otherwise the same.

Tracing through the argument, one can check that choosing
different links to contain the SWAP operators in the local
symmetry generators of the gauged bilayer toric code will
lead to quantum double models with different choices of link
orientations.

APPENDIX B: STRING OPERATOR ALGEBRA IN
THE GAUGED BILAYER TORIC CODE

In this Appendix, we exhibit the algebra of string operators
in the gauged bilayer toric code.

As discussed in the main text, products of strings for
anyons a and b produce (sums of) string operators of the
fusion products a x b. One benefit of our parametrization of
the string operators is that the product of a string operator for
an Abelian anyon with any other string operator is obtained
simply by multiplying the corresponding ¢/, V, and WV opera-
tors. This allows the algebra of the Abelian anyons to be read
off straightforwardly. For example, it is immediately clear that
the Abelian anyons all square to the identity, that any two
Abelian (pure) charges fuse to the third, and that bound states
of the Abelian flux mVm® with Abelian charges are distinct
anyon types (Abelian dyons). Likewise, we can read off that,
for example, peVe® x o, = 0, (although the role of all the
1 operators and all the 2 operators are interchanged, which can
be reversed with the action of local operators at the ends of the
string).

The fusion of non-Abelian anyons is more delicate, and
the precise operators which result depend on the particular
choices of local degrees of freedom at the ends of the strings.
We presently enumerate the string algebra, obtained from
direct computation. Denote the string operators by S¥/ where
ais an anyon type and k, [ = = correspond to choosing U, and
U; on the left and right (respectively) ends of the string. Note
that S o = = Oy in the notation in the main text. Multiplication
is implied if k/ appears outside of superscripts.

(85)* = (Sere)? = (Spme)* = 1, (B1)
SpSete = Spetnem, (B2)
SpSt =S, (B3)
Seneo Sy = kIS, (B4)
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0 kIK = —
SIS = {1+ kS KIKT =+, kk =+, (BS)
Sp + klSpaveer  kIK'T' = +, kk' = +

SpSpm® = Spmtm>, (B6)
kil _ o—k,—I
SpSit = Sph (B7)
0 kIK'l =

StrSpr = {1+ kS KK =+, kk' =+, (BS)

S¢ + kl$¢m(1)e<z) kiK'l =+, kk' = —
Se<1>e(z>8[l;]’l = Sa_lk’_[, (B9)
Spome Sy = kIS, (B10)

0 kIK'l = —

SEISE! = L1 4 kIS 0 kIK'! =+, kk' = +,

Sethe@mme + lefmfm kIK'! = +,kk' = —
BI11)

where f@ = e@m® is a toric code fermion. This operator
algebra reproduces the Dy fusion rules, such as

eDe® x [e] = ¢ x [e] = [e], (B12)

mPm® x [m] = ¢ x [m] = [m], (B13)

le] x [e]l = 14+ ¢ + ePe® + peVe®, (B14)
(m] x [m] =14+ ¢ +mPm® + ¢pmVm®, (B15)
eWe® x o] = mPm® x o] = o1, (B16)
o1 x o =14ePe® 4 mOm® 4 O r@, (B17)

APPENDIX C: REVIEW OF THE X-CUBE MODEL

In this Appendix, we briefly review the properties of the
7.5 X-cube model [3,10] which are relevant for our discussion
and establish notation for some of its excitations.

The Hilbert space of the X-cube model consists of spin-
1/2s on the links of the cubic lattice. The Hamiltonian is

H=-%" %" Ai-Y B (1)

i=x,y,2 c

where A; ; = ®0, is a product o, on the four spins that touch
site s within the plane perpendicular to the i direction and
B. = ®a o, is the product of all o, operators on an elementary
cube, as shown in Fig. 11. The terms in the Hamiltonian are
commuting projectors, so the ground-state subspace consists
of states with A;; = B. = +1. On an L, x L, x L; 3-torus,
the ground-state degeneracy is 22(x Ly +l)=3,

A single cube with B, = —1 is an (immobile) fracton
excitation, which we call fy. These excitations are created in
sets of four by acting on a ground state with a rigid rectangular
membrane of o, operators; the fractons are created at the
corners of the membrane, as shown in Fig. 31(a). If one of
the membrane’s sides is reduced to zero size, or equivalently

FIG. 31. Excitations and operators that create them in the X-
cube model. (a) Four fractons fy (purple cubes), which are cubes
where B, = —1, created at the end of a membrane (light grey) of
o, operators (blue spheres). (b) Two-dimensional bound state m,, of
two fractons, created at the end of a string of o, operators. (c) One-
dimensional quasiparticles e, (yellow spheres) where A, = A, = —1,
created at the end of a string of o, operators (green spheres).

we apply a string of o, operators instead as in Fig. 31(b), a
two-fracton bound state is formed with B, = —1 on two face-
sharing cubes. This excitation, which we call m;;, is mobile
in the plane of the shared face. Here, i, j = x, y, z labels the
directions in which the excitation is mobile.

A bound state of A;; =A,; =—1 for i # j is a one-
dimensional excitation which we call ¢; (here k £ i, j). (Note
that as Ay (A A, . = +1 as an operator identity, so violations
of the A;; = +1 ground-state constraint must occur in pairs
on every site.) These excitations are created by rigid strings of
o, operators, as in Fig. 31(c), and mobile in the direction of
the extent of the string.

APPENDIX D: ALGEBRA OF QUASIPARTICLE CREATION
OPERATORS IN THE GAUGED BILAYER X-CUBE MODEL

In this Appendix, we enumerate the algebra of operators
which create simple excitations in the gauged bilayer X-cube
model. The operators have been defined in the main text.

We label the strings operators S/ where a is a quasi-
particle type and k,! = % specify choices of U and U
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appear on the left and right (respectively) ends of the string
operators in the reference configuration. The string operator
algebra is (with multiplication implied if k/ appears outside
the superscripts)

(Se(”e(”)z = (S¢)2 =1, (D1)
S¢Se(_1)e(2) = S¢e(_1>e(_2), (D2)
S,m,088" = kIS, (D3)

ot o
S¢S[€i] _S[éi] ’ (D4)

+— _ ot
S¢S[€i] _S[ei] ’ (D3)

0 kIl = —

S[ke,il] [ke/i,]l/ — 1 + klseil)gfz) klk’l/ = +, kk, = + . (D6)

S¢ + klsqﬁe?])ef-ﬂ kiK'l = — kk' = —

We label the rigid membrane operators M’;’l " where a is
an excitation type and k, [, m, n = % specify choices of V) »
at each corner of the membrane. Here + corresponds to V)
and — corresponds to V;. If klmn appears outside an operator
superscript, multiplication is implied.

M) =1, (D7)

k,,mn __ k,,m,n
./Vlfénf(gzu/\/l[fo] = kimnM s

U] (D8)

k,l,m,n kKU m' .0
M[fo] M[fu]

0 klmnk'l'm'n’ = —
- (S,p)"‘(l + klmn./\/lfmf(z;) klmnk'l'm'n’ = +-
0 Jo

D9)

The « superscript in the last line means that if kk' = —
(respectively, I’ = —, mm’ = —, nn’ = —), then an S string
operator terminates at that corner of the membrane. Depend-
ing on k,l,m,n, k', l'’,m', n/, this means that there are zero,
one, or two string operators present in the product.

As discussed in the main text, for a flexible membrane
operator of linear size ¢, there are O(£) choices of local
degrees of freedom (one for every point on the string) and
O(2%) degenerate states associated with the fusion of two
such strings. As such, we will not attempt to systematically
enumerate the very large algebra of these string operators
explicitly and simply remark by inspection that fusion of o
strings will generally cause the strings to “shatter” into a
collection of Abelian excitations and Z, charges along the
length of the strings.

APPENDIX E: GROUND STATE DEGENERACY
OF THE GAUGED BILAYER X-CUBE MODEL

In this Appendix, we perform the detailed calculation of
the ground-state degeneracy of the gauged bilayer X-cube
model outlined in Sec. III C. We work in the cage-net wave
function picture with the “color” of a string denoting its layer,
and separate the calculation into sectors which depend on how
many twist membranes are present in the ground-state wave
function.

As discussed in the main text, we do the calculation in each
sector by counting “reference configurations” for the ground
states of the ungauged model where no topologically trivial
membranes or strings are present, then determine additional
constraints which result from the boundary conditions and
gauging. A basis for the reference configurations is labeled
by specitying the presence or absence of 2(L, + L, + L;) — 3
strings of each color; L, + L, — 1 of them live in the x =0
and y = 0 planes and extend in the z direction, and the same
withx - y —> 7z — x.

The result for the untwisted sector was given in Eq. (37),
which we replicate here for completeness:

GSDunwisted = 2" + (@Y =2y =221 4 2V=1 0 (B1)

where N is given in Eq. (36) and is equal to the number of
independent (rigid) Wilson loops in a single copy of the X-
cube model.

For conciseness, given a type (i.e., orientation and position)
of Wilson loop, if both layers’ strings are present in a cage-
net configuration, we refer to the string as “bichromatic.”
Accordingly, if exactly one layer’s string is present, we refer
to the string as “monochromatic.”

1. Single-twist sector

Without loss of generality, assume the twist defect spans
the x- and y-direction handle of the torus.

Every z-oriented string must pass through the twist defect,
while no other string does. If a string in the wave function
passes through a twist defect, it changes color; once such a
string goes all the way around the torus, it must pass around
again to return to its original color and become a closed string.
Therefore any string type which intersects the twist defect
passes around the torus twice [see Fig. 15(a)]. The presence or
absence of such a string is obviously symmetric under a global
SWAP, so there are therefore 2-+5~1 possible configurations
for the z-oriented strings.

In the presence of the defect, additional constraints appear
for the x- and y-oriented strings. Recall that, in the absence of
twisted boundary conditions, the product of four strings of the
same color on the edges of a rectangular prism is the identity
[see Fig. 14(a)]. However, in the presence of twisted boundary
conditions, this is modified when strings live on opposite sides
of the branch cut, becoming the condition in Fig. 15(b). This
allows us to move (for example) two y-oriented strings of the
same color at the same z coordinate (say z = 0), all the way
around the z-handle of the torus at the cost of changing their
color, as in Fig. 15(c). Notably, this leads to a constraint on
bichromatic strings given in Fig. 32(a).

Therefore many reference configurations in the ungauged
theory become equivalent. Note that in our basis, the afore-
mentioned constraints apply to all of the strings in the z =
0 plane, but there is no such constraint on the strings at
x=0,z>0.

Given a reference configuration of the x- and y-oriented
Wilson loops in the ungauged model, we can algorithmically
implement these constraints for each orientation of z =0
string types as follows. (In what follows, we refer only to
strings of a given orientation at z = 0.)
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E\

(a)

"

(b)

FIG. 32. Constraints in the single-twist sector arising from the
constraint in Fig. 15(b) and process in Fig. 15(c). (a) Two bichro-
matic strings can mutually annihilate (equivalently, a single bichro-
matic string can move in the z = 0 plane). (b) A bichromatic string
can annihilate on a monochromatic string at the cost of flipping the
color of the monochromatic string.

Step 1. Destroy pairs of bichromatic strings using the con-
straint in Fig. 32(a). We are left with at most one bichromatic
string, which can be moved freely using the same constraint.

Step 2. If there are no monochromatic strings, stop. Other-
wise, if a z = 0 string is bichromatic, it can be annihilated at
the cost of swapping the layer of one of the monochromatic
strings, as in Fig. 32(b).

Step 3. Since pairs of monochromatic strings of the same
color can be moved around the z handle of the torus and
change colors, the remaining states are labeled by the parity
of the number of strings of each color.

We now count the remaining string configurations, sorting
by whether or not they are invariant under a global SWAP.
For the z = 0 strings which are x-oriented, a configuration is
invariant under a global SWAP if (1) it has no strings present
(2), it has one bichromatic string (3), and the number of strings
in layer 1 has the same parity as the number of strings in

layer 2.
( y> 2
m

There are
such configurations (the factor of 2 is for both layers having an
even vs. odd number of strings). The configuration transforms
under a global SWAP if the number of strings in each layer

L,
1+1+42 Z

meven, >0

has opposite parity; there are

L,
- L
2 Y
E (m) (E3)
m odd,>0

such configurations (the factor of 2 is for layer 1 having an
even versus odd number of strings). The same argument holds
with x < y.

For the 2L, — 2 strings at z # 0 (counting both the x
and y orientations), there are 2*~2 configurations which
are invariant under a global SWAP (each string is absent or
bichromatic) and

2L.—2

2L, -2
> < ¢ >2’" x Q2hem2om (E4)
m

m=1

configurations which are not (choose a color for m of the string
types, and the other 2L, — 2 — m string types either have no
string or are bichromatic).

We can therefore count the total GSD in this sector by
adding two quantities: the number of configurations for which
all string types are invariant under a global SWAP, and half
the number of configurations for which some string types are
not invariant under a global SWAP. An example term is

L,

1 L,
- 2LX +L,—1 2 Y
2 X X Z "

m’ odd,>0

(2‘)) x 2772, (ES)

The 1/2 in front indicates this term transforms nontrivially
under a global SWAP. The 2%+5=1 factor is for the z-oriented
strings, which we have chosen to be invariant under SWAP.
The next factor is the number of z =0 x-oriented strings
which transform under a global SWAP (which is why the
overall configuration transforms under a global SWAP). The
next factor is the number of the z = 0 x-oriented strings which
are invariant under a global SWAP. The final factor means we
have chosen the z # 0 strings which are x— and y—oriented to
be invariant under SWAP. One must add all such terms for all
choices of SWAP-invariant/non-invariant configurations for
each set of strings.

The sum is messy but can be evaluated; it simplifies
dramatically to 2V ~1(1 4 2%<). After summing over the other
orientations of the twist defects, we obtain

L,
x<2+2 Z

m even,>0

GSDj i =2V 34+ Y 224 |, (E6)

i=x,y,2

2. Double-twist sector

For concreteness, we take the case where the twist defects
span the xy and xz planes. Then the y- and z-oriented strings
can each either be absent or wrap the torus twice; there are
22L+lh+L=2 gych configurations for those strings, all of which
are invariant under a global SWAP.

We now count the configurations for the x-oriented strings,
of which there are L, + L, — 1. This time, pairs of same-
colored strings at z = 0 (y = 0) can be moved around the y
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(z) handle of the torus and swap layers. This time any pair
of bichromatic strings can annihilate since any bichromatic
string can be moved to the y = z = 0 location. Likewise, if
any monochromatic strings are present, a bichromatic string
can fuse with it at the cost of changing the color of the
monochromatic string.

After annihilating as many bichromatic strings as possible,
it will be convenient to count states depending on the state of
the y = z = O string.

Bichromatic string present at y = 7 = 0. By the process for
moving or annihilating bichromatic strings, this reduces to the
case where no string is present.

No string present aty = z = 0. There are two states in this
sector which are invariant under a global SWAP: no strings at
all, or a single bichromatic string.

In any other case, there are only monochromatic strings.
Any pair of same-colored strings at y =0 or any pair of
same-colored strings at z = 0 can move around the torus and
change colors, so only the positions of the monochromatic
strings and the parity of the number of strings in each layer
is well-defined.

Let there be m monochromatic strings at z =0 and no
strings at y = 0. There are (L)‘r;l) choices for the positions of
these strings. If m is even, there are two states, each invariant
under a global SWAP, determined by the parity of the number
of strings in layer 1, which equals the parity of the number
of strings in layer 2. If m is odd, then the two parity choices
transform into each other by a global SWAP, so there is only
one state. The same argument holds with y < z.

Finally, let there be m > 0 and m’ > 0 monochromatic
strings at z = 0 and y = 0, respectively, with fixed positions
(there are (L‘gl)(L;'n_,l) choices for the positions). Then if m
and m’ are both even, there are four states which are each
invariant under a global SWAP, labeled by separately choosing
the parity of the number of layer-1 strings at y = 0 and at
z = 0. Otherwise, the global SWAP acts nontrivially and so
we only obtain 2 states.

Hence, if there is no string at y = z = 0, we obtain

L,—1 m
- Z <LynZ 1><3+(2—1) )

m=1

ML N34 (=)
() ()
D N (L— 1
X ("))

m=1 m'=1

12 else (E7)

{4 m, m’ even

states.

Monochromatic string present aty = z = Q.

If there are no other strings present, there is obviously one
state (the superposition of both string colors at y = z = 0. If
there are no strings at y > 0 and m strings at z > 0, then by a
similar argument from the no-string case there are two states
(for fixed string positions) if m is odd and one state if m is
even, with the same result for y <> z.

If there are m > O strings at z > 0 and m’ > 0 strings at
y > 0, we naively have eight states which are labeled by the
parity of the number of layer-1 strings at z > 0, the same
parity for y > 0, and the color of the string at y =z = 0.
Obviously some of these states are invariant under global
SWAPs, but also both the y > 0 and z > 0 sets of strings
can be moved around the torus with the y = z = 0 string.
This causes a parity label to flip along with the color of the
y =z =0 string. Exhaustively counting the configurations
shows that there are two states if m, m’ have opposite parity
and one state otherwise.

In total, this sector has

2 ()
()
00

m=1 m'=1

(E8)

y 2 m, m’ opposite parity
1 m,m same parity

Adding Eqgs. (E7) and (E8) and evaluating the sums, we
obtain 26+ — 3 x (2072 4 2572) 4 2. After multiplying by
22Litl+L=2 for the y- and z-oriented string configurations,
then summing over the different choices of twist defect ori-
entations (i.e., summing on cyclic permutations of x, y, z), we
obtain the GSD in this sector

GSDZ—tWiSt =3x ZN'H + Z (ZNT“-FL[ —3x 2N—L,-).
i=x,y,2

(E9)

3. Triple-twist sector

In the wave-function picture, every string must either be
absent or wrap its handle of the torus twice. A global SWAP
acts trivially on such states, so the number of ground states in
the triple-twist sector is simply

GSD3.tyist = 2V. (E10)

Adding all of the different twist sectors leads to the final
result, Eq.(38).

APPENDIX F: TWIST STRINGS IN GAUGED
BILAYER HAAH’S CODE

In this Appendix, we describe the construction of the
membrane operator M,, which creates twist string excitations
o in the gauged bilayer Haah’s code model.

We decompose

M, =WO, (F1)

where W is a membrane of 7, operators (for concreteness in
the y = 1/2 plane), which would create a flux string in the 3 +
1D toric code and O is to be described shortly. The operator W
alone has surface tension because for any cube c¢ centered at a
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point in the y = 1/2 plane, W anticommutes with any term in
A, and B, which has an odd number of SWAP-odd operators
in the y = 0 plane (equivalently the y = 1 plane). The purpose
of O is to remove this tension.

Consider a “reference” operator

R= Q)1+ XDV D)1+ (1X)P(1x)?)
y=0

x(1+ZDHPZDHH) U1+ 12)P12)?), (F2)

where the tensor product is over all sites below the membrane
of t, operators. Note first that all terms in the product com-
mute with each other, with C, and with D,,. For a cube ¢ in
the y = —1/2 plane, none of the t, operators in A, and B,
intersect W, so [W, A.] = [W, B.] = 0. Furthermore,

{(zHPEZHP, (X 1HP} =0, (F3)
[(ZHPEZHP, (1X)*F] =0, (F4)
(ZHPzH?, Xx)F)=0 (F5)

with similar identities involving 1Z, ZZ, etc. Therefore com-
muting A, (respectively, B.) past R simply changes some of
the plus signs before Z operators (respectively, X operators)
in R to minus signs, which does not change its commutation
relations with Cs or D,. For each such A. and B, in the
y = —1/2 plane whose support intersects the support of R,
then, we can choose whether or not to commute it past R;
in this way, we obtain ~2 operators which differ by these
sign choices, where ¢ is the linear size of the t, membrane.
Superposing all of these operators will produce an operator
which commutes with all of the cube operators in the y =
—1/2 plane.

The remarkable thing about this choice of R is that the same
procedure may also be used to ensure commutation with the
Hamiltonian terms in the y = 1/2 plane, where [W, A.] # 0.
For example, a straightforward computation shows that R
times any term in (e.g.) A, which anticommutes with W is
zero. Therefore WR commutes with those terms within A,
despite those terms anticommuting with W. However, R times
the remaining terms in A., which commute with W, changes
a set of minus signs in R, much like what happened for
the operators in the y = —1/2 plane, producing an operator

FIG. 33. Sign structure used in creating the operator O (see text)
when W is the product of t, over the orange links. If A., where c is
the blue cube in the operator, has been commuted past R to produce
R’, the operator R” produced by commuting a B operator through R’
will enter O with a minus sign if ¢’ is a cube labeled — in the figure.

R'. Therefore A.R = R'A. since each term within A. either
multiplies with both R and R’ to zero or produces R’ upon
commutation.

In total, then, O is produced by starting with R, then
superposing over all possible operators obtained from com-
muting R through the product of any subset of the ~4¢>
Hamiltonian terms which intersect R. However, some terms
in the superposition enter with an overall minus sign. For
example, let A.R = R'A, for a fixed ¢ in the y = 1/2 plane.
Then one can check that R’ times any term in B, (for the
same cube c¢) which commutes with W is zero, while passing
any term of B, which anticommutes with W produces another
operator R”. Accordingly, the structure of O should be

O=R+R -R'+--- (F6)

so that VO One can check that the sign structure is consistent,
in the sense that no additional terms in the superposition
include +R”. In particular, for a given term R in the super-
position, i.e., a given subset of Hamiltonian terms, we count
the number of times an A, and B, in the set border each other
in the relative positions shown in Fig. 33. If the number of
such borders is even (respectively, odd), then R enters the
superposition with a plus (respectively, minus) sign.

We do not know of a more compact way to describe the
construction of this operator because the structure of the
minus signs is highly nontrivial. We leave finding a “nicer”
description as an open problem.

[1] X. G. Wen, Quantum Field Theory of Many-Body Systems
(Oxford University Press, Oxford, 2004).

[2] C. Chamon, Quantum Glassiness in Strongly Correlated
Clean Systems: An Example of Topological Overprotection,
Phys. Rev. Lett. 94, 040402 (2005).

[3] C. Castelnovo, C. Chamon, and D. Sherrington, Quantum
mechanical and information theoretic view on classical glass
transitions, Phys. Rev. B 81, 184303 (2010).

[4] S. Bravyi, B. Leemhuis, and B. M. Terhal, Topological order in
an exactly solvable 3D spin model, Ann. Phys. 326, 839 (2011).

[5] J. Haah, Local stabilizer codes in three dimensions without
string logical operators, Phys. Rev. A 83, 042330 (2011).

[6] S. Bravyi and J. Haah, Quantum Self-Correction in the 3D
Cubic Code Model, Phys. Rev. Lett. 111, 200501 (2013).

[7] J. Haah, Commuting Pauli Hamiltonians as maps between free
modules, Commun. Math. Phys. 324, 351 (2013).

[8] B. Yoshida, Exotic topological order in fractal spin liquids,
Phys. Rev. B 88, 125122 (2013).

[9] S. Vijay, J. Haah, and L. Fu, A new kind of topological quantum
order: A dimensional hierarchy of quasiparticles built from
stationary excitations, Phys. Rev. B 92, 235136 (2015).

[10] S. Vijay, J. Haah, and L. Fu, Fracton topological order, general-
ized lattice gauge theory, and duality, Phys. Rev. B 94, 235157
(2016).

155146-34


https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1103/PhysRevB.81.184303
https://doi.org/10.1103/PhysRevB.81.184303
https://doi.org/10.1103/PhysRevB.81.184303
https://doi.org/10.1103/PhysRevB.81.184303
https://doi.org/10.1016/j.aop.2010.11.002
https://doi.org/10.1016/j.aop.2010.11.002
https://doi.org/10.1016/j.aop.2010.11.002
https://doi.org/10.1016/j.aop.2010.11.002
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevLett.111.200501
https://doi.org/10.1103/PhysRevLett.111.200501
https://doi.org/10.1103/PhysRevLett.111.200501
https://doi.org/10.1103/PhysRevLett.111.200501
https://doi.org/10.1007/s00220-013-1810-2
https://doi.org/10.1007/s00220-013-1810-2
https://doi.org/10.1007/s00220-013-1810-2
https://doi.org/10.1007/s00220-013-1810-2
https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1103/PhysRevB.94.235157

GAUGING FRACTONS: IMMOBILE NON-ABELIAN ...

PHYSICAL REVIEW B 100, 155146 (2019)

[11] R. M. Nandkishore and M. Hermele, Fractons, Annu. Rev.
Condens. Matter Phys. 10, 295 (2018).

[12] M. Pretko, Subdimensional particle structure of higher rank
U(1) spin liquids, Phys. Rev. B 95, 115139 (2017).

[13] D. Bulmash and M. Barkeshli, Generalized U(1) gauge theories
and fractal dynamics, arXiv:1806.01855.

[14] A. Gromov, Towards Classification of Fracton Phases: The
Multipole Algebra, Phys. Rev. X 9, 031035 (2019).

[15] T. H. Hsieh and G. B. Haldsz, Fractons from partons, Phys. Rev.
B 96, 165105 (2017).

[16] K. T. Tian and Z. Wang, Generalized Haah codes and fracton
models, arXiv:1902.04543.

[17] J. Haah, Bifurcation in entanglement renormalization group
flow of a gapped spin model, Phys. Rev. B 89, 075119
(2014).

[18] K. Slagle and Y. B. Kim, Quantum field theory of X-cube
fracton topological order and robust degeneracy from geometry,
Phys. Rev. B 96, 195139 (2017).

[19] K. Slagle and Y. B. Kim, X-cube model on generic lattices:
Fracton phases and geometric order, Phys. Rev. B 97, 165106
(2018).

[20] W. Shirley, K. Slagle, Z. Wang, and X. Chen, Fracton Models
on General Three-Dimensional Manifolds, Phys. Rev. X 8,
031051 (2018).

[21] K. Slagle, A. Prem, and M. Pretko, Symmetric tensor gauge
theories on curved spaces, Ann. Phys. 410, 167910 (2019).

[22] T. Devakul, S. A. Parameswaran, and S. L. Sondhi, Correlation
function diagnostics for type-I fracton phases, Phys. Rev. B 97,
041110(R) (2018).

[23] B. Shi and Y.-M. Lu, Deciphering the nonlocal entanglement
entropy of fracton topological orders, Phys. Rev. B 97, 144106
(2018).

[24] H. Ma, A. T. Schmitz, S. A. Parameswaran, M. Hermele,
and R. M. Nandkishore, Topological entanglement entropy of
fracton stabilizer codes, Phys. Rev. B 97, 125101 (2018).

[25] W. Shirley, K. Slagle, and X. Chen, Universal entanglement
signatures of foliated fracton phases, SciPost Phys. 6, 015
(2019).

[26] A. T. Schmitz, H. Ma, R. M. Nandkishore, and S. A.
Parameswaran, Recoverable information and emergent conser-
vation laws in fracton stabilizer codes, Phys. Rev. B 97, 134426
(2018).

[27] G. B. Halasz, T. H. Hsieh, and L. Balents, Fracton Topological
Phases from Strongly Coupled Spin Chains, Phys. Rev. Lett.
119, 257202 (2017).

[28] A. Prem, M. Pretko, and R. M. Nandkishore, Emergent phases
of fractonic matter, Phys. Rev. B 97, 085116 (2018).

[29] K. Siva and B. Yoshida, Topological order and memory time in
marginally-self-correcting quantum memory, Phys. Rev. A 95,
032324 (2017).

[30] A. Prem, J. Haah, and R. Nandkishore, Glassy quantum dy-
namics in translation invariant fracton models, Phys. Rev. B 95,
155133 (2017).

[31] D. Bulmash and M. Barkeshli, Higgs Mechanism in Higher-
Rank Symmetric U(1) Gauge Theories, Phys. Rev. B 97,
235112 (2018).

[32] H. Ma, M. Hermele, and X. Chen, Fracton topological order
from the Higgs and partial-confinement mechanisms of rank-
two gauge theory, Phys. Rev. B 98, 035111 (2018).

[33] W. Shirley, K. Slagle, and X. Chen, Foliated fracton order in the
checkerboard model, Phys. Rev. B 99, 115123 (2019).

[34] W. Shirley, K. Slagle, and X. Chen, Fractional excitations in
foliated fracton phases, Ann. Phys. 410, 167922 (2019).

[35] D. Bulmash and T. Iadecola, Braiding and gapped boundaries
in fracton topological phases, Phys. Rev. B 99, 125132 (2019).

[36] Y. You and F. von Oppen, Building fracton phases by Majorana
manipulation, Phys. Rev. Research 1, 013011 (2019).

[37] K. Slagle, D. Aasen, and D. Williamson, Foliated field theory
and string-membrane-net condensation picture of fracton order,
SciPost Phys. 6, 043 (2019).

[38] T. Wang, W. Shirley, and X. Chen, Foliated fracton order in
the Majorana checkerboard model, Phys. Rev. B 100, 085127
(2019).

[39] H. Ma, E. Lake, X. Chen, and M. Hermele, Fracton topological
order via coupled layers, Phys. Rev. B 95, 245126 (2017).

[40] S. Vijay, Isotropic layer construction and phase diagram for
fracton topological phases, arXiv:1701.00762.

[41] S. Vijay and L. Fu, A generalization of non-Abelian anyons in
three dimensions, arXiv:1706.07070.

[42] A. Prem, S.-J. Huang, H. Song, and M. Hermele, Cage-Net
Fracton Models, Phys. Rev. X 9, 021010 (2019).

[43] H. Song, A. Prem, S.-J. Huang, and M. A. Martin-Delgado,
Twisted fracton models in three dimensions, Phys. Rev. B 99,
155118 (2019).

[44] M. Barkeshli and X.-G. Wen, Bilayer quantum Hall phase
transitions and the orbifold non-Abelian fractional quantum
Hall states, Phys. Rev. B 84, 115121 (2011).

[45] M. Barkeshli and X.-G. Wen, u(1) x u(1) x Z, Chern-Simons
theory and Z, parafermion fractional quantum Hall states, Phys.
Rev. B 81, 045323 (2010).

[46] M. Barkeshli and X.-G. Wen, Phase transitions in Z, gauge
theory and twisted Z, topological phases, Phys. Rev. B 86,
085114 (2012).

[47] M. Barkeshli, P. Bonderson, M. Cheng, and Z. Wang, Symme-
try, defects, and gauging of topological phases, Phys. Rev. B
100, 115147 (2019).

[48] J. C. Y. Teo, T. L. Hughes, and E. Fradkin, Theory of twist
liquids: Gauging an anyonic symmetry, Ann. Phys. 360, 349
(2015).

[49] D. J. Williamson, Fractal symmetries: Ungauging the cubic
code, Phys. Rev. B 94, 155128 (2016).

[50] A.Kubica and B. Yoshida, Ungauging quantum error-correcting
codes, arXiv:1805.01836.

[51] W. Shirley, K. Slagle, and X. Chen, Foliated fracton order from
gauging subsystem symmetries, SciPost Phys. 6, 041 (2019).

[52] M. Pretko and L. Radzihovsky, Symmetry-Enriched Fracton
Phases from Supersolid Duality, Phys. Rev. Lett. 121, 235301
(2018).

[53] Y. You, T. Devakul, F. J. Burnell, and S. L. Sondhi, Symmetric
fracton matter: Twisted and enriched, arXiv:1805.09800.

[54] Y. You, Non-Abelian defects in fracton phases of matter,
Phys. Rev. B 100, 075148 (2019).

[55] A. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. (NY) 303, 2 (2003).

[56] S. Pai and M. Hermele, Fracton fusion and statistics,
arXiv:1903.11625.

[57] A. Prem and D. J. Williamson, Gauging permutation symme-
tries as a route to non-Abelian fractons, arXiv:1905.06309.

155146-35


https://doi.org/10.1146/annurev-conmatphys-031218-013604
https://doi.org/10.1146/annurev-conmatphys-031218-013604
https://doi.org/10.1146/annurev-conmatphys-031218-013604
https://doi.org/10.1146/annurev-conmatphys-031218-013604
https://doi.org/10.1103/PhysRevB.95.115139
https://doi.org/10.1103/PhysRevB.95.115139
https://doi.org/10.1103/PhysRevB.95.115139
https://doi.org/10.1103/PhysRevB.95.115139
http://arxiv.org/abs/arXiv:1806.01855
https://doi.org/10.1103/PhysRevX.9.031035
https://doi.org/10.1103/PhysRevX.9.031035
https://doi.org/10.1103/PhysRevX.9.031035
https://doi.org/10.1103/PhysRevX.9.031035
https://doi.org/10.1103/PhysRevB.96.165105
https://doi.org/10.1103/PhysRevB.96.165105
https://doi.org/10.1103/PhysRevB.96.165105
https://doi.org/10.1103/PhysRevB.96.165105
http://arxiv.org/abs/arXiv:1902.04543
https://doi.org/10.1103/PhysRevB.89.075119
https://doi.org/10.1103/PhysRevB.89.075119
https://doi.org/10.1103/PhysRevB.89.075119
https://doi.org/10.1103/PhysRevB.89.075119
https://doi.org/10.1103/PhysRevB.96.195139
https://doi.org/10.1103/PhysRevB.96.195139
https://doi.org/10.1103/PhysRevB.96.195139
https://doi.org/10.1103/PhysRevB.96.195139
https://doi.org/10.1103/PhysRevB.97.165106
https://doi.org/10.1103/PhysRevB.97.165106
https://doi.org/10.1103/PhysRevB.97.165106
https://doi.org/10.1103/PhysRevB.97.165106
https://doi.org/10.1103/PhysRevX.8.031051
https://doi.org/10.1103/PhysRevX.8.031051
https://doi.org/10.1103/PhysRevX.8.031051
https://doi.org/10.1103/PhysRevX.8.031051
https://doi.org/10.1016/j.aop.2019.167910
https://doi.org/10.1016/j.aop.2019.167910
https://doi.org/10.1016/j.aop.2019.167910
https://doi.org/10.1016/j.aop.2019.167910
https://doi.org/10.1103/PhysRevB.97.041110
https://doi.org/10.1103/PhysRevB.97.041110
https://doi.org/10.1103/PhysRevB.97.041110
https://doi.org/10.1103/PhysRevB.97.041110
https://doi.org/10.1103/PhysRevB.97.144106
https://doi.org/10.1103/PhysRevB.97.144106
https://doi.org/10.1103/PhysRevB.97.144106
https://doi.org/10.1103/PhysRevB.97.144106
https://doi.org/10.1103/PhysRevB.97.125101
https://doi.org/10.1103/PhysRevB.97.125101
https://doi.org/10.1103/PhysRevB.97.125101
https://doi.org/10.1103/PhysRevB.97.125101
https://doi.org/10.21468/SciPostPhys.6.1.015
https://doi.org/10.21468/SciPostPhys.6.1.015
https://doi.org/10.21468/SciPostPhys.6.1.015
https://doi.org/10.21468/SciPostPhys.6.1.015
https://doi.org/10.1103/PhysRevB.97.134426
https://doi.org/10.1103/PhysRevB.97.134426
https://doi.org/10.1103/PhysRevB.97.134426
https://doi.org/10.1103/PhysRevB.97.134426
https://doi.org/10.1103/PhysRevLett.119.257202
https://doi.org/10.1103/PhysRevLett.119.257202
https://doi.org/10.1103/PhysRevLett.119.257202
https://doi.org/10.1103/PhysRevLett.119.257202
https://doi.org/10.1103/PhysRevB.97.085116
https://doi.org/10.1103/PhysRevB.97.085116
https://doi.org/10.1103/PhysRevB.97.085116
https://doi.org/10.1103/PhysRevB.97.085116
https://doi.org/10.1103/PhysRevA.95.032324
https://doi.org/10.1103/PhysRevA.95.032324
https://doi.org/10.1103/PhysRevA.95.032324
https://doi.org/10.1103/PhysRevA.95.032324
https://doi.org/10.1103/PhysRevB.95.155133
https://doi.org/10.1103/PhysRevB.95.155133
https://doi.org/10.1103/PhysRevB.95.155133
https://doi.org/10.1103/PhysRevB.95.155133
https://doi.org/10.1103/PhysRevB.97.235112
https://doi.org/10.1103/PhysRevB.97.235112
https://doi.org/10.1103/PhysRevB.97.235112
https://doi.org/10.1103/PhysRevB.97.235112
https://doi.org/10.1103/PhysRevB.98.035111
https://doi.org/10.1103/PhysRevB.98.035111
https://doi.org/10.1103/PhysRevB.98.035111
https://doi.org/10.1103/PhysRevB.98.035111
https://doi.org/10.1103/PhysRevB.99.115123
https://doi.org/10.1103/PhysRevB.99.115123
https://doi.org/10.1103/PhysRevB.99.115123
https://doi.org/10.1103/PhysRevB.99.115123
https://doi.org/10.1016/j.aop.2019.167922
https://doi.org/10.1016/j.aop.2019.167922
https://doi.org/10.1016/j.aop.2019.167922
https://doi.org/10.1016/j.aop.2019.167922
https://doi.org/10.1103/PhysRevB.99.125132
https://doi.org/10.1103/PhysRevB.99.125132
https://doi.org/10.1103/PhysRevB.99.125132
https://doi.org/10.1103/PhysRevB.99.125132
https://doi.org/10.1103/PhysRevResearch.1.013011
https://doi.org/10.1103/PhysRevResearch.1.013011
https://doi.org/10.1103/PhysRevResearch.1.013011
https://doi.org/10.1103/PhysRevResearch.1.013011
https://doi.org/10.21468/SciPostPhys.6.4.043
https://doi.org/10.21468/SciPostPhys.6.4.043
https://doi.org/10.21468/SciPostPhys.6.4.043
https://doi.org/10.21468/SciPostPhys.6.4.043
https://doi.org/10.1103/PhysRevB.100.085127
https://doi.org/10.1103/PhysRevB.100.085127
https://doi.org/10.1103/PhysRevB.100.085127
https://doi.org/10.1103/PhysRevB.100.085127
https://doi.org/10.1103/PhysRevB.95.245126
https://doi.org/10.1103/PhysRevB.95.245126
https://doi.org/10.1103/PhysRevB.95.245126
https://doi.org/10.1103/PhysRevB.95.245126
http://arxiv.org/abs/arXiv:1701.00762
http://arxiv.org/abs/arXiv:1706.07070
https://doi.org/10.1103/PhysRevX.9.021010
https://doi.org/10.1103/PhysRevX.9.021010
https://doi.org/10.1103/PhysRevX.9.021010
https://doi.org/10.1103/PhysRevX.9.021010
https://doi.org/10.1103/PhysRevB.99.155118
https://doi.org/10.1103/PhysRevB.99.155118
https://doi.org/10.1103/PhysRevB.99.155118
https://doi.org/10.1103/PhysRevB.99.155118
https://doi.org/10.1103/PhysRevB.84.115121
https://doi.org/10.1103/PhysRevB.84.115121
https://doi.org/10.1103/PhysRevB.84.115121
https://doi.org/10.1103/PhysRevB.84.115121
https://doi.org/10.1103/PhysRevB.81.045323
https://doi.org/10.1103/PhysRevB.81.045323
https://doi.org/10.1103/PhysRevB.81.045323
https://doi.org/10.1103/PhysRevB.81.045323
https://doi.org/10.1103/PhysRevB.86.085114
https://doi.org/10.1103/PhysRevB.86.085114
https://doi.org/10.1103/PhysRevB.86.085114
https://doi.org/10.1103/PhysRevB.86.085114
https://doi.org/10.1103/PhysRevB.100.115147
https://doi.org/10.1103/PhysRevB.100.115147
https://doi.org/10.1103/PhysRevB.100.115147
https://doi.org/10.1103/PhysRevB.100.115147
https://doi.org/10.1016/j.aop.2015.05.012
https://doi.org/10.1016/j.aop.2015.05.012
https://doi.org/10.1016/j.aop.2015.05.012
https://doi.org/10.1016/j.aop.2015.05.012
https://doi.org/10.1103/PhysRevB.94.155128
https://doi.org/10.1103/PhysRevB.94.155128
https://doi.org/10.1103/PhysRevB.94.155128
https://doi.org/10.1103/PhysRevB.94.155128
http://arxiv.org/abs/arXiv:1805.01836
https://doi.org/10.21468/SciPostPhys.6.4.041
https://doi.org/10.21468/SciPostPhys.6.4.041
https://doi.org/10.21468/SciPostPhys.6.4.041
https://doi.org/10.21468/SciPostPhys.6.4.041
https://doi.org/10.1103/PhysRevLett.121.235301
https://doi.org/10.1103/PhysRevLett.121.235301
https://doi.org/10.1103/PhysRevLett.121.235301
https://doi.org/10.1103/PhysRevLett.121.235301
http://arxiv.org/abs/arXiv:1805.09800
https://doi.org/10.1103/PhysRevB.100.075148
https://doi.org/10.1103/PhysRevB.100.075148
https://doi.org/10.1103/PhysRevB.100.075148
https://doi.org/10.1103/PhysRevB.100.075148
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
http://arxiv.org/abs/arXiv:1903.11625
http://arxiv.org/abs/arXiv:1905.06309

