
Automatic Irregularity-Aware Fine-Grained
Workload Partitioning on Integrated Architectures

Feng Zhang , Jidong Zhai , Bo Wu, Bingsheng He, Wenguang Chen, and Xiaoyong Du

Abstract—The integrated architecture that features both CPU and GPU on the same die is an emerging and promising architecture for

fine-grained CPU-GPU collaboration. However, the integration also brings forward several programming and system optimization

challenges, especially for irregular applications such as graph processing. The complex interplay between heterogeneity and

irregularity leads to very low processor utilization of running irregular applications on integrated architectures. Furthermore,

fine-grained co-processing on the CPU and GPU is still an open problem. Particularly, in this paper, we show that the previous

workload partitioning for CPU-GPU co-processing is far from ideal in terms of resource utilization and performance. To solve this

problem, we propose a system software called FinePar, which considers architectural differences of the CPU and GPU and leverages

fine-grained collaboration enabled by integrated architectures. Through irregularity-aware performance modeling and online

auto-tuning, FinePar partitions irregular workloads and achieves both device-level and thread-level load balance. We evaluate FinePar

with eight irregular applications in graphs and sparse matrices on two integrated architectures and compare it with state-of-the-art

partitioning approaches. Results show that FinePar demonstrates better resource utilization and achieves an average of 1.6X speedup

over the optimal coarse-grained partitioning method.

Index Terms—Heterogeneous computing, integrated architecture, irregular application, workload partitioning

Ç

1 INTRODUCTION

IN recent years, GPUs have made big strides in through-
put-oriented computing thanks to the massively parallel

architecture. GPUs have been used as a powerful accelera-
tor for many database applications, including relational
databases [1], [2], [3], [4], [5], [6] and graph processing [7],
[8], [9], [10], [11], [12]. Moreover, integrated architectures cou-
pling the CPU and GPU on the same die show great prom-
ise to bring the synergy of CPU and GPU to a significantly
higher level. The CPU and GPU share the same physical
memory, which eliminates the data transfer bottleneck via
PCI-e bus in the discrete architecture and eases heteroge-
neous programming. Therefore, chip vendors have started
to release integrated architectures, exemplified by AMD’s
Accelerated Processing Units (APUs), Intel’s Ivy Bridge pro-
cessor, and Nvidia’s Denver architecture.

Integrated architectures have enabled a series of perfor-
mance optimization opportunities over discrete architectures.
First, sharedmemorymakes it possible for different devices to

access the same memory space simultaneously. Some
integrated architectures have shared cache and embedded
DRAM [13], which makes the communication between devi-
cesmore efficient. Second, the co-processing between the CPU
and theGPU can bemademore fine-grained. The fine-grained
cooperation needs to consider architectural differences bet-
ween the CPUandGPU for optimal performance. Specifically,
the GPU has a large number of processing cores but adopts a
lockstep execution model, which forces the threads in the
sameSingle InstructionMultipleData (SIMD) group to always
execute the same instruction. Hence, load imbalance among
these threads greatly devastates performance because the per-
formance is limited by the slowest thread. In contrast, the
CPU has fewer, yet more powerful cores, and its threading
model ismore flexible.

Previous work tried to leverage the integrated architec-
ture to accelerate irregular applications [14], [15], [16], [17],
[18], [19], [20], [21], [22]. However, the interplay between het-
erogeneity and irregularity in integrated architectures poses
severe technical challenges in the effectiveness of workload
partitioning, which existing studies do not well address.
First, many previous studies [14], [15], [16], [17], [19] only
perform coarse-grained workload partitioning, without con-
sidering the fine-grained collaboration between the CPU and
GPU. For example, Delorme et al. [19] and Pandit et al. [15]
break the workload into many jobs. Each job typically oper-
ates on adjacent data and is processed by a work-group (in
OpenCL terminology). The work-groups running on the
GPU process the jobs from the beginning to the end, while
those on the CPU process the jobs in the reverse direction. A
runtime makes sure that the whole workload is processed
with good load balance. Kaleem et al. [16] addressed more

� F. Zhang and X. Du are with the Key Laboratory of Data Engineering and
Knowledge Engineering (MOE), and the School of Information, Renmin
University of China, Beijing 100872, China.
E-mail: {fengzhang, duyong}@ruc.edu.cn.

� J. Zhai and W. Chen are with the Department of Computer Science and
Technology, Tsinghua University, Beijing 100084, China.
E-mail: {zhaijidong, cwg}@tsinghua.edu.cn.

� B. Wu is with the Department of Computer Science, Colorado School of
Mines, Golden, CO 80401 USA. E-mail: bwu@mines.edu.

� B. He is with the School of Computing, National University of Singapore,
Singapore 119077. E-mail: hebs@comp.nus.edu.sg.

Manuscript received 5 Aug. 2018; revised 19 Aug. 2019; accepted 1 Sept.
2019. Date of publication 10 Sept. 2019; date of current version 3 Feb. 2021.
(Corresponding authors: Jidong Zhai and Xiaoyong Du.)
Recommended for acceptance by Y. Zhang.
Digital Object Identifier no. 10.1109/TKDE.2019.2940184

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 3, MARCH 2021 867

1041-4347� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Renmin University. Downloaded on August 24,2021 at 14:22:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1983-7321
https://orcid.org/0000-0003-1983-7321
https://orcid.org/0000-0003-1983-7321
https://orcid.org/0000-0003-1983-7321
https://orcid.org/0000-0003-1983-7321
https://orcid.org/0000-0002-7656-6428
https://orcid.org/0000-0002-7656-6428
https://orcid.org/0000-0002-7656-6428
https://orcid.org/0000-0002-7656-6428
https://orcid.org/0000-0002-7656-6428
mailto:
mailto:
mailto:
mailto:

complicated applications and dynamically assigned the jobs
to processors through lightweight online profiling. Second,
although some studies [18], [20], [21], [22] use fine-grained
workload partitioning, they are applied to specific applica-
tions only such as hash join in databases [21] and MapRe-
duce [20]. They do not necessarily offer an automatic or
general solution to irregular applications.

In this study, we find that even if such coarse-grained
workload partitioning approaches provide optimal load bal-
ance between the CPU and GPU, the computational resour-
ces may still be under-utilized. For instance, in sparse
matrix vector multiplication (SpMV), a job involves the
processing of tens or hundreds of adjacent rows. The num-
bers of non-zero elements in those rows may vary signifi-
cantly. As a result, if a group of SIMD threads on the GPU
process this job, the thread that processes the row with the
most non-zero elements slows down all the other threads.
Coarse-grained partitioning groups adjacent data (e.g., adja-
cent rows in SpMV) as a unit for partitioning and hence
ignores the irregularity inside each unit. The shared mem-
ory on integrated architectures provides an opportunity for
the CPU and GPU to co-process data in a fine-grained man-
ner to tackle the problem of resource underutilization.

To fully exploit the benefits of integrated architectures,
we propose a fine-grainedworkload partitioning framework
for irregular applications, called FinePar. The basic idea is
that we automatically identify the irregular data that intro-
duces load imbalance for GPU threads and assign them to
the CPU, while the GPU processes the remaining relatively
regular data and enjoys higher performance. To realize
this idea, we need to tackle multiple technical issues. First,
the partitioning should be transparent to avoid tedious pro-
gramming burden on users. Second, the framework should
introduce no offline pre-processing for practical use, as the
input data is typically unavailable until runtime. Third, the
partitioning should introduce the minimum runtime over-
head. A preliminary exploration has been published in [23],
and this paper provides more optimizations, experiments,
and implementation details of FinePar, including a more
fine-grained partitioning optimization, an adaptive parti-
tioning method for dynamic workloads, and a method to
process large datasets.

Our framework employs the following key techniques: 1)
We design a program transformation to automatically trans-
form the given OpenCL program to enable fine-grained par-
titioning; 2) We build performance models to predict the
performance of the CPU and GPU given any specific fine-
grained partitioning; 3) We design an auto-tuner to guide
the fine-grained workload partitioning for load balancing
between the CPU and GPU. In addition, we also integrate a
series of optimization strategies into FinePar.

As case studies, we focus on sparsematrix and graph proc-
essing applications. We evaluate FinePar with eight irregular
applications for typical input matrices and compare it with
four state-of-the-art workload partitioning methods on two
integrated architectures. Results show that FinePar demon-
strates better resource utilization and achieves an average of
1.6X speedup over the optimal coarse-grained partitioning
method. Meanwhile, FinePar is very lightweight, only intro-
ducing less than 6 percent space overhead and 3 percent time
overhead. In summary, we make the following contributions
in thiswork:

� We propose a fine-grained workload partitioning
that takes advantage of the special features of inte-
grated architectures.

� We propose irregularity-aware performance model-
ing that takes architectural differences between the
CPU and GPU into consideration.

� We integrate those techniques into the software
framework, called FinePar, which automatically par-
titions the workload for irregular applications with
well controlled space and time overhead.

� We further integrate a series of optimization strate-
gies into FinePar, including a more fine-grained
partitioning method, an adaptive partitioning for
dynamic workloads, and partitioning techniques for
large dataset.

� We evaluate FinePar on a set of irregular applica-
tions and inputs to demonstrate their benefits over
state-of-the-art approaches.

The remainder of this paper is organized as follows.
Section 2 reviews integrated architectures and motivates
our work. Section 5.1 describes each component of FinePar
in details. Section 4 presents the optimizations. Section 5
shows the evaluation results. Section 6 discusses related
work. Section 7 concludes the paper.

2 BACKGROUND AND MOTIVATION

2.1 Integrated Architecture and Execution Models

We focus on the architecture that integrates both the CPU
and GPU on the same chip as illustrated in Fig. 1. The most
beneficial feature of such architecture is the shared physical
memory accessible to both the CPU and GPU, which ena-
bles fine-grained collaboration between the two processors.
Unlike in discrete architectures, the program running on
integrated architectures can leverage both devices to accel-
erate the processing of data in shared memory.

A commonly used programming model for general-
purpose computing on integrated architectures is OpenCL,
as it is supported by both the CPU and GPU. The main com-
putation of an OpenCL program happens in the kernel func-
tion. When a kernel is launched on a device, the OpenCL
runtime creates a computation domain of many work-items
(i.e., threads), each executing the same kernel function. The
computation domain is composed of many work-groups;
the work-items belonging to the same work-group can syn-
chronize with each other.

The execution models on the CPU and GPU are different.
When a work-group runs on the GPU, its work-items are
grouped into wavefronts, each of which runs on the SIMD

Fig. 1. A general view of the integrated CPU/GPU architecture.

868 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 3, MARCH 2021

Authorized licensed use limited to: Renmin University. Downloaded on August 24,2021 at 14:22:41 UTC from IEEE Xplore. Restrictions apply.

unit in lockstep. The CPU, on the other hand, creates a
thread to perform computation for the whole work-group.
When the workload of the work-group is regular, meaning
that each item processes the same amount of data, the per-
formance of the GPU is typically several times larger than
that of the CPU because of the efficiency of SIMD execution.

The GPU’s performance, however, may degrade signifi-
cantly when processing irregular applications. We explain
the reason through an example depicted in Fig. 2. The kernel
function performs Sparse Matrix-Vector Multiplication
(SpMV)with eachwork-itemprocessing one row.We assume
thematrix is stored in Compressed Sparse Row (CSR) format.

Sparse matrices typically have rather irregular distribu-
tion of the non-zero elements. As shown in Fig. 2a, the first
row contains six non-zero elements, while the other three
rows only contain two. Fig. 2b shows the execution on the
GPU. The kernel launch creates four work-items in a wave-
front to process the data. The consequence is that the last
threework-items need towait for the first work-item to finish
processing all the non-zero elements, wasting 50 percent of
the computational resources. As shown in Fig. 2c, if a two-
core CPU processes the same data, it may create two threads,
with the first to process the first row and the second to pro-
cess the other rows. The CPU threads do not need to wait for
each other, as they do not execute in the SIMD fashion.

To demonstrate the sensitivity to irregularity for the CPU
and GPU on real-world workloads, we run SpMV on the
CPU and GPU using 80 different sparse matrices. For each
matrix, we treat the number of non-zero elements in a row
as a random variable and calculate its variance. Fig. 3 shows
the performance trend when the variance of input matrices
increases. We quantify performance as the number of non-
zero elements processed per second. After normalization
over the input that yields the best performance, we observe
that the GPU’s performance drops quickly with the increase
of variance, while the CPU’s performance trend does not
demonstrate a clear impact from the variance.

Fig. 4 shows the GPU utilization and memory bandwidth
trends with the increase of variance. The statistics are
obtained through the profiler from AMD’s CodeXL. Fig. 4a
shows the percentage of active threads in a wavefront.
Larger variances lead to more serious load imbalance for

threads in the same wavefront, and hence lower GPU core
utilization. Fig. 4b shows that because of the workload
imbalance, the memory bandwidth is not fully utilized
when the variance is high. The results serve as a strong
motivation to consider the devices’ sensitivity to irregularity
when partitioning workloads.

2.2 Understanding the Inefficiency of
Coarse-Grained Workload Partitioning

Previous work [14], [15], [16], [17] all leverages some form of
coarse-grained partitioning to optimize load balance
between the CPU and GPU. In the context of sparse matrix
processing using OpenCL, those approaches group many
adjacent rows as a task to assign to a work group, which
serves as a unit for workload partitioning. We show in
Fig. 5 that even if coarse-grained partitioning achieves opti-
mal load balance, the computational resources may still get
under-utilized. The input graph has 8 vertices with varied
out-going degrees. Represented as an adjacency matrix, the
irregular structure leads to different numbers of non-zero
elements in the rows. We assume that two threads run on
the CPU and a wavefront of four threads runs on the GPU.
We further assume that a CPU thread is 1.5X more powerful
than a GPU core, meaning that a GPU thread needs 50 per-
cent extra time to process the same number of non-zero ele-
ments compared to a CPU thread.

If we want to achieve load balance between the CPU and
GPU, we can group the first four rows as a job to allocate to
the CPU (shown as coarse-grained partitioning), with the
remaining four rows to form a job for the GPU to process.
As Fig. 5 shows, the slowest CPU thread (the first one) fin-
ishes at the same time as the slowest GPU thread (the first
one). However, the other three GPU threads are seriously
under-utilized due to the lockstep execution model. Hence,
we conclude that coarse-grained partitioning has two pit-
falls. First, it does not consider the irregularity of the data
input (in this case demonstrated by the non-uniform distri-
bution of the non-zero elements). Second, it does not fully
exploit the capability of the integrated architecture to enable
fine-grained collaboration between the CPU and GPU (dem-
onstrated by only grouping adjacent rows into jobs in the
example).

Fig. 2. An example to demonstrate the performance features of the CPU and GPU to execute irregular application.

Fig. 3. The normalized performance of the CPU and GPU given input
matrices with different degrees of irregularity.

Fig. 4. Core utilization and memory bandwidth of the GPU given input
matrices with different degrees of irregularity.

ZHANG ET AL.: AUTOMATIC IRREGULARITY-AWARE FINE-GRAINED WORKLOAD PARTITIONING ON INTEGRATED ARCHITECTURES 869

Authorized licensed use limited to: Renmin University. Downloaded on August 24,2021 at 14:22:41 UTC from IEEE Xplore. Restrictions apply.

Fig. 5 also demonstrates the performance gain from fine-
grained partitioning. The new partitioning assigns rows 0
and 4 to the CPU threads and the remaining rows to the
GPU. Note that the processing time of row 3 on the CPU
is two thirds of that on the GPU due to the CPU’s faster
single-core performance. For the same reason, the execution
time of rows 1, 2, and 3 is lengthened by 50 percent on the
GPU. As in coarse-grained partitioning, the load balance
remains optimal because the CPU and GPU finish process-
ing at the same time. However, fine-grained partitioning
improves the overall performance by 1.5X through better
utilization of the GPU resources.

2.3 Demand for an Automatic Fine-Grained
Partitioning Framework

The idea of fine-grained workload partitioning is simple,
but manually realizing it places a non-trivial burden on pro-
grammers. While coarse-grained workload partitioning dis-
tributes workload to the GPU and CPU for load balance,
fine-grained workload partitioning also needs to select
irregular data for CPU processing to improve the perfor-
mance of the GPU, which introduces several challenges.
First, the irregularity of the input data is unknown until
runtime. Second, the low-level load balance for the GPU
threads and the high-level load balance between the CPU
and GPU are both critical for performance. Third, the run-
time cost incurred by the partitioning should be well

controlled not to outweigh the benefit. To address the chal-
lenges, we design and implement FinePar by following four
guidelines.

� FinePar should automatically transform the input
program to enable fine-grained partitioning. The
user only needs to focus on the functionality of the
program instead of the partitioning for optimized
performance.

� FinePar should partition the relatively regular work-
load to the GPU and the remaining workload to the
CPU and still guarantee good load balance between
the two processors.

� FinePar should assume no prior knowledge of the
irregularity distribution in the input and identify
various input features through online tuning.

� FinePar’s runtime optimization should only incur
marginal time and space overhead.

3 FINEPAR FRAMEWORK

3.1 Overview

Fig. 6 shows the overview of FinePar. To use the system, the
only job for the user is to feed into FinePar the target
OpenCL program and a set of representative inputs to train
the framework for optimized performance. Once the train-
ing is done, FinePar automatically partitions the given input
during runtime to optimize the utilization of the integrated
architecture.

The FinePar framework consists of three major compo-
nents, transformation engine, performance modeling, and
auto-tuner. The FinePar transformation engine and the per-
formance modeling components are used in the offline
stage. The transformation engine transforms the input
OpenCL program to enable fine-grained partitioning. More
specifically, the transformed code takes a parameter as the
irregularity threshold (to be detailed in Section 3.2). The
more irregular part of the data and the less irregular part
are dispatched to the CPU and GPU, respectively. The

Fig. 5. An example to show the benefits from fine-grained partitioning.

Fig. 6. The overview of FinePar.

870 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 3, MARCH 2021

Authorized licensed use limited to: Renmin University. Downloaded on August 24,2021 at 14:22:41 UTC from IEEE Xplore. Restrictions apply.

performance modeling component takes both architecture
differences and data irregularity into consideration. It trains
itself with the provided training data and builds matrix
category-specific performance models for both the CPU and
GPU.

The auto-tuner component is active during runtime and
completes two tasks. First, it determines the performance
model to use based on input sampling. Second, it searches
for a partitioning threshold based on the performance
model and input features.

3.2 Code Transformation

The goal of the transformation engine is to transform the
input irregular OpenCL program to enable workload parti-
tioning in a fine-grained manner. The FinePar framework
can also target coarse-grained partitioning for performance
comparison. We present the flowchart of code transforma-
tion engine in Fig. 7. The transformation engine consists of
two main modules: analysis module and transformation
module. Analysis module is used to identify computation
kernels and related parameters in OpenCL programs, while
transformation module is in charge of performing actual
code transformation. OpenCL programs usually include
two parts: management part (host.c in Fig. 7), which con-
tains device and kernel calling information, and computa-
tion kernel part (compute.cl in Fig. 7), which defines
computation kernels. Our transformation engine manipula-
tes two parts separately. Analysis module only parses the
management part and identifies main kernels and parame-
ters. Transformation module changes code in both manage-
ment part and computation kernel part, enabling the fine-
grained CPU/GPU co-running. Specifically, it initializes
key data structures, launches both CPU and GPU kernels,
and finally releases resource in the management part, as
well as redefines computation kernels in computation part,
shown in Fig. 7. Note that FinePar handles inputs that can
be represented in the CSR format or adjacency lists. In case
of more complex situations, FinePar allows users to provide
the kernels instead of directly transforming the kernels.
More details are discussed in Section 4.4.

Fig. 8 presents the basic ideas of the transformations
using sparse matrix processing as an example. Fig. 8a shows

the pseudocode of the original program. The host code initi-
alizes the sparse matrix M, and invokes a kernel function to
process it. Each work-item executes the same kernel func-
tion, which processes the corresponding row according to
its global ID. Note that when launching the kernel, the host
code needs to specify whether to use the CPU or GPU, but
not both.

To utilize both the CPU and GPU resources for coarse-
grained partitioning, the framework only needs to slightly
change the program as shown in Fig. 8b. On the host
code part, FinePar inserts a function getCoraseGrained
PartitioningThreshold (detailed in Section 5.2), which ana-
lyzes the matrix to return a partitioning parameter Tc. Logi-
cally, the framework breaks the input matrix M with N
rows into two parts, with the CPU processing the first part
(i.e., the first Tc rows) and the GPU processing the second
part (i.e., the last N � Tc rows). The kernel function for the
CPU is the same as that in the original program, but its
launch should only create Tc work-items. The GPU kernel is

Fig. 7. Illustration of code transformation engine.

Fig. 8. Code transformation for coarse-grained and fine-grained
partitioning.

ZHANG ET AL.: AUTOMATIC IRREGULARITY-AWARE FINE-GRAINED WORKLOAD PARTITIONING ON INTEGRATED ARCHITECTURES 871

Authorized licensed use limited to: Renmin University. Downloaded on August 24,2021 at 14:22:41 UTC from IEEE Xplore. Restrictions apply.

different from the original kernel because it should start the
processing from the Tcth row with N � Tc work-items. In
the case of coarse-grained partitioning in Fig. 5, the CPU
processes the first 4 rows, and hence the value for Tc is 4. By
adding it to the global ID of all work-items of the GPU ker-
nel, the GPU will work on the last four rows.

Fig. 8c shows the transformed code for fine-grained parti-
tioning. The host counts for each row the number of non-
zero elements. If the number is larger than the threshold Tf

returned by getFineGrainedPartitioningThreshold, the row
is appended to the queue cpuRowMap, indicating its process-
ing on the CPU. Otherwise, the row should be processed by
the GPU. In the kernel functions, the work-items running
on the CPU and GPU figure out the rows to work on through
the row IDs recorded in cpuRowMap and gpuRowMap,
respectively. Similar as in the transformation for coarse-
grained partitioning, the number of work-items to create for
each kernel launch depends on the number of rows it pro-
cesses. The function getFineGrainedPartitioningThreshold
needs sophisticated performance models and the input fea-
tures to determine Tf for both load balance and optimized
GPU utilization. We delay its discussion in the next two sub-
sections. For the example shown in Fig. 5, the optimal value
for Tf should be 4. Hence, the values in gpuRowMap are
f1; 2; 3; 5; 6; 7g, and the values in cpuRowMap are f0; 4g.

3.3 Performance Modeling

FinePar uses linear regression to build performance models
because they are lightweight and efficient for online use.
Moreover, the performance models should be automatically
generated and general enough to cover various inputs and
irregular applications. Since the input graphs can be repre-
sented by adjacency matrices, we use non-zero elements
processed per second as the prediction goal in the perfor-
mance models. We build a separate performance model for
the CPU and GPU, respectively, due to their different
architectures.

Accurate performance models for irregular applications
are notoriously difficult to build. Particularly in this work,
we address two challenges. First, we need to select several
features that are easy to obtain and have great impact on
performance. Second, the model should be lightweight for
online use. We next describe how the performance model-
ing component addresses these challenges.

Feature Selection. We select features that are closely
related with the OpenCL programming model and those
that represent irregularity of the workload. More specifi-
cally, we select four features: 1) the average workload for a
work-item (AW), 2) the variance of the distribution of non-
zero elements across the rows (VW), 3) the number of work-
items in the computation domain (NW), and 4) the size of
the whole workload (SW). Please note that these features
belong to metadata. We obtain the metadata with a pre-
processing process in an offline manner, since each dataset
only requires calibrating for once. Thus, at the runtime we
do not need to scan the entire dataset to obtain the values.
All four features greatly influence the performance
explained as follows:

� Average workload for a single work-item: Work-items
need enough workload to amortize the overhead of

thread creation. We use the mean of the numbers of
non-zero elements in the rows to represent the aver-
age workload for a single work-item because the
input program uses one work-item to process a row.

� Variance of the distribution of non-zero elements: As
explained in Section 2, the irregularity of the work-
load may dramatically influence the performance of
the GPU. We use the variance of the distribution of
non-zero elements to quantify the irregularity of the
workload.

� Number of work-items in the computation domain: This
feature plays an important role in the performance
of the GPU, because the GPU needs to create enough
threads to utilize the computational resource. Due to
the one-to-one mapping between the work-items
and rows, this feature is the same as the number of
rows in the workload.

� Size of the whole workload: The amount of data fed to
the processor affects performance because large data
size may lead to better utilization of the memory
bandwidth.

Addressing Substantial Differences Among Matrices. One
tricky feature of graph and sparse matrix applications is
their irregular memory access pattern, which affects cache
performance and the main memory bandwidth utilization.
However, the memory access pattern is not captured by the
linear regression model. To illustrate its impact, we run
SpMV on two matrices (M1 and M2) of similar features as
selected for the modeling. The difference between these two
matrices is that M1 is a quasi-diagonal matrix (i.e., its non-
zero elements are close to the diagonal), while M2 is not.
We observe that on both devices, the processing of M1 can
be 2X faster than that ofM2.

Despite its importance, the memory access pattern
depends on the distribution of the non-zero elements and
the interleaved execution of the threads, which is expensive
to profile and hard to model. Hence, to circumvent this
problem, we categorize the training matrices into quasi-
diagonal matrices and non-quasi-diagonal ones, which are
referred as Type 1 and Type 2 matrices, respectively, in the
remainder of the paper. We build different performance
models for each type. Note that we can create more catego-
ries to further differentiate the matrices, but leave that to
future work.

We quantify the closeness of the non-zero elements to the
diagonal in the following way. For each row, we say a non-
zero element is close to the diagonal if its column ID within
one eighth of the width of the matrix away from the diago-
nal. We calculate the ratio of the number of such non-zero
elements to the total number of non-zero elements. If the
result is larger than the threshold Tdiag (0.8 in our experi-
ments), we categorize the matrix as a Type 1 matrix. Other-
wise, we categorize it as a Type 2 matrix.Building and
Training Lightweight Linear Regression Models.For each type
of matrices, we build a linear regression model for the CPU
and one for the GPU. Given a training matrix or graph, we
choose a value for Tf (the partitioning threshold) from
f16; 32; 64; 128; 256; 512; 1024; 2048g and partition the matrix
into CPU and GPU workloads as described in the fine-
grained partitioning approach in Section 3.2. We then run
the partitioned workloads on the CPU and GPU to collect

872 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 3, MARCH 2021

Authorized licensed use limited to: Renmin University. Downloaded on August 24,2021 at 14:22:41 UTC from IEEE Xplore. Restrictions apply.

execution times for the training, which capture performance
degradation due to co-running. Moreover, we choose to use
logðNW Þ instead of NW in the model because GPU can only
simultaneously run up to a certain number of threads. Fur-
ther increasing the number of threads does not improve per-
formance. Similarly, we use logðSWÞ instead of SW because
of the memory bandwidth limit of the shared physical
memory. Equations (1) and (2) show the performance mod-
els for the GPU and CPU, respectively. The Ci’s (i ¼ 1 . . . 5)
are the parameters of the model we need to train.

To quickly generate training data with various patterns,
we use the graph generator from Graph 500 [24] to generate
all the training data. The generator has five parameters: S,
A, B, C, and D. The scale parameter S controls the size of
the generated graph, which has 2S vertices and 2ðSþ4Þ edges.
The other four parameters control the distribution of non-
zero elements in the adjacency matrix that represents the
generated graph. We refer the readers to [25] for the
detailed meaning of these parameters, but note that the sum
of the four parameters should be 1. We set S to be each of
f16; 17; 18; 19g. For each scale parameter S, we randomly
generate 20 quadruplets. Each quadruplet contains four
positive floating-point numbers whose sum is 1. The largest
number is assigned to A, and the other three are randomly
assigned to B, C, and D. We hence generate 80 matrices of
Type 2. We generate Type 1 matrices by placing the non-
zero elements in each row of Type 2 matrices around the
diagonal. Note that because Tf has eight possible values,
the training process needs 1,280 runs in total.

3.4 Online Tuning

Given the input data, the goal of online tuning is to select
the threshold (Tf in Fig. 8) for fine-grained partitioning to
achieve the best performance. It consists of two stages: (1)
matrix category detection, and (2) threshold search. The
detection stage determines the matrix category and subse-
quently the performance models to use. The search stage
leverages the performance models to predict performance
given a threshold and search for the optimal threshold.

While we can use the method discussed in Section 3.3 to
determine the category the input belongs to, the overhead is
prohibitive. To be suitable for online use, FinePar samples a
number of rows from the input matrix and only counts the
non-zero elements close to the diagonal for the sampled
rows. For the quantification to determine the category, we
scale down the total number of non-zero elements accord-
ing to the sampling ratio. We tried multiple sampling ratios
and found that the sampling ratio 0.001 introduces accept-
able overhead and always categorizes the input matrix as
the offline training phase does.

Threshold search uses the hill climbing algorithm [26] to
search for the optimal threshold. FinePar first chooses an ini-
tial value for Tf such that the ratio between the numbers of
non-zero elements in the two partitioned workloads matches
the ratio of the peak performance between the CPU and GPU.
It then uses the performance model to estimate the execution

time given Tf , ðTf � stepÞ, and ðTf þ stepÞ as the threshold,
respectively. If Tf produces the optimal performance, the
tuning process terminates. Otherwise, Tf is assigned one
of the two other values, which yields better performance, and
the search process continues. We empirically choose 64 for
the step parameter, which performswell in the experiments.

4 OPTIMIZATIONS

In this section, we further provide three optimization strate-
gies to improve the performance of FinePar. We provide the
detailed optimizations below.

4.1 More Fine-Grained Partitioning Method

Although FinePar removes substantial irregularity through
fine-grained partitioning between the CPU and GPU, the
workload in each device may still contain certain irregularity
for some applications, as shown in Fig. 9a. To further improve
the performance for each device, we propose a more fine-
grained partitioning method to map the data into different
groups, and each group is processed by a computation ker-
nel. Compared to the original FinePar [23] in which each
device only launches one kernel to process theworkload after
partitioning, the optimized version allows each device to
launchmultiple kernels to further reduce irregularity.

We show the CPU and GPU kernels in FinePar after this
mapping in Fig. 9b. For each device, we map the rows that
have the similar number of non-zero elements into one
group, and launch a separate computation kernel for this
group. With this method, we can further reduce irregularity
for each device. By default, FinePar uses the power of 4 to
determine the groups; groupi contains the rows with the
number of non-zero elements greater than or equal to
4i�1
� �

, and less than 4i (i is a non-negative integer). Experi-
mental results show that this method achieves significant
performance benefits in the situation where the dataset size
and variance of non-zero elements in each row are large.
The reason is that the benefit of reducing irregularity out-
weighs the cost of launching multiple kernels.

4.2 Dynamic Workload

So far, FinePar only considers the situation where the work-
load does not change during the execution. However, for
some applications such as Breadth First Search (BFS), the

Fig. 9. A more fine-grained partitioning method. The length of each bar
represents the number of non-zero elements in each row.

performanceGPU ¼ C1GPU �AWGPU þ C2GPU � VWGPU þ C3GPU � logðNWGPUÞ þ C4GPU � logðSWGPUÞ þ C5GPU (1)

performanceCPU ¼ C1CPU �AWCPU þ C2CPU � VWCPU þ C3CPU � logðNWCPUÞ þ C4CPU � logðSWCPUÞ þ C5CPU : (2)

ZHANG ET AL.: AUTOMATIC IRREGULARITY-AWARE FINE-GRAINED WORKLOAD PARTITIONING ON INTEGRATED ARCHITECTURES 873

Authorized licensed use limited to: Renmin University. Downloaded on August 24,2021 at 14:22:41 UTC from IEEE Xplore. Restrictions apply.

data processed in each iteration are changed dynamically.
For a given graph data in dynamic workloads, the sizes of
nodes or edges needed to be processed for each iteration
(active elements in frontier) vary greatly. A static partition-
ing strategy may achieve a sub-optimal result for these
dynamic workloads.

We use three dynamic applications, BFS, connected compo-
nents, and graph coloring, on dataset circuit5M as an example
to describe this phenomenon, shown in Fig. 10. We find that
the frontier size (number of active elements) can be very high
in a limited number of iterations, especially for some long-
taileddistribution graphs. In the remaining iterations, the fron-
tier size remains low. To address this problem, we adjust the
partitioning strategy to only use the CPU for processing these
iterations, because the elements to be processed in these itera-
tions are not enough to utilize the high parallelism of theGPU.

We further propose an adaptive partitioning in FinePar
targeting dynamic workload. FinePar maintains the size of
the frontier at runtime, and leverages both the CPU and
GPU to process an iteration only when the size of the fron-
tier exceeds a predefined threshold (20 percent of the total
elements). Moreover, after processing the majority of the
non-zero elements (e.g., 80 percent), we do not count the
number any more to reduce the runtime overhead. We take
BFS as an example. In BFS, the active elements are vertices
in a frontier list. We can count the number of frontier list for
each iteration and adjust our partitioning strategy accord-
ingly. In our implementation, we use the CPU to calculate
the frontier size for the next iteration. Moreover, the major-
ity of the total elements are usually processed in the first
few iterations, and then the procedure of calculating frontier
size is not needed; thus, compared to the whole program
execution, the overhead incurred by the calculation of fron-
tier size in a limited number of iterations can be ignored.

4.3 Large Datasets

One major advantage of the integrated architecture is that it
provides much larger memory capacity than the discrete GPU
architecture. Therefore, we can leverage the integrated archi-
tecture to process large datasets. However, due to the limita-
tion of the creation size of OpenCL memory object, we cannot
directly process a large dataset on such an architecture. In

FinePar, we partition a large dataset into several medium-
sized parts and create a separate OpenCL memory object for
each part. Moreover, for a large dataset exceeding the total
memory, these medium-sized objects need to be processed
sequentially, to avoid memory overflow by releasing the
resource of processed objects. Specifically, we propose a pipe-
line-basedmethod tomaximize the performance of processing
large datasets, as shown in Fig. 11. The processing of each part
consists of two stages: IO stage and computation stage, which
can be pipelined. After each iteration, FinePar collects the
intermediate result and reuses the allocated memory space.
With this method, FinePar can effectively hide processing
latency and take full advantage of the integrated architecture.

4.4 Discussion

BuildingMore SophisticatedModels.Although Linear Regression
model is simple and efficient in our experiment, a natural
question is whether the linear model is good enough and
whether more sophisticated learning models can further
improve performance. As a sanity check, we also built aMulti-
Layer Perceptron (MLP) model [27]. The MLP model is a
supervised machine learning model that is theoretically more
powerful than linear regression. Similar to the linear regres-
sion model, the MLP model takes as inputs the four features
AW , VW , logðNWÞ, logðSW Þ and predicts the performance in
terms of the number of non-zero elements processed per sec-
ond.We use the same training set as used for the linear regres-
sion model and build separate performance models for the
CPU andGPU.We show the results in Section 5.4.

Application Scope. In general, FinePar is designed for
irregular applications, in which the inputs can be repre-
sented in the CSR format or adjacency lists with one level of
row-pointers. However, the insight in FinePar can be
extended to other irregular data types, such as MPI derived
datatypes [28], [29], [30]. In a CPU-GPU distributed envi-
ronment, to fully release the system’s power, the idea of
FinePar still applies, but challenges such as data communi-
cation need to be considered as future work. For well bal-
anced workload, in case that CPUs and GPUs might not
deliver the same throughput for each iteration, a dynamic
adjustment approach [31] could help. Additionally, FinePar
uses a generated dataset to train the model; if users target a
higher accuracy or a more complex situation [32], real input
data can be added into the training set, which will be evalu-
ated in our future work.

5 EXPERIMENT

In this section, we evaluate FinePar using a variety of irreg-
ular programs with different types of input matrices. We
start by describing our platform and benchmarks.

Fig. 10. Frontier size for different iterations in circuit5M.

Fig. 11. Pipelined processing for large datasets.

874 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 3, MARCH 2021

Authorized licensed use limited to: Renmin University. Downloaded on August 24,2021 at 14:22:41 UTC from IEEE Xplore. Restrictions apply.

5.1 Experiment Setup

Platforms.We measure the performance of FinePar on two
platforms, one with AMD’s A-Series APU A10-7850K (code
named “Kaveri”) [33], which has four cores with four proc-
essing threads, and the other with AMD’s latest integrated
architecture, Ryzen 5 2400G with Radeon RX Vega 11 GPU.
We use GCC (version 4.8.2) with O3 optimization level for
compilation on A10-7850K. For Ryzen 5 2400G, currently,
AMDonly providesWindows 10 64-bit driver, soweperform
all experiments on it using Visual Studio for compilation.

Benchmarks. We select five programs from the GraphBIG
benchmark suite [34], the Rodinia benchmark suite [35], and
the SHOC benchmark suite [36]. Breath-First Search (BFS) is
from the Rodinia benchmark suite. Connected Component
(CC), and Graph Coloring (GC) are from the GraphBIG
benchmark suite. Sparse Matrix-Vector Multiplication using
Compressed Row Format (SpMV-CSR) and Sparse Matrix-
Vector Multiplication using Ellpack Format (SpMV-ELL)
are from the SHOC benchmark suite. We also implement
three well-known algorithms in OpenCL, Page Rank [37],
Hyperlink-Induced Topic Search (HITS) [38], and Random
Walk with Restart (RWR) [39], which brings the total num-
ber of evaluated benchmarks to eight.

Input Matrices. We evaluate FinePar using eight sparse
matrices listed in Table 1,which are different from the training
set. Specifically, the matrices of scale20 and scale21 are gener-
ated by the generator of Graph 500 [24]. We use four sparse
matrices, circuit5M, eu-2005, FullChip, and web-BerkStan from
theUniversity of Florida SparseMatrix Collections [40]. These
sparse matrices are widely used in previous studies, such
as [41], [42]. Since the ELL format introduces significant space
overhead, our platform can only execute SpMV-ELL on web-
BerkStan. Moreover, we use two large matrices of uk-2002 and
indochina-2004 to validate the performance for processing
large datasets.

5.2 Performance of FinePar

We compare our method with four state-of-the-art work-
load partitioning methods on heterogeneous platforms
listed in Table 2. The single-device method [17] uses the
device from the CPU and GPU that produces better perfor-
mance. The adaptive method [16] calculates a performance
ratio between CPU and GPU through executing partial
workload and then partitions the workload using this ratio.
The dynamic method [15] uses both GPU and CPU to

execute the workload simultaneously, while the GPU exe-
cutes the workload from the beginning to the end and the
CPU executes in the opposite direction, which can achieve a
dynamic load balance. Because it is implemented in
Pthreads, we only evaluate it on the A10-7850K platform.
The coarse-grained oracle method [14] performs workload
partitioning from 0 to 100 percent and selects the best parti-
tioning ratio. We also list the original FinePar [23].

Figs. 12 and 13 show the performance results for differ-
ent partitioning methods. We use single-device as the
baseline. Speedup is defined as the baseline’s execution
time divided by the corresponding method’s execution
time. In general, FinePar achieves consistent performance
improvement for most of the evaluated programs and is
much better than the other partitioning methods. The aver-
age performance speedup of FinePar is 1.67X over the sin-
gle-device method, and 1.08X over the original FinePar
version. For the FullChip matrix, the performance speedup
is up to 2.40X on A10-7850K platform. For the coarse-
grained oracle method, the average speedup is 1.07X. Fine-
Par achieves an average of 1.6X speedup over the coarse-
grained oracle method.

From Figs. 12 and 13, we can see that FinePar achieves
performance improvement over the optimal single device
method in most cases. The adaptive method calculates a
partitioning ratio with a light-weight sampling method, but
this ratio sometimes cannot reflect the most balanced parti-
tioning point for some inputs, such as scale20 and circuit5M.
The coarse-grained oracle method presents the upper limit
of the adaptive results. However, for most irregular inputs,
it only brings very little performance improvement over the
single device method. For the dynamic method, it can
achieve good load balance for most programs, but it incurs
large runtime overhead for checking whether CPU and
GPU execute to the same point.

We show the performance of processing large datasets in
Fig. 14. FinePar uses the partitioning technique to process
these datasets, which is explained in Section 4.3. The average
speedup is 1.3X, and the performance on both large datasets
is similar. Compared to the baseline of using a single device,
FinePar still presents clear performance benefits. Compared
to the performance on medium-sized datasets, FinePar pro-
ducesmoderate performance speedup because of unbalanced
workload partitioning, especially for dynamic workloads
with long-tailed distribution dataset.

TABLE 1
Matrices Used in Our Experiments

Name Dimension NNZ m s MAX

scale20 1.05M 31.35M 29.90 258.04 66546
circuit5M 5.56M 59.52M 10.71 1356.62 1290501
eu-2005 0.86M 19.24M 22.30 29.33 6985
scale21 2.10M 63.42M 30.24 300.38 106906
FullChip 2.99M 26.62M 8.91 1806.80 2312481
web-BerkStan 0.69M 7.60M 11.09 16.36 249
uk-2002 18.52M 298.11M 16.10 27.53 2450
indochina-2004 7.41M 194.11M 26.18 215.83 6985

Dimension: the dimensions of matrices. NNZ: the number of total non-zero
elements. m: the average number of non-zero elements per row. s: variance of
the number of non-zero elements per row. MAX: the maximum number of
non-zero elements per row.

TABLE 2
Summary of Different Partitioning Methods

Method Descriptions

Single-Device [17] Choose CPU or GPU that yields the best
performance

Adaptive [16] Partition workload based on online profiling
Dynamic [15] Both GPU and CPU execute the workload

from opposite directions
Coarse-Grained
Oracle [14]

Coarse-grained workload partitioning with
optimal load balance

FinePar (Original) [23] The original fine-grained workload
partitioning method

FinePar FinePar with all optimizations including the
more fine-grained partitioning, dynamic
adaptation, and pipelining in Section 4

ZHANG ET AL.: AUTOMATIC IRREGULARITY-AWARE FINE-GRAINED WORKLOAD PARTITIONING ON INTEGRATED ARCHITECTURES 875

Authorized licensed use limited to: Renmin University. Downloaded on August 24,2021 at 14:22:41 UTC from IEEE Xplore. Restrictions apply.

5.3 Result Analysis

In general, our method partitions an irregular workload into
two parts, the relatively regular part allocated to the GPU
and the more irregular part allocated to the CPU. By consid-
ering the architectural differences between two devices, we
can effectively improve the performance of irregular pro-
grams. In this section, we give detailed analysis about our
fine-grained partitioning.

5.3.1 Analysis for Transformation

Our method largely benefits frommitigating the irregularity
of the GPU workload. Table 3 shows the changes after per-
forming fine-grained partitioning in FinePar for different
matrices. We use the variance of the number of non-zero
elements per row to describe the matrix irregularity. The

Matrix Variance column represents the variance of the origi-
nal matrix before partitioning. The GPU Variance and CPU
Variance columns represent the variances for the GPU work-
load and the CPU workload, respectively, after partitioning.
The GPU/CPU Workload Ratio column shows the size of the
GPU workload divided by the size of the CPU workload.

After transformation by FinePar, the variance for the
GPU workload is significantly reduced, while the variance
for the CPU workload is increased. For instance, for the
matrices of circuit5M and FullChip, the original matrices
have very high irregularity with variances of 1356.62 and
1806.80, respectively, but after fine-grained partitioning, the
irregularity of GPU workloads has been significantly
reduced (with the variances of 0.50 and 2.74). In contrast,
the traditional coarse-grained partitioning does not realize

Fig. 13. Performance results of different partitioning methodson on Ryzen 5 2400G. The baseline is the optimal single device result, GPU- or CPU-
only version.

Fig. 12. Performance results of different partitioning methods on A10-7850K. The baseline is the optimal single device result, GPU- or CPU- only
version.

876 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 3, MARCH 2021

Authorized licensed use limited to: Renmin University. Downloaded on August 24,2021 at 14:22:41 UTC from IEEE Xplore. Restrictions apply.

such input irregularity and only considers the load balance.
Moreover, the GPU/CPU Workload Ratio column shows that
the workload partitioning ratios vary greatly across inputs.

From the aspect of matrix variance, we classify the per-
formance results in Fig. 12 into three categories. First, the
matrices of circuit5M and FullChip have the largest irregu-
larity and their irregularity can be significantly decreased
after fine-grained partitioning. Our method can get very
high performance improvements for these inputs. Second,
the matrices of eu-2005 and web-BerkStan have the moderate
irregularity and there is no significant irregularity differ-
ence between CPU and GPU after the fined-grained parti-
tioning. However, our method can still produce moderate
performance improvement for these inputs. Third, for
scale20 and scale21, their irregularity is uniformly distrib-
uted in the whole matrix, so it is difficult to greatly reduce
their irregularity. For example, Table 3 shows that the
GPU workload of scale20 still has a variance of 56.57 after
fine-grained partitioning. Consequently, the performance
improvement is limited for this matrix.

5.3.2 Performance Profiling

We also use performance counters in GPU to analyze the
micro-architecture-level performance behaviors of the differ-
ent partitioning approaches. Fig. 15 shows the improvement
on GPU utilization over the GPU-only approach as the base-
line. The improvement is defined as the utilization of the
compared approach divided by that of the GPU-only
approach. Each bar represents the average improvement of
all inputs for the corresponding benchmark. The bar height
of one means there is no improvement or degradation. All
the performance data is collected by AMD CodeXL. CodeXL
crashes when collecting the performance data for BFS-
Dynamic and HITS, which is hence removed from the graph.
For the coarse-grained oracle approach, all the workload of
GC and BFS is dispatched to the CPU, so there is no data on
the GPU side. We observe that all the three coarse-grained
approaches have similar GPU utilization as the GPU-only

approach does. The reason is that those approaches only con-
cern the load balance between the CPU and GPU, but do not
change the load balance across GPU threads in the same
work group. FinePar substantially improves GPU utilization
over the other approaches. The average improvement over
coarse-grained oracle is 10.1X. Additionally, FinePar achieves
4.4X speedup over the original version, which implies that
the optimizations in Section 4 are effective.

Due to space limitation, we only show the results for
scale20, but the other input matrices have similar trends.
Since our fine-grained partitioning method can significantly
mitigate the input irregularity for the GPU workload, load
balance for GPU threads is improved, which leads to better
GPU core utilization. Moreover, it also enhances memory
bandwidth utilization because more active GPU threads can
issue memory requests together.

5.4 Accuracy of Performance Models

Table 4 shows the trained parameters of the performance
models from our offline training. We use a statistical metric,
called coefficient of determination [43], to analyze the accu-
racy the predicted performance model. The values of r2
range from 0 to 1. The larger this value is, the better the pre-
dicted result is. For the Type 1 matrices, the values of r2 are
close to 1, which means that our performance model has
very high accuracy. For the Type 2 matrices, the values of r2
are not very large, because the Type 2 matrices have a great
diversity of sparsity patterns and it is hard to provide an
accurate performance model for prediction.

To understand the importance of the features in themodels
for different devices and types of matrices, we provide their
correlation coefficients in Table 5. We list main findings
below. (1) The averageworkload for awork-item (AW) is criti-
cal for the GPU, because the GPU has a large number of hard-
ware threads which are more sensitive to the average
workload for a work-item. (2) The variance of workload (VW)
is also much more important for the GPU. This is because the
GPU uses the lockstep execution model as mentioned in

TABLE 3
Mitigating the Irregularity of the Input Matrices by FinePar

Name
Matrix
Variance

GPU
Variance

CPU
Variance

GPU/CPU
Workload Ratio

scale20 258.04 56.57 2496.13 1.36
circuit5M 1356.62 0.50 5416.37 0.78
eu-2005 29.33 15.38 71.18 2.92
scale21 300.38 35.41 2230.48 0.71
FullChip 1806.80 2.74 26307.03 3.80
web-BerkStan 16.36 6.73 29.49 1.64

Fig. 15. Improvement on GPU core utilization (scale20).

Fig. 14. Performance results for large datasets. The baseline is the opti-
mal single device result, GPU- or CPU- only version.

TABLE 4
Estimated Parameters of Performance Models

Type Device C1 C2 C3 C4 C5 r2

Type 1 CPU -0.05 0.03 -283.83 605.24 -2165.00 0.81
GPU 19.03 -5.11 2752.44 244.77 -16924.91 0.93

Type 2 CPU -0.05 0.07 14.42 13.26 122.77 0.50
GPU -2.24 0.88 413.11 79.54 -2661.51 0.69

Type 1: non-zero elements around the diagonal. Type 2: non-zero elements not
around the diagonal. r2 is the coefficient of determination.

ZHANG ET AL.: AUTOMATIC IRREGULARITY-AWARE FINE-GRAINED WORKLOAD PARTITIONING ON INTEGRATED ARCHITECTURES 877

Authorized licensed use limited to: Renmin University. Downloaded on August 24,2021 at 14:22:41 UTC from IEEE Xplore. Restrictions apply.

Section 2. (3) The number of work-items (NW) is more impor-
tant for the GPU, because work-items are mapped to hard-
ware threads and the GPU performance is more dependent
on available parallelism. (4) The workload size (SW) is much
more important for the CPU, because the CPU has very few
hardware threads compared with the GPU and its perfor-
mance ismore dependent on the inputworkload size.

To demonstrate the effectiveness of our performance
model, we enumerate all possible fine-grained partitioning
thresholds and obtain the maximum performance improve-
ment for each input matrix across all benchmarks. Fig. 16
shows the comparison between the improvement by FinePar
and the optimal performance improvement FinePar can
achieve (namedOracle). For most of the input matrices, Fine-
Par demonstrates very high consistency with the optimal
performance. The optimal performance improvement for the
proposed fine-grained partitioning approach is 29 percent
on average while FinePar achieves an average of 27 percent
performance improvement.

Fig. 17 shows the performance comparison between the
linear regression model and MLP. Each bar represents the
performance speedup when the corresponding model is
used for a particular input and program. On average, MLP
only provides 2.6 percent extra performance benefit, but has
longer training time. We hence use the linear model as the
default model in FinePar, but users can also choose to use
MLP if the longer training time is not a concern. Please note
that we use the MLP in Scikit-learn [44] in our implementa-
tion. We use the set of tuned parameters with the best per-
formance in training set.

5.5 Performance Overhead Analysis

5.5.1 Time Overhead

Before kernel computation, the evaluated programs per-
form I/O operations and data initialization. Our fine-
grained partitioning method adds runtime overhead to this

pre-kernel processing phase from two aspects. First, it ran-
domly samples a number of rows from the input matrix to
estimate its type. Second, it chooses a suitable performance
model and searches for the partitioning threshold.

Table 6 shows the runtime overhead of the original Fine-
Par and the optimized version compared to the preprocess-
ing time of single device version for each program for the
matrix web-BerkStan. The other matrices have similar perfor-
mance overhead. We observe that the overhead of the origi-
nal FinePar only accounts for less than 0.2 percent of the
preprocessing time of single device version, while the opti-
mized version has less than 3 percent occupancy overhead,
which is negligible.

5.5.2 Space Overhead

The APU has two separate main memory data paths to the
CPU and GPU. To accurately evaluate and compare differ-
ent partitioning approaches, we allocate two copies for
read-only data for the two data paths to reduce the interfer-
ence due to bus contention. For a graph with n vertices and
m edges. The needed storage space for read-only data is

Sizetotal ¼ ðmþ nÞ � sizeofðintÞ � 2: (3)

The original FinePar creates a bit vector of n bits, named
gpuRowMap, to inform the GPU the rows it should process.
The bit vector reduces storage space and improves memory
coalescing for the GPU. Since the GPU typically processes
much more rows than the CPU does, it only uses a regular
integer array of size n for the CPU. Hence, the space over-
head incurred by the original FinePar is

SizeFineParðoriginalÞ ¼ n=8þ n� sizeofðintÞ: (4)

TABLE 5
Correlation Coefficient of the Features in the

Performance Model

Type Device AW VW NW SW

Type 1 GPU 0.88 0.52 0.85 0.15
CPU 0.08 0.18 0.77 0.49

Type 2 GPU 0.64 0.75 0.75 0.28
CPU 0.33 0.03 0.50 0.45

Fig. 16. Performance improvement between FinePar and the optimal
partition.

Fig. 17. Comparison between linear regression and MLP.

878 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 3, MARCH 2021

Authorized licensed use limited to: Renmin University. Downloaded on August 24,2021 at 14:22:41 UTC from IEEE Xplore. Restrictions apply.

For the optimized version, FinePar also uses the bit vec-
tor. FinePar allows each device to launch multiple kernels,
and it creates one vector for each kernel. Therefore, the size
of bit vector relates to the number of launched kernels, g. To
avoid IO overhead, CPU also reads the bit vector. The space
overhead incurred by FinePar is

SizeFinePar ¼ n=8� g: (5)

Table 7 shows the extra space overhead introduced by
the original FinePar and the optimized version. The column
named “Size (MB)” shows the original size for each matrix.
The columns in “Extra Allocation (MB)” show the size
incurred by both versions. The last two columns show the
space overhead of both versions normalized to the original
matrix size. Because the optimized version does not use the
integer array for CPU, its space overhead is lower than that
of the original version. For all the inputs, our method intro-
duces little space overhead (less than 6 percent).

6 RELATED WORK

Heterogeneous architectures pose new optimization oppor-
tunities for knowledge and data engineering applications,
thanks to the high parallelism and throughput. He et al. [45]
used GPUs to accelerate SimRank computation. Shi et al. [46]
accelerated graph processing on GPUs. Lin et al. [47] applied
GPUs to accelerate the identification process of network
motifs. There have been other recent studies on using GPU
or FPGA to accelerate data processing operations. Serra
et al. [48] designed a GPU-based Monte Carlo algorithm that
significantly reduces the long running time. Zhou et al. [49]
provided a hardware-accelerated solution for hierarchical
index-based merge join. As for this work, FinePar shows the
possibility of using both the CPU and the GPU to further
accelerate these applications on integrated architectures.

Recently, heterogeneous CPU-GPU architectures have
been used in optimizing irregular applications and multi-
dimensional data processing. Vilches et al. [50] developed a
novel adaptive partitioning algorithm for parallel loops to
find the appropriate chunk size for GPUs andCPUs. Navarro
et al. [51] also studied the partitioning strategy for parallel
loops, specially for irregular applications on heterogeneous
CPU-GPU architectures. Sakai et al. [52] proposed a novel
decomposition method that can execute single-GPU code on
multi-GPU systems. Zhang et al. [53] provided an adaptive
BFS algorithm on integrated architectures. In contrast, the
core idea of FinePar is to reduce the workload irregularity for
GPUs, and the partitioning of FinePar is reflected in the

mapping of data to devices: irregular data are assigned to
CPU threads while the rest of relatively regular data are left
to GPU threads. Thus, we adopt different strategies and the
application scenarios are not the same.

7 CONCLUSION

In this paper, we identified the pitfall of coarse-grainedwork-
load partitioning for irregular applications on integrated
architectures. We pointed out that even if coarse-grained par-
titioning achieves ideal load balance between the CPU and
GPU, the integrated architecture may still get under-utilized.
To deal with the problem, we developed a system software
named FinePar to achieve fine-grained partitioning. FinePar
considers architectural differences of the CPU and GPU, and
builds irregularity-aware performance models for partition-
ing the workload through auto-tuning. Experimental results
of eight applications demonstrated 1.6X performance
speedup over the optimal coarse-grained partitioning.

ACKNOWLEDGMENTS

This work has been partly supported by the National Key
R&D Program of China (Grant No. 2016YFB0200100) and
National Natural Science Foundation of China (Grant No.
61732014, 61722208, 61802412); it is also supported in part
by US National Science Foundation grant CCF-1823005 and
an US National Science Foundation CAREER Award (CNS-
1750760). Bingsheng’s work is supported by a MoE AcRF
Tier 1 grant (T1 251RES1824) and Tier 2 grant (MOE2017-
T2-1-122) in Singapore.

REFERENCES

[1] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and
P. Sander, “Relational joins on graphics processors,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2008, pp. 511–524.

[2] J. Paul, J. He, and B. He, “GPL: A GPU-based pipelined query
processing engine,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2016, pp. 1935–1950.

[3] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha,
“Fast computation of database operations using graphics pro-
cessors,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2005,
Art. no. 206.

[4] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and
P. V. Sander, “Relational query coprocessing on graphics process-
ors,” ACM Trans. Database Syst., vol. 34, no. 4, 2009, Art. no. 21.

[5] R. Fang, B. He, M. Lu, K. Yang, N. K. Govindaraju, Q. Luo, and
P. V. Sander, “GPUQP: Query co-processing using graphics pro-
cessors,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2007,
pp. 1061–1063.

[6] P. Bakkum and K. Skadron, “Accelerating SQL database opera-
tions on a GPU with CUDA,” in Proc. 3rd Workshop Gen.-Purpose
Comput. Graph. Process. Units, 2010, pp. 94–103.

TABLE 6
The Time Overhead of the Fine-Grained Partitioning Method

I/O(%) Initialization(%) Occupancy(%)

Program FinePar
(original)

FinePar FinePar
(original)

FinePar FinePar
(original)

FinePar

BFS 74.67 74.66 25.25 25.16 0.08 0.18
ConnectedComp 31.27 31.5 68.70 68.41 0.03 0.09
GraphColoring 58.91 58.79 41.05 41.07 0.04 0.14
HITS 52.36 51.04 47.51 47.04 0.13 1.92
PageRank 55.22 54.58 44.73 44.24 0.05 1.18
SpMV-CSR 75.00 73.37 24.90 26.44 0.10 0.19
RWR 71.78 70.18 28.08 27.81 0.14 2.01
SpMV-ELL 15.53 15.25 84.44 84.62 0.03 0.13

TABLE 7
The Space Overhead of the Fine-Grained Partitioning Method

Extra Allocation(MB) Space Overhead(%)

Matrix Size
(MB)

FinePar
(original)

FinePar FinePar
(original)

FinePar

scale20 259 4 3 1.54 1.01
circuit5M 521 23 16 4.41 3.07
eu-2005 161 4 2 2.48 1.34
scale21 524 10 6 1.91 1.05
FullChip 237 12 8 5.06 3.47
web-BerkStan 66 3 2 4.55 2.60

ZHANG ET AL.: AUTOMATIC IRREGULARITY-AWARE FINE-GRAINED WORKLOAD PARTITIONING ON INTEGRATED ARCHITECTURES 879

Authorized licensed use limited to: Renmin University. Downloaded on August 24,2021 at 14:22:41 UTC from IEEE Xplore. Restrictions apply.

[7] M. Sha, Y. Li, B. He, and K.-L. Tan, “Accelerating dynamic graph
analytics on GPUs,” Proc. VLDB Endowment, vol. 11, no. 1,
pp. 107–120, 2017.

[8] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the
GPU,” in Proc. ACM SIGPLAN Symp. Principles Practice Parallel
Program., 2016, pp. 11:1–11:12.

[9] J. Zhong and B. He, “Parallel graph processing on graphics pro-
cessors made easy,” Proc. VLDB Endowment, vol. 6, no. 12,
pp. 1270–1273, 2013.

[10] X. Yang, S. Parthasarathy, and P. Sadayappan, “Fast sparse
matrix-vector multiplication on GPUs: Implications for graph
mining,” Proc. VLDB Endowment, vol. 4, no. 4, pp. 231–242, 2011.

[11] J. Zhong and B. He, “Medusa: Simplified graph processing on
GPUs,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 6, pp. 1543–1552,
Jun. 2014.

[12] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph
exploration on multi-core CPU and GPU,” in Proc. Int. Conf. Paral-
lel Archit. Compilation Techn., 2011, pp. 78–88.

[13] The Compute Architecture of Intel Processor Graphics Gen7.5,
2014. [Online]. Available: https://software.intel.com

[14] F. Zhang, J. Zhai, B. He, S. Zhang, andW. Chen, “Understanding co-
running behaviors on integrated CPU/GPU architectures,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 3, pp. 905–918,Mar. 2017.

[15] P. Pandit and R. Govindarajan, “Fluidic kernels: Cooperative exe-
cution of OpenCL programs on multiple heterogeneous devices,”
in Proc. Annu. IEEE/ACM Int. Symp. Code Generation Optimization,
2014, Art. no. 273.

[16] R.Kaleem, R. Barik, T. Shpeisman, B. T. Lewis, C.Hu, andK. Pingali,
“Adaptive heterogeneous scheduling for integrated GPUs,” in Proc.
Int. Conf. Parallel Archit. Compilation Techn., 2014, pp. 151–162.

[17] R. Barik, R. Kaleem, D. Majeti, B. T. Lewis, T. Shpeisman, C. Hu,
Y. Ni, and A.-R. Adl-Tabatabai, “Efficient mapping of irregular
C++ applications to integrated GPUs,” in Proc. Annu. IEEE/ACM
Int. Symp. Code Generation Optimization, 2014, Art. no. 33.

[18] M. Daga, M. Nutter, and M. Meswani, “Efficient breadth-first
search on a heterogeneous processor,” in Proc. IEEE Int. Conf. Big
Data, 2014, pp. 373–382.

[19] M. C. Delorme, T. S. Abdelrahman, and C. Zhao, “Parallel radix
sort on the AMD fusion accelerated processing unit,” in Proc. Int.
Conf. Parallel Process., 2013, pp. 339–348.

[20] L. Chen, X. Huo, and G. Agrawal, “Accelerating MapReduce on a
coupled CPU-GPU architecture,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2012, Art. no. 25.

[21] J. He, M. Lu, and B. He, “Revisiting co-processing for hash joins
on the coupled CPU-GPU architecture,” Proc. VLDB Endowment,
vol. 6, no. 10, pp. 889–900, 2013.

[22] K. Nilakant and E. Yoneki, “On the efficacy of APUs for heteroge-
neous graph computation,” in Proc. 4th Workshop Syst. Future Mul-
ticore Archit., 2014, pp. 2–7.

[23] F. Zhang, B. Wu, J. Zhai, B. He, and W. Chen, “FinePar: Irregular-
ity-aware fine-grained workload partitioning on integrated
architectures,” in Proc. Annu. IEEE/ACM Int. Symp. Code Genera-
tion Optimization, 2017, pp. 27–38.

[24] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang,
“Introducing the Graph 500,” Cray Users Group (CUG), vol. 19,
pp. 45–74, 2010.

[25] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive
model for graph mining,” in Proc. SIAM Int. Conf. Data Mining,
2004, pp. 442–446.

[26] S. Russell, and P. Norvig, “Artificial intelligence: A modern
approach,” in Artificial Intelligence, vol. 25. Englewood Cliffs, NJ,
Prentice-Hall, 1995, Art. no. 27.

[27] S. K. Pal and S. Mitra, “Multilayer perceptron, fuzzy sets, and clas-
sification,” IEEE Trans. Neural Netw., vol. 3, no. 5, pp. 683–697,
Sep. 1992.

[28] W. Gropp, T. Hoefler, R. Thakur, and J. L. Tr€aff, “Performance
expectations and guidelines for MPI derived datatypes,” in Proc.
Eur. MPI Users’ Group Meet., 2011, pp. 150–159.

[29] H. Wang, S. Potluri, M. Luo, A. K. Singh, X. Ouyang, S. Sur, and
D. K. Panda, “Optimized non-contiguous MPI datatype commu-
nication for GPU clusters: Design, implementation and evaluation
with MVAPICH2,” in Proc. IEEE Int. Conf. Cluster Comput., 2011,
pp. 308–316.

[30] R. Shi, X. Lu, S. Potluri, K. Hamidouche, J. Zhang, and D. K. Panda,
“HAND: A hybrid approach to accelerate non-contiguous data
movement using MPI datatypes on GPU clusters,” in Proc. Int.
Conf. Parallel Process., 2014, pp. 221–230.

[31] R. Shi, S. Potluri, K. Hamidouche, X. Lu, K. Tomko, and
D. K. Panda, “A scalable and portable approach to accelerate
hybrid HPL on heterogeneous CPU-GPU clusters,” in Proc. Int.
Conf. Cluster Comput., 2013, pp. 1–8.

[32] L. Liu, S. Yang, L. Peng, and X. Li, “Hierarchical hybrid memory
management in OS for tiered memory systems,” in IEEE Trans.
Parallel Distrib. Syst., vol. 30, no. 10, pp. 2223–2236, Oct. 1, 2019.

[33] D. Bouvier and B. Sander, “Applying AMDs Kaveri APU for het-
erogeneous computing,” in Proc. IEEE Hot Chips: A Symp. High
Perform. Chips, 2014, pp. 1–42.

[34] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin, “GraphBIG:
Understanding graph computing in the context of industrial sol-
utions,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2015, Art. no. 69.

[35] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous
computing,” in Proc. IEEE Int. Symp. Workload Characterization,
2009, pp. 44–54.

[36] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth,
K. Spafford, V. Tipparaju, and J. S. Vetter, “The scalable heteroge-
neous computing (SHOC) benchmark suite,” in Proc. 3rd Workshop
Gen.-Purpose Comput. Graph. Process. Units, 2010, pp. 63–74.

[37] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
citation ranking: Bringing order to the web,” Tech. Rep., Stanford
InfoLab, pp. 1–17, Nov. 1999.

[38] J. M. Kleinberg, “Authoritative sources in a hyperlinked environ-
ment,” J. ACM, vol. 46, no. 5, pp. 604–632, 1999.

[39] H. Tong, C. Faloutsos, and J.-Y. Pan, “Random walk with restart:
Fast solutions and applications,” Knowl. Inf. Syst., vol. 14, no. 3,
pp. 327–346, 2008.

[40] T. A. Davis and Y. Hu, “The University of Florida sparse
matrix collection,” ACM Trans. Math. Softw., vol. 38, no. 1, 2011,
Art. no. 1.

[41] B.-Y. Su and K. Keutzer, “clSpMV: A cross-platform OpenCL
SpMV framework on GPUs,” in Proc. Annu. Int. Conf. Supercom-
put., 2012, pp. 353–364.

[42] W. Liu and B. Vinter, “CSR5: An efficient storage format for cross-
platform sparse matrix-vector multiplication,” in Proc. Annu. Int.
Conf. Supercomput., 2015, pp. 339–350.

[43] L. S. Aiken, S. G. West, and S. C. Pitts, “Multiple linear
regression,” in Handbook of Psychology. Hoboken, NJ, USA: Wiley,
2003.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al.,
“Scikit-learn: Machine learning in python,” J. Mach. Learn. Res.,
vol. 12, no. Oct., pp. 2825–2830, 2011.

[45] G. He, C. Li, H. Chen, X. Du, and H. Feng, “Using graphics pro-
cessors for high performance SimRank computation,” IEEE Trans.
Knowl. Data Eng., vol. 24, no. 9, pp. 1711–1725, Sep. 2012.

[46] X. Shi, X. Luo, J. Liang, P. Zhao, S. Di, B. He, and H. Jin, “Frog:
Asynchronous graph processing on GPU with hybrid coloring
model,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 1, pp. 29–42,
Jan. 2018.

[47] W. Lin, X. Xiao, X. Xie, and X.-L. Li, “Network motif discovery: A
GPU approach,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 3,
pp. 513–528, Mar. 2017.

[48] E. Serra and F. Spezzano, “An effective GPU-based approach to
probabilistic query confidence computation,” IEEE Trans. Knowl.
Data Eng., vol. 27, no. 1, pp. 17–31, Jan. 2015.

[49] Z. Zhou, C. Yu, S. Nutanong, Y. Cui, C. Fu, and C. J. Xue, “A
hardware-accelerated solution for hierarchical index-basedmerge-
join,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 1, pp. 91–104,
Jan. 2019.

[50] A. Vilches, R. Asenjo, A. Navarro, F. Corbera, R. Gran, and
M. Garzar�an, “Adaptive partitioning for irregular applications on
heterogeneous CPU-GPU chips,” Procedia Comput. Sci., vol. 51,
pp. 140–149, 2015.

[51] A. Navarro, F. Corbera, A. Rodriguez, A. Vilches, and R. Asenjo,
“Heterogeneous parallel_for template for CPU–GPU chips,” Int. J.
Parallel Program., vol. 47, no. 2, pp. 213–233, 2019.

[52] R. Sakai, F. Ino, and K. Hagihara, “Towards automating multi-
dimensional data decomposition for executing a single-GPU code
on a multi-GPU system,” in Proc. 4th Int. Symp. Comput. Netw.,
2016, pp. 408–414.

[53] F. Zhang, H. Lin, J. Zhai, J. Cheng, D. Xiang, J. Li, Y. Chai,
and X. Du, “An adaptive breadth-first search algorithm on inte-
grated architectures,” J. Supercomput., vol. 74, no. 11, pp. 6135–6155,
2018.

880 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 3, MARCH 2021

Authorized licensed use limited to: Renmin University. Downloaded on August 24,2021 at 14:22:41 UTC from IEEE Xplore. Restrictions apply.

https://software.intel.com

Feng Zhang received the bachelor’s degree from
Xidian University, in 2012, and the PhD degree in
computer science from Tsinghua University, in
2017. He is an assistant professor with DEKE
Lab and the School of Information, Renmin Uni-
versity of China. His major research interests
include database systems, and parallel and dis-
tributed systems.

Jidong Zhai received the BS degree in computer
science from the University of Electronic Science
and Technology of China, in 2003, and the PhD
degree in computer science from Tsinghua Uni-
versity, in 2010. He is an associate professor with
the Department of Computer Science and Tech-
nology, Tsinghua University. His research inter-
ests include performance evaluation for high
performance computers, performance analysis,
and modeling of parallel applications.

Bo Wu received the BS degree in information
and computational sciences, the MS degree in
computer science from Central South University
in Changsha, China, and the PhD degree from
the College of William and Mary. He is currently
an assistant professor of computer science with
the Colorado School of Mines in Golden. His
research focuses on GPU computing, graph ana-
lytics, heterogeneous memory systems, and
compiler optimization.

Bingsheng He received the bachelor’s degree in
computer science from Shanghai Jiao Tong Uni-
versity, in 2003, and the PhD degree in computer
science from the Hong Kong University of Sci-
ence and Technology, in 2008. He is an associ-
ate professor with the School of Computing,
National University of Singapore. His research
interests include high performance computing,
distributed and parallel systems, and database
systems.

Wenguang Chen received the BS and PhD
degrees in computer science from Tsinghua Uni-
versity, in 1995 and 2000, respectively. He was
the CTO of Opportunity International Inc. from
2000 to 2002. In January 2003, he joined Tsing-
hua University. He is a professor and associate
head of the Department of Computer Science and
Technology, Tsinghua University. His research
interests include parallel and distributed comput-
ing and programmingmodel.

Xiaoyong Du received the BS degree from Hang-
zhou University, Zhengjiang, China, in 1983, the
ME degree from the Renmin University of China,
Beijing, China, in 1988, and the PhD degree
from the Nagoya Institute of Technology, Nagoya,
Japan, in 1997. He is currently a professor with
the School of Information, Renmin University of
China. His current research interests include data-
bases and intelligent information retrieval.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHANG ET AL.: AUTOMATIC IRREGULARITY-AWARE FINE-GRAINED WORKLOAD PARTITIONING ON INTEGRATED ARCHITECTURES 881

Authorized licensed use limited to: Renmin University. Downloaded on August 24,2021 at 14:22:41 UTC from IEEE Xplore. Restrictions apply.

