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ABSTRACT
While the fundamental steps outlining myofibril formation share a similar scheme for different cell and species types, various granular details
involved in the development of a functional contractile muscle are not well understood. Many studies of myofibrillogenesis focus on the
protein interactions that are involved in myofibril maturation with the assumption that there is a fully formed premyofibril at the start of
the process. However, there is little known regarding how the premyofibril is initially constructed. Fortunately, the protein α-actinin, which
has been consistently identified throughout the maturation process, is found in premyofibrils as punctate aggregates known as z-bodies. We
propose a theoretical model based on the particle swarm optimization algorithm that can explore how these α-actinin clusters form into
the patterns observed experimentally. Our algorithm can produce different pattern configurations by manipulating specific parameters that
can be related to α-actinin mobility and binding affinity. These patterns, which vary experimentally according to species and muscle cell
type, speak to the versatility of α-actinin and demonstrate how its behavior may be altered through interactions with various regulatory,
signaling, and metabolic proteins. The results of our simulations invite speculation that premyofibrils can be influenced toward developing
different patterns by altering the behavior of individual α-actinin molecules, which may be linked to key differences present in different cell
types.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5145010., s

I. INTRODUCTION

Across species, molecular interactions cause myofibrils to
transmit forces both within and between neighboring myocytes with
extreme precision, allowing for coordinated muscular contractions.
This force transmission comes about because of synchronizing inter-
actions across the highly ordered myofibril structure consisting of
thick and thin filaments with α-actinin forming the mechanical link
between thin actin filaments.1,2 Myofibrils form via a generalized
process whereby each stage coincides with a specific collection of

proteins, some of which can be used to track the development from
an immature to a mature state. Early stage myofibrils, termed pre-
myofibrils, can be identified by the clusters of α-actinin distributed
throughout their length.2,3 Following their formation, the spacing
between these punctate α-actinin aggregates, designated as z-bodies,
increases leading to α-actinin registration and lateral fusion amongst
neighboring premyofibrils. This creates the striated patterns found
on mature myofibrils referred to as z-lines.3 These patterns have
been observed in various cell types across multiple species includ-
ing cardiac cells,4,5 skeletal muscle cells,6,7 and flight muscle cells.8,9
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This corresponds to a basic organizational motif common to animals
that use their muscles to produce force: the partition of the myofibril
into repeating sarcomeres.

Since sarcomeres are the central contractile units of myofib-
rils in myocytes, much attention has been placed on tracking
their formation, beginning with their myofibril precursors.1,10 How-
ever, despite sharing a similar overall pattern, different morpholo-
gies have been observed depending on the species of interest. For
instance, there is not only a difference in the initial z-body peri-
odicity but also a difference in the final sarcomere length. In
mammalian cardiomyocytes, the distance between α-actinin clus-
ters elongates from approximately 1.2 μm for z-bodies to 2 μm for
mature z-lines,2,5,11 while in Drosophila flight muscle cells, the dis-
tance increases from around 1.7 to 3.2 μm.8 This growth has also
been observed in the skeletal muscle of zebrafish though with differ-
ent initial and final lengths.12 However, the way in which the final
sarcomere lengths are achieved in each species and muscle type is
still unclear.

Sarcomerogenesis studies are typically framedwith the assump-
tion that there is a predetermined initial z-body pattern at the start
of the maturation process.2,3 This is often claimed without refer-
ence to how α-actinin clusters self-organize into these punctate pat-
terns. In fact, there is disagreement on whether proteins involved
in maturation are also involved in the formation of z-bodies.4,13

Unfortunately, experiments focusing on early protein coalescence in
premyofibrils are scarce resulting in few proposals for exploring the
z-body pattern formation. This scarcity is due to the vast number of
potential protein interactions that could be involved in early stage
myofibrillogenesis, the exploration of which should not be under-
taken blindly. Since theoretical models are well-suited for study-
ing phenomena without emphasizing specific interactions, they may
be key to addressing this unmet need and helping to guide future
experiments.

In this work, we investigated whether α-actinin dynamics alone
are sufficient to drive the self-organization of clusters into regularly
spaced intervals simply through adjustments in individual protein
activity. Specifically, we examined if α-actinin accumulation can be
obtained in developing premyofibrils through an energy minimiza-
tion mechanism without explicit reference to other proteins. Since
the formation of premyofibrils has not been entirely explored, our
approach may aid experimentalists in developing a roadmap for
prospective studies of early stage myofibrillogenesis. By focusing
on the recruitment and interactions between neighboring α-actinin
clusters in different species and muscle cell types, our model can
guide experimentalists toward identifying pattern-inducing factors
associated with forming z-bodies. Once specific causal links are iden-
tified, exploration of the impact altered premyofibrils have on final
sarcomere formation can be undertaken.

II. RESULTS
Many studies have attempted to decode the complexities asso-

ciated with the striated patterns found in mature muscle cells.1,9,14

Often, emphasis is placed on the proteins involved in the transfor-
mation from premyofibrils with identifiable z-bodies into mature
myofibrils with distinct z-lines.2,10,15 However, this type of explo-
ration does not address what causes α-actinin to form a pattern along

premyofibrils in the first place. In an effort to gain insight into this
phenomenon, we viewed the cell as a mechanical operator which
relies on an efficient use of free energy to function including form-
ing the premyofibril architecture. Our phenomenological approach
focused on whether pattern formation could be induced without
specific reference to other proteins that may be involved. This was
investigated by employing a modified particle swarm optimization
(PSO) algorithm that utilized the energetic profile of a swarm of
α-actinin to guide z-body pattern formation.

A. Convergence of the adapted PSO algorithm
The standard PSO algorithm is a stochastic evolutionary algo-

rithm with the ability to converge to a global optimum even when
several local optima exist. To ensure proper convergence, many
of the suggestions that have been put forth regarding the con-
vergence of the standard PSO algorithm16–19 were integrated into
the adapted PSO algorithm in this work. These include the incor-
poration of a dynamically adjusting inertia weight [Eq. (5)] into
the velocity update rule,16 setting initial velocities to zero,18 and
utilizing a swarm population size that is sufficiently large.19 The
implementation details and equations can be found in the Sec. IV.

The initial swarm resembled a collection of α-actinin randomly
distributed throughout the simulated curve trajectory. Individual
configurations were updated according to Eqs. (4)–(8) with the pos-
sibility of cluster recruitment whenever the inter-cluster distance
of the optimal swarm configuration was sufficiently large. Within
each simulation, cluster accumulation can be viewed over the imple-
mented time [Fig. 1(a)]. Random initial swarms each tended toward
a final configuration, converging before the maximum iteration
counter Tmax was reached [Fig. 1(b)]. The swarm can be observed
converging to the optimal swarm configuration with recruitment
and movement mechanisms playing a key role in guiding algo-
rithmic convergence. In particular, the final swarm configuration
yielded an equilibrium inter-cluster distance near the ideal distance
parameter, rm, found in Eq. (2) [Fig. 1(b)]. The reduction in the
inter-cluster distance came about as a result of new clusters being
recruited to the developing myofibril [Fig. 1(c)]. The incorporation
of new clusters into the swarm produced distinct reductions in the
objective function value. Despite sharing a similar trend through-
out all simulations, the objective function did not decay to a singular
steady state value [Fig. 1(d)]. Rather, the energy required to reach
an optimal swarm configuration was dependent on the level of ran-
domness and stochasticity in the initial swarm distribution. Many
have speculated that cells function in ways which aim to optimize
available free energy.20 The possibility of an energy state transition
occurring as a result of α-actinin recruitment invites speculation on
the energetic nature of α-actinin modulation.

B. Pattern formation as determined by objective
function parameters

A key observation of the convergence tests was the link between
rm and the convergence of the swarming algorithm, suggesting a cor-
relation between the ideal distance value and the effective change in
α-actinin mobility. Indeed, there are conflicting reports regarding
the dynamic movement of α-actinin in the early stages of myofibril
formation that coincide with the muscle cell type.4,7 To explore if it
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FIG. 1. The adapted PSO algorithm converges to the optimal swarm configuration. (a) Ten simulations were run on a horizontal premyofibril (green) with S = 60 individual
configurations in the swarm. Taken together, the swarm resembled a random distribution of α-actinin point clusters (blue). The clusters reached an equilibrium configuration
as time increased from t = 1 to t = 200. (b) As the swarm evolved, new point clusters were incorporated into the swarm throughout all simulations (colors vary) until no new
clusters could be added. (c) The inclusion of new clusters caused a decrease in the average inter-cluster distance for each simulation until it converged to a singular value,
rm = 1.1 μm (dotted line). (d) The injection of new point clusters corresponded to a decrease in the objective function value within each simulation.

is possible to generate patterns by manipulating α-actinin interac-
tions and regulating binding affinity, the parameter pairs governing
the objective function were varied. Specifically, focus was placed on
the ideal distance parameter rm, which could coincide with the mus-
cle cell type, and the cluster searching distance dth, which defined the
necessary spatial distance for cluster recruitment to be considered.

In our simulations, the average inter-cluster distance is shown
to be driven primarily by the ideal distance, rm, and not by the
recruitment searching distance, dth [Fig. 2(a)]. This is evident by
the final inter-cluster distance converging to values near rm despite
changes to dth. However, alterations in the searching distance
impacted the average uniformity of the resulting patterns [Fig. 2(b)].
In particular, the appropriately chosen searching distance could
increase uniformity levels for ideal distances larger than approxi-
mately rm = 1.25 μm. For ideal distances below this level, but larger
than rm = 0.7 μm, the searching distance dth would have little influ-
ence, as is evident from the consistent levels of uniformity that were
seen. However, pattern formation begins to reduce for ideal dis-
tances smaller than rm = 0.7 μm with the lowest levels occurring for
searching distances below dth = 0.5 μm.

To further explore the influence of the ideal distance term
rm, the searching distance was fixed at dth = 0.5 μm, while rm was
allowed to vary. In this scenario, the final average distance corre-
lated with the changes in the ideal distance in a linear fashion with
consistently high levels of uniformity even at low rm [Fig. 2(c)].

Interestingly, the average distances consistently converged to val-
ues slightly larger than the specified ideal distance. Coinciding with
the distance convergence, a clear link between the average distance
and the number of final point clusters can be observed [Fig. 2(d)].
However, while smaller distances yielded more point clusters, the
relationship is non-linear despite a constant searching distance.
This appears to inversely mimic the non-linear variation in the
uniformity measure [Fig. 2(d), inset], suggesting that uniformity
may be more closely linked with the number of clusters than with
the final inter-cluster distance. This is a property that has been
observed in mature myofibrils where increased uniformity appears
to coincide with an uptick in the number of z-lines.14,21 Similarly,
other properties of mature myofibrils such as sarcomeric length-
regulation via specified proteins may have analogs in the immature
case.

C. Impacts of the myofibril shape on pattern initiation
Even though cells exist in a three dimensional (3D) envi-

ronment, two dimensional (2D) experimental studies are often
employed when studyingmyofibrillogensis,5,22 leading to the discov-
ery that premyofibrils first appear near the cell edge.3 Despite their
potential shape being restricted by the outline of the cell bound-
ary, premyofibrils are often depicted as nearly straight curves with
little to no variation in the curvature.2 This has inspired many
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FIG. 2. The ideal distance drives convergence behavior. (a) The average inter-
cluster distance of the ten fiber simulations showed a correlation between the con-
vergence value and the ideal distance value rm in the (dth, rm) parameter space.
(b) The normalized uniformity measure viewed in the (dth, rm) plane revealed dif-
ferent pattern uniformities based on the location within the parameter space. (c)
Fixing dth = 0.5 μm, the convergence values for each simulation (mean ± SD)
behaved linearly with varying rm (red) with a convergence value always larger
than rm (blue). (d) The increase in the ideal distance corresponded to a non-linear
decrease in the number of clusters as well as a non-linear increase in uniformity
(inset).

researchers to model components of myofibrillogenesis using one
dimensional reductions.23,24 One of the advantages of our approach
is its adaptability into two dimensional studies without requiring
large increases in complexity. This was used to investigate whether
the premyofibril shape was a potential influencer of either final
inter-cluster distance or pattern uniformity.

Experiments from the literature emphasize premyofibrils that
appear as long, slightly curved rods with distinct punctate patterns.
However, the patterns appear to degrade on curves closer to the
cell edge, where premyofibrils have a larger radius of curvature.3,22

To explore this phenomenon, we applied our algorithm to two
dimensional curves of varying lengths and curvatures. The curva-
ture radius Rc was fixed at low (20 μm), moderate (56 μm), or high
(110 μm) values, and arc segments were constructed using fourth-
order parametric Bézier curves with lengths Lc ranging from 20 μm
to 60 μm [Fig. 3(a)]. To perform our study, a linear transformation
was applied that aligned the constructed curve with the horizon-
tal axis. This allowed for lateral movement to be determined via
Eq. (6) with the corresponding vertical coordinate being determined

such that the resulting point cluster remained on the transformed
myofibril.

A common trend was seen in all three simulated muscle types
(Fig. 3). High levels of uniformity were observed in all cases with
no statistical differences found. However, there were differences
observed in the final simulation distances at a low curvature radius
for the flight and skeletal muscle cell types. In the case of the flight
muscle cell, the preassigned length of the myofibril appeared to play
a role in the final pattern formation, with longer curves leading to
larger deviations from the ideal distance [Fig. 3(b)]. Interestingly,
no significant differences were observed in cardiac cells, regard-
less of the myofibril shape [Fig. 3(c)]. However, the increase can
also be seen when the shortest curve length is compared to one
of the longer curve lengths in the skeletal muscle cell [Fig. 3(d)].
As in the flight muscle, no statistically significant differences were
observed at moderate or high radii of the curvature in the skeletal
muscle.

To further examine the link between these two fundamen-
tal characteristics, a parameter space exploration was employed
[Fig. 3(e)]. For eachmuscle cell type considered, themyofibril curva-
ture was altered and the resulting length–curvature pair was ranked
based on how well the pattern balanced inter-cluster distances and
uniformity [Eq. (13)]. In general, increasing the curve length had a
detrimental impact on the ranking when the curvature radius was
fixed. However, there was no consistency in the nature of this drop
off. The highest ranked length–curvature pairs were identified in a
cell-specific manner whereby Eq. (13) was employed throughout the
parameter space and the region containing pairs with ranking larger
than themean plus one standard deviationwere outlined. These high
ranking regions differed in all muscle cell types, yet none extended
past the ∼33 μm length marker. While flight cells contained two pro-
nounced regions centered at low or moderately high curvatures, car-
diac cells contained three protruding regions with a high curvature
included in the low andmoderately high curvature radii. As the ideal
distance reduced, two of these three regions shrank, prioritizing
ranking toward straighter curves. Despite these distinct differences,
the simulations did not produce any patterns containing an inter-
cluster distance outside the ranges reported experimentally. Further
exploring the impact of the curve shape on pattern initiation may
yield insights into myofibrillogenesis. It is generally accepted that
premyofibrils form near the cell periphery, which contain regions of
high curvature in spreading cells, and move inward during matura-
tion.3,22 Prior to this spatial migration, the lengths and curvatures of
the premyofibrils attempting to form in these regions may be sub-
jected to shape constraints that play a vital role in guiding α-actinin
recruitment and clustering.

D. Self-organization may be guided by group behavior
As of yet, a unifying mechanism that guides self-organization

across multiple species has not been identified. There is speculation,
however, that the variability found in the observed patterns may
point toward fundamental differences in protein behavior which
are species-specific. Indeed, there has been some evidence that α-
actinin behavior may be altered through interactions with various
regulatory, signaling, and metabolic proteins.25,26 The methods by
which these regulatory interactions are entrenched in some devel-
oping cells are not entirely known but they may be linked to key
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FIG. 3. Curve shape influences the pattern development. (a) Fourth-order Bézier curves of various lengths (colorbar) were created for several types of curve radii including
low (20 μm), moderate (56 μm), and high (110 μm) values. (b)–(d) For low, moderate, and high curve radii, the curve lengths were varied, and the resulting pattern was
quantified according to uniformity (left plots) and the average inter-cluster distance (right plots) as mean ± SD for the ten simulations. Pairings which demonstrated statistically
significant differences (p < 0.05) were marked with a horizontal line. The simulations were performed using ideal distances corresponding to the muscle cell type: rm = 1.8 μm
for the flight muscle, rm = 1.1 μm for the cardiac muscle, and rm = 0.7 for the skeletal muscle. (e) For each muscle cell type, the ranking function (13) was employed and
normalized in the Lc–Rc parameter space. The region with the ranking value larger than the mean plus one standard deviation for the whole space is outlined (red).

differences present in different cell types.27 To explore these poten-
tial influencers in our model, cluster behavior profiles were altered
bymanipulating two acceleration parameters: an individualized cog-
nitive coefficient c1, which biases behavior toward the best solution
for the specific individual, and a group social coefficient c2 that biases
behavior toward the best solution for the swarm. Typically, these
values lie in the range 0 ≤ c1, c2 ≤ 4 with large values indicating
quick movement toward the target goal.17 The prescribed behav-
ior profiles influence individual trajectories with c1 > c2, indicating a

preference toward optimizing individualized self-learning behavior
while c1 < c2 prioritizes optimization based on group behavior.

To examine the influence of biasing behavior on final pattern
formation, the pairs of acceleration parameters were varied within
the range suggested by the literature.17 The simulated myofibril was
given a curve length of approximately 35 μm and a radius of curva-
ture of 40 μm, a shape combination which previously fell outside the
highest ranked regions for each muscle cell type [Fig. 3(e)]. Using
the ranking function, the regions with the highest ranked parameter
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pairs were identified for each muscle cell type within the parame-
ter phase space [Fig. 4(a)]. The behavior pairings with the largest
overall ranking for each cell type were identified and found to be
clustered near each other. Often, each behavior type is assumed
to have an equal level of influence,17 but such pairings were not
optimal for any of the cell types simulated. Interestingly, all highly
ranked pairs had a group coefficient c2 above unity but this property
was not observed with the self-learning coefficient c1. As might be
expected, there was no region common to all threemuscle types but a

transitory area could be identified whereby the different mus-
cle types could be simulated with minimal parameter variation
[Fig. 4(a)]. Biologically, these observations imply that α-actinin may
behave differently depending on the muscle cell type. In fact, there is
evidence of genetic variability in the different α-actinin isoforms in
multiple species.27 Whether this variability is linked to alterations in
α-actinin mobility or binding affinity has not been determined.

To further analyze the influence of variations on α-actinin
behavior, we explored the convergence behavior within the

FIG. 4. The choice of biasing parameters dictates the equilibrium pattern. (a) The individual (c1) and group (c2) biasing behavior parameters were varied for each muscle
cell type simulated. The ranking function (13) was normalized, and all regions with values larger than 0.56 were outlined for flight (blue), cardiac (red), and skeletal (green)
muscles. (b)–(d) The average inter-cluster distance for each simulated cell type was plotted in the (c1, c2) parameter space with blank regions indicating parameter pairs that
yielded average inter-cluster distance values outside the range observed experimentally. (e) The area of the parameter space region that yielded biologically relevant patterns
was calculated and normalized relative to the area of the entire parameter space for each simulated muscle cell type. (f) From a common initial α-actinin distribution, the
choice of biasing parameters can produce patterns for each muscle cell type. These are consistent with experimental data such as neonatal rat ventricular cardiomyocytes
with z-lines identified by α-actinin staining. Curved myofibrils are identified by an asterisk with arrowheads identifying the myofibril trajectory. A yellow dotted line is provided
for visual reference of a horizontal line (scale bar = 10 μm).
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simulations. The regions with the highest rank appeared to correlate
with the behavior pairings that produced patterns with a minimal
deviation from the idealized distance value [Figs. 4(b)–4(d)]. For the
skeletal muscle, all parameter pairs yielded average distance values
that were within the range of values previously reported. However,
that was not the case for the other two muscle types. In the cardiac
simulations, inaccurate patterns were produced when self-learning
was highly favored over socialization [Fig. 4(c)], while for the flight
muscle, the lack of group interactions (c2 = 0) prevented the forma-
tion of valid patterns [Fig. 4(d)]. This suggests a possible correlation
between the idealized distance value rm and the size of the valid
parameter pairings as increases in rm corresponded to a shrinkage
in the potential parameter space [Fig. 4(e)]. This may support the
hypothesis that the level of influence different proteins have on α-
actinin behavior, and the resulting pattern, may vary according to
cell or species type.27 In any case, in all three cell types consid-
ered, it was possible to obtain a final distribution with an average
inter-cluster distance near the ideal distance that utilized both self-
learning and group biasing (c1, c2 ≥ 1). However, doing so could
result in distributions with impaired uniformity. While some high
ranking regions could be found for each cell type when individual
behavior was prioritized (c1 > c2), more high ranking regions were
produced when emphasis was placed on group behavior (c2 > c1),
suggesting that the ability of α-actinin to interact with neighboring
proteins is essential for pattern formation.

Figure 4(a) illustrates how α-actinin dynamics can be modu-
lated in order to form various punctate configurations. The exper-
imentally observed patterns could be recreated through the appro-
priate choice of biasing parameters. Specifically, within each high
ranking region, the parameter pairs that yielded the highest ranking
values were chosen to demonstrate how the premyofibril assembly
may differ in different cell types [Fig. 4(f)]. Starting with an initially
random distribution, each pair of biasing parameters was imple-
mented, and the final α-actinin distributions were obtained. These
distributions produced patterns which had high levels of unifor-
mity and average inter-cluster distances that resembled the values
found in the literature. Movement toward different parameter space
regimes may come about by modulating protein interactions. This
may be done in a species- or cell-specific manner, prompting fur-
ther analysis of the interactions that allow each cell type to uniquely
regulate protein behavior.

III. DISCUSSION
There are many aspects regarding the dynamics governing

myofibrillogensis that remain unresolved. In most studies, emphasis
is placed on the proteins affiliated with the transition from z-bodies
to z-lines following the identification of fully formed premyofibrils.
However, there is currently no consensus on how such a structure is
formed. To aid experimentalists in this endeavor, we constructed a
modified PSO algorithm and demonstrated that it may be possible
to generate experimentally observed patterns through manipulation
of the underlying mobility, recruitment, and binding dynamics of
α-actinin. By utilizing energy-state transitions and allowing for pre-
myofibrils of various lengths and radii of curvature, we were able to
explore how relations such as curve shape and biasing behavior may
influence the formation of α-actinin patterns.

Since the sarcomere is the central contractile unit in a myofib-
ril, many theoretical and experimental models concerned with the
sarcomeric organization are built on the view that self-organization
comes about due to tension-mediated interactions between actin
and myosin filaments.23,28,29 While these models accurately display
tension as an important factor in guiding maturation, they often
ignore the central role α-actinin plays in z-body formation. Our
approach differs by emphasizing α-actinin dynamics, which has
been shown to display differences inmobility depending on themus-
cle cell type.4,7 While other models have not attempted to recreate
this property, we were able to mimic this response by considering
different behavior profiles. Additionally, previous models favored
one dimensional simplifications,23,24 whereas our approach allows
for two dimensional studies with minimal additions. Experimen-
tal data obtained from 2D cultures are commonly used and have
demonstrated complex cytoskeletal networks consisting of myofib-
rils with varying curvatures.3,24 Previous models have not been set
up to address how this factor influences premyofibril formation,
while our model allows for the inclusion of curve shape consid-
erations. Since muscle cells in vivo are cylindrical in shape,30 it is
possible that the 3D structure of developing myofibrils may influ-
ence the pattern formation.31 Several studies have attempted to
decode the complex 3D structure that appears in the later stages of
myofibril maturation, referred to as the z-disk.2,5,32 However, given
the increase in experimental complexity associated with develop-
ing 3D cultures,31,33 two dimensional computational studies such as
ours provide a basis for hypothesis testing with the possibility for
extensions in the future. Future extensions of our approach would
include three dimensional studies whereby the given premyofibril
can have a planar curvature as the result of rotations into the z-axis.
This additional degree of spatial freedom may be included directly,
allowing for three dimensional visualization, or indirectly where a
three dimensional curve can be projected onto a two dimensional
plane.

Our model proposes that premyofibrils can be influenced
toward developing different punctate patterns by altering the behav-
ior of individual α-actinin molecules. In the same way that a list
of maturation-affiliated proteins has been assembled,2 our results
highlight how a catalog of α-actinin influencers in developing pre-
myofibrils also needs to be compiled. One such influencer that has
already been discovered in eukaryotic cells is cofilin. This protein
has been shown to increase the cross-linking of actin filaments by
increasing the number of potential α-actinin binding sites.25 Such
an influence would correspond to a change in the biasing parame-
ters in our model (represented by c1 and c2). It is possible that the
dynamics governing this increase in binding sites are linked to the
changes in mobility in different muscle cell types, but this has yet to
be examined.

Based on our framework, our model suggests that experiments
focusing on the sequence of events leading to premyofibril formation
prioritize the nature of initial α-actinin recruitment and its rela-
tion to the scaffolding proteins that bind to actin filaments. There
is already evidence that proteins such as N-RAP interact with actin
filaments prior to the recruitment of α-actinin but do not appear to
drive sarcomere formation.4,13 These types of proteins may be linked
to our cluster searching distance dth, influencing α-actinin recruit-
ment dynamics and eventual pattern formation. Additionally, the
current model can be used as a building block toward linking the
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formation of α-actinin z-bodies with the known interactions that
occur during maturation. Experimentalists can use our phenomeno-
logical findings to inform their explorations of the dynamics that are
at play during the early stages of myofibrillogenesis. By emphasiz-
ing the dynamics of α-actinin, our model can be extended to include
additional cell types not considered here such as vertebrate smooth
muscle. Smooth muscle cells contain α-actinin z-bodies but have a
different contractile mechanism than striated muscle cells.34 This
exemplifies how exploring initial α-actinin pattern formation phe-
nomenologically may be advantageous from a modeling perspective
as it allows for a discussion of general characteristics that may be
applicable to many different cell types.

IV. METHODS
The PSO algorithm is a population-based algorithm inspired

by the social behavior observed in bird flocks and fish colonies.17

A key component of this algorithm is its ability to use local inter-
actions between neighboring bodies to influence global behavior
in the service of optimizing a prescribed objective function. In
our formulation, a swarm refers to a collection of α-actinin clus-
ter configurations, each of which may form as the result of an
accumulation of α-actinin proteins along the simulated myofibril.
The α-actinin distribution for each configuration was then updated
iteratively by optimizing the objective function, as outlined in
Fig. 5.

A. Energy-based objective function
We constructed an objective function that utilized the inter-

cluster distance within a configuration and accounted for the

energetic cost-benefit of adding clusters to each configuration.
Newly added clusters allowed the swarm to consider different con-
figurations where a new state was adopted if it was energetically
favorable. Assuming a collection of N clusters with locations r1, . . .,
rN within a given configuration, we wrote the objective function at
iteration t as

f (r1, . . . , rN) =∑
i<j

V(rij) +
Kl

∑

k=1
Ekδk, (1)

where the first sum denoted the energetic cost of maintaining the
swarm in the current state and the second sum denoted the ener-
getic cost-benefit of adding new α-actinin clusters to the current
swarm.

The potential energy functionV was chosen under the assump-
tion that α-actinin clusters aim at achieving an optimal distance
from neighboring clusters, as has been reported experimentally.2,11

This behavior is adequately captured by the Lennard–Jones potential
energy function,

V(rij) = ε
⎡
⎢
⎢
⎢
⎢
⎣

(
rm
rij
)

12

− 2(
rm
rij
)

6⎤
⎥
⎥
⎥
⎥
⎦

, (2)

where the strength of the cluster interactions is dependent on the
inter-cluster distance rij = |ri − rj|, ε denotes the depth of the poten-
tial energy well, and rm denotes the ideal equilibrium inter-cluster
distance. In the second summation,K l denotes the number of poten-
tial clusters that could be added to the swarm with Ek denoting the
energetic cost-benefit of incorporating a new cluster sk to the swarm
configuration. The step function δk indicates whether adding sk is
energetically favorable.

FIG. 5. Overview of the adapted PSO
algorithm. Following initialization, the
algorithm can be broken down into
two main components: the position-
and velocity-related update equations
(green box, described in Sec. IV C 2)
and the integrated energy state tran-
sition process (blue box, described in
Sec. IV C 3).
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B. Energetic cost-benefit function
To incorporate a new α-actinin cluster sk into a configuration,

both the current optimal swarm configuration {r1, . . ., rN} and the
newly incorporated clusters {s1, . . ., sm}, where m < k, were consid-
ered. To this end, we wrote X = {(r̃0, r̃1), (r̃1, r̃2), . . . , (r̃N , r̃N+1)},
where r0 and rN+1 denoted the two endpoints of the myofibril and
r̃i ∈ {Tr0, . . . , TrN+1} with r̃i,x < r̃i+1,x. The linear transforma-
tion T aligned the myofibril of interest with the x-axis so that a
pseudo-ordering of the clusters could be created. We then defined
Ek as

Ek = ∑

(x1 ,x2)∈X
P(sk, x1, x2)

⎡
⎢
⎢
⎢
⎢
⎣

N

∑

j=1
V(∣sk − rj∣) +∑

m<k
V(∣sk − sm∣)δm

⎤
⎥
⎥
⎥
⎥
⎦

,

(3)

with

P(sk, x1, x2) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

1, (Tsk)x ∈ (x1,x, x2,x)
and (Tsm)x ∉ (x1,x, x2,x) form < k

0, otherwise
.

The first summation within the brackets considers how a newly pro-
posed cluster would influence the current optimal configuration,
while the second summation incorporates the influence of clus-
ters which have already been proposed. The outer summation and
the function P restrict only one cluster to be added to a myofibril
segment per iteration.

C. Algorithm overview
Full implementation was achieved by using a three step pro-

cess. Following initialization, configurations within the swarm were
updated using position and velocity equations common to stan-
dard PSO algorithms, as described below (Fig. 5, green box). Once
new configurations were proposed, the simulated myofibril was
segmented into potential α-actinin recruitment zones whereby an
energy state transition could occur (Fig. 5, blue box). This process
was repeated until the maximum number of iterations Tmax was
reached. The final configurations were then analyzed for pattern
formation and consistency (Fig. 5, pink box).

1. Initialization
The swarm was initialized by specifying a swarm size S and

assuming there was initially one cluster on either end of themyofibril
curve and one cluster placed randomly within the curve per con-
figuration. The algorithmic variables were initialized by assuming
each cluster initially had zero velocity and was in its locally optimal
configuration: vk = 0 and pk = rk for all k = 1, . . ., S. The optimal
configuration for the swarm was initially set to be the most energet-
ically favorable of all the individual configurations: g = rk such that
f (rk) ≤ f (rj) for all j = 1, . . ., S.

2. Configuration updates
While t < Tmax, all algorithmic variables were updated accord-

ing to the following rules:

1. For k = 1, . . ., S, vk was updated using

vk(t+Δt) = ω(t)vk(t) +R1c1(pk−rk(t)) +R2c2(g−rk(t)). (4)

The parameters R1 and R2 were random values chosen from
a uniform distribution, while c1 and c2 denoted scalar weights
that bias the attraction toward pk and g. The inertial parameter
ω is dynamically adjusted at each iteration via the relation

ω(t) = ωmax − (ωmax − ωmin)
t

Tmax
, (5)

where ωmin was the final value of ω and ωmax was the initial
value of ω, typically taken near 1.17

2. For k = 1, . . ., S, rk was updated using

rk(t + Δt) = rk(t) + vk(t + Δt)Δt. (6)

3. For k = 1, . . ., S, pk and g were updated using

pk(t + Δt) =
⎧
⎪⎪
⎨
⎪⎪
⎩

pk(t), f (rk(t + Δt)) ≥ f (pk(t))

rk(t + Δt), f (rk(t + Δt)) < f (pk(t))
(7)

and

g = rk(t + Δt) (8)

such that f (rk(t + Δt)) ≤ f (rj(t + Δt)) for all j = 1, . . ., S.

3. Energy state transition
After new configurations were obtained, we determined if the

swarm should undergo a state transition by adding new clusters. If
the distance between neighboring clusters in the optimal swarm con-
figuration was larger than the minimum required segment length
dth, then new clusters could be incorporated randomly onto the
myofibril segment between them. A newly suggested cluster sk was
accepted into the swarm if its inclusion would result in a reduction in
the objective function value, Δf < 0. Once a new cluster point within
a myofibril segment was accepted into the optimal swarm configura-
tion, a corresponding local cluster r was randomly placed within the
same myofibril segment for each individual configuration. Each of
these new local clusters was initialized using the same requirements
as before: p = r and v = 0.

Within each simulation, we allowed for movement in one
dimension of each cluster to be determined by the algorithm and
required the corresponding second dimension to be chosen such
that the cluster remained on the given myofibril curve. We also
required rk to always be confined within the designated boundaries
by enforcing absorbing boundary conditions: If rk was predicted to
move a cluster beyond the boundary, then the cluster was reset to
the boundary and its velocity was reset to 0.

D. Distance, uniformity, and ranking measurements
1. Average inter-cluster distance

For pseudo-ordered cluster points {x1, . . ., xN} in the jth con-
figuration (1 ≤ j ≤ S), the inter-cluster distance between clusters
xi and xi+1 was defined as d( j)i = ∣xi − xi+1∣. The average distance

within the simulation number sk was dsk = (1/S)∑j di
( j)

, where

di
( j)
= (1/N)∑i d

( j)
i was the average distance of the clusters located

at {x1, . . ., xN}. Given Nsim simulations, the average inter-cluster
distance of the swarming algorithm was

d =
1

Nsim
∑

sk
dsk . (9)
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To aid in parameter space exploration whereby a pair of param-
eters (p1, p2) was varied, the average inter-cluster distance of the
swarming algorithm was rescaled relative to the ideal distance rm,

dT(p1, p2) =
d(p1, p2) − rm

max(q1 ,q2) ∣d(q1, q2) − rm∣
. (10)

2. Uniformity
To determine whether the point clusters were uniformly dis-

tributed, an adjusted coefficient of variation (COV) measure was
utilized. To this end, the minimum distance between point xi and
all other points was first determined: γi = minj≠i|xi − xj|. The
uniformity measure was then defined as

u =
1

λrand
[λrand − λ], (11)

where γ = (1/N)∑i γi and λ = (1/γ)[(1/N)∑i(γi − γ)
2
]
1/2

, a
common COV measure of uniformity. The parameter λrand denotes
the maximum uniformity measure that may occur from 60 sim-
ulations of N randomly distributed points along the simulated
myofibril. By including this parameter, the uniformity measure was
expected to range from zero to unity with u = 1 corresponding
to a uniformly distributed collection of points. As with the inter-
cluster distance measurements, for each simulation sk, the aver-
age uniformity was denoted usk and the average uniformity of the
swarming algorithm was defined as the average uniformity over all
simulations,

u =
1

Nsim
∑

sk
usk . (12)

3. Ranking function
To determine the influence of a pair of parameters (p1, p2) on

the behavior of the resulting configuration, a ranking function was
constructed which utilized the average inter-cluster distance and
uniformity measurements. For each parameter pairing, the distance
measurement (10) was normalized and rescaled to prioritize val-
ues closer to zero and penalize values away from zero, regardless of
whether they deviated toward the positive or negative ends of the
spectrum. Thus, the ranking function was defined as the product of
the average uniformity and the prioritized distance function,

R(p1, p2) = u(p1, p2) ⋅ exp[−
d(p1, p2)2

2σ2
], (13)

where σ is the standard deviation of the collection of parameter-
generated distances {dT}(p1 ,p2).

E. Statistical analysis
Simulation data, when applicable, were expressed using the

mean with error bars representing the standard deviation. Statisti-
cal significance between data groups was determined using one-way
analysis of the variance followed by the Tukey–Kramer post-hoc test
for pairwise comparisons. A p-value less than 0.05 was considered
statistically significant.
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