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Abstract

Itis often assumed in biophysical studies that when multiple identical molecular motors
interact with two parallel microtubules, the microtubules will be crosslinked and locked
together. The aim of this study is to examine this assumption mathematically. We
model the forces and movements generated by motors with a time-continuous Markov
process and find that, counter-intuitively, a tug-of-war results from opposing actions
of identical motors bound to different microtubules. The model shows that many
motors bound to the same microtubule generate a great force applied to a smaller
number of motors bound to another microtubule, which increases detachment rate for
the motors in minority, stabilizing the directional sliding. However, stochastic effects
cause occasional changes of the sliding direction, which has a profound effect on the
character of the long-term microtubule motility, making it effectively diffusion-like.
Here, we estimate the time between the rare events of switching direction and use
them to estimate the effective diffusion coefficient for the microtubule pair. Our main
result is that parallel microtubules interacting with multiple identical motors are not
locked together, but rather slide bidirectionally. We find explicit formulae for the time
between directional switching for various motor numbers.
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1 Introduction

Many fundamentally important examples of intracellular transport are driven by
molecular motor proteins that drag cargo (vesicles and organelles) on polar tracks
within cells by transducing chemical energy into mechanical forces and movements
(Rogers and Gelfand 2000). More often than not, the cargo is driven by multiple, not
single, motors (Gross et al. 2007). If all the motors bound to the cargo are of the
same kind, then the motors normally synergize and hold on to the cargo for a longer
time, driving it farther and faster (Gross et al. 2007; McKinley et al. 2012). In some
cases, however, two opposing kinds of motors are bound to the cargo. The most fre-
quent example is when a vesicle or a pigment particle has multiple kinesin and dynein
motors on its surface, which interact with a long microtubule (MT) fiber (Nascimento
etal. 2003). A single kinesin motor tends to move toward the MT plus end, while a sin-
gle dynein motor moves to the MT minus end. Each of these opposite-polarity motors
is characterized by two important mathematical relations: a force-velocity and a force-
detachment relation. Namely, if unopposed, a motor moves to respective microtubule
end with a certain ’free’ speed, but if a load force opposes this movement, the speed
decreases as a certain measured function of the force (Svoboda and Block 1994). The
motor also dissociates from the MT with a rate which is a function of the force, often
an increasing function (Kunwar et al. 2011).

When a few kinesins and a few dyneins are bound to the cargo, a pioneering
model (Klumpp and Lipowsky 2005; Miiller et al. 2008) explained the tug-of-war phe-
nomenon previously observed experimentally (Gross et al. 2002; Kural et al. 2005).
Specifically, once in a while, kinesins ‘win” when a majority of them associate with the
MT and move to the plus end. The collective kinesin action then applies a great force to
few dyneins associated with the MT, and this great force leads to rapid detachment of
all dyneins. However, as the motors’ attachment and detachment are stochastic, many
kinesins detach infrequently, allowing a few dyneins to attach, and then kinesins lose
the majority and dyneins temporarily win, now applying a great load force to kinesins,
until the next great fluctuation restores the kinesin majority. Repeated many times,
this process results in a bidirectional movement of the cargo. An elegant mathematical
model (Klumpp and Lipowsky 2005; Miiller et al. 2008) predicted that the frequency
of these reversals depends on the motor numbers. Many subsequent modeling studies,
mentioned in the Discussion, refined and developed this model further.

There are also ubiquitous cases in cell biology when the cargo is, effectively, one
MT, to which motors bind with their cargo domain and drive it on a second MT
(Fig. 1). For example, this is how short MTs are thought to be transported on long
MTs in long axons of nerve cells (Craig et al. 2017). Another important situation is
when two MTs of similar lengths are sliding relative to one another due to the action
of motors crosslinking them; this was observed in mitotic spindles (Wollman et al.
2008) and in nascent dendrites, axons and so-called cellular processes (del Castillo
etal. 2015; Oelz et al. 2018). This situation would be straightforward if a single motor
was driving one MT on another. However, much more likely, multiple motors of the
same kind crosslink the MTs (Fig. 1).

Let us consider possible MT-motor configurations. First, let two MTs be anti-
parallel (Fig. 1a). Then, whether two identical motors are bound with their cargo
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Fig.1 Tug-of-war. Molecular motor proteins are represented by green forks. The symbol is indeed the letter
Y if the motor domain is attached to the upper fiber (in blue) with the cargo domain attached to the lower
fiber. The symbol is an upside-down Y in case the motor domain is attached to the lower fiber with the
cargo domain attached to the upper one. The motor domains move to the plus end of the respective fiber
symbolized by an arrowhead. This slides the fibers in a way which depends on their relative polarity. a
MTs are anti-parallel: fibers move in the direction of their minus end irrespective of the direction of motor
proteins. b MTs are parallel (here with the plus ends to the right): the fiber to which the higher number of
motor domains is attached moves to the left (dotted gray arrows), while the other one slides to the right.
Only with an equal number of motors in both directions the pair of fibers is locked and therefore does not
move (color figure online)

domains on the same MT or not, the motors’ actions are coherent, leading to the anti-
parallel sliding of the MT pair. This phenomenon is at the core of key cell biological
processes such as spindle and axon elongation (Sharp et al. 2000; Lu et al. 2013).
Second, let two MTs be parallel (Fig. 1b). In that case, if all identical motors are
bound with their cargo domains on the same MT, then the MT pair slides. However, as
the motor attachments are random, it is more likely that only a fraction of motors attach
with their cargo domains to the first MT and pull the second MT to the left (Fig. 1b).
Meanwhile, the rest of the motors attach with their cargo domains to the second MT
and pull the first MT also to the left (Fig. 1b) (or, if MT1 is considered as the base,
MT?2 is pulled to the left/right by these two fractions of the motors). If two opposing
motor fractions consist of equal motor numbers, all motors will be stalled, and the
MT pair will be effectively locked together. This is exactly what many experimental
studies assumed either explicitly (Lu and Gelfand 2017) or implicitly (Wollman et al.
2008).

It is easy to imagine though that stochastic effects will break symmetry between the
opposing kinesins, and then some motors with cargo domains bound to the same MT
will be in majority. Then, these motors apply a great force to a small number of motors
with cargo domains on another MT, the motors in minority detach, and the tug-of-war
cycle ensues. Intuitively, the parallel MT pair then will not be locked together, but
rather slide bidirectionally. In this study, we aim to quantify the resulting tug-of-war,
namely, to calculate how often the MT sliding will change direction and what will be
the resulting run-length and effective diffusion coefficient.

Our main result is that the expected time between MTs’ switching directions can
be estimated as the expected hitting time for a reversible birth and death process. We
find several asymptotic formulae for a large total number of motors and strong load
dependence of the detachment rates, which allow us to estimate the effective diffusion
coefficient.
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In the first section, we present the mathematical model and investigate its asymptotic
behavior analytically. In the second section, we introduce the expected hitting times
for the underlying Markov process, and discuss their relation to the switching times
in the third section. We then investigate approximate model solutions for a large total
number of motors in section four, and further approximations using Laplace’s method
in the fifth and last section.

2 Mathematical model

We consider identical molecular motors acting in one of two opposite directions. N
is the number of molecular motors pushing in positive direction, M is the number
of motors pushing in negative direction. The maximal number of motors is given
by K > N 4 M. Specifically, the model assumes that each motor bound to a MT
occupies a segment of a certain length. Thus, M and N are the total numbers of
motors crosslinking two parallel MTs of unit length. K is the maximal motor number
that fits the overlap.

We model the molecular motors by force-velocity relations in which the force
exerted by a single motor pushing in positive, respectively negative direction is given

by
Av Av
t=FR(1-=), f=F(-1-=—]),
re=r(1-90) =R (-3

where Av is the velocity of the cargo (the relative velocity of parallel MTs, respec-
tively) and F; and V), are stall force and free moving velocity of a single motor. Note
that fT represents the force exerted by a motor sliding in positive direction, whereas

fT=—-F(1— _VA”) corresponds to the force exerted by a motor acting in negative

direction. Here — Av plays the role of the sliding velocity in negative direction.
We choose the simplest possible model to determine Av, namely instantaneous
force balance of all the motors involved: N f T MfT=0,ie.

Av Av

m m
This implies:
Av N-—-M
— = , 2.1
Vin N+ M
and therefore
2N
T(M,N) = F, , f(M,N)=F ,
S ) SNEM J( ) SNTM

implying f*(M, N) = f~(N, M).
Provided that free binding sites on the MTs’ overlap are available,i.e. N+ M < K,
we assume that molecular motors attach to the two MTs at the given rate 8. They are
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Table 1 List of parameters and their orders of magnitude

Description Symbol Value References

Stall force (kinesin) Fy 6pN Visscher et al. (1999)
Detachment force (kinesin) fo 4pN Kunwar et al. (2011)
Free moving velocity (kinesin) Vin 0.57 pm s—1 Kunwar et al. (2011)
Number of competing motor proteins K 35 Value used for testing
Force-less detachment rate ) 1571 Kunwar et al. (2011)
Force-less transition rate K0 0.5s7! Equal probability of

another motor to attach
in either direction

Scaled, dimensionless stall force y 3 y =2Fs/ fo

equally likely to attach with their motor domain to one or to the other MT. The motors
also detach from the pairs of MTs at certain rates, namely those sliding in positive
direction detach with rate £ and those sliding in negative direction with rate .
We assume that off-rates increase whenever motor proteins experience mechanical
resistance according to Bell’s law (Bell 1978),

+
E“L(M,N):N/Zoexp(w):NEoexp<y M )

o N+M 2.2)
E7(M,N) = Mkoexp (M> = Mic exp <)/L>
’ fo N+M

where fj is the detachment force of kinesin and iy is its forceless detachment rate.
We use the short notation y = 2F;/ fo (see Table 1). For symmetry reasons it again
holds that £~ (M, N) = ET(N, M).

Note that we neglect the environmental drag on the MTs sliding in a direction
parallel to their axis. Indeed, the environmental drag acting on a microtubule of 5 pm
length sliding at the free moving velocity of kinesin (see Table 1) can be estimated
(Oelz et al. 2018) as ~ 2 pN. This drag is smaller than the stall force of even a single
kinesin motor and can therefore be neglected in a system where a few motors act
simultaneously.

To reduce the size of the phase space (Fig. 2) we assume that the attachment rate 8
is large and therefore reattachment of a new motor is immediate. As a consequence the
total number of motors always takes its maximal value: N + M = K. This reduces the
original triangular phasespace (Fig. 2a) to a linear chain of possible states (Fig. 2b).
As a consequence, the turnover of motors is governed by motor detachment: as fast as
one motor detaches, another one, of an arbitrary polarity, takes its place (see Fig. 3).

In this simplified scenario we write i = N for the number of motors pulling in
the positive direction, while the number of motors pulling in the negative direction
is given by K — i. The corresponding time-continuous Markov Process with state
variable i € {0, 1,..., K} corresponds to a classical birth—death reversible process
(Anderson 1991). We denote by Ki+ = %S_(K —i,i)for0 <i < K the rate at which
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(a)
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Fig.2 a Sketch of the general mathematical model, here shown for K = 6. b In the limit when reattachment
is fast, the state space is restricted to N + M = K. In this case the mathematical model is a classical birth—
death process with transition rates Kl-:t

Fig.3 Sketch of the (a) -
mathematical model a K = 11,

i = 4, which implies K — i = 7. Y 77‘\)//)7 NN \

b Detailed visualization of
turnover S

® |
Y,

one of the K — i motors pulling in the negative direction switches to the positive
direction, i.e. the state transitions from i to i + 1. Note that the factor % reflects the
50 % chance that a detached motor is replaced by a motor in the opposite direction.
Likewise, k;” = %SJF(K — 1, 1) is the rate at which one of the i motors pulling in
the positive direction is replaced by a motor in the negative direction, i.e. the state
transitions from i to i — 1. The rates are given by the detachment rates of the general

model (2.2) which, using the new notation, read:

. K —i " . i
K; =1Koexp (y <T>> K= (K—l)KoeXp<)/E>, 2.3)

where kg = 1/2k(. Note that these rates are proportional to the number of motors
which are potentially replaced while the force depends on the number of motors
pulling in the opposite direction. Again, by symmetry it holds that ;" = fc;g_i for

1<i<K.
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The infinitesimal generator of the process is given by Q = (g;j)1<i, j<k With

Gij = K" 8j=i1 + K[ Sj=i—1 — U] + 4 )8i=j, 0<i,j<K,

with the convention K;{_ =k, = 0. This is a tridiagonal matrix given by (here for
K =4
—iy K 0 0 0
Ky =]+ i; 0 0
Q-] o Ky —(ky +K5) iy 0 (24)
0 0 Ky —(Kk5 + /<3+ ) /<3+
0 0 0 Ky —Ky

We denote by p(t) = (pi(t))o<i<x with ZiKzo pi(t) = 1 the time-dependent
probabilities that the system is in state i, i.e. that there are i motors pulling in the
positive direction and therefore K — i motors pulling in negative direction. As a
consequence, they satisfy the system of forward Chapman—Kolmogorov equations
dp/dt = Q' p(z). In detail,

i (b 4 pi K i i (0 =p0 0<i<K. (@25
E—_(K,‘ +K; )Pz+/€i,1pz—1+/€i+1pz+1, pi(0) = p;, <i<K, (25)
with the convention, as previously for the transition rates, p_; = px+1 = 0. We have

the following classical result (Grimmett et al. 2001):

Proposition1 Let K > 2, /cltl > 0andk; > 0for1 <i < K, with the convention
Ko = KI"’(' = 0. Let pl(.) > 0, with ZiK:O p? = 1. The unique solution p(t) to the sys-
tem (2.5) converges exponentially fast towards the invariant measure p := (P;)o<i<k
defined by
it
k—1
= ——. where mo:=1, m:=]]-"=. (2.6)
K —
D k=0 Ti k=1 “k

For the specific form of Ki+, ke, given by (2.3) it holds that

T

pi:

i

k—1 . .

exp(y ) K —k+1 K! i i

7Ti=| | K—k % =i'(K—i)'eXp KV? E—l .
i1 EXP(Y ") : :

Proof Proposition 1 is an immediate consequence of the Perron—Frobenius theo-
rem (Saloff-Coste 1997). To find the unique positive steady state distribution p =
(Pi)o<i<k» we write Q'p = 0 as a recursion relation for a given po:

S kg~ (k" + Kk DPiot — K pica KT .
pP1=——po, Ppi= — = —pi—1 for 1<i<K,
Ky k; i
+
_ Kg_1 _
and px = ——pk-1
Kk
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Fig. 4 Stochastic simulations by a Gillespie’s algorithm for K = 35, y = 3 and kg = 1/2. a One out of
the 100 Gillespie simulations. Average number of transitions (from state O to state K or the reverse) for
each simulation run: 45.3 4 7.5. Average time-span of simulation runs: 7145 4 32.6. Average duration of
transitions between states 0 and K: 162 = 29.9. b Visualization of the stationary distribution p (black line
and dots), compared with the first order approximate formula pgx = ¢~ KT (dotted red line) and the second

order approximate formula e —Kf=h-3 7 log(K) (full blue). The grey area shows the zone where 95% out of

100 repeated stochastic simulations of 3. 10° reaction steps lie (color figure online)

This implies that p; = (]_[,(_1 ) po fori > 1, and using relation Zz—o pi=1to

determine pg, we obtain the invariant measure defined by (2.6). For Kl-+ , k; defined
by (2.3), we simply compute:

i ( i k—1 K k . .
(12255 oo (5 5) ool )

i1 exp(y 2

This typically corresponds to a bimodal distribution, symmetric with respect to %
as shown in Fig. 4b for our standard set of parameters in Table 1.

Let us go back now to our original question of how frequently the MTs change
direction, which is linked to the effective rate of diffusion of the random walk of one
MT relative to the other (Fig. 5a).

The tug-of-war stabilizes the dominance of one of the two opposing groups of
motors. Switching between dominance of one group to dominance of the other group,
which corresponds to switching direction, is arare event as illustrated by the simulation
shown in Fig. 4a. In this simulation, the mean time for directional switching is T =
162s. In a tug-of-war situation, most of the time one group of motors will dominate
and the relative velocity will be given by almost the free moving velocity V,,, either in
positive or negative direction. The resulting estimate for the diffusion coefficient will
be given by %x run-length x velocity, i.e. %V,ﬁ T = 26.3 um?/s. In the stochastic
simulation (Fig. 5b), however, we find a diffusion coefficient of 17.4 um?/s. Most of
the discrepancy is caused by the fact that the mean relative velocity is indeed slower
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Fig. 5 Stochastic simulations for K = 35, y = 3 and k¢ = 1/2: a relative displacement of the two MYs
simulated as shown in Fig. 4a. The relative displacement is updated in every timestep by At x Av with the
relative velocity given by (2.1). b Mean squared displacement (x(t)z) vs time (red) for 200 simulation runs
with the same parameter set. The linear regression line is shown in blue (color figure online)

Table 2 Comparison of the diffusion coefficients observed in stochastic simulations (slope according to
linear regression line as illustrated in Fig. 5b) and estimated as % x mean rel. velocity x run length where
run length =ty y X mean rel. velocity for several values of the scaled load-sensitivity y

y D (um?/s) Degtimate (1km?/s)
7.6 x 1073 1.6 x 1073 =24 x 1073
0.14 0.09

2.5 1.33 24
17.4 20.6

4 12.1 x 103 14.4 x 103

than V,,,. A better estimate for the mean relative velocity uses the fact that the stationary
distribution in Fig. 4b has maxima at Jip,x = 33 and K — Jpax = 2. The relative
velocity at these states, according to (2.1), will be Av = V,, x 31/35 = 0.5 um/s,
and the corresponding estimate for the diffusion coefficient % x0.52x 1 =20.6 um?/s
agrees well with the numerical result. Further estimates for various values of y are
listed in Table 2.

Note that directional switches for y = 4 are very rare, and we therefore compute
the expected time for switching directly from (3.3) for Jnax = K, since the stationary
distribution has its maxima at O and K.

Note also that while we overestimate the diffusion rate for the larger values of y, we
underestimate the rate for the borderline case y = 2, due to the fact that the stationary
distribution is wide-spread.

Finally, in the case without actual tug-of-war where y = 0 and where the stationary
distribution has a single peak at K /2 (K even) or (K £ 1)/2 (K odd), respectively, we
only get a very rough estimate of the diffusion coefficient depending on which state we
take as equivalent of Jyax. Picking either Jpax = 14 or Jmax = 16, we get the interval
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of diffusion rates shown in Table 2. Note that Fig. 8a below provides a comparison of
stationary distributions (continuous approximation) for different values of y.

Because of these considerations, our strategy to quantify the switching time between
directions is as follows: First, we focus on the expected first hitting time t;; which
is the expected time for the process to proceed from state / to state J. In a typical
situation, where state / characterizes a majority of motors pulling in one direction,
while state J refers to a state in which most motors pull in the opposite direction (e.g.
take J = Jmax and I = K — Jmax), the expected hitting time will be a good estimate
for the time necessary to switch directions.

3 Expected hitting times

To compute the expected time after which the cargo switches directions, we analyze
the first hitting time in the context of this random process.

A linear system of equations, which describes the expected time t7; to go from
state [ to state J, can be derived as follows [see, e.g. Norris (1997)]: we modify the
generator Q assuming that the state J is absorbing. To this end, we delete both the
column and the row of the generator, which correspond to state J, in order to obtain
the generator Q. For K = 4, the generator matrix Q3 has the form:

—Kg_ /c(‘)" 0 0
kg =l + kD) i 0
03 = - o
Ky —(ky +Ky) 0
0 0 0 —Ky
Note that the state space of this (K — 1)-dimensional process are the states {1, ..., J —
1,J 4+ 1,..., K}. The solution of this process can be written as P;(#) = exp(rQy)

where P;(t) is the transition matrix function for the process absorbed in state J (its row
I corresponds to a process which has started in the state 7 (out of K — 1 states in total),
namely to the probabilities of finding this process in each one of the non-absorbing
states).

Therefore, Py (t)(1,1..., DT = exp(tQ,)(1,1..., DT = (P;[T;; > t]); is the
vector of survival probabilities, i.e 77y is the first hitting time of a process which
started in state [ targeting state J. This approach leads us to the following result,
which is also classical (Grimmett et al. 2001).
i+
parameters for 0 < i < K — 1, with the convention k, = K;(r = 0. Let Q be the

infinitesimal generator of a stochastic process defined by (2.4). Denoting by t;; the
expected hitting time to go from the state I to the state J # I, the hitting times are
the unique solution to the following linear system:

Proposition2 Let K > 2 be an integer, and /cl.+ > 0, k., > 0 are positive real

1 K" K,
T s+ —L—11. 0SI<K, I#1J.
K; +k; K; + K, K; K, B

1y =

@ Springer



Bidirectional sliding of two parallel microtubules... 581

By recursion, we obtain

j i
1 Ky 1
= Z—+ ]_[ pr D D ot (3.2)

j i
1 Ky 1
0 = § :_+ 1‘[ ?z T (3.3)
J Yo bi

Remark 1 In formulae (3.3) and (3.2), we notice that the denominator is a weighted
transition rate to go from j to j + 1, i.e. rate weighted with the conditional probability
(in equilibrium) to be in state j, under the condition to be in one of the states < j.

Proof This result is well-known; we recall here briefly the proof for the sake of
completeness. The distribution of hitting times for the absorbing state J is given
by f;(t) = —d/dtexp(tQy)(1,1...,1)T where f; = (f17)12£5. We compute the
expected hitting times 75 = (‘L’LJ, R S5 O 4 SN I SR ‘L'K,])T as

r;:(]E[T”])#J:/O tf,dz:/o exp(tQy)dt (1,1..., DT
=-0;'a,1...,n7.

Therefore, the expected hitting times satisfy the equation Q;z; = —(1,1..., DT.
This implies equation (3.1), which states that the expected time to go from state / to
state J is the expected time to leave state / plus the times to reach the final state from
either the possible next states / — 1 or I 4+ 1 weighted by the respective probabilities
to enter those states. Let us first focus on the case / < J. We find that

1 1 _
o7 = T1J + +,f11 =—=a + ki T2y + K7 T0g)
Ko Kyt Ky
1 . _ 1
= ——— 1+« +47 [y +—
ki 4Ky Ko
1 1«

= =T+ T+,
K kg K

etc.

and, bootstraping these identities, we obtain a recursive formula expressing 7;; in
terms of 1741, 7,

Il
jr—
Ty =T+ 11—++k_7:1+ll+2 H - 0=I=J-2
izo 1 li=i i k=it 6
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where we define ]_[@ = 1, where ¥ denotes the empty set. Since 77 = 0, we have

1 Ky
TJ-1,J = 7 s —T/-2,J;
Kj_ptky_y  Kj_g Tk

and by the recursion formula we find

L ZJ—TJ—1J+Z H

ik1+1

so that

1 ki Ky
-ty =% — = = TJ—”""Z 1_[ e
L e T R N e o i k=it

and finally we obtain

Tj-1,J = J} I+x;_ IZ l_[ Kk Z 1_[ g

Kj_1 i=0 i k=it1 € i k=i+1

By an immediate recursion, we deduce that

The last formula comes directly by interpreting the products and using the definition
of ]51' and ]_) j-

For I > J, we can do exactly the same computations, replacing indices k by
indices K — k and rates K/j_ by rates «;, (we can also do this simply by considering
a process inverting the numbering of the states and applying the previous formula to
this equivalent process). We obtain:

IIJ—ZZ l_[ , J+1<I<K.

n=J+1k= nKk I=n

4 Hitting time interpretation of tug-of-war

We are interested in the average time it takes a system to switch direction, i.e. the
time it takes the smaller group of antagonistic molecular motors to become dominant.
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probability p
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Fig. 6 Stochastic simulation for parameter values K = 35, y = 3 and 3 x 100, Histogram of simulated
hitting times (logarithmic scale) to go from state (K — 1)/2 to state (K + 1)/2. The bimodal distribution
corresponds to one group of very fast transitions and another group of slow transitions (the latter are of
characteristic duration of e corresponding to approximately 148 sec real time

There is no obvious definition for what that means and one could arbitrarily define
a specific amount of motors to be the threshold which defines when the transition is
accomplished.

To illustrate this point, let us take as a first definition of the switching time the
mean time for the majority of motors to change from left to right or vice versa. In our
model, where the states in the center of the state space have to be passed through to
change direction, we might look at Tk 21 k/2+1 = Tk/2+1,k/2—1 in the case of an
even number of motors, or T(x —1)/2,(k+1),2 in the case of an odd number of motors.
By doing so, we count a very high number of very short-range switches, as shown in
Fig. 6. This is due to the fact that these mid-points in the state space are unstable for
y > 2, leading to possibly several changes of direction in a very short time, before
leaving this unstable zone and reaching more stable states, where the direction will
remain unchanged for a while. In the histogram for the log scale of hitting times
shown in Fig. 6 we identify a two-peak distribution, one for very short times—when
the system lingers around % (opposing motors are balanced), and the other for longer
times—when the system lingers in the relatively stable states at the left end of the state
space (most of the motors are pulling in the same direction), before transitioning to
the right end of the state space. During the very short switching times, the MTs barely
move relative to one another. Respective switches in direction are therefore hardly
observable.

We will thus accept the definition of the switching time being the expected time
to go from the state near one of the two maxima of the stationary distribution to the
state near the other maximum. It turns out that the expected hitting times are fairly
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Fig. 7 a 7y as a function of the state 0 < J < K for y = 2.5. b Log of approximated switching times
for K = 35 as function of y. We compare the approximated switching time 7 ... Where the state Jmax
is the maximum of the stationary distribution (blue) and 27y g /> where 7 g /2 is the expected time to go
from the left extreme state to the central transition state (orange) (color figure online)

insensitive to variations of the state of the origin, 7, (as long as we stay away from the
state at the center of the state space, K /2) and to variations of the destination state, J,
(as long as we keep enough distance from the transition region around the center of
the state space, K /2, and from the extreme end of the state space at K).

Note that even if a trajectory starts at an extreme state (either 0 or K), it will move
into the region around the nearest maximum of the stationary distribution almost
immediately. Computing the expected time to go from any of those states to a state far
on the other side of the transition region around K /2 will always give approximately
the same time, unless the destination is at the extreme other end of the state space.
Especially for smaller values of y, reaching that extreme end is a rare event and
therefore computing the expected time to reach the extreme end would overestimate
the time necessary to settle in around a state where the antagonistic group of motors is
dominant. This is illustrated by Fig. 7a, which shows the steep increase of the transition
timeat J = K — 1 =34 and J = K = 35, while the values of ty; for J = 30 appear
to be a good estimate for the switching time.

Another alternative is to consider the expected time to go from the extreme state
0 to the transition states in the center of the state space. This implies that the time
to settle in once the transition state K /2 (K even) or (K + 1)/2 is reached can be
neglected. In addition, we have to take into account that at this point the process may
fall back to a state where the originally dominant group of motors is again dominant
or the previously antagonistic group of motors may become dominant. Both scenarios
might happen with equal probability, therefore an approximation for the switching
time is given by (here for K even)

1 1 1
§X70§+ZX2TO§+§X3TO§+""=2TO§’

which states that the system switches direction either immediately after reaching the

transition state with probability 1/2, or after falling back and reaching the transition
state for the second time (now with probability 1/4), etc.
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A numerical comparison of the two approaches for K = 35 shows that the pre-
dictions indeed coincide for y large enough. Even for smaller y, when the time to
settle-in is not negligible, the deviations in log-scale are small (Fig. 7b).

5 Continuous approximation

We are now interested in finding a continuous approximation of these formulae when
the total number of motors K becomes large. To this end, we use the definitions
K, = kioexp (v (1 — %)) and k7 = (K — k)xoexp (y %), and we approximate
sums by integrals.

Let us first approximate the steady state.

Proposition 3 Under the assumptions of Proposition 2 and using the definitions of k)
and K]j_ given in (2.3), we obtain the following approximation of the steady state as K
tends to infinity,

ST et om—eof ki (EY_n( )L
Di = Z,fzoni’ o =1, m _exp( Kf(K) h (K) 2log(l()—i— 0(1)),
5.1
with f and h the functions defined on (0, 1) by
1
f(x) :=log(x*(1 — O +yxd —x), h(x) = Elog(x(] —X)). (5.2)
Proof In Proposition 1, we have seen that

Kk e (1
=k =i P AT\ '

The term exp (K L(L — 1)) corresponds to the second term (—yx(1 — x)) in the
PRY (% p 14

definition of exp(— f (%)). For the term % we use Stirling’s formula in its loga-

rithmic form, log(n!) = nlog(n) —n + %log(n) + O(1), to write
1
log(K!) = Klog(K) — K + 3 log(K) 4+ O(1),
1
—log(i!) = —ilog(i) +i — 5 log(i) + O(1),
1
—log((K —i)l) = —(K —i)log(K —i)+ K —i — 3 log(K —i)+ O(1).
We obtain
1 Kt K({[1 i 1 1 i + : 1 i
og——— = — ——]lo - — —log | —
Sk —i)! k) " k) Tk ®\k

11 i 1 i 11 K o(l
) 0g<E< _E))_E og(K) + O(1),

which ends the proof. O
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Remark 2 In the approximation for p;, we need to keep /(x) for the cases where i is
close to O or close to K: in these cases we have —h(x) = %log(K) 4+ O(1), which
compensates the term +% log(K). For other values of i, it remains of order 1.

Let us study the first order continuous approximation

oK@
Pr(x) =~
[e=Kfmdy
0

with respect to y. The function f is symmetric with respect to x = %, and
f() = f(1) = 0. When K tends to infinity, the function pg (x) will tend to be
infinite at places where f(x) is minimal and 0 elsewhere, thus tending to be a sum of
Dirac masses at the minimal values of f. Since f’ is antisymmetric with respect to %

and
_2 - —] 1 g I — ’ ! —1 = O 11‘]“ ! X
y (X > + (0] ( ) 3 <2 ) 9 0 f ( )

—00, liml f(x) = 400,
x—

[

we may have either a local minimum or maximum at % The second derivative is

symmetric with respect to % and f’ ’(%) = —2y + 4 is the minimal value for f”. We
thus have two different cases.

—y<2:x= % is the unique minimum of f, with f(%) = —log(2) + %. There is
thus a unique peak of pg (x) 1= e~ K/ at 1.

— 2 < y : f has two local minima, at x,,, and 1 — x,,, and one local maximum at %
There are only two equal peaks for the function e =X/, at the points x,, € (0, 3)
and 1 —x,, € (3, 1).

We also notice that when y increases, the point x,, decreases to 0, see Fig. 8b Left.
The evolution of the approximate density distribution with y is shown in Fig. 8a:
we see the peaks both increasing and tending to 0 and 1. In fact it holds that
xm ~ eV for large y. We also notice that an O(e™") approximation of x,, for
large y is 1/(e” — 5) which happens to approximate x,, fairly well for all y > 2
(Fig. 8c).

Let us now turn to a continuous approximation for the expected transition times
T7J-

Proposition 4 Under the assumptions of Proposition 2 and using the definitions of i
and K,ZL givenin (2.3), we obtain the following approximation of the expected transition
time as K tends to infinity:

J/K

K y
wxrpum= [ f eXP<—K(f(x) - f(y)))dx dy,  (53)
Ko J1 0

/K
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Fig.8 K = 35, and kg = 1/2: a the limit density pg (x), here with K = 35, for various values of y. b
Graph of f for y = 2.5 (blue), y = 3 (red) and y = 4 (green). ¢ Location of the left local minimum. blue:
exact value x,, (y) € (0, 1/2), red: 1/(e¥ — 5), green: e~ (color figure online)

where f(x) is the function defined in (5.2). More precisely, denoting X = % and
Y = % we have the following expansion:

xdy
r”_—/ / exp( (f) = f) = (h(x) — h(y))+0(l)> _y(l—l—O(*))

where h(x) is the function defined in (5.2).

Proof We depart from the formula (3.2) of Proposition 2 defining 7;; in terms of p;,
and then apply the approximate formula (5.1) for p; (we neglect also exp(y%) since
it is of order 1):

J-1 j i J-1j exp Kf( i ) —h( i ) — llOg(K)-‘r 0(1))
Ty = sz+p Z - T - —
TSP T TkK = exp(vE — KF(E) = h(F) — Flog(K) + 0(1)
J—=1 j . . . .
=) > e (-K(f(i) — f(Ly) - (h(’—) - h(i)> + 0(1))
=1%o koK (1 — i) K K K K
l
_ Kdx dy ‘ 1
—f[,coa —K(f() - f(y))—(h(x)—h(y>)+0(1))(1+0(K>>,

The approximation of the expected hitting time (3.3) through (5.3) is very accurate
as illustrated in Fig. 9 for a specific choice of parameters. Note that K appears in (5.3)
as a multiplying factor, which could be interpreted as a need for changing the time-
scale, see e.g. Eugene et al. (2016). Less easy to interpret is the fact that K appears as a
power. In our attempt to derive an approximate expression for the expected transition
time we can thus go a step further, as shown by the following proposition.
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Fig.9 Log-plots of 79 jmax (blue dots) and its approximation (5.3) (red graph). a Comparison for y = 3
as a function of K. b Comparison for K = 35 as a function of y (color figure online)

6 Approximation using Laplace’s method

Proposition 5 Under the assumptions of Proposition 4, as both K and y tend to infinity,
the expected transition time is approximately given by:

T eK(%flog(ZH»e’V)

T S i — —————— 6.1
Ot ™ =Ty o7 (6.1

This implies that asymptotically the expected transition time grows exponentially in
both K and y.

Proof We use Laplace’s method to approximate (5.3) for large K and large y. Laplace’s
method suggests to extend the domain of integration in (5.3) to R? and to simplify the
integrand of (5.3) in a way which allows to compute the integral explicitly. The idea is
to replace the argument of the exponential function by the parabola corresponding to
the second order Taylor approximation near its peak. Since the exponential function
over-weights large, positive argument, this approximates the original expression for
large K although the behaviour of the integrand away from its maximum is not taken
into account.

In the specific case of (5.3) the integrand can be written as e/ )=/ ™) with the
function f defined in (5.2). A sketch of the domain of integration for arbitrary / /K <
1/2 < J/K isshowninFig. 10b. Itindicates that the expression f (y)— f (x) (Fig. 10a),
has a well-defined maximum at y = xj; = 1/2 and x = x,, which correspond to the
maximum and left minimum of the function f.

Writing the integrand as e/ ) /e/ ™) we also realize that the entire integral factorizes
into the product of two integrals on the real line. After replacing f by its second order
Taylor approximations at its maximum and minimum respectively, both integrals can
be taken. This gives rise to the following computation, which reflects the Eyring-
Kramers formula and which yields an approximation of (5.3) for I /K < 1/2 < J/K,
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Fig. 10 aPlotof f(y) — f (x) where e/ )~/ is the integrand in (5.3) for K = 35,k0 = 1/2and y = 3
on the maximal domain of integration where //K = 0 and J/K = 1. b Domain of integration in (5.3).
Note that the peak shown in a is located at y = 1/2, x = x;; and included in the domain of integration of
any I /K <1/2 < J/K

K [ oo [er00=m s (y7(1 —y)') K
' ko Joo Jooo | e? =1 x (x"(l _x)l—x)
<K * [ ~ [exw (o) + (7 m)zf”(xM)/z)]Kd dx
KO J—00 /-0

exp(f (Xm) + (x — xm)? f"' (xm) /2)
2w KU =)

T k0 = o) [ o)

Here xjs = 1/2 is the (local) maximum of f and x,, denotes the local minimum of f
such that x,, € (0, 1/2) (see Fig. 8b).

The shape of the parabola which approximates the (local) maximum of f at 1/2 can
be computed and is characterized by f(1/2) = y /4 —log(2) and f"(1/2) = 4 —2y.
The location of the minimum of f atx,, € (0, 1/2) can only be computed numerically.
For large y, it is asymptotically given by e~". This implies that f”(x,) ~ ¢" and
f(xm) = e~ 7. The resulting approximate switching time is given by Formula (6.1).

O

Remark 3 As already noted, another O(e™") approximation of x,, for large y is
1/(e¥ — 5) which happens to approximate x,, fairly well for all y > 2 (Fig. 8c).
Using this approximate value and the exact formulas for f and f”, we find:

T eK(%_IOg(z)_f(xm))

1
T . where x, = ——. 62
VO T e =S ©2

t()s Jmax ~

For large enough values of y, this is a reasonably good approximation of the switch-
ing time defined as 7o, j,,,., as shown in Fig. 11. Finally, in absolute numbers, the
predicted switching times for our standard set of parameters given in Table 1 are
70, 7max ~ 160 s [resulting from (3.2)], &~ 190 s [continuous approximation (5.3)],
~ 157 s [close approximation (6.2)] and 103 s [rough approximation (6.1)].
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Fig. 11 Log-plots of approximate hitting time 7o ... (blue dots) and the approximation due to the Laplace
method with the exact minimum of f (6.2) (red) and with the approximate minimum of f (6.1) (green). a
Comparison for K = 35 and ko = 1/2 as a function of y. b Comparison for y = 3 and ko = 1/2 as a
function of K (color figure online)

7 Discussion

In this paper, we considered the tug-of-war between multiple identical molecular
motors crosslinking two parallel MTs. Stochastic simulations suggest that in the limit
of a great number of motors and of the detachment rate being sufficiently sensitive to
the load force (K > 1, y > 2), most of the motors at any instant are attached to just
one MT with their cargo domains. Few oppositely oriented motors are attached to the
same MT with their motor domains because they experience an overwhelming load
force. Occasionally, a fluctuation generates a switch to the majority of the attached
motors of the opposite orientation. The key to understanding the tug-of-war dynamics
then is to calculate the respective switching rate. In fact, even defining what this
effective switching rate between two directions means is a challenge.

We used the Master Equation describing a random walk in the space of the numbers
of the opposing motors to demonstrate that the asymptotically stable motor number
distribution is characterized by two sharp peaks near the ends of the motor number
interval (for y > 2 but less than a threshold value) or exactly at the ends of the
interval (for y greater than this threshold value). Furthermore, the expected time of
the transition between the two directional states can be defined as the expected hitting
time of the underlying Markov process of transition between two states corresponding
to the peaks’ maxima. We find that a valid approximation comes from calculating
the expected time of the transition between the two directional states as the hitting
time of a transition between a state with all motors pulling in the same direction
to the equilibrium state of most (but not all) motors pulling in the other direction.
Respective two states correspond to one end of the interval (all motors pulling in the
same direction) and to the maximum of the opposing peak in the stationary distribution.
On the other hand, the hitting time of a transition between the state with all motors
pulling in the same direction to the state with all motors pulling in the opposite direction
provides an inaccurate estimate for the average direction switching time.

We used explicit formula for the expected hitting times of birth and death processes
and found a series of explicit formulae for the time between switching directions.
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We then used Laplace’s method to derive the asymptotic formula for the switching
frequency and found that the frequency is an exponentially decreasing function of
the total motor number and of parameter y describing the sensitivity of the motor
detachment rate to the load force. This allowed us to estimate the effective diffusion
coefficient for movements of the MT pair.

The question about switching frequency is linked to several characteristic timescales
associated with this process. One is the relaxation time corresponding to the spectral
gap of the generator, i.e. the modulus of the second largest eigenvalue of the matrix
Q, the largest eigenvalue of which is zero. Results which elaborate on the relation
include the eigenvalue identity (Aldous and Fill 2002; Miclo 2015). This question
is also linked to the notion of metastability (Huisinga et al. 2004). This timescale is
related to the mixing time of the process (Levin et al. 2009). Since this time is given
by an eigenvalue, it is a solution of the characteristic equation which is an algebraic
equation of order K + 1 and therefore typically does not admit a closed-form solution.
Such approaches shall be studied in future work. Further study should also take into
account non-instantaneous reattachment, which could explain longer pauses than our
simpler model predicts.

Our analysis provides the following biological insights. First, assuming that the
total motor number is proportional to the length of the MT overlap, we predict that
the pair would be sliding unidirectionally for a long time if the overlap length is great,
while the MTs will switch direction of sliding often if the overlap length is short.
So, effectively, the parallel MT pair is locked together, as was assumed before, but
importantly, this lock is not static, but dynamic.

So far, predictions of our model were not tested directly, as it is very difficult to
control the number of the crosslinking motors, as well as mechanical properties of
the motor cargo domains, between the MT pairs in in vitro, and especially in in vivo
experiments. However, the experiments with MT pairs being slid in vitro by collective
action of multiple kinesin-14 motors were reported in (Fink et al. 2009; Ludecke et al.
2018). In these experiments, it was observed that when all motors were attached to
the same MT with their cargo domain, the second MT was sliding rapidly and uni-
directionally. When the motors were binding dynamically and stochastically on the
other hand, low and widely distributed sliding velocities for the first 100 sec of the
observation were reported. A wide distribution of low sliding velocities is similar to the
diffusion behavior. The authors of these studies also hypothesized that a small number
of motors were acting collectively. These observations are in qualitative agreement
with the predictions of our model. Another relevant measurement, in vivo, reported a
wide, mildly peaked, distribution of sliding MT velocities driven by collective dynein
action in proplatelets of megakaryocyte cells (Patel et al. 2005). This result can be
interpreted as follows: the velocity peak corresponds to the sliding apart of long MT
pairs, while the other, widely distributed, velocities, could be generated by sliding of
parallel MT pairs of variable lengths.

Although we do not explore external forces in this work, our model suggests that
a shear force applied to the MT pair would not lead to an elastic response. Rather, as
motors attach and reattach and the MTs slide relative to each other, our model suggests
a viscous response. Such viscous-like shear is in fact consistent with observations of
behavior of parallel MTs crosslinked by multiple motors (Shimamoto et al. 2015). This
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viscosity is likely nonlinear, as the shear would feed back mechanically to the motor
directional distribution. Further modeling will be needed to estimate this effective
viscosity. These conclusions will have important implications for the MT dynamics
in the mitotic spindle and axon MT bundle.

Note that the original tug-of-war models assumed that both dynein and kinesin
were characterized by slip-bonds (increasing detachment rate with increasing load),
whereas dynein appears not to behave as a slip-bond (Kunwar et al. 2011). This calls
into question the mechanism of switching for cargos driven by both dynein and kinesin.
The present work applies the same notion of competing motors with slip-bonds to cases
where the same species—kinesin—is in competition with itself, and where slip-bond
behavior is well-established.

In the future, our analysis can be expanded to the cases when more detailed stochas-
tic models of individual motors are used (Atzberger and Peskin 2006; Newby and
Bressloff 2010; Kunwar et al. 2011; Bouzat 2016), and/or explicit thermal noise of the
cargo (MTs in our case) is considered (Miles and Keener 2017). A number of recent
modeling papers, in fact, addressed aspects of the tug-of-war phenomenon that are
beyond the scope of our study (Zhang and Fisher 2010; Newby and Bressloff 2010;
Ikuta et al. 2014; Lee and Mitchell 2015; Bhat and Gopalakrishnan 2016; Saito and
Kaneko 2017). Another generalization will be to remove the assumption that the motors
reattach immediately upon detachment in a random configuration and to quantify the
limitations of this simplification. Preliminary stochastic simulations where we omit
this assumption show that the total number of attached motors is distributed within a
narrow range around an average value. The constant K in our simplified model should
therefore be identified with this average number of attached motors rather than with
its maximal number.

Last, but not least, there is an important physical difference between unipolar
motors, like kinesin-1 and dynein (with the cargo domain at one end and motor domain
at another end), which we analyzed here, and bipolar motors, like kinesin-5 and myosin
(which have effectively motor domains at both ends). For the latter, our theory will
have to be modified. We emphasize though that the mathematical apparatus that we
introduced here will be applicable to all these cases.
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