
Adversarial Attacks on Graph Neural Networks via Node
Injections: A Hierarchical Reinforcement Learning Approach

Yiwei Sun
The Pennsylvania State University

University Park, PA, USA
yus162@psu.edu

Suhang Wang∗
The Pennsylvania State University

University Park, PA, USA
szw494@psu.edu

Xianfeng Tang
The Pennsylvania State University

University Park, PA, USA
xut10@psu.edu

Tsung-Yu Hsieh
The Pennsylvania State University

University Park, PA, USA
tuh45@psu.edu

Vasant Honavar
The Pennsylvania State University

University Park, PA, USA
vuh14@psu.edu

ABSTRACT
Graph Neural Networks (GNN) offer the powerful approach to node
classification in complex networks across many domains including
social media, E-commerce, and FinTech. However, recent studies
show that GNNs are vulnerable to attacks aimed at adversely im-
pacting their node classification performance. Existing studies of
adversarial attacks on GNN focus primarily on manipulating the
connectivity between existing nodes, a task that requires greater
effort on the part of the attacker in real-world applications. In con-
trast, it is much more expedient on the part of the attacker to inject
adversarial nodes, e.g., fake profiles with forged links, into existing
graphs so as to reduce the performance of the GNN in classifying
existing nodes.

Hence, we consider a novel form of node injection poisoning
attacks on graph data. We model the key steps of a node injec-
tion attack, e.g., establishing links between the injected adversarial
nodes and other nodes, choosing the label of an injected node, etc.
by a Markov Decision Process. We propose a novel reinforcement
learning method for Node Injection Poisoning Attacks (NIPA), to
sequentially modify the labels and links of the injected nodes, with-
out changing the connectivity between existing nodes. Specifically,
we introduce a hierarchical Q-learning network to manipulate the
labels of the adversarial nodes and their links with other nodes in
the graph, and design an appropriate reward function to guide the
reinforcement learning agent to reduce the node classification per-
formance of GNN. The results of the experiments show that NIPA is
consistently more effective than the baseline node injection attack
methods for poisoning graph data on three benchmark datasets.

KEYWORDS
Adversarial Attack; Graph Poisoning; Reinforcement learning;

∗Corresponding Author

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380149

ACM Reference Format:
Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant
Honavar. 2020. Adversarial Attacks on Graph Neural Networks via Node
Injections: A Hierarchical Reinforcement Learning Approach. In Proceedings
of The Web Conference 2020 (WWW ’20), April 20–24, 2020, Taipei, Taiwan.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3366423.3380149

1 INTRODUCTION
Graphs, where nodes and their attributes denote real-world entities
(e.g., individuals) and links encode relationships (e.g., friendship)
between entities, are ubiquitous in many application domains, in-
cluding social media [1, 21, 35, 49, 50], e-commerce[16, 47], and
FinTech [24, 33]. Many real-wold applications are involve classify-
ing the nodes in graph data based on the attributes of the nodes, and
their connectivity and attributes of the nodes that are connected to
them in the graph. Thus, revealing a user’s level of risk in financial
platform such as AliPay1 can be formulated as a node classification
problem [24, 41]. Graph Neural Networks (GNNs) [13, 23, 26], cur-
rently offer the state-of-the art approach to node classification in
graph-structured data.

However, recent studies [12, 38, 44, 51] show that GNNs are vul-
nerable to poisoning attacks which add perturbation to the training
graph. Since GNNs are trained based on node attributes and the link
structure in the graph, an adversary can attack the GNNs by poi-
soning the graph data used for training. For example, Nettack [51]
shows that by adding the adversarial perturbations on the node’s
attributes and the graph structure, classification accuracy of graph
convolution network significantly drops. However, the success of
such attack strategy requires that the adversary is able to control
these nodes and manipulate its connectivity. In other words, poi-
soning the real-world graphs such as Facebook and twitter require
breaching the security of the database that stores the graph data, or
manipulating the requisite members into adding or deleting their
links to other selected members. Consequently, such attack strategy
is expensive and usually requires more budgets for the adversary
to execute without being caught.

Thus, we need a more efficient way to poison the graphs to in-
crease the node misclassification rate of GNNs without changing the
link structure between the existing nodes in the graph. Injecting fake
nodes (users) to social networks with carefully crafted node labels
and connecting them to carefully chosen existing nodes offers a
1https://intl.alipay.com/

673

WWW ’20, April 20–24, 2020, Taipei, Taiwan Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar

promising approach to accomplishing this objective. For example,
in the financial platform, there is significant financial incentives
for adversaries to attack the GNNs and manipulate the risks level
of the real users. However, it is impossible for an attacker to breach
the database. In contrast, an attacker could easily sign up fake ac-
counts, create the social identity of the profiles and send friendship
requests to the real members. And as the social users always want
to have the social influence[9, 31], they tend to accept the friendship
requests from the others. With some of the real users accept the
friendship from the attacker, the fake accounts are connected to
the real users and thus such social network is poisoned. Once the
GNNs are trained on the corrupted graph, the propagation of the
fake information will misclassify the predicted level of risks on real
users. Such node injection poisoning attacks are easier and less
expensive to execute compared to those that require manipulating
the links between existing nodes in the graph. Though promising,
the work on such attacks are limited.

Therefore, in this paper, we investigate a novel problem of graph
poisoning attack by node injection. In essence, we are faced with
two challenges: (i) How to mathematically model and effectively
establish links between an injected adversarial (fake) node to ex-
isting nodes in the original graph or to other injected adversarial
nodes. As shown in Figure 1, both the attackers in (b) and (c) want
to inject two fake nodes into the clean graph in (a). Obviously,
the "smart attacker" who carefully designs the links and labels of
the dashed line injected nodes could better poison the clean graph
than the "dummy attack" who establish the links and generate the
labels at random; and (ii) How to efficiently solve the optimiza-
tion problem as the graph is discrete and highly-nonlinear. In an
attempt to solve these two challenges, we propose a novel frame-
work named NIPA, to perform the Node Injection Poisoning Attack.
As sequentially adding the adversarial connections and designing
adversarial labels of the injected fake nodes could be naturally
formulated as the Markov decision process (MDP), NIPA adopts Q-
learning algorithms, which have shown great successes for solving
such problems [7, 36, 43]. The adopt of Q-learning also naturally
solves the challenge of discrete optimization as now we concert the
discrete edge adding process as actions in reinforcement learning
framework. To reduce the searching space, NIPA adopt a hierarchi-
cal Q-learning network to decompose the actions. To cope with the
graph highly-nonlinearity, NIPA comprises of deep Q network and
GNN based state representation method. These components could
learn the semantic structure of the graph and convert the discrete
graph structure to latent representations. The key contributions of
the paper are as follows:

• We study a novel graph node injection attack problem to
adversely impact the accuracy of graph neural networks
without manipulating the link structure of the original graph.
• Wepropose a new frameworkNIPA, a hierarchical Q-learning
based method that can be executed by an adversary to ef-
fectively perform the poisoning attack. NIPA successfully
addresses several non-trivial challenges presented by the
resulting reinforcement learning problem.
• We present results of experiments with several real-world
graphs data that show that NIPA outperforms the state-of-
the-art non-target attacks on graph.

(b)(a) (c)

dummy attacker smart attackerclean graph

Figure 1: (a) is the toy graph where the color of a node rep-
resents its label; (b) shows the node injection poisoning at-
tack performed by a naive attacker; (c) shows the node injec-
tion poisoning attack performed by a smart attacker using
a smart strategy. The injected nodes are circled with dashed
line.

The rest of the paper is organized as follows: Section 2 reviews
the related work on adversarial attacks and reinforcement learning
on graph data; Section 3 formally defines the non-target-specific
node injection poisoning attack problem. Section 4 presents NIPA,
our proposed solution; Section 5 describes our experimental results;
section 6 concludes with a summary and an outline of promising
directions for future work.

2 RELATEDWORK
Our study falls in the general area of data poisoning attacks on
machine learning [4], that aim to corrupt the data so as to adversely
impact the performance of the predictive model that is trained on
the data. Such attacks have been extensively studied in the case
of non graph-structured data in supervised [3, 29] and reinforce-
ment [18, 22, 25] learning. Specifically, recent work has shown that
deep neural networks are particularly vulnerable to data poison-
ing attacks [8, 19, 20, 37]. However, little attention has been given
to understanding how to poisoning the graph structured data. In
this paper, our focus is on such attacks on classifiers trained on
graph-structured data.

2.1 Adversarial Attacks on GNN
The previous works [19, 37] have shown the intriguing properties
of neural networks as they are "vulnerable to adversarial examples"
in computer vision domain. For example, in [19], the authors show
that some deep models are not resistant to adversarial perturbation
and propose the Fast Gradient Sign Method (FGSM) to generate
the adversarial image samples to attack such models. Not only in
computer vision domain, recently such "intriguing properties" have
been observed in various domain including from text mining [8] to
data mining [20].

Recent work has also highlighted the vulnerability of graph
neural networks to adversarial attacks [12, 27, 44, 45, 51]. As already
noted, such attacks can be (i) node specific, as in the case of a
target evasion attack [44, 51] that is designed to ensure that the
GNNs are fooled into misclassifying a specific node; or (ii) non-
target [12], as in the case of attacks that aim to reduce the accuracy
of node classification across a graph. As shown by [12, 44, 51], both
node specific and non-target attacks can be executed by selectively

674

WWW ’20, April 20–24, 2020, Taipei, Taiwan

adding adversarial edges or removing existing edges between the
existing nodes in the graph so as to reduce the accuracy of the
resulting graph neural networks.

Nettack [51] is one of the first methods that perturbs the graph
data to perform poisoning/training-time attack on GCN [23] model.
RL-S2V [12] adopts reinforcement learning for evasion/testing-time
attack on graph data. Different from previous methods, [10] and
[44] focus on poison attack by gradient information. [10] attacks
the graph in embedding space by iteratively modifying the connec-
tions of nodes with maximum absolute gradient. [44] proposes to
attack the graph structured data by use the integrated gradients
approximating the gradients computed by the model and performs
perturbation on data by flipping the binary value. [52] modifies the
training data and performs poisoning attacks via meta-learning.
[39] formulates adversarial attacks on graph as the optimization
problem and adopts several approximation techniques such as pro-
jected gradient descent to solve it.

Though these graph adversarial attacks are effective, they focus
on manipulating links among existing nodes in a graph, which are
impractical as these nodes/individuals are not controlled by the
attacker. Our framework is inherently different from existing work.
Instead of manipulating links among existing nodes, our framework
NIPA injects fake nodes into the graph, and carefully designed links
of fake nodes and its label to poison the graph.

2.2 Reinforcement Learning in Graph
Reinforcement learning(RL) has achieved significant successes in
solving challenging problems from different domains such as contin-
uous robotics control [34], playing games [30], code retrieval [46].
However, there has been little previous work exploring the capabil-
ity reinforcement learning in graph mining domain.

More recently, reinforcement learning has begun to find applica-
tions that involve graph data. For example, NerveNet [42] learns
policy network for the robotics control with Graph Neural Network
as the body of a robot is represented as a graph. Graph Convolu-
tional Policy Network (GCPN) [48] adopts reinforcement learning
in chemistry and molecular graph mining. The reinforcement learn-
ing agent is trained on the chemistry aware graph environment
and learns to generate molecular graph. [14] is another work which
defines chemical molecular reaction environment and trains the re-
inforcement learning agent for predicting products of the chemical
reaction.

The most similar work to ours is RL-S2V [12] which adopts
reinforcement learning method for target evasion attack on graph
bymanipulating the links among existing nodes. However, there are
several main differences between RL-S2V and our proposed model:
(1) the two works research on different attacking scenario as we
focus on non-targeted poison attack while RL-S2V performs target
evasion attack; (2) the reinforcement learning agents have different
tasks: the agent in RL-S2V learns to attack the specific nodes in
the graph via modifying the inner-structure of the original graph
and our proposed agent generates the adversarial connections and
design the labels for the injected fake nodes in stead; (3) we design
different reward functions to steer the agent. Here we explore the
usage of reinforcement learning model in novel non-target poison
attacking scenario.

3 NODE INJECTION POISONING ATTACKS
ON GRAPH DATA

In this section, we formally define the problem we target and pro-
vide its object functions. We begin by introducing the definition of
semi-supervised node classification as we aim to poison the graph
for manipulating label classification of graph classifiers. Note that
the proposed framework is a general framework which can also be
used to poison the graph for other tasks. We leave other tasks as
future work.

3.1 Problem Definition
Definition 3.1. (Semi-Supervised Node Classification) Let G =

(V ,E,X) be an attributed graph, where V = {v1, . . .vn } denotes
the node set, E ⊆ V × V means the edge set and X represents
the nodes features. T = {vt1 , . . . ,vtn } is the labeled node set and
U = {vu1 , . . . ,vun } is the unlabeled node set with T ∪ U = V .
Semi-supervised node classification task aims at correctly labeling
the unlabeled nodes inU with the graph classifier C.

In semi-supervised node classification task, the graph classifier
C(G) which learns the mappingV 7→ L̃ aims to correctly assign the
label to node vj ∈ U with aggregating the structure and feature
information. The classifier C is parameterized by θ and we denote
the classifier as Cθ . For simplicity of notations, we use Cθ (G)i as
the classier prediction on vi and Ti as the ground truth label of vi .
In the training process, we aim to learn the optimal classifier C
with the corresponding parameter θL defined as following:

θL = argmin
θ

∑
vi ∈T

L(Ti ,Cθ (G)i) (1)

where L is the loss function such as cross entropy. To attack
the classifier, there are mainly two attacking settings including
poisoning/training-time attack and evasion/testing-time attack. In
poisoning attacks, the classifier C uses the poisoned graph for
training while in evasion attack, adversarial examples are included
in testing samples after C is trained on clean graph. In this paper,
we focus on non-targeted graph poisoning attack problem where
the attacker A poisons the graph before training time to reduce
the performance of graph classifier C over unlabeled node setU.

Definition 3.2. (Graph Non-Targeted Poisoning Attack) Given
the attributed graph G = (V ,E,X), the labeled node set T , the
unlabeled node set U and the graph classifier C, the attacker A
aims tomodify the graphG within a budget∆ to reduce the accuracy
of classifier C onU.

As the attacking process is supposed to be unnoticeable, the
number of allowed modifications of attackerA onG is constrained
by the budget ∆. Based on the problem, we propose the node injec-
tion poisoning method to inject a set of adversarial nodes VA into
the node set V to perform graph non-targeted poisoning attack.

Definition 3.3. (Node Injection Poisoning Attack) Given the clean
graphG = (V ,E,X), the attackerA injects the adversarial node set
VA with its adversarial features XA and labels TA into the clean
node set V . After injecting VA , the attack A creates adversarial
edges EA ⊆ VA ×VA ∪VA ×V to poisonG .G ′ = (V ′,E ′,X ′) is the
poisoned graphwhereV ′ = V∪VA , E ′ = E∪EA ,X ′ = X⊕XA with
⊕ is append operator and T ′ is the labeled set with T ′ = T ∪ TA .

675

WWW ’20, April 20–24, 2020, Taipei, Taiwan Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar

In the poisoning attack, the graph classifier is trained on poisoned
graph G ′.

With the above definitions and notations, the objective function
for the non-targeted node injection poisoning attack is defined as:

max
EA,TA

∑
vj ∈U

1(Uj , CθL (G
′)j) (2)

s .t . θL = argmin
θ

∑
vi ∈T′

L(T ′i ,Cθ (G
′)i) (3)

|EA | ≤ ∆ (4)

Here 1(s) is the indicator function with 1(s) = 1 if s is true and 0
otherwise, andUj represents the label of the unlabeled node vj . If
the attacker has the ground truth for the unlabeled data (unlabel is
to end-user in this case), thenU is ground truth label. The attacker
maximizes the prediction error for the unlabeled nodes inU as in
Eq. (2), subject to two constraints. The constrain (3) enforces the
classifier is learned from the poisoned graph G ′. and constrain (4)
restricts the modifications of adversarial edges by the attacker in
the budget ∆. However, if attacker doesn’t have the access to the
ground true, the attacker could not directly use object function in
Eq.(2). Two alternative solutions are suggested according to [52]:
one is to maximize the loss on the labeled (training) nodes; the
other is to adopt self-learning, i.e. use these predicted labels and
compute the loss of a model on the unlabeled nodes.

3.2 Graph Convolution Network
In this paper, we use the Graph Convolution Network (GCN) [23] as
our graph classifier C to illustrate our framework as it is one kind
of widely adopted graph neural networks for node classification
task. In the convolutional layer of GCN, it explores the topological
structure in spectral space and aggregates attribute information
from the neighbor nodes followed by the non-linear transformation
such as ReLU. The equation for a two-layer GCN is defined as:

f (A,X) = softmax(Â ReLU (ÂXW (0))W (1)) (5)

where Â = D̂−
1
2 ÃD̂−

1
2 denotes the normalized adjacency matrix,

Ã = A + IN denotes adding the identity matrix IN to the adjacent
matrix A. D̂ is the diagonal matrix with on-diagonal element as
D̂ii =

∑
j Ãi j .W (0) andW (1) are the weights of first and second

layer of GCN, respectively. ReLU(0, a) = max(0,a) is adopted. The
loss function L in GCN is cross entropy.

The notations we use throughout the paper are summarized in
Table 1.

4 PROPOSED FRAMEWORK
To perform the non-target node injecting poisoning attack, we
propose to solve the optimization problem in Eq.(2) via deep re-
inforcement learning. Compared with directly optimizing the ad-
jacency matrix with traditional matrix optimization techniques,
the advantages of adopting deep reinforcement learning are two
folds: (i) Adding edges and designing labels of fake nodes are natu-
rally sequential decision making process. Thus, deep reinforcement
learning is a good fit for the problem [36]; (ii) The underlying
structures of graphs are usually highly nonlinear [40], which adds

Table 1: Notations and Explanations

Notation Explanation
VA Adversarial node set
V ′ Poisoned node set, V ∪VA
EA Adversarial Edge set
E ′ Poisoned Edge set, E ∪ EA
T Labeled node sets
U Unlabeled node set, V \ T
G ′ Poisoned graph $ Cθ
Cθ (G

′) Prediction of classifier C on G ′
L Label sets
∆ Poisoning budget
G ′t Poisoned graph at time t
TAt Labels of Adversarial nodes at time t
zAt One-hot encoding of TAt at time t

st = {G
′
t ,TAt } State at time t

at = (a
(1)
t ,a

(2)
t ,a

(3)
t) Hierarchical action at time t

rt Reward function at time t
π (s) Policy of state to action distribution

Q = {Q(1), Q(2), Q(3)} Hierarchical action-value functions
la(1)t

Labels of fake node a(1)t at time t

the non-linearity to the decision making process. The deep non-
linear neural networks of the Q network could better capture the
graph non-linearity and learn the semantic meaning of the graph
for making better decisions.

An illustration of the proposed framework is shown in Figure 2.
The key idea of our proposed framework is to train the deep rein-
forcement learning agent which could iteratively perform actions
to poison the graph. The actions includes adding adversarial edges
and modifying the labels of injected nodes. More specifically, the
agent needs to firstly pick one node from injected nodes set VA
and select another node from poisoned node set V ′ to add the ad-
versarial edge, and modify the label of the injected nodes to attack
the classifier C. We design reinforcement learning environment
and reward according to the optimization function to achieve this.

Next, we describe the details of the proposed method and present
the reinforcement learning environment design, the deep Q net-
work used to estimate the policy and the training algorithm of the
proposed NIPA.

4.1 Attacking Environment
We model the proposed poisoning attack procedure as a Finite
Horizon Markov Decision Process (S,A, P ,R,γ). The definition of
the MDP contains state space S , action set A, transition probability
P , reward R, discount factor γ .

4.1.1 State. The state st contains the intermediate poisoned graph
G ′t and labels information TAt of the injected nodes at the time t . To
capture the highly non-linear information and the non-Euclidean
structure of the poisoned graph G ′t , we embed G ′t as e(G

′
t) with

aggregating the graph structure information via designed graph
neural networks. e(TAt) encodes the adversarial label information
LAt with neural networks. The details of the state representation is
described in following subsection. Since in the injection poisoning

676

WWW ’20, April 20–24, 2020, Taipei, Taiwan

𝑉

state		𝑠$

𝑉

RL Agent

𝑎$
(')~𝞹(𝑠$, 𝑎$

,)

𝑒 𝐺$/ 	𝑒(𝑣12
(3))

……

……

……

𝑎$
(,)~𝞹(𝑠$)

……

……

……

𝑎$
(4)~𝞹(𝑠$, 𝑎$

(,))

𝑉 𝑉 𝑉

action 	𝑎$ = (𝑎$
(,),	𝑎$

(4),𝑎$
(')) state		𝑠$6,

……

……

……
GCN	
𝑪𝑺

𝑎$
(,) 𝑎$

(4)

𝑎$
(')

reward	𝑟$

(𝑠$, 𝑎$)

𝑒 𝐺$/ 	𝑒(𝑣12
(3))	𝑒(𝑣12

(:)) 𝑒 𝐺$/ 	𝑒(𝑣12
3)	𝑒(𝒯12

(<))

design	labelpick	nodepick	node

Label
Emb.

𝑒(𝐺$ ’)

𝐺$/

Graph
Emb.

𝒯𝓐2

𝑒(𝒯𝓐2)

𝑉𝒜 𝑉𝒜 𝑉𝒜 𝑉𝒜 𝑉𝒜

Figure 2: An overview of the Proposed Framework NIPA for Node Injection Attack on Graphs

environment, the node setV ′ remains identical thus the DRL agent
performs poisoning actually on the edge set E ′t .

4.1.2 Action. In the poisoning attack environment, the agent is al-
lowed to (1) add the adversarial edges within the injected nodesVA
or between the injected nodes and the clean nodes; (2) designing the
adversarial labels of the injected nodes. However, directly adding
one adversarial edge hasO(|VA |2+ |VA | ∗ |V |) possible choices and
modifying the adversarial label of one injected node requiresO(|L|)
space where |L| is the number of label categories. Thus, perform-
ing one action that contains both adding an adversarial edge and
changing the label of a node has search space asO(|VA | ∗ |V ′ | ∗ |L|),
which is extremely expensive especially in large graphs. Thus, we
adopt hierarchical action to decompose such action and reduce the
action space to enable efficient exploration inspired by previous
work [12].

As shown in Figure 2, in NIPA, at time t , the agent first performs
an action a

(1)
t to select one injected node from VA . The agent then

picks another node from the whole node setV ′ via action a(2)t . After
performing the actions a(1)t and a(2)t , the agent connects these two
selected nodes to forge the adversarial edge as the dashed line in
the Figure 2. Finally, the agent designs the label of the selected
fake node through action a

(3)
t . By such hierarchical action at =

(a
(1)
t ,a

(2)
t ,a

(3)
t), the action space is reduced fromO(|VA | ∗ |V

′ | ∗ |L|)

to O(|VA | + |V
′ | + |L|). With the hierarchy action a = (a(1), a(2),

a(3)), the trajectory of the proposed MDP is (s0,a
(1)
0 ,a

(2)
0 ,a

(3)
0 , r0,

s1, . . . , sT−1,a
(1)
T−1,a

(2)
T−1,a

(3)
T−1, rT−1, sT).

4.1.3 Policy network. As both of previous work [12] and our pre-
liminary experiments show that Q-learning works more stable than
other policy optimization methods such as Advantage Actor Critic,
we focus on modeling policy network with Q-learning. Q-learning
finds a policy that is optimal in the sense that it maximizes the

expected value of the total reward over any and all successive steps,
starting from the current state. Q-learning is an off-policy optimiza-
tion which fits the Bellman optimality equation as:

Q∗(st ,at) = r (st ,at) + γ max
a′t

Q∗(st+1,a
′) (6)

The greedy policy to select the action at with respect to Q∗ is:

at = π (st) = argmax
a

Q∗(st ,a) (7)

As we explain in the above subsection that performing one poi-
soning action requires searching in O(|VA | ∗ |V

′ | ∗ |L|) space and
we perform hierarchical actions other than one action, we cannot
directly follow the policy network in Eq.(6) and Eq.(7). Here, we
adopt hierarchical Q function for the actions and we propose the
hierarchical framework which integrates three DQNs. The details
of the proposed DQNs are presented in following section.

4.1.4 Reward. As the RL agent is trained to enforce the misclas-
sification of the graph classifier C, we need to design the reward
accordingly to guide the agent. The reasons why we need to de-
sign novel reward function other than using the widely adopted
binary sparse rewards are two folds: (1) as our trajectory in the
attacking environment is usually long, we need the intermediate
rewards which give feedback to the RL agent on how to improve its
performance on each state; (2) different from the target attack that
we know whether the attack on one targeted node is success or not,
we perform the non-target attack over graph thus accuracy is not
binary. To tackle theses two challenges, we design the reward of
the current state and actions for the agent is designed according to
the poisoning objective function shown in Eq. (2). For each state st ,
we firstly define the attack success rate At as:

At =
∑
vj ∈T

1(Tj , CθS (G
′
t)j)/|V| (8)

677

WWW ’20, April 20–24, 2020, Taipei, Taiwan Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar

θS = argmin
θ

∑
vi ∈T′

L(T ′i ,Cθ (G
′)i) (9)

Here T is the training set used to compute the reward as we dis-
cussed for the Eq.(2). Note that the CθS is not the graph classifier
C that evaluates the final classification accuracy by end-user. As
the attacker usually doesn’t know the model that end-user is using,
it represents the simulated graph classifier designed by attacker
to acquire the state and actions reward. However, directly using
the success rate At as the reward would increase the instability
of training process since the accuracy might not differ a lot for
two consecutive state. In this case, we design the guiding binary
reward rt to be one if the action at = (a

(1)
t ,a

(2)
t ,a

(3)
t) could reduce

the accuracy of attacker’s simulated graph classifier CθS at time t ,
and to be negative one vice versa. The proposed guiding reward rt
is defined as follows:

rt (st ,a
(1)
t ,a

(2)
t ,a

(3)
t) =

{ 1; if At+1 > At

−1; otherwise. (10)

Our preliminary experimental results show that such guiding re-
ward is effective in our case.

4.1.5 Terminal. In the poisoning attacking problem, the number of
allowed adding adversarial edges is constrained by the budget ∆ for
the unnoticeable consideration. So in the poisoning reinforcement
learning environment, once the agent adds budget number of edges
(T = ∆), it stops taking actions. In terminal state sT , the poisoned
graph G ′ contains T more adversarial edges compared to the clean
graph G.

4.2 State Representation
As mentioned above, the state st contains the poisoned graph G ′t
and injected nodes labels TAt at time t . It is important to explore
the high nonlinear structure of the state as the Q function is scoring
the nodes in the poisoned graph G ′t . As shown in Figure 2, NIPA
represents the state st by the e(G ′t) and e(TAt) via graph embedding
and label embedding methods. Here, in details, to represent the non-
Euclidean structure of the poisoned graphG ′t with vector e(G ′t), the
latent embedding e(vi) of the each node vi in G ′t is firstly learned
by struct2vec [11] using the discriminative information. Then the
state vector representation e(G ′t) is obtained by aggregating the
embedding of nodes as:

e(G ′t) =
∑

vi ∈V ′
e(vi)/|V

′ | (11)

To represent the label of the injected fake nodes, we use the
two layer neural networks to encode the one-hot embedding of the
nodes labels TAt as:

e(TAt) = σ (W
(2)
l (σ (W

(1)
l zAt + b1) + b2) (12)

Here, zAt represents the one-hot embedding of the labelsTAt , σ is
the non-linear activation function and {W (1)l ,W

(2)
l ,b1,b2} are the

parameters of neural networks.
Actually, more complex graph embedding and label embedding

methods could replace the adopted modules outlined here and we
leave exploring feasible graph embedding and label embedding
methods as a future direction. Note that for the notation compact
and consistency consideration, e(s) represents embedding of the

state, and e(va) and e(Ta) are the embeddings of the node selected
by action a and label selected by action a respectively in the follow-
ing paper.

4.3 Hierarchical Q Network
In Q learning process, given the state st and action at , the action-
value function Q(st ,at) is supposed to give the scores of current
state and selected actions to steer the RL agent. However, as the ac-
tion a is decomposed into three hierarchical actions {a(1),a(2),a(3)}
for the efficiency searching consideration, it would be hard to di-
rectly design theQ(st ,a

(1)
t ,a

(2)
t ,a

(3)
t) and apply one policy network

to select hierarchical actions.
To overcome this problem, we adopt hierarchical deep Q net-

worksQ = {Q(1),Q(2),Q(3)} which integrates three DQNs to model
the Q values over the actions. Figure 2 illustrates the selection of
action at = {a

(1)
t ,a

(2)
t ,a

(3)
t)} at time t performed by our proposed

NIPA. After obtaining the state representations e(st), the first DQN
Q(1) guides the policy to pick a node from injected node set VA ;
Based on a

(1)
t , the second DQN Q(2) learns the policy to pick the

second node from the node set V ′, which completes an edge injec-
tion by connecting the two nodes; The third DQN Q(3) learns the
policy to design the label of the first selected injected fake node.

The agent firstly selects one node from the injected node setVA
and calculate the Q value based on the action-value function Q(1)

as:

Q(1)(st ,a
(1)
t ;θ (1)) =W (1)1 σ (W

(1)
2 [e(st) ∥ e(va(1)t

)]) (13)

where θ (1) = {W (1)1 ,W
(1)
2 } represents the trainable weights of the

first DQN and ∥ is the concatenation operation. The action-value
function Q(1) estimates the Q value of each injected fake node
given the state representation st and action embedding e(va(1)t

).

The greedy policy which selects the action a
(1)
t based on optimal

action-value function Q(1)∗ in Eq.(13) is defined as follows:

a
(1)
t = π (st) = argmax

a∈VA
Q(1)(st ,a;θ (1)); (14)

With the first action a
(1)
t selected, the agent picks the second

action a
(2)
t hierarchically based on Q(2) as:

Q(2)(st ,a
(1)
t ,a

(2)
t ;θ (2)) =W (2)1 σ (W

(2)
2 [e(st) ∥ e(va(1)t

) ∥ e(va(2)t
)])

(15)
where θ (2) = {W (2)1 ,W

(2)
2 } is the trainable weights. The action value

functionQ(2) scores the second nodes based on the state st , and the
selected action a

(1)
t . The greedy policy to make the second action

a
(2)
t with the optimal Q(2)∗ in Eq.(15) is defined as follows:

a
(2)
t = π (st ,a

(1)
t) = argmax

a∈V ′
Q(2)(st ,a

(1)
t ,a;θ

(2)); (16)

Note that the agent onlymodifies the label of the selected injected
fake node a(1)t , thus the action-value function for the third action
is not directly related to the action a

(2)
t . The action-value function

Q(3) which scores the injected fake node label designing is defined

678

WWW ’20, April 20–24, 2020, Taipei, Taiwan

as follows:

Q(3)(st ,a
(1)
t ,a

(3)
t ;θ (3)) =W (3)1 σ (W

(3)
2 [e(st) ∥ e(va(1)t

) ∥ e(Ta(3)t
)])

(17)
In Eq.(17), θ (3) = {W (3)1 ,W

(3)
2 } represents the trainable weights in

Q(3). The action value function Q(3) models the score of changing
the label of the injected node a(1)t . The greedy policy to such action
is defined as follows:

a
(3)
t = π (st ,a

(1)
t) = argmax

a∈L
Q(3)(st ,a

(1)
t ,a;θ

(3)); (18)

With the proposed hierarchical deepQ networksQ = {Q(1),Q(2),Q(3)}
in Eq.(13), Eq.(15) and Eq.(17), NIPA integrates hierarchical action-
value functions to model the Q values over the hierarchical actions
a = {a(1),a(2),a(3)}.

4.4 Training Algorithm
To train the proposed hierarchical DQNs Q = {Q(1),Q(2),Q(3)}
and the parameters in states representation methods, we adopt
the experience replay technique with a certain size memory buffer
M [30]. The high level idea to use the experience replay is to
reduce bias caused by correlation between samples. We simulate
the selection process to generate training data and store them in
memory bufferM. During training, a batch of experience (s,a, s ′)
where a = {a(1),a(2),a(3)} is drawn uniformly at random from the
stored memory bufferM. The Q-learning loss function is defined
as:

E(s,a,s ′)∼M [(r + γ max
a′

Q̂(s ′,a′ |θ−) −Q(s,a |θ))2] (19)

where Q̂ represents the target action-value function and its parame-
ters θ− are updated with θ every C steps. To improve the stability of
the algorithm, we clip the error term between −1 and +1. The agent
adopts ϵ-greedy policy that select a random action with probability
ϵ . The overall training framework is summarized in Algorithm 1.

In the proposed model, we use two layer multi-layer percep-
trons to implement all the trainable parameters θ in action-value
functions Q = {Q(1), Q(2), Q(3)} and structure2vec. Actually, more
complex deep neural networks could replace the models outlined
here. We leave exploring feasible deep neural networks as a future
direction.

5 EXPERIMENTS
In this section, we introduce the experiment setting including base-
line datasets and comparing poisoning attack methods. Moreover,
we conduct experiments and present results to answer the following
research questions:

• (RQ1) Can the NIPA effectively poison the graph data and
attack the GCN via node injection?
• (RQ2)Whether the poisoned graph remains the key statistics
after the poison attack?
• (RQ3) How the proposed framework performances under
different scenarios?

Next, we first introduce the experimental settings followed by ex-
perimental results to answer the three questions.

Algorithm 1: The training algorithm of framework NIPA
Input: clean graphG(V ,E,X), labeled node set T , budget ∆,

number of injected nodes |VA |, training iteration K
Output: G ′(V ′,E ′,X ′) and LA

1 Initialize action-value function Q with random parameters θ
;

2 Set target function Q̂ with parameters θ− = θ ;
3 Initialize replay memory bufferM;
4 Randomly assign Adversarial label LA ;
5 while episode ≤ K do
6 while t ≤ ∆ do
7 Compute state representation according to Eq.(11)

and Eq.(12);
8 With probability ϵ select a random action a

(1)
t ,

otherwise select a(1)t based on Eq.(14);
9 With probability ϵ select a random action a

(2)
t ,

otherwise select a(2)t based on Eq.(16);
10 With probability ϵ select a random action a

(3)
t ,

otherwise select a(3)t based on Eq.(18);
11 Compute reward rt according to Eq.(8) and Eq.(10);
12 Set st+1 = {st ,a

(1)
t ,a

(2)
t ,a

(3)
t };

13 Update edges as EAt+1 ← EA ∪ (a
(1)
t ,a

(2)
t) and

labels as la(1)t+1
← a

(3)
t ;

14 Store {st ,a
(1)
t ,a

(2)
t ,a

(3)
t , rt , st+1} in memory buffer

M;
15 Sample minibatch transition randomly fromM;
16 Update parameter according to Eq.(19);
17 Every C steps update θ− = θ ;
18 end
19 end

5.1 Experiment Setup
5.1.1 Datasets. We conduct experiments on three widely used
benchmark datasets for node classification, which include CORA-
ML [5, 28], CITESEER [17] and DBLP [32]. Following [52], we only
consider the largest connected component (LCC) of each graph
data. The statistics of the datasets with the LCC are summarized in
Table 2. For each dataset, we randomly split the nodes into (20%)
labeled nodes for training procedure and (80%) unlabeled nodes as
test set to evaluate the model. The labeled nodes are further equally
split into training and validation sets. We perform the random split
five times and report averaged results.

Table 2: Statistics of benchmark datasets

Datasets NLCC ELCC |L|

CITESEER 2,110 3,757 6
CORA-ML 2,810 7,981 7
PUBMED 19,717 44,324 3

679

WWW ’20, April 20–24, 2020, Taipei, Taiwan Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar

5.1.2 Baseline Methods. Though there are several adversarial at-
tack algorithms on graphs such as Nettack [51] and RL-S2v [12],
most of them are developed for manipulating links among existing
nodes in graph, which cannot be easily modified in our attacking
setting for node injection attack. Thus, we don’t compare with them.
Since node injection attack on graphs is a novel task, there are very
few baselines that we can compare with. We select following four
baselines, with two from classical graph generation models, one
by applying the technique of fast gradient attack and a variant of
NIPA.
• Random Attack [15]: The attacker A first adds adversarial
edges between the injected nodes according to classic Erdős–
Rényi model G(VA ,p), where the probability p = 2 |E |

|V |2 is
the average degree of the clean graph G(V ,E) to make sure
the density of the injected graph GA is similar to the clean
graph. The attacker then randomly add adversarial edges
connecting the injected graph GA and clean graph G until
the budget ∆ is used ups.
• Preferential attack [2]: The attacker A iteratively adds the
adversarial edges according to preferential attachment mech-
anism. The probability of connecting the injected node vi ∈
VA to the other node vj ∈ |V ∪VA | is proportional to the
node degrees. The number of adversarial edges is constrained
by the budget ∆.
• Fast Gradient Attack (FGA) [10]: FGA is a gradient based
method which is designed to attack the graph data by per-
turbing the gradients. In FGA, the attacker A removes/adds
the adversarial edges guided by edge gradient.
• NIPA-w/o: This is a variant of the proposed framework NIPA
where we don’t optimize w.r.t the label of fake nodes, i.e.,
the labels of the fake nodes are randomly assigned.

The Fast Gradient Attack (FGA) [10] is not directly applicable in
node injection poisoning setting, since the injected nodes are iso-
lated at the beginning and would be filtered out by graph classifier.
Here we modify the FGA for fair comparison. The FGA method is
performed on the graph poisoned by preferential attack. After calcu-
lating the gradient ∇i jLGCN with vi ∈ VA and vj ∈ V ′, the attack
A adding/remove the adversarial edges between (vi ,vj) according
to the largest positive/negative gradient. The attack only add and
remove one feasible adversarial edge are each iteration so that the
number of the adversarial edges is still constrained by budget ∆.
The attacker is allowed to perform 20*∆ times modifications in total
suggested by [10].

5.2 Attack Performance Comparison
To answer RQ1, we evaluate how the node classification accuracy
degrades on the poisoned graph compared with the performance
on the clean graph. The larger decrease the performance is on
the poisoned graph, the more effective the attack is. To compare
the decrease the of different models, we firstly show the node
classification results on clean graph.

5.2.1 Node Classification on Clean Graph. As the Nettack [51]
points out that “poisoning attacks are in general harder and match
better the transductive learning scenario”, we follow the same poi-
soning transductive setting in this paper. The parameters of GCN

are trained according to Eq. (1). We report the averaged node clas-
sification accuracy over five runs in Table. 3 to present the GCN
node classification accuracy on clean graph. Note that if the poison-
ing nodes are injected with the budget ∆ = 0, such isolated nodes
would be filtered out by GCN and the classification results remain
the same as in Table. 3.

Table 3: Node classification results on clean graph

Dataset CITESEER CORA-ML Pubmed

Clean data 0.7730 ± 0.0059 0.8538 ± 0.0038 0.8555 ± 0.0010

5.2.2 Node Classification on Poisoned Graph. In poisoning attack-
ing process, the attacking budget ∆ which controls the number of
added adversarial edges is one important factor. On the one hand,
if the budget is limited, eg., ∆ < |VA |, then at least |VA | − ∆ in-
jected nodes are isolated. Clearly, isolated nodes have no effect
on the label prediction as they are not really injected into the en-
vironment. On the other hand, if the budget is large, the density
of the injected graph is different from the clean graph and such
injected nodes might be detected by the defense methods. Here, to
make the poisoned graph has the similar density with the clean
graph and simulates the real world poisoning attacking scenario,
we set ∆ = r ∗ |V | ∗ deд(V) where r is the injected nodes ratio
compared to the clean graph and deд(V) is the average degree of
the clean graph G. The injected nodes number is |VA | = r ∗ |V |.
We will evaluate how effective the attack is when the injected
nodes can have different number of degrees in Section 5.4.1. To
have comprehensive comparisons of the methods, we vary r as
r = {0.01, 0.02, 0.05, 0.10}. We don’t set r > 0.10 since we believe
that too much injected nodes could be easily noticed in real-world
scenarios. For the same unnoticeable consideration, the feature of
the injected nodes is designed to be similar to that of the clean
node features. For each injected node, we calculate the mean of the
features as X̄ and apply the Gaussian noiseN(0, 1) on the averaged
features X̄ . The features of the injected node are similar to the
features in clean graph. We leave the generation of node features as
future work. As the other baselines method could not modifies the
adversarial labels of the injected nodes, we also provide the variant
model NIPA-w/o which doesn’t manipulate the adversarial labels
for fair comparison. The adversarial labels are randomly generated
within |L| for the baseline methods. In both NIPA and NIPA-w/o,
we set the discount factor γ = 0.9 and the injected nodes VA are
only appear in training phase in all of the methods.

The averaged results with standard deviation for all methods
are reported in Table 4. From Table 3 and 4, we make the following
observations
• In all attacking methods, more injected nodes could better
reduce the node classification accuracy, which satisfy our
expectation;
• Compared with Random and Preferential attack, FGA is rel-
atively more effective in attacking the graph, though the
performance gap is marginal. This is because random at-
tack and preferential attack don’t learn information from the
clean graph and just insert fake nodes following predefined

680

WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 4: Classification results after adversarial attack on graphs

Dataset Methods r = 0.01 r = 0.02 r = 0.05 r = 0.10
Random 0.7582 ± 0.0082 0.7532 ± 0.0130 0.7447 ± 0.0033 0.7147 ± 0.0122

Preferrential 0.7578 ± 0.0060 0.7232 ± 0.0679 0.7156 ± 0.0344 0.6814 ± 0.0131
CITESEER FGA 0.7129 ± 0.0159 0.7117 ± 0.0052 0.7103 ± 0.0214 0.6688 ± 0.0075

NIPA-wo(ours) 0.7190 ± 0.0209 0.6914 ± 0.0227 0.6778 ± 0.0162 0.6301 ± 0.0182
NIPA (ours) 0.7010 ± 0.0123 0.6812 ± 0.0313 0.6626 ± 0.0276 0.6202 ± 0.0263
Random 0.8401 ± 0.0226 0.8356 ± 0.0078 0.8203 ± 0.0091 0.7564 ± 0.0192

Preferrential 0.8272 ± 0.0486 0.8380 ± 0.0086 0.8038 ± 0.0129 0.7738 ± 0.0151
CORA-ML FGA 0.8205 ± 0.0044 0.8146 ± 0.0041 0.7945 ± 0.0117 0.7623 ± 0.0079

NIPA-w/o (ours) 0.8042 ± 0.0190 0.7948 ± 0.0197 0.7631 ± 0.0412 0.7206 ± 0.0381
NIPA (ours) 0.7902 ± 0.0219 0.7842 ± 0.0193 0.7461 ± 0.0276 0.6981 ± 0.0314
Random 0.8491 ± 0.0030 0.8388 ± 0.0035 0.8145 ± 0.0076 0.7702 ± 0.0126

Preferrential 0.8487 ± 0.0024 0.8445 ± 0.0035 0.8133 ± 0.0099 0.7621 ± 0.0096
PUMBED FGA 0.8420 ± 0.0182 0.8312 ± 0.0148 0.8100 ± 0.0217 0.7549 ± 0.0091

NIPA-w/o(ours) 0.8412 ± 0.0301 0.8164 ± 0.0209 0.7714 ± 0.0195 0.7042 ± 0.0810
NIPA (ours) 0.8242 ± 0.0140 0.8096 ± 0.0155 0.7646 ± 0.0065 0.6901 ± 0.0203

rule. Thus, both of the methods are not as effective as FGA
which tries to inject nodes through a way to decrease the
performance;
• The proposed framework outperforms the other methods.
In particular, both FGA and NIPA are optimization based
approach while NIPA significantly outperforms FGA, which
implies the effectiveness of the proposed framework by de-
signing hierarchical deep reinformcent learning to solve the
decision making optimization problem; and
• NIPA out performances NIPA-w/o, which shows the neces-
sity of optimizing w.r.t to labels for node injection attack.

5.3 Key Statistics of the Poisoned Graphs
To answer RQ2, we analyze several key statistics of the poisoned
graphs, which helps us to understand the attacking behaviors. One
desired property of the poisoning graph is that the poisoned graph
has similar graph statistics to the clean graph. Here, we adopt the
important graph statistics as that used in [6] to measure the poi-
soned graphs for the three datasets. More specifically, we presents
the Gini coefficient, characteristic path length, distribution entropy,
power law exponent and numbers of triangle counts to carefully
analysis the poisoned graph statistics such as graph distribution
and graph density. The detailed equations and descriptions could be
found [6]. The results are reported in Table 5. It could be concluded
from the graph statistics that

• Poisoned graph has very similar graph distribution to the
clean graph. For example, the similar exponent of the power
law distribution in graph indicates that the poisoned graph
and the clean graph shares the similar distribution;
• More injected nodes would make the poisoning attack pro-
cess noticeable. The results show that with the increase of r ,
the poisoned graph becomes more and more diverse from
the origin graph.
• The number of triangles increases, which shows that the
attack not just simply connect fake nodes to other nodes, but

also connect in a way to form triangles so each connection
could affects more nodes.

5.4 Attack Effects Under Different Scenarios
In this subsection, we conduct experiments to answer RQ3, i.e.,
how effective the attack by NIPA is under different scenarios. We
carefully study the effective of different parameters to NIPA.

5.4.1 Average Degrees of Injected Nodes. As we discussed that the
budget ∆ = r ∗ |V | ∗deg(vA) is essential to the poisoning attack, we
investigate the node classification accuracy by varying the average
degree of injected nodes as deg(vA) = {3, . . . 10}. We don’t set
deg(vA) > 10 since injecting ’celebrate’ or ’hub’ nodes into the
network is not common in graph poisoning attack.

The experiment results with injected node ratio r = 0.01 and
r = 0.02 on CITESEER and CORA-ML are shown in Fig. 3(a) and
Fig. 3(b), respectively. From the figures, we observe that as the
increase of the average degree of the injected nodes, the node
classification accuracy decrease sharply. Such observation satisfies
our expectation because the more links a fake node can have, the
more likely it can propagate the adversarial information and poison
the graph.

5.4.2 Sparsity of the Origin Graph. We further investigate how the
proposed framework works under different sparsity of the network.
Without loss of generality, we set average degree of injected node as
the average degree of the real node. To simulate the sparsity of the
network, we randomly remove Sp = {0, 10%, . . . , 90%} edges from
the original graph and perform NIPA on the modified graph. The
results with injected node ratio r = 0.01 and r = 0.02 on CITSEER
and CORA-ML are shown in Fig.4(a) and Fig.4(b) respectively.

The results show that as the graph becomes more spare, the
proposed framework is more effective in attacking the graph. This
is because as the graph becomes more sparse, each node in the
clean graph has less neighbors, which makes the it easier for fake
nodes to change the labels of unlabeled nodes.

681

WWW ’20, April 20–24, 2020, Taipei, Taiwan Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar

Table 5: Statistics of the clean graph (r = 0.00) and the graphs poisoned by NIPA averaged over 5 runs.

Dataset r Gini Coefficient Characteristic Path Length Distribution Entropy Power Law Exp. Triangle Count
0.00 0.4265 ± 0.0000 9.3105 ± 0.0000 0.9542 ± 0.0000 2.0584 ± 0.0000 1083.0 ± 0.0
0.01 0.4270 ± 0.0012 8.3825 ± 0.3554 0.9543 ± 0.0001 2.0296 ± 0.0024 1091.2 ± 6.6

CITESEER 0.02 0.4346 ± 0.0007 8.3988 ± 0.2485 0.9529 ± 0.0005 2.0161 ± 0.0007 1149.8 ± 32.4
0.05 0.4581 ± 0.0026 8.0907 ± 0.7710 0.9426 ± 0.0009 1.9869 ± 0.0073 1174.2 ± 42.8
0.10 0.4866 ± 0.0025 7.3692 ± 0.6818 0.9279 ± 0.0012 1.9407 ± 0.0088 1213.6 ± 61.8
0.00 0.3966 ± 0.0000 6.3110 ± 0.0000 0.9559 ± 0.0000 1.8853 ± 0.0000 1558.0 ± 0.0
0.01 0.4040 ± 0.0007 6.0576 ± 0.1616 0.9549 ± 0.0004 1.8684 ± 0.0016 1566.2 ± 7.4

CORA-ML 0.02 0.4075 ± 0.0002 6.1847 ± 0.1085 0.9539 ± 0.0002 1.8646 ± 0.0006 1592.0 ± 17.4
0.05 0.4267 ± 0.0014 5.8165 ± 0.1018 0.9458 ± 0.0009 1.8429 ± 0.0027 1603.8 ± 12.8
0.10 0.4625 ± 0.0005 6.1397 ± 0.0080 0.9261 ± 0.0007 1.8399 ± 0.0017 1612.4 ± 22.2
0.00 0.6037 ± 0.0000 6.3369 ± 0.0000 0.9268 ± 0.0000 2.1759 ± 0.0000 12520.0 ± 0.0
0.01 0.6076 ± 0.0005 6.3303 ± 0.0065 0.9253 ± 0.0004 2.1562 ± 0.0013 12570.8 ± 29.2

PUBMED 0.02 0.6130 ± 0.0006 6.3184 ± 0.0046 0.9213 ± 0.0004 2.1417 ± 0.0009 13783.4 ± 101.8
0.05 0.6037 ± 0.0000 6.3371 ± 0.0007 0.9268 ± 0.0000 2.1759 ± 0.0001 14206.6 ± 152.8
0.10 0.6035 ± 0.0003 6.2417 ± 0.1911 0.9263 ± 0.0010 2.1686 ± 0.0141 14912.0 ± 306.8

2 3 4 5 6 7 8 9 10 11
Degree

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

A
cc

u
ra

cy

(a) CITESEER

r = 0.01

r = 0.02

3 4 5 6 7 8 9 10 11
Degree

0.62

0.64

0.66

0.68

0.70

0.72

0.74

(b) CORA-ML

r = 0.01

r = 0.02

Figure 3: Node classification performance on (a) CITESEER
and (b) CORA-ML by varying average node degree of in-
jected nodes

0.0 0.2 0.4 0.6 0.8

Sparsity

0.55

0.60

0.65

0.70

0.75

0.80

A
cc
u
ra
cy

(a) CITESEER

r = 0.01

r = 0.02

clean

0.0 0.2 0.4 0.6 0.8

Sparsity

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
(b) CORA-ML

r = 0.01

r = 0.02

clean

Figure 4: Node classification performance on (a) CITESEER
and (b) CORA-ML with varying graph sparsity

6 CONCLUSION
In this paper, we study a novel problem of non-target graph poi-
soning attack via node injection. We propose a deep reinforcement
learning based method named NIPA to solve the node injection

poisoning attack task. NIPA simulates the attack process and se-
quentially adds the adversarial edges and designs labels for the
injected fake nodes. Specifically, we adopt hierarchy deep Q net-
works to efficiently reduce the action spaces and use GNN based
graph state representation method to cope with the graph topology.
Experimental results of poisoning graph convolutional network on
node classification demonstrate the effectiveness of the proposed
framework for poisoning the graph. The poisoned graph has very
similar properties as the original clean graph such as gini coeffi-
cient and distribution entropy. Further experiments are conducted
to understand how the proposed framework works under different
scenarios such as very sparse graph.

There are several interesting directions that need further inves-
tigation. First, we have used the mean of node features corrupted
by Gaussian noise to set the features of fake nodes. It would be
interesting to explore variants of NIPA that optimize the features of
fake nodes to maximize the effectiveness of NIPA. Second, we have
used a 2-layer graph neural networks to encode the states of the
hierarchical deep Q learner. It would be interesting to explore more
complex deep neural networks for this task. Moreover, it would
be interesting to explore extensions of NIPA for carrying out node
poisoning attacks on more complex graphs, e.g., heterogeneous
graphs, multi-modal graphs, and dynamic graphs. Last, but not
the least, it would be interesting to explore variants of NIPA that
use more sophisticated optimization methods for reinforcement
learning.

ACKNOWLEDGMENTS
Thisworkwas funded in part by theNIHNCATS grant UL1 TR002014
and by NSF grants 1518732, 1640834, and 1636795, the Edward Fry-
moyer Endowed Professorship at Pennsylvania State University
and the Sudha Murty Distinguished Visiting Chair in Neurocom-
puting and Data Science funded by the Pratiksha Trust at the Indian
Institute of Science (both held by Vasant Honavar) and by Samsung
GRO Award #225003 to Suhang Wang and Vasant Honavar.

682

WWW ’20, April 20–24, 2020, Taipei, Taiwan

REFERENCES
[1] Charu C Aggarwal. 2011. An introduction to social network data analytics. In

Social network data analytics. Springer, 1–15.
[2] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random

networks. science 286, 5439 (1999), 509–512.
[3] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks against

support vector machines. In 29th Int’l Conf. on Machine Learning (ICML).
[4] Battista Biggio and Fabio Roli. 2018. Wild patterns: Ten years after the rise of

adversarial machine learning. Pattern Recognition 84 (2018), 317–331.
[5] Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Em-

bedding of Graphs: Unsupervised Inductive Learning via Ranking. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=
r1ZdKJ-0W

[6] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Gün-
nemann. 2018. Netgan: Generating graphs via random walks. arXiv preprint
arXiv:1803.00816 (2018).

[7] Han Cai, Kan Ren, Weinan Zhang, Kleanthis Malialis, Jun Wang, Yong Yu, and
Defeng Guo. 2017. Real-time bidding by reinforcement learning in display adver-
tising. In Proceedings of the Tenth ACM International Conference on Web Search
and Data Mining. ACM, 661–670.

[8] Nicholas Carlini and David Wagner. 2018. Audio adversarial examples: Targeted
attacks on speech-to-text. In 2018 IEEE Security and Privacy Workshops (SPW).
IEEE, 1–7.

[9] Christopher J Carpenter. 2012. Narcissism on Facebook: Self-promotional and
anti-social behavior. Personality and individual differences 52, 4 (2012), 482–486.

[10] Jinyin Chen, Yangyang Wu, Xuanheng Xu, Yixian Chen, Haibin Zheng, and
Qi Xuan. 2018. Fast gradient attack on network embedding. arXiv preprint
arXiv:1809.02797 (2018).

[11] Hanjun Dai, Bo Dai, and Le Song. 2016. Discriminative embeddings of latent vari-
able models for structured data. In International conference on machine learning.
2702–2711.

[12] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. 2018.
Adversarial attack on graph structured data. arXiv preprint arXiv:1806.02371
(2018).

[13] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. InAdvances
in neural information processing systems. 3844–3852.

[14] Kien Do, Truyen Tran, and Svetha Venkatesh. 2019. Graph transformation policy
network for chemical reaction prediction. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. ACM, 750–760.

[15] Paul Erdős and Alfréd Rényi. 1960. On the evolution of random graphs. Publ.
Math. Inst. Hung. Acad. Sci 5, 1 (1960), 17–60.

[16] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph Neural Networks for Social Recommendation. In The World Wide
Web Conference. ACM, 417–426.

[17] C Lee Giles, Kurt D Bollacker, and Steve Lawrence. 1998. CiteSeer: An Automatic
Citation Indexing System.. In ACM DL. 89–98.

[18] Adam Gleave, Michael Dennis, Neel Kant, Cody Wild, Sergey Levine, and Stuart
Russell. 2019. Adversarial Policies: Attacking Deep Reinforcement Learning.
arXiv preprint arXiv:1905.10615 (2019).

[19] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining
and harnessing adversarial examples. In International Conference on Learning
Representations.

[20] Qingyu Guo, Zhao Li, Bo An, Pengrui Hui, Jiaming Huang, Long Zhang, and
Mengchen Zhao. 2019. Securing the Deep Fraud Detector in Large-Scale E-
Commerce Platform via Adversarial Machine Learning Approach. In The World
Wide Web Conference. ACM, 616–626.

[21] Kun He, Yiwei Sun, David Bindel, John Hopcroft, and Yixuan Li. 2015. Detecting
overlapping communities from local spectral subspaces. In 2015 IEEE International
Conference on Data Mining. IEEE, 769–774.

[22] Kwang-Sung Jun, Lihong Li, Yuzhe Ma, and Jerry Zhu. 2018. Adversarial attacks
on stochastic bandits. In Advances in Neural Information Processing Systems.
3640–3649.

[23] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[24] Ziqi Liu, Chaochao Chen, Xinxing Yang, Jun Zhou, Xiaolong Li, and Le Song.
2018. Heterogeneous graph neural networks for malicious account detection.
In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management. ACM, 2077–2085.

[25] Yuzhe Ma, Kwang-Sung Jun, Lihong Li, and Xiaojin Zhu. 2018. Data poisoning
attacks in contextual bandits. In International Conference on Decision and Game
Theory for Security. Springer, 186–204.

[26] Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang. 2019. Graph convo-
lutional networks with eigenpooling. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 723–731.

[27] Yao Ma, Suhang Wang, Lingfei Wu, and Jiliang Tang. 2019. Attacking graph
convolutional networks via rewiring. arXiv preprint arXiv:1906.03750 (2019).

[28] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.
2000. Automating the construction of internet portals with machine learning.
Information Retrieval 3, 2 (2000), 127–163.

[29] Shike Mei and Xiaojin Zhu. 2015. Using Machine Teaching to Identify Optimal
Training-Set Attacks on Machine Learners. In The 29th AAAI Conference on
Artificial Intelligence.

[30] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[31] Michele Nitti, Luigi Atzori, and Irena Pletikosa Cvijikj. 2014. Friendship selection
in the social internet of things: challenges and possible strategies. IEEE Internet
of things journal 2, 3 (2014), 240–247.

[32] Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. 2016. Tri-
party deep network representation. Network 11, 9 (2016), 12.

[33] Thomas Puschmann. 2017. Fintech. Business & Information Systems Engineering
59, 1 (2017), 69–76.

[34] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
2015. Trust region policy optimization. In International conference on machine
learning. 1889–1897.

[35] Yiwei Sun, Suhang Wang, Tsung-Yu Hsieh, Xianfeng Tang, and Vasant Honavar.
2019. Megan: A generative adversarial network for multi-view network embed-
ding. arXiv preprint arXiv:1909.01084 (2019).

[36] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction.

[37] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013).

[38] Xianfeng Tang, Yandong Li, Yiwei Sun, Huaxiu Yao, Prasenjit Mitra, and Suhang
Wang. 2020. Transferring Robustness for Graph Neural Network Against Poi-
soning Attacks. In ACM Internatioal Conference on Web Search and Data Mining
(WSDM).

[39] Binghui Wang and Neil Zhenqiang Gong. 2019. Attacking Graph-based Classifi-
cation via Manipulating the Graph Structure. ACM Conference on Computer and
Communications Security (CCS) (2019).

[40] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network em-
bedding. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 1225–1234.

[41] Jianyu Wang, Rui Wen, Chunming Wu, Yu Huang, and Jian Xion. 2019. FdGars:
Fraudster Detection via Graph Convolutional Networks in Online App Review
System. In Companion Proceedings of The 2019 World Wide Web Conference. ACM,
310–316.

[42] Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. 2018. Nervenet: Learning
structured policy with graph neural networks. (2018).

[43] Zeng Wei, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. 2017. Reinforce-
ment learning to rank with Markov decision process. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 945–948.

[44] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, kai Lu, and Liming
Zhu. 2019. Adversarial Examples on Graph Data: Deep Insights into Attack and
Defense. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence.

[45] Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang, and Anil
Jain. 2019. Adversarial attacks and defenses in images, graphs and text: A review.
arXiv preprint arXiv:1909.08072 (2019).

[46] Ziyu Yao, Jayavardhan Reddy Peddamail, and Huan Sun. 2019. CoaCor: Code
Annotation for Code Retrieval with Reinforcement Learning. In The World Wide
Web Conference. ACM, 2203–2214.

[47] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, 974–983.

[48] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. 2018. Graph
convolutional policy network for goal-directed molecular graph generation. In
Advances in Neural Information Processing Systems. 6410–6421.

[49] Yanwei Yu, Huaxiu Yao, Hongjian Wang, Xianfeng Tang, and Zhenhui Li. 2018.
Representation learning for large-scale dynamic networks. In International Con-
ference on Database Systems for Advanced Applications. Springer, 526–541.

[50] Yiming Zhang, Yujie Fan, Wei Song, Shifu Hou, Yanfang Ye, Xin Li, Liang Zhao,
Chuan Shi, Jiabin Wang, and Qi Xiong. 2019. Your Style Your Identity: Leveraging
Writing and Photography Styles for Drug Trafficker Identification in Darknet
Markets over Attributed Heterogeneous Information Network. In TheWorld Wide
Web Conference. ACM, 3448–3454.

[51] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversarial
Attacks on Neural Networks for Graph Data. In SIGKDD. 2847–2856.

[52] Daniel Zügner and Stephan Günnemann. 2019. Adversarial Attacks on Graph
Neural Networks via Meta Learning. In International Conference on Learning
Representations (ICLR).

683

