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The Read-Rezayi (RR) parafermion states form a series of exotic non-Abelian fractional quantum Hall (FQH)
states at filling ν = k/(k + 2). Computationally, the wave functions of these states are prohibitively expensive
to generate for large systems. We introduce a series of parton states, denoted 2̄k1k+1, and show that they lie in
the same universality classes as the particle-hole-conjugate RR (“anti-RR”) states. Our analytical results imply
that a [U (1)k+1 ×U (2k)−1]/[SU (k)−2 ×U (1)−1] coset conformal field theory describes the edge excitations
of the 2̄k1k+1 state, suggesting nontrivial dualities with respect to previously known descriptions. The parton
construction allows wave functions in anti-RR phases to be generated for hundreds of particles. We further
propose the parton sequence n̄2̄214, with n = 1, 2, 3, to describe the FQH states observed at ν = 2 + 1/2, 2 +
2/5, and 2 + 3/8.
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The fractional quantum Hall effect (FQHE) [1] has re-
vealed a variety of emergent many-body quantum phases that
host exotic topological excitations. An important development
in the field came about by a proposal of Moore and Read
that the 5/2 state observed in the half-filled second Landau
level (SLL) of GaAs [2] could be described by a Pfaffian wave
function [3]. The excitations of the Pfaffian state are Majorana
quasiparticles that feature non-Abelian braiding statistics [4].
Subsequently, Read and Rezayi (RR) proposed a class of
FQH states hosting more general parafermionic excitations,
including exotic Fibonacci anyons [5,6]. Intriguingly, systems
hosting such non-Abelian excitations may be utilized for
fault-tolerant quantum computation [7–10].

Here, we are motivated by the FQHEs observed in GaAs
at filling factors ν = 2 + 2/3, 2 + 1/2, 2 + 2/5, and 2 + 3/8
(see Refs. [2,11–15]). Numerical studies have produced strong
evidence that the first three members of this sequence may be
described by the particle-hole conjugates of “k-cluster” RR
wave functions [5,6] (abbreviated as aRRk, where aRR stands
for “anti-Read-Rezayi”), with k = 1, 2, and 3, respectively
[16–25]. In particular, the results in Refs. [22–25] indicate
that the ground state of the experimentally observed [11–15]
FQHE at filling factor 2 + 2/5 is well described by an aRR
state that hosts Fibonacci anyons. This suggests that the 12/5
FQHE may provide a solid state platform for universal fault-
tolerant quantum computation.

The wave function of a k-cluster RR state is obtained by
symmetrizing over partitions of N particles into k clusters,
where each cluster forms a Laughlin state [26]. (Here, N and
k are positive integers with N divisible by k.) Importantly,
the operation of symmetrization is computationally expensive,
making it difficult to numerically evaluate these states and
study their properties for large systems. The RR states can

alternatively be obtained by exact diagonalization of model
Hamiltonians [5] or using Jack polynomials [27], but these
procedures are also limited to small sizes (N � 30). Thus
there is great impetus to find more efficient representations
of wave functions [28–31] in these exotic phases, to enable
their further study.

In this Rapid Communication we introduce the 2̄k1k+1

family of parton wave functions [32], which for each k =
{1, 2, 3, . . .} provides a state at filling factor ν = 2/(k + 2)
within the same universality class as the aRRk state. These
parton wave functions can be evaluated for hundreds of parti-
cles, and thus provide the means to numerically investigate
the properties of parafermions in large systems. The k = 1
and k = 2 members of this parton family map onto states
that were previously shown to lie in the same phases as the
particle-hole conjugates of the 1/3 Laughlin state [33,34],
and of the 1/2 Pfaffian state [35] (i.e., the “anti-Pfaffian”
state [36,37]), respectively. Below, we give numerical evi-
dence, based on wave-function overlaps and entanglement
spectra, that the 2̄k1k+1 state with k = 3 is topologically
equivalent to the aRR3 state. Using the effective field theory
that arises from the parton mean-field ansatz, we compute
several topological properties of 2̄k1k+1, including its chiral
central charge, ground-state degeneracy on the torus, and
anyon content, and show that they match those of the aRRk
state.

Background. Throughout this Rapid Communication we
assume a single-component system, and consider an ideal
setting with zero width, no LL mixing, and zero disorder. The
problem of interacting electrons confined to a given LL can
be equivalently treated as a problem of electrons residing in
the lowest Landau level (LLL), interacting via an effective
interaction [38]. Thus we employ wave functions that reside
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in the LLL, keeping in mind that they can describe the FQHE
in any LL (in particular, the SLL).

The wave function of the N-particle, k-cluster RR state
�RRk

k/(k+2) at filling factor ν = k/(k + 2) is [5,6,39]

�RRk
k/(k+2) = S

⎡
⎣ ∏

i1< j1

(zi1 − z j1 )
2 · · ·

∏
ik< jk

(zik − z jk )
2

⎤
⎦

×
∏
i< j

(zi − z j ) exp

[
−

∑
i

|zi|2
4�2

]
, (1)

where zi, with i = {1, . . . ,N}, is the two-dimensional co-
ordinate of the ith electron, written as a complex number.
(For ease of notation, below we suppress the ubiquitous
Gaussian factors from all wave functions.) The N particles
are partitioned into k internally correlated “clusters” of N/k
particles, with the product

∏
il< jl

(zil − z jl )
2 describing the

correlations within a given cluster, l . The symbol S denotes
symmetrization over all such partitions. The corresponding
k-cluster anti-RR state, �aRRk

2/(k+2), is described by the wave
function

�aRRk
2/(k+2) = Pph

[
�RRk

k/(k+2)

]
, (2)

where Pph denotes the operation of particle-hole conjugation.
Due to particle-hole conjugation, �aRRk

2/(k+2) occurs at filling
factor ν = 1 − k/(k + 2) = 2/(k + 2).

For numerical work we employ the compact spherical
geometry introduced by Haldane [38]. In this geometry, N
electrons move on the surface of a sphere in the presence
of a radial magnetic field B, the source of which is a Dirac
monopole of strength 2Q sitting at the center of the sphere
[40]. The total magnetic flux through the sphere of radius R
is 4πR2B = 2Q(h/e). The radius of the sphere is thus related
to the magnetic length, � = √

h̄/(eB), via R = √
Q�. Due to

the spherical symmetry, the total orbital angular momentum
L and its z component Lz are good quantum numbers in this
geometry.

Gapped quantum Hall ground states are rotationally invari-
ant, i.e., they are uniform on the sphere and have Lz = L = 0.
At a given filling factor ν, one may find a variety of candidate
ground states featuring distinct types of topological order
[41]. Each candidate ground state is realized at a specific
value of the total magnetic flux through the sphere, 2Q =
ν−1N − S, which is offset from its value in the plane, N/ν, by
a rational number S called the shift [41]. If two states occur
at different shifts, then they must describe different phases.
Note that the converse, however, does not hold: Topologically
distinct states may occur with the same shift.

Before moving on to our parton ansatz, for reference we
summarize some of the key properties of the RRk and aRRk
states defined in Eqs. (1) and (2). The k-cluster RR state in
Eq. (1) occurs at monopole strength 2Q = [k/(k + 2)]−1N −
3, corresponding to the shift SRRk = 3. The topological order
of �RRk

k/(k+2) is furthermore exhibited through the quantized
thermal Hall conductance that it supports, κRRk

xy = 3k/(k + 2),
in units of [π2k2B/(3h)]T , where kB is Boltzmann’s constant
and T is the system’s temperature [5,42]. In contrast, the
aRRk states in Eq. (2) are characterized by the flux-particle
relation 2Q = [(k + 2)/2]N − (1 − k), corresponding to shift

TABLE I. Overlaps of N-particle FQH states on a sphere with
magnetic flux 2Q corresponding to that of the particle-hole conjugate
of the k = 3 Read-Rezayi state (aRR3). We compare the wave
functions of the parton state � 2̄314

2/5 [Eq. (3)], the aRR3 state �aRR3
2/5

[Eq. (2)], and the ground state obtained by exact diagonalization
using the SLL Coulomb pseudopotentials �SLL

2/5 . The numbers for
|〈�SLL

2/5 |�aRR3
2/5 〉| were previously given in Refs. [5,6,20,23,51].

N 2Q
∣∣〈�SLL

2/5

∣∣�aRR3
2/5

〉∣∣ ∣∣〈� 2̄314
2/5

∣∣�aRR3
2/5

〉∣∣ ∣∣〈�SLL
2/5

∣∣� 2̄314
2/5

〉∣∣
4 12 0.9854 0.9173 0.8362
6 17 0.9022 0.9107 0.6797
8 22 0.9836 0.8821 0.8252

SaRRk = 1 − k. The thermal Hall conductance supported by
�aRRk

2/(k+2) is given by κaRRk
xy = 1 − κRRk

xy = −2(k − 1)/(k + 2),
again in units of [π2k2B/(3h)]T [5,42].

Parton states. We now define a family of parton states,
denoted 2̄k1k+1, each of which lies in the same universality
class as the corresponding aRRk state, �aRRk

2/(k+2). The 2̄k1k+1

parton wave function � 2̄k1k+1

2/(k+2) is formed from a product of
integer quantum Hall (IQH) states,

� 2̄k1k+1

2/(k+2) = PLLL[�
∗
2]

k�k+1
1 ∼

[
�CF

2/3

]k
�k−1

1

, (3)

where �n is the ν = n IQH wave function of N particles, and
PLLL denotes projection into the lowest Landau level. Here,
�CF

2/3 = PLLL�
∗
2�

2
1 denotes the ν = 2/3 composite fermion

(CF) wave function [43]. The ∼ sign indicates that (for k > 1)
the rightmost expression in Eq. (3) differs from that in the
middle in the details of how the projection to the LLL is
carried out. We do not expect such details of the projection
to change the topological properties of the state [34,44].

Crucially, the wave function given on the right-hand side
of Eq. (3) can be efficiently evaluated for large systems. This
is so because the constituent CF wave function �CF

2/3 can be
evaluated for hundreds of electrons using the so-called Jain-
Kamilla projection [45,46], the details of which can be found
in the literature [47–50].

When mapped to the spherical geometry, the states given
in Eq. (3) occur at monopole strength 2Q = [(k + 2)/2]N −
(1 − k), corresponding to filling factor ν = 2/(k + 2) and
shift S 2̄k1k+1 = 1 − k. These fillings and shifts precisely match
those of the aRRk states described by Eq. (2). This observa-
tion suggests that the wave functions given in Eq. (3) could
lie in the same phases as the corresponding aRR states. For
k = 1, the 2̄12 state described by Eq. (3) is precisely the
2/3 CF state (see above); this state is almost identical to the
particle-hole conjugate of the 1/3 Laughlin state [33,34]. In
Ref. [35] we studied the 2̄213 state, and showed that it lies in
the anti-Pfaffian [36,37] universality class. Below, we discuss
the case for arbitrary values of k.

Numerical results. We first provide numerical evidence to
show that � 2̄k1k+1

2/5 with k = 3 lies in the same phase as �aRR3
2/5

given in Eq. (2). In Table I we show overlaps of the parton
wave function � 2̄314

2/5 with �aRR3
2/5 , as well as with the numer-

ically obtained exact ground state using the second Landau
level Coulomb pseudopotentials �SLL

2/5 . We find that the parton
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FIG. 1. Orbital entanglement spectrum of the � 2̄314
2/5 parton state

for N = 8 electrons at a flux 2Q = 22 on the sphere. The entan-
glement spectrum is calculated with respect to two subsystems, A
and B, with NA = NB = 4 electrons and lA = 12 and lB = 11 orbitals,
respectively. The entanglement levels are labeled by the z component
of the total orbital angular momentum of the A subsystem, LA

z . For
comparison, in the inset we show the corresponding entanglement
spectrum for �aRR3

2/5 . The multiplicities of low-lying levels (starting
from LA

z = 20, going from left to right) are given by 1, 2, 5, . . . and
are identical for the two states.

wave function has a good overlap with the corresponding
anti-RR state. Furthermore, both �aRR3

2/5 and � 2̄314
2/5 display a

decent overlap with the SLL Coulomb ground state �SLL
2/5 .

Similar to the aRR3 state [5,6,22–25], the k = 3 parton state
of Eq. (3) can thus serve as a good candidate to describe the
quantum Hall liquid occurring at ν = 12/5.

We provide further numerical evidence of the topological
equivalence between � 2̄314

2/5 and �aRR3
2/5 by comparing their

entanglement spectra. The entanglement spectrum is a useful
characterization tool, as it captures the structure of a FQH
state’s edge excitations [52]. The multiplicities of the low-
lying entanglement levels carry a fingerprint of the topological
order of the underlying state. Two states that lie in the same
topological phase are expected to yield identical multiplici-
ties. In Fig. 1 we show the orbital entanglement spectrum [53]
of the 2̄314 state obtained on the sphere for a system of N = 8
electrons at flux 2Q = 22. The multiplicities of the low-lying
entanglement levels of � 2̄314

2/5 are identical to those of �aRR3
2/5 .

Thus we conclude that the 2̄314 parton state likely lies in the
same phase as the aRR3 state.

Field theory results. Next, we consider the effective field
theory that describes the associated parton mean-field ansatz
(focusing on k � 2). Consider the following parton decom-
position of the electron operator, ℘= b f1 · · · fk , where the fi
fields are fermions and b is a boson (fermion) for k odd (even).
In the mean-field ansatz, b forms a ν = 1/(k + 1) Laughlin
FQH state [26], while each fermion species fi forms a ν = −2
IQH state. This ansatz has aU (1) × SU (k) gauge symmetry.

Integrating out the partons yields a non-Abelian Chern-
Simons (CS) theory that we can use to explicitly compute
the ground-state degeneracy on the torus [see Supplemen-
tal Material (SM) [54]]. Carrying out this calculation for
k = 2, 3, 4, 5, 6, 7, we find a torus ground-state degeneracy
of (k + 1)(k + 2)/2, which agrees with the expected results

for the aRR states. Using the field theory in combination
with general consistency conditions from topological quan-
tum field theory, we further demonstrate [54] that the anyon
content for the k = 3 parton state precisely matches that of
aRR3. For k > 3 we derive a number of general properties
for the anyon content of the parton states and show that they
match with those of the corresponding aRR states [54].

Finally, we consider the edge theory. The parton mean-
field state (before implementing the gauge projection) is
described by a U (1)k+1 ×U (2k)−1 Wess-Zumino-Witten
(WZW) conformal field theory (CFT) [55]. This CFT com-
prises 2k upstream-moving chiral fermion modes and 1
downstream-moving chiral mode, giving a chiral central
charge c−,MF = −2k + 1. The gauge projection in the edge
theory requires us to project out modes transforming nontriv-
ially under the U (1) × SU (k) gauge symmetry, which leads
to the [U (1)k+1 ×U (2k)−1]/[U (1)−1 × SU (k)−2] coset CFT
[54–56]. The total central charge is c− = c−,MF − c−,gauge,
where c−,gauge = −1 − 2(k2 − 1)/(k + 2) is the chiral central
charge of the gauge degrees of freedom [54]. We thus obtain
c− = 1 − 3k/(k + 2), which precisely matches the chiral cen-
tral charge of the aRRk state [5,42].

We note that a number of field theories for RR states
have been described previously, such as an SU (2)k ×U (1)
CS theory and a U (1) × Sp(k)1 CS theory [57,58]. The
equivalence between these two theories is related to level-rank
duality [55,57]. Those results imply that the edge theory of the
aRR states can be described by a U (1)1 × SU (2)−k ×U (1)
WZW theory or, equivalently, by a dual U (1)1 × Sp(k)−1 ×
U (1) WZW theory. Our results imply that a [U (1)k+1 ×
U (2k)−1]/[U (1)−1 × SU (k)−2] coset CFT can also describe
the edge excitations of the aRR states, which suggests another
nontrivial duality among these theories. We leave a detailed
study of these dualities for future work.

Discussion. A major advantage of our parton wave func-
tions is that they can be constructed for large systems. As
a proof of principle, we numerically demonstrate that the
smallest charge quasiparticle (QP) of the 2/5 parton state
carries a charge −e/5, where −e < 0 is the charge of the
electron [32]. To this end, we create a model state at filling
factor ν = 2/5 with two far-separated QPs, one located at
each pole of the sphere [59],

�
2-QPs
2/5 = PLLL

[
�

(2-h)
2

]∗[
�2

2

]∗
�4

1 ∼ �
CF,(2-QP)
2/3

[
�CF

2/3

]2
�2

1

, (4)

where �
(2-h)
2 and �

CF,(2-QP)
2/3 are the ν = 2 IQH and ν = 2/3

CF states with two holes or two QPs, respectively, located
at opposite poles of the sphere. The CF wave functions are
evaluated using the Jain-Kamilla method [45–50]. In Fig. 2(a)
we show the density profile ρ(r) of �

2-QPs
2/5 for N = 80 elec-

trons. Close to the equator, the density approaches the value
ρ0 of the uniform 2̄314 state. To extract the QP charge, we
integrate the deviation of the charge density from its uniform
value, ρ(r) − ρ0 ≡ δρ(r), over the northern hemisphere. In
Fig. 2(b) we plot the cumulative charge q(r) = ∫ r

0 δρ(r′)d2r′
as a function latitude, parametrized by the arc distance r along
the dashed contour shown in Fig. 2(a). From the limiting
value of q(r) at the equator we extract a charge of −0.197e,
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FIG. 2. (a) Density profile ρ(r) of a state with two far-separated
quasiparticles at ν = 2/5, modeled by the parton wave function
given in Eq. (4) for N = 80 electrons on the sphere. The two
quasiparticles are located at the north and south pole of the sphere.
The color represents the density deviation from its value ρ0 in the
uniform � 2̄314

2/5 state: δρ(r)/ρ0 = [ρ(r) − ρ0]/ρ0. (b) The integrated
cumulative charge q(r) (see text for the definition) as a function of
latitude, parametrized by the distance r along the arc from the north
pole to the equator (in units of magnetic length �). The cumulative
charge approaches the value −0.2e near the equator.

which is close to the expected value of −0.2e (attained in the
thermodynamic limit when the QPs do not overlap).

Building on our results for the k = 3 case, we are led to
consider a new n̄2̄214 parton sequence described by the wave
functions

� n̄2̄214
n/(3n−1) = PLLL[�

∗
n][�

∗
2]

2�4
1 ∼ �CF

n/(2n−1)

[
�CF

2/3

]2
�2

1

. (5)

In the spherical geometry, � n̄2̄214
n/(3n−1) occurs at monopole

strength 2Q = [(3n − 1)/n]N + n and hence has a filling
factor ν = n/(3n − 1) and shift S n̄2̄214 = −n. We thus ob-
tain states at filling factors ν = 1/2, 2/5, 3/8, . . . for n =
1, 2, 3, . . ., respectively. The n = 1 member of this sequence
likely lies in the same universality class as the 2̄213 state [60],
which we showed in a previous work lies in the anti-Pfaffian
phase [35]. We discussed the n = 2 case in detail in this Rapid
Communication and concluded that it lies in the same phase

as the aRR3 state. Intriguingly, the n = 3 state of Eq. (5)
provides a candidate ground-state wave function that could
possibly describe the FQHE at 2 + 3/8 [11–15,61,62]. We
thus speculate that the n̄2̄214 family of parton states may
capture the observed plateaus at 2/5 and 3/8 in the SLL of
GaAs [11–15] that were not covered in the n̄2̄13 sequence of
Ref. [63]. Generically, we find that the parton states of Eq. (5)
are topologically different from other families of candidate
states occurring at the same n/(3n − 1) sequence of filling
factors [54].

Although we only considered states with a single compo-
nent, our parton construction can be extended in a straight-
forward manner to build multicomponent states at the corre-
sponding filling factors, where the different components could
represent either the spin, valley, or orbital degrees of freedom.
The properties of these states remain to be explored.

Taken together with our previous works [35,63], the results
presented in this Rapid Communication suggest that almost all
fractional quantum Hall states observed in the second Landau
level of GaAs could be described by the n̄2̄13 or n̄2̄214 parton
ansatz, with n = 1, 2, 3, or their particle-hole conjugates. The
states observed in the second LL that do not fall in these
sequences or their particle-hole conjugates, e.g., at filling
factor 1/5 and 2/7, are likely well described by composite
fermion states [16,51] (which are also parton states). In all,
except for the lowest Landau level states at ν = 4/11 and
5/13 (see, e.g., Refs. [64–66]), it appears that all fractional
quantum Hall states observed to date (or their particle-hole
conjugates), including in graphene [67–73] and wide quantum
wells [74–78], admit simple parton descriptions.
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[61] C. Tőke, C. Shi, and J. K. Jain, Phys. Rev. B 77, 245305 (2008).
[62] J. A. Hutasoit, A. C. Balram, S. Mukherjee, Y.-H. Wu, S. S.

Mandal, A. Wójs, V. Cheianov, and J. K. Jain, Phys. Rev. B 95,
125302 (2017).

[63] A. C. Balram, S. Mukherjee, K. Park, M. Barkeshli, M. S.
Rudner, and J. K. Jain, Phys. Rev. Lett. 121, 186601 (2018).

[64] W. Pan, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W.
Baldwin, and K. W. West, Phys. Rev. Lett. 90, 016801 (2003).

[65] W. Pan, K. W. Baldwin, K. W. West, L. N. Pfeiffer, and D. C.
Tsui, Phys. Rev. B 91, 041301(R) (2015).

[66] N. Samkharadze, I. Arnold, L. N. Pfeiffer, K. W. West, and
G. A. Csáthy, Phys. Rev. B 91, 081109(R) (2015).

[67] X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, Nature
(London) 462, 192 (2009).

[68] K. Bolotin, F. Ghahari, M. D. Shulman, H. Stormer, and P. Kim,
Nature (London) 462, 196 (2009).

[69] B. E. Feldman, A. J. Levin, B. Krauss, D. A. Abanin, B. I.
Halperin, J. H. Smet, and A. Yacoby, Phys. Rev. Lett. 111,
076802 (2013).

[70] F. Amet, A. J. Bestwick, J. R. Williams, L. Balicas, K.
Watanabe, T. Taniguchi, and D. Goldhaber-Gordon, Nat.
Commun. 6, 5838 (2015).
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