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Abstract. Radiation therapy is frequently the first line of treatment for over 50% of cancer patients. While 

great advances have been made in improving treatment response rates and reducing damage to normal 

tissue, radiation resistance remains a persistent clinical problem. While hypoxia or a lack of tumor 

oxygenation has long been considered a key factor in causing treatment failure, recent evidence points 

to metabolic reprogramming under well oxygenated conditions as a potential route to promoting radiation 

resistance. In this review, we present recent studies from our lab and others that use high-resolution 

optical imaging as well as clinical translational optical spectroscopy to shine light on the biological basis 

of radiation resistance. Two-photon microscopy of endogenous cellular metabolism has identified key 

changes in both mitochondrial structure and function that are specific to radiation-resistant cells and 

help promote cell survival in response to radiation. Optical spectroscopic approaches, such as diffuse 

reflectance and Raman spectroscopy have demonstrated functional and molecular differences between 

radiation-resistant and sensitive tumors in response to radiation. These studies have uncovered key 

changes in metabolic pathways and present a viable route to clinical translation of optical technologies 

to determine radiation resistance at a very early stage in the clinic.  

I. Introduction 

About half of cancer patients from all cancer types are treated with radiation therapy either followed by 

or concurrently with surgery, chemotherapy, or other forms (1). However, despite the recent advances 

in targeted radiation therapy, several patients subsequently experience loco-regional recurrence due to 

acquired or intrinsic radiation resistance. The current standard of care to determine radiation response 

is an anatomical assessment of tumor volume shrinkage. This evaluation is typically performed 6-8 

weeks after completion of treatment using X-ray Computed Tomography (CT) or Magnetic Resonance 

Imaging (MRI). There are currently no methods to determine radiation response either during or 
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immediately after treatment. An early determination of radiation resistance could help physicians modify 

the radiation dosage to improve response rates and hence quality of life. The development of methods 

to identify radiation-resistant tumors early requires a better understanding of the biological mechanisms 

promoting radiation resistance.  

Ionizing radiation functions by producing free radicals in cancer cells either directly in the DNA 

or indirectly in other molecules, primarily water (H2O). These radiation-induced free radicals, in the 

presence of O2, can generate peroxy radicals (DNA-OO•) capable of breaking chemical bonds and 

initiating a series of events which lead to DNA modification, and cell death (damage fixation). In contrast, 

lack of O2 leads to the reduction of free radicals in DNA and restoration of the original form of DNA (DNA-

H) leading to cancer cell survival (2–4). Landmark studies in clinical head and neck cancer and soft-

tissue sarcoma found that pre-treatment oxygenation levels were predictive of treatment response and 

disease-free survival (5–7). This important role of oxygen is the rationale for fractionated radiation 

therapy (2 Gy/day for 6-7 weeks), which is believed to re-oxygenate and radio-sensitize former hypoxic 

cells and hence, cause cell death via damage fixation (8–10). However, recent work has started to 

uncover a possible role for radiation-induced reoxygenation in also promoting radiation resistance 

through hypoxia-inducible factor (HIF). 

Hypoxia leads to stabilization of HIF-1 (11). While HIF-1 expression is inhibited under 

oxygenated conditions via prolyl hydroxylases (PHDs), its transcription is significantly upregulated under 

hypoxic conditions (3,12,13). However, radiation-induced tumor reoxygenation can lead to activation of 

HIF-1 as well through accumulation of reactive oxygen species (ROS), which is necessary and sufficient 

to stabilize HIF-1 (14). Nuclear accumulation of HIF-1 in response to ROS has been shown to promote 

endothelial cell survival and hence promote radiation resistance (15,16). In a tumor bearing window 

chamber model, Moeller et al. demonstrated an increase in ROS during radiation-induced 

reoxygenation. Additionally, they showed that injecting hydrogen peroxide (H2O2) into the window 

chamber lead to an increase in HIF-1 expression (15). HIF-1 directly targets several glycolytic genes 

and leads to increased glucose catabolism under oxygenated conditions (17–20). HIF-1 trans-activates 

pyruvate dehydrogenase kinase (PDK), which inhibits pyruvate dehydrogenase and shunts pyruvate 
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away from the mitochondria resulting in glucose catabolism to lactate even under oxygenated conditions 

(17,18). Inhibition of HIF-1 and subsequent inhibition of PDK-1 restores glucose flux towards 

mitochondria and increases O2 consumption (21). Other studies have shown that HIF-1 and pyruvate 

kinase M2 exist in a positive feedback loop that enhances glycolysis under aerobic conditions (19,20). 

Zhong et al. demonstrated that scavenging ROS resulted in a reduction in post-radiation aerobic 

glycolysis without reducing the magnitude of reoxygenation (22).  

The switch to increased glucose catabolism can promote radiation resistance through 

utilization of the pentose phosphate shunt (PPP) to maintain the NADPH-glutathione buffer and hence 

scavenge radiation-induced ROS. Inhibition of glucose flux through the PPP in combination with 2 Gy 

of radiation treatment significantly decreased cancer cell proliferation, especially in radiation-resistant 

cells (23). Increased glucose catabolism can also lead to increased production of lactate, an important 

ROS scavenger, leading to decreased radiation sensitivity (24,25). Thus, in addition to being key 

hallmarks in the development of cancer, tumor oxygenation (or hypoxia) and metabolism play a 

significant role in the development of radiation resistance. Technologies that are sensitive to these key 

hallmarks and that can measure them both at the ‘bench’ and ‘bedside’ can provide powerful tools to 

shed light on radiation resistance. 

Optical imaging can provide non-destructive and quantitative methods to reveal morphological 

and biochemical changes within cells and tissue across length scales in response to radiation therapy. 

Due to its non-destructive nature, optical imaging can be used to longitudinally monitor dynamic 

biological changes with high resolution to investigate the underlying mechanisms that promote radiation 

resistance. Given the low cost and non-ionizing nature of the light used, optical techniques are also well-

positioned for clinical translation, especially for accessible tumors of breast, skin, oral cavity, and uterine-

cervix. In addition, same instrumentation and quantitative models are frequently used to extract 

meaningful information from pre-clinical animal models. This review highlights recent work that used 

nonlinear optical microscopy and diffuse optical spectroscopy to shed light on differences between 

radiation-resistant and sensitive cancer cells. Specifically, we highlight studies that identified differences 

in oxygenation or reoxygenation trends post-radiation therapy as well as those that investigate metabolic 
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and molecular changes in the post-radiation tumor milieu. These studies encompass models ranging 

from in vitro cell culture to in vivo animal studies and indicate the great potential of optical imaging in the 

sphere of biological investigations of radiation resistance and the development of clinically translational 

optical technologies to benefit patients receiving radiation therapy.   

II. Optical Microscopy 

Nonlinear microscopy approaches, such as two-photon microscopy present numerous advantages over 

conventional single-photon microscopy (26). Because autofluorescence is generated through 

simultaneous absorption of two photons, the excitation wavelengths used are at twice the single-photon 

excitation wavelength and half the energy. Doubling the single-photon excitation wavelength usually 

places the nonlinear excitation wavelength in the near-infrared range, which allows light to penetrate 

deeper within tissue (27). Additionally, the localization of autofluorescence to just the focal point of the 

objective provides an efficient method for rejecting out-of-focus light and minimizing photodamage to 

the sample. In this review, we discuss how two-photon excited fluorescence (TPEF) from two key 

metabolic cofactors - nicotinamide and flavin adenine dinucleotides (NADH and FAD, respectively), can 

provide a non-destructive metabolic profile of cells and how these approaches have been utilized to 

study the metabolic response to therapy in radiation-resistant and sensitive cancer cells.  

A. Cellular metabolism 

Nonlinear optical  microscopy is well-suited to provide non-invasive high-resolution 3D images of 

mitochondrial structure and function within live cells, tissues, and animals (27,28). Through two-photon 

excited fluorescence (TPEF), the intrinsic fluorescence of nicotinamide and flavin adenine dinucleotides 

(NADH and FAD, respectively) can be detected without the aid of exogenous dyes (26,29). Based on 

the autofluorescence of NADH and FAD, the optical reduction-oxidation (or redox) state of cells can be 

quantified as FAD/(NADH+FAD). This optical redox ratio (ORR) has been shown to be significantly 

correlated with mass spectrometry-based measurements of NAD+/(NAD+ + NADH), and can thus reveal 

the specific metabolic pathways engaged within a cell (30). Specifically, an increase in ORR has been 

attributed to increased oxidative phosphorylation because of the oxidation of NADH to non-fluorescent 
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NAD+ and FADH2 to fluorescent FAD. On the other hand, hypoxia-like conditions that drive a buildup of 

NADH due to the inability to convert to NAD+ and increased glucose catabolism has been shown to 

decrease the ORR (30,31). Recent work from separate groups has demonstrated that the optical redox 

ratio is sensitive to dynamic changes in oxygen consumption and can provide metabolic assessments 

comparable to those of the Seahorse metabolic flux analyzer (32,33). The optical redox ratio has been 

used to create metabolic image maps of key organs (34), such as the heart and brain, identify metabolic 

changes associated with cancer progression (35,36), determine cellular response to therapy (37–39), 

and discover a relationship between metastatic potential and cellular metabolism (32,40,41).  

Alhallak et al. determined the early metabolic alterations in response to radiation in human 

A549 lung cancer cells and an isogenic radiation-resistant clone (38). This clone was obtained by 

repeated exposure of parental radiation-sensitive human lung cancer cell line (A549) to ionizing radiation 

(25 fractions of 2.2 Gy every 3 days). Although there was no significant difference in ORR of radiation-

resistant and -sensitive cells prior to administration of radiation, there was a significant decrease in ORR 

of radiation-resistant cells 24 hours after radiation, which was consistent with Seahorse-based 

quantification of the normalized oxygen consumption rate (n-OCR) (Fig 1). The observed results indicate 

that the radiation-resistant cancer cells have decreased levels of oxygen consumption both at baseline 

and post-radiation and resort to increased glucose catabolism after radiation to potentially reduce ROS-

induced toxicity. Interestingly, this radiation-induced decrease in the optical redox ratio was also 

associated with a large increase in the HIF-1 expression in the radiation-resistant A549 clone.  
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Figure 1: Optical redox ratio is sensitive to radiation-induced changes in cellular metabolism. Radiation causes 

a decrease in the optical redox ratio after 24 h in the radiation-resistant cells, indicating increased glycolytic metabolism. 

(a) Representative redox images of parental and radiation resistant A549 cells at baseline prior to radiation and 24 h 

after 2 Gy of radiation. (b) Quantification of redox ratio images indicates a statistically significant decrease in the optical 

redox ratio 24 h after radiation in the A549-RR cells compared with the parental A549 cells (p = 0.01). (c) Differences 

in the n-OCR (calculated as OCR/PPR) are consistent with the optical redox ratio. PPR refers to the proton production 

rate, which is equivalent to the extracellular acidification rate (ECAR). (d) Radiation causes a significant increase in 

HIF-1 in the radiation-resistant cells 24 hours after radiation. Western blots of HIF-1 protein expression demonstrate 

statistically significant differences between A549 and A549-RR cells at baseline and 24 hours after radiation, indicating 

reoxygenation-induced HIF-1 expression in the A549-RR cells. Asterisks placed above bars indicate statistical 

significance. Error bars in panels (b), (c), and (d) represent standard deviation of the mean plate value. 

 

A subsequent by Lee et al. investigated metabolic changes in response to HIF-1 inhibition to 

determine if the changes in optical redox ratio post-radiation were indeed mediated by HIF-1 and a 

mechanism to avoid ROS-induced toxicity (39). They used multiphoton microscopy to determine the 

ORR of A549-RR prior to and post-treatment with YC-1, an established HIF-1 inhibitor. Treatment with 

YC-1 for 24 hours resulted in a significant increase in the ORR compared with baseline, with a 

concomitant increase in mitochondrial ROS (Fig 2), a decrease in reduced glutathione and a decrease 

in glucose uptake (39). These results support the conclusion also reached by Furdui and colleagues 

who found increased glucose uptake that was utilized within the pentose phosphate pathway (PPP) to 

maintain the NADPH-glutathione buffer. This buffer helps scavenge radiation-induced ROS and hence 

promote radiation resistance (23). These results demonstrate the enormous potential of 

autofluorescence microscopy to not only provide clinically translational biomarkers of cellular response 
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to therapy but also create opportunities for investigating radiation biology in live cells and animals at 

very high resolution.  

 

Figure 2: Optical redox ratio (ORR) is sensitive to changes in reactive oxygen species (ROS) (a) Representative images 

and (b) quantification of redox ratio and MitoSOX, a fluorescent reporter of mitochondrial ROS illustrates significant differences 

before and 24 hours after treatment with YC-1.  

 

B. Lifetime imaging 

Fluorescent lifetime imaging microscopy (FLIM) measures the average time that a molecule spends in 

an excited state prior to emission. One significant advantage of FLIM over measurements of 

endogenous autofluorescence is that lifetime is independent of the fluorophore concentration. The 

lifetime of fluorophores, such as NADH and FAD depend on whether they are free or bound to a protein 

complex. For instance, the lifetime of NADH autofluorescence is shorter (~0.4 ns) when free and longer 

(~1 ns) when bound to protein complexes, such as malate dehydrogenase and lactate dehydrogenase 

while the lifetime of FAD autofluorescence is longer when free and shorter when bound to protein 

complexes, such as alpha-lipoamide dehydrogenase (42–46). By quantifying the ratio of free to protein-

bound NADH and their respective lifetimes, FLIM can be used to identify the metabolic state of cells and 

tissue (42,47–49). A recent study investigated the application of FLIM in radiation research (50,51). 

Campos et al. first treated human cancer cells and normal oral keratinocytes (NOK) with 10 Gy of 

radiation and recorded the resultant metabolic changes using FLIM. As early as 30 minutes post 
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treatment, there was a significant decrease in NADH lifetime of cancer cells while there was no change 

in NADH lifetime of the NOK cells.  

C. Mitochondrial organization 

In addition to being the powerhouse of the cell, mitochondria are also critical to cell death pathways. The 

energy demands of a cell are maintained by a delicate balance between the rate of oxidative 

phosphorylation, tricarboxylic acid (TCA) cycle activity, structural changes to the mitochondrial network, 

and mitochondrial biogenesis. Mitochondria are continuously changing their organization through fission 

and fusion allowing for adaptation to different functional demands (52,53). This dynamic mitochondrial 

network is sensitive to cell differentiation as well as oxygen and nutrient availability (30,54–56). Fission 

is critical for mitochondrial biogenesis, cell division, and mitochondrial autophagy and manifests as 

numerous mitochondrial fragments. Fusion helps to maintain functionality through the sharing of 

proteins, genetic material, and metabolites and leads to the generation of interconnected mitochondria 

(57). Alterations to fusion-fission dynamics and hence the mitochondrial organization have been shown 

to be associated with several pathological conditions, including hypoxia-reoxygenation injury (58–60). 

Hypoxia-reoxygenation has been shown to result in a decrease in mitochondrial fusion and subsequent 

changes in length and shape of mitochondria (61). Targeting the changes in mitochondrial fusion and 

fission has been shown to protect cells from the effects of hypoxia-reoxygenation injury (62,63). These 

studies of changes to mitochondrial structure in response to hypoxia-reoxygenation injury are highly 

relevant to radiation therapy due to the similarity in mechanisms generating oxidative stress. Radiation 

therapy leads to reoxygenation of previously hypoxic cells, thereby triggering a large production of 

mitochondrial ROS. The NADH autofluorescence images, which are used to calculate the optical redox 

ratio, can also be used to evaluate mitochondrial organization and specifically, fission and fusion. 

Specifically, Fourier-based power spectral density analysis of NADH autofluorescence images has been 

used to compute a metric termed mitochondrial clustering to quantify mitochondrial organization (30,64). 

An increase in mitochondrial clustering was found during periods of increased glucose catabolism, such 

as hypoxia, resulting in more fragmented or fissioned mitochondria. On the other hand, glutaminolysis 

was found to be associated with a decrease in mitochondrial clustering or more networked mitochondria 
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(fusion). The same method was used to investigate mitochondrial structural dynamics in human skin in 

vivo (65). A recent study used an improved image processing method in the spatial domain to rapidly 

quantify the local fractal dimension (FD) within individual cells in response to radiation therapy (66). This 

analysis found a significant decrease in FD (or an increase in mitochondrial clustering) of radiation-

resistant lung cancer cells between 12- and 24-hours post-radiation compared with pre-radiation 

measurements. There were no significant changes in the radiation-sensitive cell population in response 

to radiation at any time point (Fig 3). The increased mitochondrial clustering observed here is consistent 

with the decreased optical redox ratio and increased glucose catabolism observed by Alhallak et al. 

using the same cancer cells (Fig 1) (38,39).    

 

 

 

 

 

 

 

 

 

Figure 3: Quantifying mitochondrial organization from NADH autofluorescence. (a) Representative FD maps 

corresponding to lung cancer cells of both control and radiation-resistant groups. The images were obtained at time 

periods of 1- and 24-hours post radiation. (b) Summary data demonstrates significant temporal changes in the 

mitochondrial organization of radiation resistant cell line at 24 hours (Reproduced with permission from (66)).  

III. Optical Spectroscopy  

Optical spectroscopy is a fiber-based approach using non-ionizing radiation to non-destructively and 

non-invasively examine tissue of interest. Their low cost and small footprint make “optical spectroscopy 

methods” an excellent tool for conducting pilot studies in animal models of cancer and in humans. Since 

optical measurements using the fiber optic probe are non-invasive or minimally invasive (depending on 

the tissue site), the same subject can be monitored multiple times a day or over weeks to evaluate 

response to treatment. In addition to its obvious benefits as a clinical adjunct to existing clinical imaging 
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modalities that cannot be used every day on patients, optical spectroscopy obviates the need for 

sacrificing large numbers of animals at several time points in longitudinal studies to evaluate treatment 

response.  Here, we describe two specific techniques – diffuse reflectance and Raman spectroscopy - 

that have demonstrated potential for monitoring radiation response in tumors and studying the 

differences between resistant and sensitive tumors.  

A. Diffuse Reflectance Spectroscopy   

Diffuse reflectance or elastic scattering spectroscopy is an optical fiber- based technique for non-

invasive interrogation of tissue. DRS uses optical fibers to deliver low-power non-ionizing light from a 

broad-band light source (400-650 nm) to tissue surface. The incident weak light undergoes multiple 

scattering and absorption events and is remitted back to the tissue surface as diffusely reflected light. 

Since the collected light has interacted non-destructively with the tissue, it provides a wealth of 

quantitative information about absorption and scattering, a combination of which is used for tissue 

pathology. Using models of light-tissue interaction that simulate the travel of photons within a scattering 

and absorbing medium, it is possible to quantify the diffusely reflected light and extract meaningful 

information related to tissue scattering as well as prominent tissue absorbers, such as oxygenated and 

deoxygenated hemoglobin (67–72). By exploiting the differences in light absorption spectra of 

oxygenated and deoxygenated hemoglobin, we can quantify the vascular oxygen content in tissue and 

obtain volume-averaged estimates of hemoglobin concentration. Measurements of vascular 

oxygenation have been shown to be concordant with microelectrode-based determinations of tissue 

oxygenation (73,74) and immunohistochemical measurements of tumor hypoxia (75). Cell nuclei, 

mitochondria, and collagen are among the major contributors to light scattering in tissue and are known 

to undergo significant changes during disease progression (76). Taking advantage of these non-invasive 

and quantitative measurements, DRS has been used in several studies, with an eye toward clinical 

translation, for early cancer detection (77–79), prediction of response to therapy (80–82), and evaluation 

of tumor surgical margins (83). Given the importance of tumor oxygenation in radiation therapy, DRS 

can provide a non-invasive approach to quantify the biological response to radiation. Vishwanath et al. 

used DRS to longitudinally monitor tumor oxygenation and determine whether vascular oxygenation can 



11 
 

identify treatment outcome earlier than tumor growth assays in a murine model of head and neck cancer 

treated with single dose of 39 Gy radiation. As early as five days post-radiation, radiation-responsive 

tumors exhibited faster and greater increase in vascular oxygenation compared with non-responding 

tumors (84). A more recent study from the same group found similar large increases in vascular 

oxygenation in both locally controlled and locally recurring tumors when the radiation dosage was split 

into five daily doses instead of a single dose. Additionally, the study also found that within the locally 

recurring group of tumors, a faster increase in reoxygenation during therapy was negatively correlated 

with recurrence time (85). Diaz et al. recently used DRS to study short-term changes in vascular oxygen 

saturation and hemoglobin concentration in radiation-sensitive and resistant A549 tumors treated with 4 

dose fractions of 2 Gy (86), and also found significantly higher reoxygenation in radiation-resistant 

tumors 24 and 48 hours after treatment (Fig 4). 

 

Figure 4: Changes in vascular oxygen saturation across all four doses of radiation for radiation-sensitive (a) and 

resistant tumors (b). Each radiation dose presents the mean sO2 value for the following time points: 0h, immediately 

after, 24h, and 48h post radiation. Data shown as mean ± SEM. * indicates p<0.05 and ** p<0.01.  

 

This study was the first to report changes in reoxygenation kinetics measured in tumors which 

were established from a matched model of radiation-resistance. A matched model of radiation-

resistance allows direct comparison of resistance-related features due to similar genetic background.  

While further studies are necessary to fully understand the mechanism of reoxygenation in the radiation-

resistant tumors, results from other studies conducted using the same matched model of radiation 

resistance hint at the possibility of reduced oxygen consumption as a possible reason for the appearance 
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of increased vascular oxygenation within the radiation-resistant tumors. Although the studies by Hu et 

al. (85) and Diaz et al. (86) used different cell lines in formation of tumor xenografts and treated them 

with different doses of radiation, they both showed that radiation-resistant tumors reoxygenate in 

response to radiation. These results are in agreement with a clinical study by Dietz et al. that used 

oxygen-sensing microelectrodes to measure pO2 in the cervical lymph nodes of head and neck cancer 

patients and found that increased reoxygenation correlated with poor radiation response (87). This 

suggests that DRS is a sensitive detector of reoxygenation and can provide valuable information about 

radiation response.  

B. Raman Spectroscopy  

Raman spectroscopy offers the ability to probe biomolecular changes and visualize the complex 

molecular heterogeneity directly from cells and tissues (88,89). Spontaneous Raman spectroscopy 

relies on the inelastic scattering of light, arising from its interactions with the biological specimen, to 

quantify the unique vibrational modes of molecules within its native context (90,91). This exquisite 

chemical specificity of Raman spectroscopy has been exploited primarily within the realm of early 

detection of cancers of the oral cavity (92,93), breast (94–100), cervix (101–103), and the brain (90,104).  

Recent studies have shown the presence of radiation-induced alterations in Raman spectral 

features and biochemical changes in cell lines with varying radiosensitivity (105,106). The radiation 

response of single living cells has been studied to demonstrate dose-dependent changes in spectral 

features using principle component analysis (107,108). In a series of human cancer cell lines treated 

with clinically relevant doses of radiation (<10 Gy), Matthews et al. found radiation-induced accumulation 

of intracellular glycogen in relatively radiation-resistant breast and lung cancer cell lines (109). Recent 

Raman spectroscopic studies on ex vivo lung and breast tumor xenografts have also identified elevated 

levels of glycogen in tumors exposed to a single, high radiation dose of 15 Gy (110,111). These findings 

are of interest because separate non-imaging studies have identified a critical role for glycogen synthase 

kinase (GSK-3β) in the development of radiation resistance (112).  

Radiation-induced changes in Raman spectra of excised cervical tumors have been shown to 

differentiate radiation responders from non-responders while pretreatment Raman spectra were 
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incapable of predicting radiation response (113). In a recent study, Paidi et al. investigated whether 

radiation induced biomolecular changes detected by Raman spectroscopy could differentiate between 

radiation-resistant and sensitive tumors (114). They treated radiation-resistant and sensitive human 

head and neck (HN) and lung tumor xenografts with 2 Gy of radiation twice weekly for two weeks and 

conducted chemometric analysis using multivariate curve resolution-alternating least squares (MCR-

ALS) to uncover biomolecular changes in the tumor microenvironment. MCR-ALS recovers the pure 

spectral profiles of the chemical constituents of the tissue specimen without a priori information of the 

composition of the specimen (115). Paidi et al. found an increase in lipid, collagen, and glycogen (lung 

only) levels for both sensitive and resistant lung and head neck tumors that were treated with radiation, 

with a much larger increase in the lipid-rich and collagen-rich signatures in the radiation-sensitive tumors 

(Fig 5) (114). Comparison of the treated tumors alone (RS-XT vs. RR-XT) pointed to a significantly 

higher collagen content in the sensitive tumors compared to their resistant counterparts in both lung and 

HN models, which could be attributed to radiation-induced fibrosis (116,117). The lipid results are 

intriguing due to other studies that have found elevated levels of fatty acid synthase (FASN) in radiation-

resistant cells (23). These findings demonstrate that clear spectral distinctions exist between radiation-

resistant and sensitive tumors, and that these distinctions are consistent with recent work seeking to 

uncover the molecular mechanisms of radiation resistance. 
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Figure 5: Quantitative MCR-ALS analysis of Raman spectra. (a & b), Boxplots of normalized scores of lipid-rich, 

collagen-rich, and glycogen-rich MCR-ALS loadings showing radiation-induced differences in sensitive lung tumors 

(A549-NT vs. A549-XT) (NT: not treated, XT: X-ray treated) (a) and radiation-induced differences in resistant lung 

tumors (rA549-NT vs. rA549-XT) (b). (c & d), Boxplots of normalized scores of lipid-rich and collagen-rich MCR-ALS 

loadings showing radiation-induced differences in sensitive head and neck tumors (UM-SCC-22B-NT vs. UM-SCC-

22B-XT) (c) and radiation-induced differences in resistant head and neck tumors (UM-SCC-47-NT vs. UM-SCC-47-XT) 

(d). The effect size (r), characterizing magnitude of differences between groups, is provided for each comparison. 
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IV. Discussion and future direction  

Table 1: Comparison of optical microscopy and spectroscopy techniques for investigating radiation biology 

Technology 
Source of 
contrast 

Quantitative 
endpoints 

Advantages Limitations 

Diffuse 
reflectance 

spectroscopy 

Absorption & 
elastic scattering 

Vascular oxygenation, 
vessel diameter, 

absorber concentration, 
tissue scattering 

Non-invasive, low 
cost, portable 

Limited penetration 
depth (1-2 mm); 

volume-averaged 
information 

Raman 
spectroscopy 

Raman (in-elastic) 
scattering 

Contributions of 
individual molecular 

species (tissue-
dependent) 

High 
biomolecular 

specificity  

Complex data analysis 
to extract meaningful 
biological information; 

limited penetration 
depth (1-2 mm) 

Non-linear 
optical 

microscopy 

Autofluorescence 
from NADH and 

FAD 

Cellular redox state and 
local fractal dimension 

High resolution, 
minimal out-of-

focus 
photodamage 

High cost, limited 
portability for clinical 

applications 
Fluorescence 

lifetime 

Cellular redox state and 
protein-binding of 

NADH and FAD (bound 
vs. free) 

Independent of 
fluorophore 

concentration 

 

The use of optical microscopy and diffuse optical spectroscopy presents exciting avenues for exploring 

radiation-induced changes across different length scales in cells and tissue. The technologies discussed 

in this review paper (summarized in Table 1) – although limited to superficial layers - are sensitive to 

two key hallmarks of tumors that play a critical role in radiation resistance – tumor hypoxia and metabolic 

reprogramming. While two-photon excited fluorescence from NADH and FAD can provide valuable 

information about specific metabolic pathways preferred by cells in response to radiation and the effect 

of such preferences on radiation resistance, Raman spectroscopy (or microscopy) can shed light on 

hitherto unknown biomolecular species in the tumor microenvironment that play a role in radiation 

resistance. Such studies have the potential to lead to new technologies centered on specific biomarkers 

for continuous monitoring during radiation treatment. Additionally, these studies can lead to the 

identification of novel therapeutic targets that can be exploited to possibly reverse radiation resistance. 

While optical spectroscopy has been at the forefront of optical technologies attempting to break into the 

clinical workflow, more work is required to establish baseline optical endpoints and the accuracy and 

reproducibility of these measurements. In addition, it will be necessary to associate these changes with 

specific outcomes corresponding to treatment response or failure. Optical spectroscopy has faced 

challenges with clinical translation, with attempts at early detection of cancer, discrimination between 
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benign and malignant cancer, and demarcation of surgical margins not acquiring enough traction. The 

principal concerns in these clinical workflows was the perception that optical spectroscopy could never 

replace pathology, which is currently standard-of-care for these clinical problems. A possible advantage 

of advancing optical spectroscopy for measuring tumor response to therapy is the complete lack of any 

imaging technology or treatment biopsies that currently evaluate treatment response during the 

treatment regimen. While other imaging modalities such as optoacoustic imaging (OAI) can measure 

tumor oxygenation (118,119), they have not yet been used in the context of radiation resistance. If 

decisions to escalate or de-escalate treatment for exceptional treatment responders or non-responders 

are to be made based on endpoints provided by optical techniques, near-perfect identification of 

treatment response within the first 1-2 weeks will be necessary to effect meaningful change. Tromberg 

and colleagues have demonstrated the ability of optical spectroscopy to provide an early indicator of 

chemotherapy response in breast cancer (80–82). Recent work has also significantly advanced the 

translation of nonlinear optical microscopy from a laboratory-only method to the clinic for imaging the 

skin (120). The ability to translate two-photon excited autofluorescence from NADH and FAD to clinically 

compatible technologies, such as fiber optic probes could allow simultaneous determination of cellular 

redox state and mitochondrial fractal dimension in vivo. When combined with other information from 

DRS and RS, such as vascular oxygenation and biomolecular content, optical techniques could provide 

a powerful addition to a clinical workflow that could greatly benefit patients by improving response rates 

and quality of life.  
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