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NUMERICAL METHODS FOR MULTISCALE INVERSE PROBLEMS*

CHRISTINA FREDERICK! AND BJORN ENGQUIST?

Abstract. We consider the inverse problem of determining the highly oscillatory coefficient a®
in partial differential equations of the form —V:(a*Vu®)+buf=f from given measurements of the
solutions. Here, € indicates the smallest characteristic wavelength in the problem (0<e<1). In
addition to the general difficulty of finding an inverse is the challenge of multiscale modeling, which
is hard even for forward computations. The inverse problem in its full generality is typically ill-
posed, and one common approach is to reduce the dimension by seeking effective parameters. We will
here include microscale features directly in the inverse problem and avoid ill-posedness by assuming
that the microscale can be accurately represented by a low-dimensional parametrization. The basis
for our inversion will be a coupling of the parametrization to analytic homogenization or a coupling
to efficient multiscale numerical methods when analytic homogenization is not available. We will
analyze the reduced problem, =0, by proving uniqueness of the inverse in certain problem classes
and by numerical examples and also include numerical model examples for medical imaging, >0, and
exploration seismology, b <0.

Keywords. Inverse problems, stability, heterogeneous multiscale method, periodic homogeniza-
tion. ' ’

AMS subject classifications. 65N21, 35R25,"65N30, 35B27.

1. Introduction

Multiscale modeling plays a crucial role in the development of mathematical and
numerical methods for solving inverse problems arising in science and engineering. The

design of accurate models must account for the numerous challenges involved in captur-
" ing a wide spectrum of time and spatial scales. Full resolution forward models come at
a high computational cost, and many model-reduction techniques create difficulties in
the mathematical formulation of the inverse problem. It is important to understand mi-
crostructure inversion problems where these challenges can be addressed by employing
multiscale forward solvers and including prior knowledge in the inversion process.

We will consider the problem of determining an unknown parameter in a forward
model G: X — P from observational data. Here, X and P are function spaces, and the
map G is a solution operator for a partial differential equation of the form G(a¢) =uc € P.
The unknown parameter a¢ € X is a coefficient in the equation. The multiscale nature
of the problem is indicated by the superscript €, where € is the ratio of scales in the
model (0<e<1). '

The collected measurements, denoted by y°€R™, are in practice obtained from
experiments or electrical techniques. The mapping ¢: X x P—R"™ from the unknown
parameter to the data, called the observation operator, is derived from the forward
model. The solution to the inverse problem is then obtained by matching observations
y¢=%(a,uf), with predictions of the form z=%(a,%). In practice, the mapping from
the parameter space to the space of predictions may differ from the observation operator,
however here it is assumed that the mappings are the same.

Data-driven optimization problems require many simulations of the forward model,

*Received: February 15, 2016; accepted (in revised form): May 23, 2016. Communicated by Guil-
laume Bal.

tSchool of Mathematics, Georgia -Institute of Technology, Atlanta, GA, 30332, USA (cfrederick6@
math.gatech.edu). .

tInstitute for Engineering and Scientific Computing (ICES) and Department of Mathematics at The
University of Texas at Austin, Austin, TX 78712, USA (engquist@ices.utexas.edu).
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and when faced with balancing computational cost with accuracy, most approaches
only deal with scientific models of large scale behavior and, for example in [16], ac-
count for microscopic processes by using effective or homogenized equations to simplify
computations. Homogenization theory [8, 14] provides the form of a reduced model
that describes the effective behavior of the family of solutions {u€}¢>o; under certain
ellipticity conditions, it is known that u*—U, as e— 0, where U is the solution to an
equation of the form G(A)=U, and the expression for the homogenized coefficient A is
given by the theory.

Ideas from homogenization theory can be used to account for the mismatch in scales
between an effective model and the data generated by the full model, as demonstrated
n [16]. It is shown that if only effective parameters in the forward model are desired,
inversion can be performed using a macroscopic model for predictions. In particular,
the result is shown for cases where unknown coefficient A is dependent on a single
parameter € R through a linear mapping 6 — A(#). The inverse problem is formulated
as a minimization problem,

. . P 0
minimize 19(A4,G(A))—¥°ll- (IP%)

The the reduced formulation (IP%) is often well-posed and results in a lower sensitivity
to noise. A drawback of this approach is the loss of details about microscale features.

In the current approach, full inversion is performed using effective forward models
that are based on ideas from homogenization theory, as in [16]. We make use of the a
priori assumption of a microscale parametrization m — a‘(m), where the parameter m
is a scalar function depending on a low dimensional vector § € RY,

N
m(z)=Y 6:ii(2), (1.1)
=1

where the functions 1; are smooth functions defined on the interval [%L, ﬁ), 1<i<N.
Macroscopic predictions are made using ideas from homogenization theory, gaining the
benefits of the previous approach, and the corresponding minimization problem is
minimize  ||¥(a®,G(A)) —y°||. (IP)
m,ac=a¢(m)
We will give sufficient conditions for uniqueness and boundary stability of solutions to
a continuous inverse problem for elliptic partial differential equations that is related to
(IP). These conditions correspond to a classification of certain physical features of the
microstructure that are preserved under homogenization.

The following is a list of main strategies for solving inverse problems involving
multiscale model parameters.

1. Full coefficient inversion. Full coefficient inversion is performed by minimizing
the distance between model predictions and the given data,

min(izrenize 19 (a,G(a%)) -y} (IP¢)

Determining the original coefficient using high resolution predictions comes at a
large computational cost and is often ill-posed due to the presence of multiple local
minima in the associated cost functionals. Therefore, we omit this case from our
computations.
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II. Indirect microscale parameter estimation. An indirect method for solving
(IP) involves a two-stage procedure. The first step is to solve the problem of
estimating the parameter A in the effective model that best matches the given
data. The second step involves determining the microscale parameter m such that
the homogenized coefficient corresponding to a¢(m) is A. This method can be
written as

1. minjlmize |9 (A,G(A) ~y¢|| — A

2. minimize ||A(m)—A]|.
m

III. Direct microscale parameter estimation. In this case, (IP) is solved in one
step, where predictions of the forward model are made using techniques from mul-
tiscale modeling and numerical homogenization. In our experiments we consider
two methods.

a. Known homogenization. If the explicit form of the homogenized coefficient A(m)
corresponding to each parameterized coefficient a¢(m) is known, a macroscopic
method can be used to solve the effective equation.

minimize 19(A,G(A)) -yl (1.2)

b. HMM. Often, the explicit form of the homogenized coefficient is not available,
preventing the direct computation of macroscopic predictions. This issue can
be overcome numerically with the heterogeneous multiscale method, or HMM,
introduced by E and Engquist [10]. HMM provides a framework for the design
of methods that capture macroscale properties of a system using microscale
information. The inverse problem is formulated as

minimize) % (a,G(A)) —y¢]|. (1.3)

m,at=a¢(m

Here, the forward model G(A) is approximated using methods for numerical
homogenization of the predicted coefficient a¢. In the experiments we use the
heterogeneous multiscale method (HMM).

In §2 we give a brief background on periodic homogenization and introduce key
microstructure models that demonstrate the main ideas of this work. In §3, a multiscale
inverse problem related to (IP) is formulated in the classical setting of inverse problems
for elliptic equations. Uniqueness and boundary stability results are given. In §4 we
describe the implementation of the finite element heterogeneous multiscale method.
Numerical results for parameter inversion are provided in §5. In §§5.2 and §§5.3 we
consider model problems from applications in medical imaging and geophysics. Then
we conclude in §6. '

1.1. Notation. The averaging operator is denoted by (f)x = I—}f—l Jx F(w)dy,

where |X| is the volume of the set X CR?. For most examples ¥ =[0,1]¢, and unless
otherwise stated, (-)=(-)y. For any domain D, we use the Sobolev space W™P(D)
with Sobolev norm ||:|wm.». If D=, we omit D. Moreover, if D=Q and p=2, we
denote by H™(£2) the Sobolev space W™?2((2), the usual L? inner product by (-,-) and
the Sobolev norm by |- ||». The norm on the Banach space of bounded linear operators
between H'/2(0Q) and H~1/2(8Q) is denoted by ||-||x.
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2. Homogenized forward model
Let QCR? be a bounded domain with C2-boundary. We consider equations for
which there is a well established homogenization theory [8, 14],

~V-(a*Vu)+bu‘=f in Q, (2.1)

where f and b are given bounded functions and a®(z)=a(z,z/¢) for a given matrix
function a that is locally periodic, symmetric, and uniformly positive definite.

A constant positive definite matrix A is said to be the homogenized matrix for a,
if for any bounded domain Q CR? and any f€ H~'(Q) the solutions of the Dirichlet
problem (2.1) possess the following property of convergence: as ¢—0, u¢—U in H3()
and a*Vu*—AVU in Ly(f2), where U is the solution of the Dirichlet problem

—div(A(z)VU(z))+bU=f in Q. . (2.2)

The homogenized matrix has a closed form expression, .

1
- Aw) =7 [ (alo) s +a(z,) V)i, (23)
where x =(x1,X2) solves the cell problems,
—Vy-(a(z,y)Vyx) =V, -a(z,y)1d, (2.4)

with the constraint x(z,y) is Y-periodic in y and (x(z,-))=0. In general, (2.3) must
be calculated using solutions to cell problems. Explicit formulas are known in one di-
mension and also in certain higher dimensional models, such as those describing layered
media [14]. Even if the original coefficients are isotropic, the process of homogenization
introduces anisotropy.

2.1. Microstructure models. The ideas in the remaining sections can be
understood in terms of the following examples of parametrized microstructures. Let
m € L*®(Q2) be a function taking values in the interval Iy =[A~1,)] for A>1, and let

a*(m(),z) = a(m(z),z/e)d, : (2.5)

where a(z,y) is smooth, bounded, and periodic in the second variable and Id denotes the
d x d identity matrix. The first three models below are commonly used in the analysis of
layered materials (see Figure 2.1). The last two models represent properties of materials
containing cell microstructures (see Figure 2.2).

A. Amplitude. For a positive constant ao and a periodic, bounded function a(y)=
a(y2) with (@) =0, the parametrization of the amplitude of oscillations is modeled
by

a(m,y) =ag +ma(ysz). (2.6)

B. Volume fraction. A special case of layered materials are two-phase laminates,
where the parameter m determines the volume fraction of each,

ki 0<
1 0sge<m 7).

k, m<yy<l.

dmw={
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’/A

F1G. 2.1. Layered microstructures. From left to right: A - Amplitude, B - Volume fraction, C -
Angle.

F1G. 2.2. Cell microstructures. Cell structures (left) D - Amplitude and (right) E - Volume
Fraction.

C. Angle. Here, 4 is a periodic function and o, is a matrix of rotation,

cos(2mrm) sin(27r'm)) ) (2.8)

a(m,y) = d(am?/)’ Om= (— sin(27rm) cos(27rm)

D. Amplitude in cell structures. The analog of Model A is a class of separable
functions a,

a(m,y) = a1 (m,y1)az(m,ys), : (2.9)

where a; and a; of the type in (2.6).

E. Volume fraction in cell structures. The analog of Model B is

ki, yemY '
)= 2.10
a(m.y) {kz, otherwise, ( )

where k; and k; are positive constants.

2.1.1. Explicit calculations of homogenized microstructures. The locally
periodic microstructure models (A-E) admit homogenized matrix functions of the form
A(m,-)=A(m). In two dimensions, calculations of (2.3) can be made explicit.
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Layered materials (A and B). The cell problems (2.4) can be expressed as

0 0
—6_,512(“(77%112)8_1/2X1) _'Oa

~ 2 (atm, )2 xa) = 2 a(m,un)
F2 »Y2 Bys X2 7 »Y2),

where the solutions are of the form x = (x1(m,y2),x2(m,y2)). Integration from 0 to y,
gives

o1 _ :
a(v”n,yz)—é.y2 =ci, (2.11)
5 \
a(m,ya) 52 = ~a(m, o) +di, (2.12)
Y2

for some constants ¢1(m) and dy(m). Since a is strictly positive, we can divide (2.11)
and (2.12) by a(m,y2).and integrate from 0 to y, again

Y2 1 Y2 1
= —d =—pptd | ———dE+ds.
wsa [ mgtter amnta [ et

Now, using periodicity, x:(0,m) = xi(1,m) it follows that ¢; =0 and d; = (a(m,-)~1)"1.
Therefore (2.11) and (2.12) become

9]
a’(may2)a—;j2l =0,

) —1\—
a(m,12) 22 = ~a(m,p2) + (a(m, ) ).
Y2 )
Substituting these expressions into (2.3) results in the explicit form of the homogenized
coefficient,
_ ({a(m,-)) o
A(lm)= ( 0 (a(m,2) 1) (2.13)

Materials with oriented layers (C). Suppose a is of the form (2.8) with a(y) =
a(yz) for all y=(y1,y2) and oc=0y,,. For a bounded set QCR2, consider the scalar
problems

/V¢~&(m/e)Vu€dm=0, Ve Hi(Q) for ut € H} (),
Q

/w-Avvm:o, Ve HY(Q) for Ue HL ().
Q

Now consider the change of variables z = oy where ¢ is an orthogonal transformation
from R? to R2. We obtain the Dirichlet problems for ' =01,

[ Vus-atov/a 9 on)iy=o,
V-0 Ac1V,U(oy)dy=0.
QI

Since u®(oy) —U(oy) in H(R'), it follows that the homogenized coefficient ¢orre-
sponding to (2.8) is cAo~1, or

A(m) =0T (<g) (&;?)_;) Om. (2.14) .
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Homogenization of cell structures (D and E). It is well known [14, 17] that
the homogenized coefficient corresponding a separable function of the form (2.9) is the
diagonal matrix

L (faa(m) ™ aa(m, ) 0
Alm) ( 0 <a2(m,-)‘1>-1a1<m,~)>>' (2.15)

Matrix functions A(y) =a(m,y)Id, where a(m,y) has the form (2.10), can be derived
explicitly. The solutions to the cell problems (2.4) corresponding to a(m,y) of the type
(2.10) are equivalent to

1o} 3Xk) 0 . ,
— | a(m,y) 7— | = —=—a(m,y), 1=1,2, k=i, 2.16
o (emn) Gt ) == -alm) (216)
9 Ox . .
B (a(m,y) B, ) 0, i=12, k#i
For i=1, integration from 0 to y; gives
0
a(m,y) 2 = —a(m,y) +e1, (2.17)
oy
Ox2 _
a’(may) ayl =<1, (218)

where ¢; =c¢;(m,y2) and & =¢&(m,y2). Since a(m,y) is positive, we can divide by
a(m,y) and integrate from 0 to y; again, giving

a(m,y)

Y1 1
X2=51/ ———dy1 + ¢,
0 a(may)

Y1 1
X1=—y1+01/ ———dy1 +c2,
0

where ¢y, & are also functions of only m and ys. Applying the periodic boundary
conditions X1y, =0 =X1|y,=1 results in

1

a(m,y2) = (/01 mdm)_ )

a1 (m:yZ) =0.
Therefore (2.17) and (2.18) become

Ox L | -
a(ma’y)a—yll=—a(may)+(/o md’yl) )

Ox2
a(m,y)—=—-=0.
(m,y) i
A similar argument applies to ¢ =2, resulting in

-1
—a(m,y)+ (fol ;(7,1,,—,,)113!1) 0

a(xvy)v X=
y 0 —a(m,y)+ (fo1 a(nlt,y) dyz)
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Substituting this expression into (2.3) results in the closed form for the isotropic
homogenized coefficient A(m)=a(m)Id, where

o= (] i) =m0 01

3. Multiscale analysis for inverse conductivity problems

Let Q be an open, bounded region in R?, d>2, that has a sufficiently smooth
boundary 8{2. The forward.model studied in the classical theory of inverse problems is
the Dirichlet problem,

—div(AVu)=0in Q. *(8.1)
The coefficient A is in general a uniformly positive definite, symmetric, d x d matrix
[20, 22].

DEFINITION 3.1.  For g,h€ H/2(0Q) let ue H' () be the weak solution to (5.1)
subject to ulpn =g, and let v be an arbitrary function in H*(Q) that satisfies v|gq =h.
The Dirichlet-to-Neumann map Aa: HY/2(0Q) — H~Y/2(8Q) is defined by

(Aag,h)= /Q A(@)Vu(z)- Vo(z)de

The inverse boundary value problem of Calderén [9] is to recover A from knowledge
of the Dirichlet-to-Neumann map A4. In general, the inverse problem is hlghly ill-
posed. A main challenge is to prove the stability of the problem, that is, the continuous -
dependence of the unknown A on the data A4.

An approach that can be applied to anisotropic coefficients assumes the prior knowl-
edge of a parametrization

m(z) — A(m(z),z). (3.2)

DEFINITION 3.2 (Adapted from Definition 2.2 in [3]). Given p>d, E>0, and denot-
ing by Symy the class of d x d real-valued symmetric matrices, we say A(-,-) €H if the
following conditions are satisfied:
AeWHP (A7 x Q, Symy),
Dy AcWIP(A71 N x Q),
SUPESSye(n-1,1] (”A(m5 ) ”LP(Q) + ”DzA(mv ) ”L"(Q)’
H|DmA(m, ) 22 @) + | Dm Dz A(m, ) || Lo ()) < E,
ATHEP < A(m,z)€-€ < ME)? for a.e. €Q and all me A1, )], ¢ R,

The essential supremum is denoted by supess. In addition, the following monotonicity
condition must also be satisfied:

D A(m,z)¢-€> E7e[? (3.3)

for a.e. z€Q and allme[A71,\],£€Re.

The following theorems, adapted to our context, are from [3]. The first is a boundary
stability result and the second gives a global uniqueness result for matrices A(:,-) € H.
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" THEOREM 3.1 ([3, Theorem 2.1]).  Given p>d, let Q be a bounded Lipschitz domain
with constants L, v, h. Let m1,msg satisfy

A"t <my(2),ma(z) <A for all z€Q, (3.4)
Imallwe ), Imellwie @) < E. (3.5)

Let A be sufficiently bounded and monotone; then,

|A(ma,-) — A(ma, ) Lo o) < CllAA(my, ) —Aa(ma, s ll+-
Here C is a constant that depends only on d, p, L, r, diam(2), A, and E.

THEOREM 3.2 ([3, Theorem 2.4]).  Suppose mi,mqo satisfy (3.4) and (3.5). Suppose
also that § can be partitioned into a finite number of domains {Q;}i<n, with my —mg
analytic on each ;. Then, A g(m,,) =AMA(m,,) tmplies that A(ma,-)=A(ma,-) in Q.

Our main result is a direct application of this theory to the inverse homogenization
problem of determining ¢ from measurements of homogenized solutions.

THEOREM 3.3. Let a(-,-) be a dxd, bounded, symmetric matriz function that is
locally periodic, uniformly positive definite and Lipschitz in the first variable. Further-
more, suppose a(-,-) admits a homogenized coefficient A€ H. For functions m1 and mz
satisfying the assumptions of Theorem 3.2, define a§=a(m;(z),z/€), Ai=A(m:(z),)
for >0 and i=1,2.

Then, Aa, = A4, implies that a§ =a§ in Q. Furthermore, there is a constant C >0
with -

lla3 —all e o) S CllAa, — A, [+ (3.6)

Proof. A part of the proof of Theorem 3.2 in [3] involves showing that for A€ H
there exists a positive constant C; with ||m; —ma|| < Ci]|Aa(m,,) —Aa(ma,)ll«- The
Lipschitz continuity of a gives the stability result,

lla(ma,-) —a(mz,)|| L o) < Clima —ma|| S C1|Aa(my ) — Aa(ma, ) lls-

: O
Calderén’s inverse problem is severely ill-posed, even in the case of isotropic coef-
ficients. In order to resolve stability issues (described in [2]), some approaches replace
a-priori regularity assumptions for A with different assumptions that are better suited
for aﬁ)plications. For example, it is known that if A is a piecewise constant scalar func-
tion, the problem is Lipschitz stable. However, even in this case, the stability constant
grows exponentially with the number of unknowns [4]. As a result, the techniques in
this paper are applied to parameters m of low dimension.

3.1. Sufficient conditions for microscale recovery. The functions a® defined
in Theorem (3.6) admit a homogenized matrix A that is a symmetric, uniformly positive
definite matrix function with bounded elements. The crucial step is to show that A(m,-)
is monotone in the sense of (3.3).

' The homogenized coefficients corresponding to microstructures of type A and B
satisfy the monotonicity condition if there is a constant £ >0 with

Dpla(m, )y N 1 >E! andem(a'(m;)) >E~L
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The homogenization of microstructures of type C does not satisfy the monotonicity
condition; the matrix

D= (@) - (0) (o) s

has eigenvalues £1. Therefore, Theorem 3.2 cannot be directly applied. In §5, we
present numerical results for this case. )

The homogenization of cell structures of type D satisfy the monotonicity condition
if there is a constant E >0 with

Dp{ai(m,)™)"*>E~! and D,,{az(m, )" )"t >E~L.

The homogenized cell structure E satisfies the monotonicity requirement if

2
Dpnia(m) = ——1k2

_ -1
= k)R 2> E

for all meIy. Since 0<A™!<m<A<1, it follows that monotonicity is guaranteed if
k1 and ko, satisfy

k1> Vv kz(kz +E"1).

It should be noted that the conditions given here are sufficient, but not necessary..
In fact, an analogue of Theorem 3.2 holds in cases when the functions D,, A are not
strictly monotone [3].

3.2. Mismatch in boundary measurements. The theory given so far justifies
the uniqueness and boundary stability of solutions to an inverse homogenization problem
of determining a microscale parameter m from macroscopic data. In the numerical
experiments, (IP) is solved by matching macroscopic predictions with highly oscillatory
data. The justification here is based on the theory of homogenization.

Let G: L>°(Q) — H () be the solution operator corresponding to (3.1).

THEOREM 3.4. Let f¢: I\ = C®(052) and F: Iy — C>(0Q) be given by
fé(m)=a(m,)Vu(m,-)-A, F(m)=A(m,)VU(m,-)-#,
where 7L is a vector that is normal to 0, a(m,-) is of the form (2.5), A(m,-) is the

homogenized coefficient corresponding to a(m,-), u¢(m,-) =G(a(m,-)), and U(m, )=
G(A(m,-)). For a fized parameter m € Iy, define the minimization functionals

Je(m)=/ (f€(m) — F(m))* pds, 0<e<l, peC™(9). (3.7
on
7m) =l 7*(m). 69

Then, m is the unique minimizer of J.

Proof. By expanding the integrand in (3.7),

T(m) = /a ()= Fm)-+ F(m) — F(m)*ds
=1 +1+13,
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where
L= / (f<(m) — F(1m))* pds
a0
L=2 /a (F<(m) = F () (P )~ F ()
L= / (F () — F(m))? pds.
N

The term I; is independent of m. For the second term, note that since u¢ and U -
are smooth solutions to (3.1), for functions ¢ € C* (),

/ (V-a*Vu*—V-AVU)-9pds=0,
Q
and therefore, by Green’s theorem,
/ (a*Vu— AVU)-Vipds = / (a*Vus-Ai— AVU - ) 1pds.
Q an

Homogenization theory gives the convergence a*Vu¢ — A(m)VU () weakly in Ly()
as €e— 0. Since ¢ = (F(m) — F(m))ep is smooth, it follows that

tig [ (£ F(m) (F(m) = P(m)) ods =0.
e—0 an

" Therefore, J(m) =lim¢,0J¢(m)=1I3. The term I3 is minimized when F(in)=F(m),
and it follows from the results in the previous section the minimizer is m=m. ]

4. HMM for the forward problem

In the simulations of the macroscopic forward model (2.2), numerical homogeniza-
tion is performed using the finite element heterogeneous multiscale method (FE-HMM).
Here we provide a brief presentation of the scheme; further details of various HMM for-
mulations can be found in [1, 10, 11].

The FE-HMM scheme is designed for approximations of the homogenized Equation
(2.2) when the coeflicients in-the effective model are not known explicitly. By employing
a microscale solver on local subdomains, the homogenized coefficients can be estimated
in an efficient way.

The macroscopic solver is the traditional Py finite element method on a coarse
triangulation 7z of the domain containing elements of size H >e. The macroscale
bilinear form is defined for functions V and W lying in the finite element space Xp,

B(V,W):= / VV - Arm (@) VW dz + / bWV dz, (4.1)
Q Q

where Apmum is not known explicitly. The first integral in (4.1) is approximated using
numerical quadrature points {z;} and weights {w;},

/ VV-Anmm(z)VWdz~ Y K| Y wi(VV - Aaun VW) (1), (4.2)
£ KeTu  me€K

where | K| is the measure of K.
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The stiffness matrix entries are estimated at each quadrature point z; by using
a microscale solver on subdomains Is(x;) :=x;:i:—g—I . Then effective behavior of a¢ is
captured locally through the solution of cell problems

—V - (a*Vv;) =0 in Is(z;), vi =V, on 8Is(z;), (4.3)

where V] is the linear approximation of V at z;.

Again, a standard Py finite element solver is used on a triangulation T} of the sub-
domains. "The spacing h < ¢ is chosen sufficiently small in order to resolve the microscale.
Figure 4.1 contains a diagram of the macro-micro grid coupling in a typical FEM-HMM
formulation.

Then, the term (VV - Aumm VW) (z;) in (4.2) can be estimated by

(VV - Aumm VW) (z1) =~ i/ V§ - (a*Vw;)dz.
g4 Is(z1)

The HMM bilinear form is thén defined by
1
Bumm(V, W)= Y K| > w ( 5 / Vo§ - (a*Vw§)dz 4+ (bWV) (m,)) :
KeTu r €K Is(z)

Finally, we have that the HMM solution, Unmwm € g+ X, solves Bumm(V,V) = (£,V),
for all Ve Xg:

\ ~
NE RN
L TN
RN [N DN
7 2N

/ .
™~ S LN

[ AR TRAE TR
[ BN BN

Fic. 4.1. FEM-HMM Discretization. An illustration of macro-micro coupled grids used in
FE-HMM for elliptic PDEs.

4.1. Errors in forward modeling.  An analysis of the errors involved in the
FE-HMM formulation for elliptic problems is found in [11]. The main result is the
following theorem, assuming a kth order numerical quadrature scheme for (4.2) that
satisfies

L
1
W/I{P(ﬂv‘)dﬂ?:zwzp(mz) for all p(z) € Pax—2,
1=1

where w; >0, [=0,...,L. \
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FI1G. 4.2. Errors in the macroscopic solution ||u¢ —Ul||L, as €e—0 using a purely macroscale solver
(dashed) and FE-HMM (solid). HMM microscopic cells Is are of size §=10e.
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F1G. 4.3. Errors in macroscopic solution using a purely macroscale solver (dashed) and FE-HMM
(solid) with by varying HMM microscopic cell size §. Here e=1/100.

THEOREM 4.1 ([11, Theorem 1.1]). Denote by U € H}(Q), Unmm € Xu the solutions
to (2.2) and the FE-HMM solution, respectively. Let

e(HMM) = melax |A(z:) — Armm(z) ||,

where ||-|| is the Buclidean norm. If U is sufficiently smooth, and Al <a®*< Al for
M\ A >0, then there ezists a constant C independent of €,0 and H such that

|U — Uamml|l1 < C (H* +e(HMM)),
U —Uammllo < C (H*H! +e(HMM)) .
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Fic. 5.1. Synthetic data and predictions. The plot contains the graph of the oscillatory
Neumann data 4(a®,u¢) =a*Vu -n|p=(o<z<1,y=0} corresponding to the Dirichlet boundary condition

ulgn = fe“(m“l) where a® is given by (2.8). The macroscopic predictions 4(A,U)=AVU -n|r are
_also plotted.

Then Upmm — U as e(HMM) — 0. For the periodic homogenization problem it is
also shown that

Ce Is(m) =z, +€l
HMM) <
el )< {C(% +0) otherwise.

A comparison of errors from using a purely macroscale solver and HMM is given
in Figure 4.1 and Figure 4.3. The full solution u¢ to (2.1) with =0 and f =1 subject
to Dirichlet boundary conditions u¢|sq =0, is computed using direct numerical simu-
lation on a fine mesh with element size h=1/800. Solutions U of the homogenized
Equation (2.2) are resolved on a coarse resolution mesh of element size H=1/20. We
denote by Unom and Unmm the approximations of U using analytic formulas and HMM,
respectively.

In the case of unknown or random microstructure, HMM can be performed “on
the fly”, and computational time can be reduced using parallel solvers for the local cell
problems. For periodic problems in two dimensions (as in this work), precomputing the
cell problem solutions increases the efficiency of HMM.

5. Numerical experiments

In this section we present results of numerical simulations that demonstrate param-
eter inversion of elliptic equations using homogenization theory and the ideas discussed
in §3. It is assumed that the parameter ¢, as well as the mapping m — a¢(m) is known.

There is no additional regularization of the problem. The inverse problem (IP)
is solved by minimizing the cost functional (3.7) It should be noted that stability is
guaranteed only on the boundary of the domain.

In all of the simulations, a standard P! finite element method is used on a regular
triangulation of the domain. The MATLAB routine 1sqnonlin is used to minimize the
least-squares functional (3.7). The synthetic data is generated using direct numerical
simulation of the full model using a fine mesh with resolution h <e. Macroscopic pre-
dictions of the forward mode! are computed using a coarse mesh with resolution H >e.
The local subdomains in the HMM solver are discretized on a fine mesh with spacing
d<e. This provides a framework for microscale inversion that avoids the major pit-

falls of committing an “inverse crime”. Unless otherwise stated, we set 2=[0,1] x [0, 1],
€=1/80, H=1/10, =3¢, and h=1/600.
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The microstructure models A, B, and C, respectively, are represented by the mul-
tiscale functions

a4 (m(z),z) =1.1+m(z)sin(2wzz/¢), (5.1)
a’l%(m(x):w)='5+2X{x2<m}(1")7 (52)
a&(m(z),z) =1.1+4sin(2nZ2/¢), T=0omz. (5.3)

5.1. Inverse conductivity (b = 0). Based on the results in Section 3.2,
if A is the homogenized coefficient corresponding to a¢, then Ase~A4. We define
the measurement operator ¢ in terms of weak solutions of V-(aVug)=0, subject to
Dirichlet boundary conditions uglaq =gk, 1<k < K, .

Y(a,ur)j =lj(aVug-n), j=1,...,n
Here the linear functionals i;(f)= f(z;) are defined for a given set {z;}7_, COQ and
{gx} is the set of functions {z,y,z%,y%,zy} (see Figure 5.1). Coarse meshes can be used -
to resolve solutions with these boundary conditions.

Table 5.1 shows the relative error [fh—m|/|m| in the estimation of the microscale
parameter m =6 € R and Table 5.2 contains a comparison of the performance time using
different forward solvers. The differences in the inversion results can be attributed to
the resolution of the meshes used, errors introduced by the optimization routine, and
the mismatch in scales between the oscillatory data and the slowly varying predictions.

HMM Analytic | Two-stage
Model A | 0.04563540 | 0.02556686 | 0.02344292
Model B | 0.03623084 | 0.02234864 | 0.06537146
Model C | 0.05210436 | 0.00726006 | 0.05578068
Model D | 0.05093572 | 0.00354686 | 0.15121385
Model E | 0.07446168 | 0.05607627 | 0.01708140

TABLE 5.1. Relative error in inversion for a microscale parameter m=60 €R.

HMM | Analytic | Two-stage
Model A | 9.42 8.86 22.13
Model B | 18.30 16.60 27.45
Model C | 14.90 17.38 16.47
Model D | 10.27 10.09 17.15
Model E | 15.88 16.36 19.64

TABLE 5.2. Performance time (in seconds) of inversion for a microscale parameter m=6 €R.

The analytic and HMM solver perform similarly for all three microstructure models.
The longer performance time using the two-stage solver can be attributed to first stage,
where inversion for the unknown matrix coefficient A involves three times as many
unknowns as direct inversion.
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=

F1G. 5.2. Model C parametrized using a continuous function m(z) with N =6 degrees of freedom.

|

F1G. 5.3. Model B parametrized using a piecewise constant function m(z) with N =6.

5.1.1. Representation of the microscale parameter. In one experiment, we
restrict m(z) to the space of cubic spline interpolants corresponding to the values given
by the vector € RN. An example of a microstructure with this kind of parametrization
is shown in Figure 5.2. Forward predictions are made using HMM “on the fly”. Table
5.3 contains the relative errors ||m —7||/||m|| in the recovered parameter for different

values of N.  Another parameter space is the set of piecewise constant functions m(z)
N | A - Amplitude | B - Volume Fraction | C - Angle
1 0.04237400 0.04507309 0.05701372
2 0.05485636 0.04873258 0.04293228
3 0.05552983 0.06892129 0.06720150
4 0.06572240 0.05887249 0.05945569
5 0.06691606 0.07173517 0.08507094
6 0.06761214 0.07921053 0.09011505

TABLE 5.3. Inversion error in 6 €RY for continuous m(z).

N | A - Amplitude | B - Volume Fraction | C - Angle
1 0.04563540 0.02234864 0.05210436
2 0.05786556 0.02244457 0.05886389
3 0.06187033 0.04806429 0.06601630
4 0.07288481 0.07027316 0.08523131
5 0.06697655 0.09667535 0.08324536
6 0.08680081 0.07828320 0.08282462

TABLE 5.4. Inversion error in @ €RN for piecewise constant m(zx).




C. FREDERICK AND B. ENGQUIST 321

FIG. 5.4. Microstructure models for continuous vector fields m(z) = (m1(z),ma(x)). Left to right:
Amplitude-Angle, Volume Fraction-Angle, Amplitude- Volume Fraction.

N | Amplitude-Angle | Volume Fraction-Angle | Amplitude-Volume Fraction
1 0.03082785 0.04804962 0.04394855
2 0.12689231 © 0.07667133 0.06829348
3 0.11401958 0.09285163 0.07980421

TABLE 5.5. Inversion error in § €R?N for continuous m(z) = (m1(z),mz(z)).

(see Figure 5.3). Forward computations are made using a HMM solver that efficiently
makes use of precomputed values of A(m). Table 5.4 contains the errors in the recovered
parameter for different values of V.

We can extend the ideas in previous sections to unknown parameters m of the form,

m(x) = (ml ($)7 . >mM($))a

where M is the number of microscale features to be recovered. For the general problem,
each function m;(z), 1<i< M, is assumed to be a scalar function with N degrees of
freedom (see Figure 5.4).

The oscillatory functions describing models Amplitude-Angle (A-C), Volume
Fraction-Angle (B-C), and Amplitude-Volume Fraction (A-B), respectively, are

alc(ma,me,z) =af (m,Z), T=0m,, (5.4)
a'eBC(mlvmzax)=-5+2X{(0,m1)}(ﬁ2)a ZT=0m,, (55)
aZB(ml,mg,x) =.5+2m1X{x2<m2}($). (5.6)

Therefore, the inverse problem reduces to determining a finite dimensional vector
of unknowns, 8§ e RM¥_ Table 5.5 contains the errors from the numerical experiments
for M =2.

In certain cases, the solutions to cell problems correspondmg to different multiscale
coefficients a* are indistinguishable. In particular, for a fixed m, there exists a /m such
that the homogenized coefficients corresponding to microstructures with a parametrized
volume fraction m — a{,r(m) are equal to the homogenized coefficients corresponding
to microstructures with a parametrized amplitude 7 — aj)p (7). However, if the re-
covered parameter is constrained to a convex subset of the search space, the problem
can be reformulated to guarantee a unique recovery.

5.1.2. Random microstructure. = We consider a model of layered media where
the microstructure is represented by a random function m(z) — a*(m(z),r,w), where

a‘(m,z,w) =a(m,X(z,w)), (5.7)
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F1G. 5.5. Random microstructure in layered materials.

L1/¢]

XE(-'E"*‘)) = Z X (W)X[jE,(j-}—l)e) 2), z= (07/433)27 (5.8)
7=0

where w is an element of a sample space A and X; are independent, random variables
that are uniformly distributed on the interval [—1,1]. Figure 5.5 shows a plot of (5.7)
for a(m,&) =1+mé.

In these experiments, we fix m=6¢€(0,1) and minimization of the least-squares
functional (3.7) is performed for 100 realizations of a¢(f,w). In each trial, the same
realization is used to generate both the data, y*=%(a%uf); =1;(a*Vu§ 7) and the
predictions z=%(A,Ug). '

We compare the performance of HMM forward solvers corresponding to three dif-
ferent choices of the size of the local subdomains  Is; 6=2¢, 6 =4¢, and 6 =8¢. Table 5.6
contains the frequency of recovered parameters 6 that lie in the interval FEy centered at
the true parameter. The results are consistent with the expectation that the accuracy
of the parameter estimation using HMM would improve with increased cell size.

Ey 0=2¢ | §=4e¢ | 6=8¢
(7,9) | 16% | 26% | 57%
(.75,.85) | 4% 14% | 29%
(79,.81) | 0% | 2% | 11%

TABLE 5.6. Microscale parameter inversion for a random microstructure. The true parameter is
0=.8, and the frequency of recovered parameters § lying in the interval Ey is given.

5.1.3. Noisy data. Here, measurement error is introduced in the observations,
Yy =%(a,u5); =1;(a*Vug - i) (14 ), where £ is a normally distributed random variable
with mean zero and standard deviation o=.1. Figure 5.6 contains histograms of the
relative errors in the recovered parameter m=6€R. From the experiments it is clear
that the two-stage procedure resulted in errors with a larger variance than the errors
from direct inversion. Modifications of this procedure will be needed in order to improve
robustness to noisy input data.

5.2. Medical imaging (b°>0). We will consider a medical imaging technique
that uses a combination of optical and ultrasonic waves to determine properties of
a medium from surface measurements. In quantitative Photoacoustic Tomography,
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FIG. 5.6. Microscale inversion with noisy observations (N=M=1). The histogram shows
the results of 100 trials of microscale inversion with measurement error of 10% added to the synthetic

data.

(qPAT), optical coefficients are reconstructed from knowledge of the absorbed radiation
map [6, 7].

Let  C R? represent a medium of interest and A CRR;. a set of wavelengths included
in the experiment. The density of photons at wavelength A, denoted by u(z,), solves
the second-order elliptic equation

—V-(a(z,\)Vu(z,\)) +o(z,u(z,\) =0 z2€Q (5.9)
u(z,\) = g(z, ) ' z€0N. )

Here, a and o are diffusion and absorption coefficients that are dependent on the
wavelength X. The ultrasound generated by the absorbed radiation is quantified by
the Griineisen coefficient, I'(z). The objective of qPAT is to recover (a,0,I') using
the measured data from photoacoustic experiments corresponding to an illumination
pattern g(z,)).

We will modify the numerical examples from [7] by considering the forward model
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Fic. 5.7. Left: Multiscale coefficient af,.
four illuminations on the boundary.

Fic. 5.8. Spatial components of the QPAT model. Left to right: Griineisen coefficient
I(z), and absorption component functions o1(z) and o2(z). :

(6.9) with diffusion coefficients that have variations on multiple spatial scales, a=a¢.
For simplicity, we will assume that the absorption and diffusion coefficients can be
expressed as

o(z,N) =Zﬁi()\)ai(x), a’(z,\) =a(AN)a(z).
1=1

The measured data takes the form
y=9(a,u(,\)); =T(z;)0 (25, Me)u(z;, Me), (5.10)

where the set {z;} consists of points in the interior of the domain .

In the numerical experiments, the measured data (5.10) involves the solutions to
(5.9) for each wavelength in the set A={.2,.3,.4}. Four illuminations are used for each
wavelength. The wavelength dependent components of the coefficients are set to be

BN=1, BO=2, aW=(/x)"",

where the wavelength Ao =.3 normalizes the amplitude of the coefficients. The spatial
components of the coeflicients are given as

I'(z)=.8+ .4tanh(4z —4),
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o1(z) =2~ de2rlz=aol® oa(z) =24 .1e72mle==ol" 5o —(5,.5).

Figure 5.8 contains plots of the spatial components of I" and o.
The microstructure in models D and E, respectively, are represented by the coeffi-
cients

ap (m(z),z) =aj (m(z1),71)ai (m(z2),22), | (5.11)
a‘%}(m’(m)ax) ='5+2X{[0,m]x[0,m]}(m)' (5-12)

As in [7], the reconstruction errors are given for synthetic data with no noise added.
The results in Table 5.7 show inversion results using a HMM forward solver for macro-
scopic predictions. Here the parameters are chosen to be e=1/100, H=1/20, =3¢,
and A=1/800. The microscale parameter m(z) is a piecewise constant function of the
form (1.1).

N | D - Amplitude | E - Volume Fraction
1 0.05605865 0.01529364
2 0.07461357 0.01838472
3 0.07146362 0.02986680
4 0.08319615 0.03748564
5 0.13636728 0.04616734
6 0.08914877 0.03729032

TABLE 5.7. Inversion errors for parameter estimation in qPAT models containing periodic cell
structures.

5.3. Seismic waveform inversion (b¢<0). In exploration geophysics, scientists
attempt to determine the geological properties of the Earth’s crust that govern the prop-
agation of acoustic waves (see [21] for an overview). In full waveform inversion, the goal
is to find a subsurface model that produces the best fit to reflection data recorded from
seismic surveys. Each prediction is simulated using the physics of the experiment. This
corresponds to an inverse problem for partial differential equations where the unknown
coeficients represent properties of the sedimentary layers, e.g. velocities, porosity, and
saturation. - _

Full waveform inversion is the result of combining numerical methods for the sim-
ulation of wave propagation with optimization techniques to minimize the data misfit
‘term (see [12] for a discussion of multiscale full waveform inversion). Traditional finite
element methods (FEM) or finite difference methods (FDM) for wave propagation in’
the high frequency regime come with a considerably high computational cost due to the
highly oscillatory nature of the propagating waves [13].

The forward problem can be modeled in both the time domain and the frequency
domain. In theory, both approaches are equivalent, however the choice of model can
influence the design of specific numerical methods to optimize performance. An advan-
tage of the frequency domain model is that a coarse discretization of the frequencies
can be used to produce images that are free from aliasing [5, 15, 19].

A major hurdle in full waveform inversion is the presence of local minima in the
least-squares functional for the data misfit. In [18], adjoint-state methods are used
to efficiently calculate the gradient of the least-squares functional and speed up the
optimization. We emphasize that in this work we use standard optimization routines in
order to fully study the effects of fitting an effective model to the data.
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Our numerical examples correspond to problems that mimic the models used in
seismic waveform inversion. Here, the model parameters represent the spatially varying
volume fraction, angle, and amplitude of the layers. The forward model G maps a to
the solution to the 2D variable coefficient Helmholtz equation on the square Q=[0,1]?,

V- (a(z)Vu) +wu(z) =6(z —z,) ze, (5.13)

where a is the model parameter that characterizes the density of the medium, w is the
wave number, and u is the spatially varying pressure field arising from a disturbance at
a source located at x5 € 2. We impose the absorbing boundary condition

aVu-n—iku=0 on 99, - (5.14)

where k=a"1/2w. The seismic data is represented as the collections of solutions mea-
sured on the sensor domain D CQ, ¥ (a,ur); =ur(z;), {z;} C D (see Figure 5.9).

Fi1G. 5.9. Solutions of the multiscale Helmholtz Equation (5.18) for wavelength w=4n and multi-
scale coefficient a=a$ .

N | A - Amplitude | B - Volume Fraction | C - Angle
1 0.02776429 0.03736824 0.03891544
2 0.04400273 0.02612802 0.07489835
3 0.04607522 0.01553997 0.06326932
4 0.07915712 0.00976197 0.25927552
5 0.05350197 0.01566102 0.17280984
6 0.04874272 0.01968874 0.21757778

TABLE 5.8. Inversion error for parameter estimation in the Helmholtz model.

In the numerical simulations, we set w=4n and the Dirichlet data is obtained from
solutions corresponding to multiple sources at z,, =(0,.25), z,, =(0,.75), z,, =(.25,1),
and z,, =(.75,1). Results shown in Table 5.8 demonstrate microscale inversion of the
Helmholtz Equation (5.13) using the methods described earlier. Here the parameters
are chosen to be e=1/120, H=1/40 and h=1/800, § =6e.

6. Conclusion

We present computational techniques for solving inverse problems for multiscale
partial differential equations. Our goal is to recover microscale information using PDE
constrained optimization. Instead of directly working with the effective equation we
constrain the search space by representing the microscale by a limited number of pa-
rameters in order to have a well-posed inverse problem. When a parameter based
effective model exists we use that, otherwise, the numerical heterogeneous multiscale -
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method (HMM) can be used even when the explicit form of the effective equation is
not known. By applying recovery results for inverse conductivity problems with special
anisotropy [3], we can prove that certain microstructure features can be determined
uniquely from the Dirichlet to Neumann map corresponding to the effective equations.
‘We provide numerical examples, which show quantitative convergence information with
respect to numerical resolution, scale separation and parameterization strategies. We
also provide numerical results that demonstrate the performance of these techniques
applied to random media and simple models with lower order terms of the form used in
medical imaging and exploration seismology.

The goal of the current research has been a proof of concept and there are natural
future directions outside the scope of the current paper. For example, in more realistic
applications where higher resolution is-required, other minimization techniques must
be used. Good candidates would be adjoint-state based methods, which are used in
full waveform inversion [18]. Another direction is to further probe random cases and
explore the use of multiple parameters in connection to known prior information in
specific applications.
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