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NUMERICAL METHODS FOR MULTISCALE INVERSE PROBLEMS*

CHRISTINA FREDERICKt AND BJORN ENGQUISTt

Abstract. We consider the inverse problem of determining the highly oscillatory coefficient 
in partial differential equations of the form —V-{a^Vu^) + bu^ = f from given measurements of the 
solutions. Here, e indicates the smallest characteristic wavelength in the problem (0<e'Cl). In 
addition to the general difficulty of finding an inverse is the challenge of multiscale modeling, which 
is hard even for forward computations. The inverse problem in its full generality is typically ill- 
posed, and one common approach is to reduce the dimension by seeking effective parameters. We will 
here include microscale features directly in the inverse problem and avoid ill-posedness by assuming 
that the microscale can be accurately represented by a low-dimensional parametrization. The basis 
for our inversion will be a coupling of the parametrization to analytic homogenization or a coupling 
to efficient multiscale numerical methods when analytic homogenization is not available. We will 
analyze the reduced problem, 6 = 0, by proving uniqueness of the inverse in certain problem classes 
and by numerical examples’and also include numerical model examples for medical imaging, 6>0, and 
exploration seismology, 6 < 0.

Keywords. Inverse problems, stability, heterogeneous multiscale method, periodic homogeniza-
tion.

AMS subject classifications. 65N21, 35R25,''65N30, 35B27.

1. Introduction
Multiscale modeling plays a crucial role in the development of mathematical and 

numerical methods for solving inverse problems arising in science and engineering. The 
design of accurate models must account for the numerous challenges involved in captur-
ing a wide spectrum of time and spatial scales. Full resolution forward models come at 
a high computational cost, and many model-reduction techniques create difficulties in 
the mathematical formulation of the inverse problem. It is important to understand mi-
crostructure inversion problems where these challenges can be addressed by employing 
multiscale forward solvfers and including prior knowledge in the inversion process.

We will consider the problem of determining an unknown parameter in a forward 
model G:X-^P from observational data. Here, X and P are function spaces, and the 
map G is a solution operator for a partial differential equation of the form G{a^) = u^ e P. 
The unknown parameter EX is a coefficient in the equation. The multiscale nature 
of the problem is indicated by the superscript e, where e is the ratio of scales in the 
model (0 < e «1). •

The collected measurements, denoted by y^EMP', are in practice obtained from 
experiments or electrical techniques. The mapping ^:X x P from the unknown 
parameter to the data, called the observation operator, is derived from the forward 
model. The solution to the inverse problem is then obtained by matching observations 

— with predictions of the form z = ^{a^u). In practice, the mapping from
the parameter space to the space of predictions may differ from the observation operator, 
however here it is assumed that the mappings are the same.

Data-driven optimization problems require many simulations of the forward model.

*Received: February 15, 2016; accepted (in revised form): May 23, 2016. Communicated by Guil-
laume Bal.

School of Mathematics, Georgia-Institute of Technology, Atlanta, GA, 30332, USA (cfrederick6@ 
math.gatech.edu).

^ Institute for Engineering and Scientific Computing (ICES) and Department of Mathematics at The 
University of Texas at Austin, Austin, TX 78712, USA (engquist@ices.utexas.edu).
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and when faced with balancing computational cost with accuracy, most approaches 
only deal with scientific models of large scale behavior and, for example in [16], ac-
count for microscopic processes by using effective or homogenized equations to simplify 
computations. Homogenization theory [8, 14] provides the form of a reduced model 
that describes the effective behavior of the family of solutions {u^}e>o; under certain 
ellipticity conditions, it is known that as e—)-0, where U is the solution to an
equation of the form G{A) = U, and the expression for the homogenized coefficient A is 
given by the theory.

Ideas from homogenization theory can be used to account for the mismatch in scales 
between an effective model and the data generated by the full model, as demonstrated 
in [16]. It is shown that if only effective parameters in the forward model are desired, 
inversion can be performed using a macroscopic model for predictions. In particular, 
the result is shown for cases where unknown coefficient A is dependent on a single 
parameter 9 eR through a linear mapping 9 -)• A{9). The inverse problem is formulated 
as a minimization problem,

minimize \\^{A,G (A) )—y^\\- )9eR,A=A{e)

The the reduced formulation (IP^) is often well-posed and results in a lower sensitivity 
to noise. A drawback of this approach is the loss of details about microscale features.

In the current approach, full inversion is performed using effective forward models 
that are based on ideas from homogenization theory, as in [16]. We make use of the a 
priori assumption of a microscale parametrization where the parameter m
is a scalar function depending on a low dimensional vector 9eR^,

N
m{x) = '^9ii;i{x), (1.1)

i-l

where the functions 'ipi are smooth functions defined on the interval [^,;^), 1 <i < A". 
Macroscopic predictions are made using ideas from homogenization theory, gaining the 
benefits of the previous approach, and the corresponding minimization problem is

minimize \\‘^{a^,G{A))—y^\\. (IP)

We will give sufficient conditions for uniqueness and boundary stability of solutions to 
a continuous inverse problem for elliptic partial differential equations that is related to 
(IP). These conditions correspond to a classification of certain physical features of the 
microstructure that are preserved under homogenization.

The following is a list of main strategies for solving inverse problems involving 
multiscale model parameters.

I. Full coefficient inversion. Full coefficient inversion is performed by minimizing 
the distance between model predictions and the given data,

minimize ||^(a^,(?(a^)) — y^j]. (IP^)

Determining the original coefficient using high resolution predictions comes at a 
large computational cost and is often ill-posed due to the presence of multiple local 
minima in the associated cost functionals. Therefore, we omit this case from our 
computations.
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II. Indirect microscale parameter estimation. An indirect method for solving 
(IP) involves a two-stage procedure. The first step is to solve the problem of 
estimating the parameter A in the effective model that best matches the given 
data. The second step involves determining the microscale parameter m such that 
the homogenized coefficient corresponding to a^{m) is A. This method can be 
written as

1. minimize \\'^{A,G{A))—y^\\-> A

2. minimize ||A(m) —A||.

III. Direct microscale parameter estimation. In this case, (IP) is solved in one 
step, where predictions of the forward model are made using techniques from mul-
tiscale modeling and numerical homogenization. In our experiments we consider 
two methods.
a. Known homogenization. If the explicit form of the homogenized coefficient A{m) 

corresponding to each parameterized coefficient a^{m) is known, a macroscopic 
method can be used to solve the effective equation.

, W{AG{A))-y^
mGX,A=A(m) (1.2)

b. HMM. Often, the explicit form of the homogenized coefficient is not available, 
preventing the direct computation of macroscopic predictions. This issue can 
be overcome numerically with the heterogeneous multiscale method, or HMM, 
introduced by E and Engquist [10]. HMM provides a framework for the design 
of methods that capture macroscale properties of a system using microscale 
information. The inverse problem is formulated as

minimize \\^{a^,G{A))—y^\\.
Tn,a^—a^{m) (1.3)

Here, the forward model G{A) is approximated using methods for numerical 
homogenization of the predicted coefficient o^. In the experiments we use the 
heterogeneous multiscale method (HMM).

In §2 we give a brief background on periodic homogenization and introduce key 
microstructure models that demonstrate the main ideas of this work. In §3, a multiscale 
inverse problem related to (IP) is formulated in the classical setting of inverse problems 
for elliptic equations. Uniqueness and boundary stability results are given. In §4 we 
describe the implementation of the finite element heterogeneous multiscale method. 
Numerical results for parameter inversion are provided in §5. In §§5.2 and §§5.3 we 
consider model problems from applications in medical imaging and geophysics. Then 
we conclude in §6.

1.1. Notation. The averaging operator is denoted by {f)x = Jx
where lA] is the volume of the set X For most examples Y = [0,1]“^, and unless 
otherwise stated, (•) = (-)y- For any domain D, we use the Sobolev space 
with Sobolev norm || • ||wm,p. If D = Q, we omit D. Moreover, if D = Q and p = 2, we 
denote by the Sobolev space PF”^’^(n), the usual inner product by (•,•) and
the Sobolev norm by || ■ ||^. The norm on the Banach space of bounded linear operators 
between and i7“^/^(«9n) is denoted by || • ||*.
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2. Homogenized forward model
Let C be a bounded domain with C^-boundary. We consider equations for 

which there is a well established homogenization theory [8, 14],

—V-{a^\/u^) + bu^ — f in Q, (2.1)

where / and b are given bounded functions and a^{x)=a{x,x/e) for a given matrix 
function a that is locally periodic, symmetric, and uniformly positive definite.

A constant positive definite matrix A is said to be the homogenized matrix for a, 
if for any bounded domain and any feH~^{Q) the solutions of the Dirichlet
problem (2.1) possess the following property of convergence: as e —)-0, u^-^U in 
and a^'Vu^-^AVU in L2(fi), where U is the solution of the Dirichlet problem

-diy{A{x)'VU{x)) + bU = f in Q,. . (2.2)

The homogenized matrix has a closed form expression,

Mx) = -^^J^{a{x,y)l5 + a{x,y)Vyx)dy, (2.3)

where X = iXi->X2) solves the cell problems,

-Vy • {a{x,y)Vyx) = • a{x,y)ld, (2.4)

with the constraint x(a:,y) is T-periodic in y and (x(a:,-))=0. In general, (2:3) must 
be calculated using solutions to cell problems. Explicit formulas are known in one di-
mension and also in certain higher dimensional models, such as those describing layered 
media [14]. Even if the original coefficients are isotropic, the process of homogenization 
introduces anisotropy.

2.1. Microstructure models. The ideas in the remaining sections can be 
understood in terms of the following examples of parametrized microstructures. Let 
m e be a function taking values in the interval Ix = [A~\ A] for A > 1, and let

a^{7n{x),x)=a{m{x),x/e)ld, (2.5)

where a{x,y) is smooth, bounded, and periodic in the second variable and Id denotes the 
dxd identity matrix. The first three models below are commonly used in the analysis of 
layered materials (see Figure 2.1). The last two models represent properties of materials 
containing cell microstructures (see Figure 2.2).
A. Amplitude. For a positive constant uq  and a periodic, bounded function d{y) = 

d{y2) with (d)=0, the parametrization of the amplitude of oscillations is modeled 
%

a{m,y) = aQ + ma{y2). (2.6)

B. Volume fraction. A special case of layered materials are two-phase laminates, 
where the parameter m determines the volume fraction of each.

a{m,y) ki 0<y2<m
k2 m<y2<l.

(2.7)
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Fig . 2.1. Layered micro structures. Prom left to right: A - Amplitude, B - Volume fraction, C - 
Angle.

mmmmmmmmm
mmmmmmmm'm
mmmmmmmmm

111111111 m
Fig . 2.2. Cell microstructures. Cell structures (left) D - Amplitude and (right) E - Volume 

Fraction.

C. Angle. Here, a is a periodic function and am is a matrix of rotation,

a{m,y)=a{amy), ^m —
cos(27rm) sin(27rm) 

— sin(27rm) cos(27rm) (2.8)

D. Amplitude in cell structures. The analog of Model A is a class of separable 
functions a,

a(m,t/) = ai(m,t/i)a2(m,^2), ' (2.9)

where ai and a2 of the type in (2.6).
E. Volume fraction in cell structures. The analog of Model B is

a{m,y)
ki, yem,Y 
k2, otherwise,

(2.10)

where ki and ^2 are positive constants.

2.1.1. Explicit calculations of homogenized microstructures. The locally 
periodic microstructure models (A-E) admit homogenized matrix functions of the form 
A{m,-)=A(m). In two dimensions, calculations of (2.3) can be made explicit.
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Layered materials (A and B). The cell problems (2.4) can be expressed as

where the solutions are of the form X= (xi(m,y2)jX2(^5y2))- Integration from 0 to y2 
gives

= -a{m,y2) + di,

(2.11)

(2.12)

for some constants ci(m) and di(m). Since a is strictly positive, we can divide (2.11) 
and (2.12) by a(m,^2) and integrate from 0 to 2/2 again

fy2 I ry2 I
+ X2 = -y2 + di / ——^d^ + d2-

Jo a(^5?) Jo
Now, using periodicity, = it follows that ci=0 and di = (a(m,-)“^)~^
Therefore (2.11) and (2.12) become

a{'rn,y2)-^ = -a{m,y2) + {a{m,-)~'^)~'^.

Substituting these expressions into (2.3) results in the explicit form of the homogenized 
coefficient.

’ ' 0 (a(m, )-^>-i (2.13)

Materials with oriented layers (C). Suppose a is of the form (2.8) with d{y) = 
d{y2) for all y = (2/1,7/2) and a = crm. For a bounded set consider the scalar
problems

I V'ip-a{x/e)\/u^dx = 0, V'0g H'o (^^) for €i?'o(^),
Jn
[ S/'ip-AVUdx = 0, e Hi (Q) for U e Hi {Cl).

Jn
Now consider the change of variables x = ay where cr is an orthogonal transformation 

from to R^. We obtain the Dirichlet problems for f2' = cr“^ri.

/Jn>

/Jn'

Vy'ip • a{ay/e)VyU%ay)dy = 0,

Vyip-aAa ^WyU{ay)dy — 0.

Since u^{ay)-^U{ay) in Hi{Q.'), it follows that the homogenized coefficient Corre-
sponding to (2.8) is aAa~^, or

^(”») =<7m (^0^ (o-VO (2.14) .
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Homogenization of cell structures (D and E). It is well known [14, 17] that 
the homogenized coefficient corresponding a separable function of the form (2.9) is the 
diagonal matrix

^(m)= ^(a2(7n,-)) 0 (2.15)

Matrix functions A{y) = a{m,y)ld, where a{m,y) has the form (2.10), can be derived 
explicitly. The solutions to the cell problems (2.4) corresponding to a{m,y) of the type 
(2.10) axe equivalent to

=0,

1 = l,2, k = i,

2 = 1,2, k^i.

(2.16)

For 2 = 1, integration from 0 to yi gives

a(m,j/)^i =-a(m,j/)+ Ci,

, sdX2 .

(2.17)

(2.18)

where ci = ci (772,2/2) and ci =01(772,^2)- Since a{m,y) is positive, we can divide by 
a{m,y) and integrate from 0 to 2/1 again, giving

Xi = -yi + ci
-yi

Jo aim, y)
dyi+C2,

X2 = Cl / —f----- rC^yi+C2,Jo (^irn^y)

where C2, C2 axe also functions of only m and y2- Applying the periodic boundary 
conditions Xilyi^o =Xi|yi=i results in

Ci{m,y2)=( [ .dyi
\Jo «(^.2/)

Ci(r72,y2) = 0.

Therefore (2.17) and (2.18) become

d f 1(^{rn,y)-^ = -a{m,y)+[ / —-----rdyi
dyi \Jo a{m,y)

( ^ ^^2 p,

A similar argument applies to 2 = 2, resulting in

\ 0 -“('">»)+f/o
-1
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Substituting this expression into (2.3) results in the closed form for the isotropic 
homogenized coefficient A(rn)=a{m)ld, where

= (2.19)

3. Multiscale analysis for inverse conductivity problems 
Let be an open, bounded region in d>2, that has a sufficiently smooth 

boundary The forward, model studied in the classical theory of inverse problems is 
the Dirichlet problem,

—div(AVu) =0 in ' (3.1)

The coefficient A is in general a uniformly positive definite, symmetric, dxd matrix
[20, 22].

Defin ition  3.1. For g,heH^/^{dn) let ueH^{Q) be the weak solution to (3.1) 
subject to =g, and let v be an arbitrary function in iiZ’^(fi) that satisfies v\dfi = h. 
The Dirichlet-to-Neumann map is defined by

{AAg,h)= / A{x)Vu{x) ■'Vv{x)dx.
Jo.

The inverse boundary value problem of Calderon [9] is to recover A from knowledge 
of the Dirichlet-to-Neumann map A^. In general, the inverse problem is highly ill- 
posed. A main challenge is to prove the .stability of the problem,, that is, the continuous 
dependence of the unknown A on the data A^.

An approach that can be applied to anisotropic coefficients assumes the prior knowl-
edge of a parametrization

m(a:) —> A(m(rc),a;). (3.2)

Defi nit ion  3.2 (Adapted from Definition 2.2 in [3]). Given p>d, E>0, and denot-
ing by Sym^ the class of dxd real-valued symmetric matrices, we say A{-,-)eH if the 
following conditions are satisfied:

AeW^>P{[\-\X]xn,Syma),
DmAeW^’P{[X-\X]xn),

supess^gf;,-i_;,](||A(m,-)||i,p(ii)+PxA(m,*)|Up(0),
+ ||-C)mA(m,-)||2;,p(j7) -f \\DmDxA{m,-)\\Lp^Q-)) <E, 

<A(m,rc)^/or a.e. rreO and all mE[X~^,X],^eR^.

The essential supremum is denoted by supess. In addition, the following monotonicity 
condition must also be satisfied:

DmA{m,x)^-^>E~^\^\'^ (3.3)

for a.e.xeCt and aZZ me

The following theorems, adapted to our context, are from [3]. The first is a boundary 
stability result and the second gives a global uniqueness result for matrices A{-,-)e'H.
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Theorem  3.1 ([3, Theorem 2.1]). Given p> d, let Cl be a bounded Lipschitz domain 
with constants L, r, h. Let mi,m2 satisfy

<mi{x),m2{x) < A for all xE^, (3.4)
\

ll’7li||Tyi,p(n)5 ll^7T.2i|vFi'P(n) <(3-5) 

Let A be sufficiently bounded and monotone; then,

P(mi,•) - A{m2,-)IU°°(an) < C'HAA(mi,-) - AA(m2,-)II*-

Here C is a constant that depends only on d, p, L, r, diam(^]), A, and E.

Th e o r e m 3.2 ([3, Theorem 2.4]). Suppose mi,m2 satisfy (3.4) and (3.5). Suppose 
also that can be partitioned into a finite number of domains with mi — m2

analytic on each Clj. Then, AA(m2,-) “■^A(m2,-) iniplies that A{mi,-)=A{m2,-) in Cl.
Our main result is a direct application of this theory to the inverse homogenization 

problem of determining a^ from measurements of homogenized solutions.

Theorem  3.3. Let a{-,-) be a dxd, bounded, symmetric matrix function that is 
locally periodic, uniformly positive definite and Lipschitz in the first variable. Further-
more, suppose a{-,-) admits a homogenized coefficient A £71. For functions mi and m2 
satisfying the assumptions of Theorem 3.2, define a\ = a{mi{x),x/e), Ai = A{mi{x),x) 
for e>0 and i = l,2.

Then, A^i =Aa 2 implies that af =^1 i'aCl. Furthermore, there is a constant C>0
with

~®2lU°°(90) ^ C'||Aa i Aa s IU- (3.6)

Proof A part of the proof of Theorem 3.2 in [3] involves showing that ioi A eTi 
there exists a positive constant Ci with ||mi —m2l| <C'i||AA(mi,-) “■^A(m2,-)ll*- 
Lipschitz continuity of a gives the stability result,

|]a(mi,-)-a(m2,-)l|L°°(af2) <C'l|mi-m2|l <Ci||AA(mi,-) “■^A(m2,-)ll*-

□
Calderon’s inverse problem is severely ill-posed, even in the case of isotropic coef-

ficients. In order to resolve stability issues (described in [2]), some approaches replace 
a-priori regularity assumptions for A with different assumptions that are better suited 
for applications. For example, it is known that if A is a piecewise constant scalar func-
tion, the problem is Lipschitz stable. However, even in this case, the stability constant 
grows exponentially with the number of unknowns [4]. As a result, the techniques in 
this paper are applied to parameters m of low dimension.

3.1. Sufficient conditions for microscale recovery. The functions a^ defined 
in Theorem (3.6) admit a homogenized matrix A that is a symmetric, uniformly positive 
definite matrix function with bounded elements. The crucial step is to show that A{m, •) 
is monotone in the sense of (3.3).

The homogenized coefficients corresponding to microstructures of type A and B 
satisfy the monotonicity condition if there is a constant > 0 with

Dm{a{m,-)~^)~^ > E~^ andpm{a{m,-)) > E~^.
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The homogenization of microstructures of type C does not satisfy the monotonicity 
condition; the matrix

DmA={{a ^ (a» — sin(27rm) cos(27rm) 
cos(27rm) sin(27rm)

has eigenvalues ±1. Therefore, Theorem 3.2 cannot be directly applied. In §5‘, we 
present numerical results for this case.

The homogenization of cell structures of type D satisfy the monotonicity condition 
if there is a constant E>0 with

Dm{ai{m,-) ^>E ^ and Dm{a2{m,’) ^>E

The homogenized cell structure E satisfies the monotonicity requirement if

kjk2
Dma{m) = -k2>E

{m{k2-ki)+ki)^

for all m£lx- Since 0<A“^<m<A<l, it follows that monotonicity is guaranteed if 
ki and k2 satisfy

ki > y^k2{k2 + E-^).

It should be noted that the conditions given here are sufficient, but not necessary. 
In fact, an analogue of Theorem 3.2 holds in cases when the functions Dm A are not 
strictly monotone [3].

3.2. Mismatch in boundary measurements. The theory given so far justifies 
the uniqueness and boundary stability of solutions to an inverse homogenization problem 
of determining a microscale parameter m from macroscopic data. In the numerical 
experiments, (IP) is solved by matching macroscopic predictions with highly oscillatory 
data. The justification here is based on the theory of homogenization.

Let G:L°°{Q,) be the solution operator corresponding to (3.1).

Theorem  3.4. Let /^: A C°°{dn) and F:Ix^ C°°{dn) be given by

/^(m) = a^(m,-)Vu^(m,-)-n, F(m) = A(m,-)VC/(m,-)-n,

where n is a vector that is normal to dQ, a^{m,-) is of the form (2.5), A{m,-) is the 
homogenized coefficient corresponding to a^{m,-), w^(m,-) =G(a^(m,-)), and U{m,-) = 
G{A{m,-)). For a fixed parameter in £lx, define the minimization functionals

J^{'rn)= I {f^{m)~F{m)f^ds, 0<e<l, ipeC^{dQ). (3.7)
Jdci

J{m) = \i^J^{m). (3.8)

Then, m is the unique minimizer of J.

Proof By expanding the integrand in (3.7),

J^(m)— f {f^{m)-F{m)+F{m)-F(m))^(pds 
Jan

= /i +J2 + /3,
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where

h= [ {r{m)-F{m)f (pds 
Jdn

-^2 = 2 /* {f^{m)-F{fh)){F{m)-F{m))(pdi 
Jan

h= f {F{m)-F{m)f(pds.
Jdfi

The term Ii is independent of m. For the second term, note that since and U ■ 
are smooth solutions to (3.1), for functions 'ipeC°°{Q,),

jJn
(V • - V • AVU) • 'ipds = 0,

and therefore, by Green’s theorem,

[ {a^Vu^-AVU)-Wi;ds= [ -h-AWU■n)'ipds.
Jfi Jan

Homogenization theory gives the convergence A{fn)VU{m) weakly in L2(fl)
as e->0. Since 'ip = {F{m) — F{m))ip is smooth, it follows that

lim f {f^— F{m)){F{m)—F{m)))ipds = 0.

Therefore, J'(m) =limg_j,0i7^(m) =/3. The term Is is minimized when F(m) = F(m), 
and it follows from the results in the previous section the minimizer is m = rn. □

4. HMM for the forward problem
In the simulations of the macroscopic forward model (2.2), numerical homogeniza-

tion is performed using the finite element heterogeneous multiscale method (FE-HMM). 
Here we provide a brief presentation of the scheme; further details of various HMM for-
mulations can be found in [1, 10, 11].

The FE-HMM scheme is designed for approximations of the homogenized Equation 
(2.2) when the coefficients in the effective model are not known explicitly. By employing 
a microscale solver on local subdomains, the homogenized coefficients can be estimated 
in an efficient way.

The macroscopic solver is the traditional Vk finite element method on a coarse 
triangulation Th  of the domain containing elements of size H>e. The macroscale 
bilinear form is defined for functions V and W lying in the finite element spax:e Xh ,

3(V,W):= f WV-AjiUM{x)VWdx+ [ bWVdx, (4.1)
Jq  Jn

where Ahmm  is not known explicitly. The first integral in (4.1) is approximated using 
numerical quadrature points {a;;} and weights {wz}.

/Jn
VV-Amiu(x)VWdx^ ^ ■AauuVW)(xi), (4.2)

KeTH xi €K

where liiCj is the measure of K.
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The stiffness matrix entries are estimated at each quadrature point xi by using 
a microscale solver on subdomains l5{xi)\=xi±^I. Then effective behavior of is 
captured locally through the solution of cell problems

-V-(a"Vuf)=0 invl = Vi on disixi), (4.3)

where Vi is the linear approximation of V aX xi.
Again, a standard Vk finite element solver is used on a triangulation Tl of the sub- 

domains. The spacing h < e is chosen sufficiently small in order to resolve the microscale. 
Figure 4.1 contains a diagram of the macro-micro grid coupling in a typical FEM-HMM 
formulation.

Then, the term (VV-AHMMVW)(a:/) in (4.2) can be estimated by 

(V'F-AHMMVlT)(a:z)~^ f Vvf ■{a^Vwi)dx.
^ disixi)

The HMM bilinear form is then defined by

^hmm (F',FF) := Td f Vvf ■ {a^'Vwi)dx + {bWV){xi)
KeT„ x,eK \ ^

Finally, we have that the HMM solution, Uumm ^Q+Xh , solves -Bhmm (V,F) = (/,F), 
for all Ve Xh :

Fig . 4.1. FEM-HMM Discretization. An illustration of macro-micro coupled grids used in 
FE-HMM for elliptic PDEs.

4.1. Errors in forward modeling. An analysis of the errors involved in the 
FE-HMM formulation for elliptic problems is found in [11]. The main result is the 
following theorem, assuming a A;th order numerical quadrature scheme for (4.2) that 
satisfies

1 f
1^ all Pi^) ^ ^2fc-2,

where a;^ >0,/ = 0,...,L. '
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A - Amplitude B - Volume Fraction

10-2.5

10"^

10-3.5

Fig . 4.2. Errors in the macroscopic solution ||u^ — V||x,2 as e —>■ 0 using a purely macroscale solver 
(dashed) and FE-HMM (solid). HMM microscopic cells 1$ are of size 5 = 10e.

A - Amplitude B - Volume Fraction
0.003

0.002

0.001

4 6 8
HMM cell size: S/e

Fig . 4.3. Errors in macroscopic solution using a purely macroscale solver (dashed) and FE-HMM 
(solid) with by varying HMM microscopic cell size 5. Here e = 1/100.

Theo rem  4.1 ([11, Theorem 1.1]). Denote by UeH^{D), Ubmm ^Xh  the solutions 
to (2.2) and the FE-HMM solution, respectively. Let

e(HMM)= - Ahmm C^c OH,
xi £K,K£Th

where [j • \\ is the Euclidean norm. If U is sufficiently smooth, and \I<a^< AI for 
A, A > 0, then there exists a constant C independent of e, 5 and H such that

II - %MM II1 < c + e(HMM)),
l|i7-C^HMMllo <C(H''+i + e(HMM)).
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Fig . 5.1. Synthetic data and predictions. The plot contains the graph of the oscillatory 
Neumann data = a^Vu^ •n|p_{o<a;<i,y=o} corresponding to the Dirichlet boundary condition

~ given by (2.8). The macroscopic predictions ^(A,U) = AVU-n\r o,re
also plotted.

Then C/hmm ~>^ as e(HMM)—>0. For the periodic homogenization problem it is 
also shown that

e(HMM) < Ce
C(i+5)

Is(xi)=Xi+€l

otherwise.

A comparison of errors from using a purely macroscale solver and HMM is given 
in Figure 4.1 and Figure 4.3. The full solution to (2.1) with 6 = 0 and / = ! subject 
to Dirichlet boundary conditions w^lafi=0, is computed using direct numerical simu-
lation on a fine mesh with element size 6. = 1/800. Solutions U of the homogenized 
Equation (2.2) are resolved on a coarse resolution mesh of element size H = 1/2Q. We 
denote by C/hom  and C/rmm  the approximations of U using analytic formulas and HMM, 
respectively.

In the case of unknown or random microstructure, HMM can be performed “on 
the fly”, and computational time can be reduced using parallel solvers for the local cell 
problems. For periodic problems in two dimensions (as in this work), precomputing the 
cell problem solutions increases the efficiency of HMM.

5. Numerical experiments
In this section we present results of numerical simulations that demonstrate param-

eter inversion of elliptic equations using homogenization theory and the ideas discussed 
in §3. It is assumed that the parameter e, as well as the mapping m-^a^{m) is known.

There is no additional regularization of the problem. The inverse problem (IP) 
is solved by minimizing the cost functional (3.7) It should be noted that stability is 
guaranteed only on the boundary of the domain.

In all of the simulations, a standard finite element method is used on a regular 
triangulation of the domain. The Matla b routine Isqnonlin is used to minimize the 
least-squares functional (3.7). The synthetic data is generated using direct numerical 
simulation of the full model using a fine mesh with resolution h<e. Macroscopic pre-
dictions of the forward model are computed using a coarse mesh with resolution H>e. 
The local subdomains in the HMM solver are discretized on a fine mesh with spacing 
S<e. This provides a framework for microscale inversion that avoids the major pit- 
falls of committing an “inverse crime”. Unless otherwise stated, we set fi! = [0,l] x [0,1], 
e = 1/80, H = 1/10, 6 = 3€, and h = 1/600.
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The microstructure models A, B, and C, respectively, are represented by the mul-
tiscale functions

a\{m{x),x) = l.l-|-m(x)sin(27ra;2/€), (5.1)
a%{m{x),x) = .'S + 2x{x^<m}{x), (5.2)
aQ(m(a:),a;) = l.l + sin(27r52/e)5 x = am^. (5.3)

5.1. Inverse conductivity (b = 0). Based on the results in Section 3.2, 
if A is the homogenized coejdicient corresponding to a^, then We define
the measurement operator ^ in terms of weak solutions of V-(aVuA:) = 0, subject to 
Dirichlet boundary conditions =5fe} 1 < ^ < A,

^{a,Uk)j = lj{aVuk-n), j = 1,... ,n.

Here the linear functionals lj{f) = f{xj) are defined for a given set {xj}'j^iCd^l and 
{gk} is the set of functions {x^y,x‘^,y'^,xy} (see Figure 5.1). Coarse meshes can be used 
to resolve solutions with these boundary conditions.

Table 5.1 shows the relative error |m —m|/|m| in the estimation of the microscale 
parameter m = 0 e IR and Table 5.2 contains a comparison of the performance time using 
different forward solvers. The differences in the inversion results can be attributed to 
the resolution of the meshes used, errors introduced by the optimization routine, and 
the mismatch in scales between the oscillatory data and the slowly varying predictions.

HMM Analytic Two-stage
Model A 
Model B 
Model C 
Model D 
Model E

0.04563540
0.03623084
0.05210436
0.05093572
0.07446168

0.02556686
0.02234864
0.00726006
0.00354686
0.05607627

0.02344292
0.06537146
0.05578068
0.15121385
0.01708140

Table  5.1. Relative error in inversion for a microscale parameter Tn = 0GR.

HMM Analytic Two-stage
Model A 9.42 8.86 22.13
Model B 18.30 16.60 27.45
Model C 14.90 17.38 16.47
Model D 10.27 10.09 17.15
Model E 15.88 16.36 19.64

Table  5.2. Performance time (in seconds) of inversion for a microscale parameter m = 06M.

The analytic and HMM solver perform similarly .for all three microstructure models. 
The longer performance time using the two-stage solver can be attributed to first stage, 
where inversion for the unknown matrix coefficient A involves three times as many 
unknowns as direct inversion.
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Fig . 5.2. Model C parametrized using a continuous function m{x) with N = 6 degrees of freedom.

Fig . 5.3. Model B parametrized using a piecewise constant function m{x) with N = 6.

5.1.1. Representation of the microscale parameter. In one experiment, we 
restrict m{x) to the space of cubic spline interpolants corresponding to the values given 
by the vector 6 . An example of a microstructure with this kind of parametrization
is shown in Figure 5.2. Forward predictions are made using HMM “on the fly”. Table 
5.3 contains the relative errors ||m —m||/||m|| in the recovered parameter for different 
values of N. Another parameter space is the set of piecewise constant functions m{x)

N A - Amplitude B - Volume Fraction C - Angle
1 0.04237400 0.04507309 0.05701372
2 0.05485636 0.04873258 0.04293228
3 0.05552983 0.06892129 0.06720150
4 0.06572240 0.05887249 0.05945569
5 0.06691606 0.07173517 0.08507094
6 0.06761214 0.07921053 0.09011505

Table  5.3. Inversion error in for continuous m{x).

N A - Amplitude B - Volume Fraction C - Angle
1 0.04563540 0.02234864 0.05210436
2 0.05786556 0.02244457 0.05886389
3 0.06187033 0.04806429 0.06601630
4 0.07288481 0.07027316 0.08523131
5 0.06697655 0.09667535 0.08324536
6 0.08680081 0.07828320 0.08282462

Table  5.4. Inversion error in for piecewise constant m{x).
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N Amplitude-Angle Volume Fraction-Angle Amplitude-Volume Fraction
1 0.03082785 0.04804962 0.04394855
2 0.12689231 0.07667133 0.06829348
3 0.11401958 0.09285163 0.07980421

Table  5.5. Inversion error in for continuous m{x) = {rni{x),m2{x)).

(see Figure 5.3). Forward computations are made using a HMM solver that efficiently 
makes use of precomputed values of A{rn). Table 5.4 contains the errors in the recovered 
parameter for different values of N.

We can extend the ideas in previous sections to unknown parameters m of the form,

m(a;) = (mi (x),..., ttim  (a:)),

where M is the number of microscale features to be recovered. For the general problem, 
each function mi(x), is assumed to be a scalar function with N degrees of
freedom (see Figure 5.4).

The oscillatory functions describing models Amplitude-Angle (A-C), Volume 
Fraction-Angle (B-C), and Amplitude-Volume Fraction (A-B), respectively, are

«Ac(^D^2,a:) = aA(mi,x), x = am^x, (5.4)
OBc(^l,^2,a:) = .5 + 2X{(0,mi)}(^2), (5.5)
a^B("^D^2,a;) = .5-l-2miX{x2<m2}(3^)- (5-6)

Therefore, the inverse problem reduces to determining a finite dimensional vector 
of unknowns, Table 5.5 contains the errors from the numerical experiments
for M — 2.

In certain cases, the solutions to cell problems corresponding to different multiscale 
coefficients are indistinguishable. In particular, for a fixed m, there exists a rh such 
that the homogenized coefficients corresponding to microstructures with a parametrized 
volume fraction m—>aYp{m) are equal to the homogenized coefficients corresponding 
to microstructures with a parametrized amplitude fh -> Uamp  (^) • However, if the re-
covered parameter is constrained to a convex subset of the search space, the problem 
can be reformulated to guarantee a unique recovery.

5.1.2. Random microstructure. We consider a model of layered media where 
the microstructure is represented by a random function m{x)—>a^{m{x),x,u)), where

a'^{m,x,u))=a{m,X^{x,uj)), (5.7)
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Fig . 5.5. Random microstructure in layered materials.

LV^J

where to is an element of a sample space X and Xj are independent, random variables 
that are uniformly distributed on the interval [-1,1]. Figure 5.5 shows a plot of (5.7) 
for a{m,^) = l + m^.

In these experiments, we fix m = ^e(0,l) and minimization of the least-squares 
functional (3.7) is performed for 100 realizations of a^{9,uj). In each trial, the same 
realization is used to generate both the data, =^{a^,u%)j=lj{a^Vu%‘n) and the 
predictions 2: = ^(vl,C4).

We compare the performance of HMM forward solvers corresponding to three dif-
ferent choices of the size of the local subdomains 7^; 5 = 2e, ^ = 4e, and ^ = 8e. Table 5.6 
contains the frequency of recovered parameters 6 that lie in the interval Eq centered at 
the true parameter. The results are consistent with the expectation that the accuracy 
of the parameter estimation using HMM would improve with increased cell size.

Be S = 2€ II S = 8e
(.7, .9) 16% 26% 57%

(.75,.85) 4% 14% 29%
(.79,.81) 0% 2% 11%

Table  5.6. Microscale parameter inversion for a random microstructure. The true parameter is 
9 = .8, and the frequency of recovered parameters 9 lying in the interval Eq is given.

5.1.3. Noisy data. Here, measurement error is introduced in the observations, 
2/^ =^(a^,u|.)j =Zj(a^V'a| •n)(l-l-^), where ^ is a normally distributed random variable 
with mean zero and standard deviation cr = .l. Figure 5.6 contains histograms of the 
relative errors in the recovered parameter m = 0 G R. From the experiments it is clear 
that the two-stage procedure resulted in errors with a larger variance than the errors 
from direct inversion. Modifications of this procedure will be needed in order to improve 
robustness to noisy input data.

5.2. Medical imaging (6^>0). We will consider a medical imaging technique 
that uses a combination of optical and ultrasonic waves to determine properties of 
a medium from surface measurements. In quantitative Photoacoustic Tomography,
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A - Amplitude B - Volume Fraction

C - Angle

Analytic Solver 
Two-Stage Solver 

HMM

Fig . 5.6. Microscale inversion with noisy observations (N—M—1). The histogram shows 
the results of 100 trials of microscale inversion with measurement error of 10% added to the synthetic
dCL^Qf*

(qPAT), optical coefficients are reconstructed from knowledge of the absorbed radiation 
map [6, 7].

Let O C represent a medium of interest and A C R+ a set of wavelengths included 
in the experiment. The density of photons at wavelength A, denoted by u{x,X), solves 
the second-order elliptic equation

J-V-(a(a;,A)V'u(a:,A))-|-cr(ai,A)w(x,A)=0 xeCt g.
A) = 5'(a;,A) xEdO,.

Here, a and a are diffusion and absorption coefficients that are dependent on the 
wavelength A. The ultrasound generated by the absorbed radiation is quantified by 
the Griineisen coefficient, r(a:). The objective of qPAT is to recover (a,cr,r) using 
the measured data from photoacoustic experiments corresponding to an illumination 
pattern 5(a;,A).

We will modify the numerical examples from [7] by considering the forward model
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Fig . 5.7. Left: Multiscale coefficient a^. Right: solution to qPAT model (5.9) corresponding to 
four illuminations on the boundary.

Fig . 5.8. Spatial components of the qPAT model. Left to right: Griineisen coefficient 
r(a:), and absorption component functions aifx) and aafx).

(5.9) with diffusion coefficients that have variations on multiple spatial scales, a = a^. 
For simplicity, we will assume that the absorption and diffusion coefficients can be 
expressed as

2

= a^{x,\) = a{X)a^{x).
i=l

The measured data takes the form

y 5 Xk)u(xj, Afc), (5.10)

where the set {xj} consists of points in the interior of the domain Q.
In the numerical experiments, the measured data (5.10) involves the solutions to 

(5.9) for each wavelength in the set A = {.2,.3,.4}. Four illuminations are used for each 
wavelength. The wavelength dependent components of the coefficients are set to be

A(A) = f, A(A) = ^, a(A) = (A/AoP.
Aq  a

where the wavelength Aq  = .3 normalizes the amplitude of the coefficients. The spatial 
components of the coefficients are given as

r(a;) = .8 + .4tanh(4a; —4),
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(7i(:r) = .2-.le-2’^l="-^°l', a2{x) = .2 +a:o = (.5,.5).

Figure 5.8 contains plots of the spatial components of F and a.
The microstructure in models D and E, respectively, are represented by the coeffi-

cients

a^{m{x),x)=a%{m{xi),xi)a%{m{x2),X2), (5-11)
a% {Tn{x) ,x) = .b + 2x{ [o.m] x [o,m]} [x)- (5.12)

As in [7], the reconstruction errors are given for synthetic data with no noise added. 
The results iii Table 5.7 show inversion results using a HMM forward solver for macro-
scopic predictions. Here the parameters are chosen to be € = 1/100, i7 = l/20, J = 3e, 
and /i= 1/800. The microscale parameter m{x) is a piecewise constant function of the 
form (1.1).

N D - Amplitude E - Volume Fraction
1 0.05605865 0.01529364
2 0.07461357 0.01838472
3 0.07146362 0.02986680
4 0.08319615 0.03748564
5 0.13636728 0.04616734
6 0.08914877 0.03729032

Tabl e  5.7. Inversion errors for parameter estimation in qPAT models containing periodic cell 
structures.

5.3. Seismic waveform inversion (6^<0). In exploration geophysics, scientists 
attempt to determine the geological properties of the Earth’s crust that govern the prop-
agation of acoustic waves (see [21] for an overview). In full waveform inversion, the goal 
is to find a subsurface model that produces the best fit to reflection data recorded from 
seismic surveys. Each prediction is simulated using the physics of the experiment. This 
corresponds to an inverse problem for partial differential equations where the unknown 
coefficients represent properties of the sedimentary layers, e.g. velocities, porosity, and 
saturation. •

Full waveform inversion is the result of combining numerical methods for the sim-
ulation of wave propagation with optimization techniques to minimize the data misfit 
'term (see [12] for a discussion of multiscale full waveform inversion). Traditional finite 
element methods (FEM) or finite difference methods (FDM) for wave propagation in 
the hi^ frequency regime come with a considerably high computational cost due to the 
highly oscillatory nature of the propagating waves [13].

The forward problem can be modeled in both the time domain and the frequency 
domain. In theory, both approaches axe equivalent, however the choice of model can 
influence the design of specific numerical methods to optimize performance. An advan-
tage of the frequency domain model is that a coarse discretization of the frequencies 
can be used to produce images that are free from aliasing [5, 15, 19].

A major hurdle in full waveform inversion is the presence of local minima in the 
least-squares functional for the data misfit. In [18], adjoint-state methods are used 
to efficiently calculate the gradient of the least-squares functional and speed up the 
optimization. We emphasize that in this work we use standard optimization routines in 
order to fully study the effects of fitting an effective model to the data.
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Our numerical examples correspond to problems that mimic the models used in 
seismic waveform inversion. Here, the model parameters represent the spatially varying 
volume fraction, angle, and amplitude of the layers. The forward model G maps a to 
the solution to the 2D variable coefficient Helmholtz equation on the square 0,= [0,1]^,

V-(a(a;)Vw)+a;^w(a;) = (5(a;-a:s) xe^, (5.13)

where a is the model parameter that characterizes the density of the medium, w is the 
wave number, and u is the spatially varying pressure field arising from a disturbance at 
a source located at Xs Gil. We impose the absorbing boundary condition

aVu-n — iku = 0 on dCl, • (5.14)

where k = a~^/‘^u}. The seismic data is represented as the collections of solutions mea-
sured on the sensor domain Dcf2, ^{a,Uk)j =Uk{xj), {xj}cD (see Figure 5.9).

Fig . 5.9. Solutions of the multiscale Helmholtz Equation (5.13) for wavelength u — Att  and multi-
scale coefficient a = a^.

N A - Amplitude B - Volume Fraction C - Angle
1 0.02776429 0.03736824 0.03891544
2 0.04400273 0.02612802 0.07489835
3 0.04607522 0.01553997 0.06326932
4 0.07915712 0.00976197 0.25927552
5 0.05350197 0.01566102 0.17280984
6 0.04874272 0.01968874 0.21757778

Table  5.8. Inversion error for parameter estimation in the Helmholtz model.

In the numerical simulations, we set uj = An and the Dirichlet data is obtained from 
solutions corresponding to multiple sources at = (0,.25), Xg^ = (0,.75), Xg^ = (.25,1), 
and Xg^ = (.75,1). Results shown in Table 5.8 demonstrate microscale inversion of the 
Helmholtz Equation (5.13) using the. methods described earlier. Here the parameters 
are chosen to be e = 1/120, H = l/40 and h= 1/800, (5 = 6e.

6. Conclusion
We present computational techniques for solving inverse problems for multiscale 

partial differential equations. Our goal is to recover microscale information using PDE 
constrained optimization. Instead of directly working with the effective equation we 
constrain the search space by representing the microscale by a limited number of pa-
rameters in order to have a well-posed inverse problem. When a parameter based 
effective model exists we use that, otherwise, the numerical heterogeneous multiscale
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method (HMM) can be used even when the explicit form of the effective equation is 
not known. By applying recovery results for inverse conductivity problems with special 
anisotropy [3], we can prove that certain microstructure features can be determined 
uniquely from the Dirichlet to Neumann map corresponding to the effective equations. 
We provide numerical examples, which show quantitative convergence information with 
respect to numerical resolution, scale separation and parameterization strategies. We 
also provide numerical results that demonstrate the performance of these techniques 
applied to random media and simple models with lower order terms of the form used in 
medical imaging and exploration seismology.

The goal of the current research has been a proof of concept and there are natural 
future directions outside the scope of the current paper. For example, in more realistic 
applications where higher resolution is required, other minimization techniques must 
be used. Good candidates would be adjoint-state based methods, which are used in 
full waveform inversion [18]. Another direction is to further probe random cases and 
explore the use of multiple parameters in connection to known prior information in 
specific applications.
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