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Summary

This paper deals with the detection and identification of changepoints among covariances
of high-dimensional longitudinal data, where the number of features is greater than both the
sample size and the number of repeated measurements. The proposed methods are applicable
under general temporal-spatial dependence. A new test statistic is introduced for changepoint
detection, and its asymptotic distribution is established. If a changepoint is detected, an estimate
of the location is provided. The rate of convergence of the estimator is shown to depend on the
data dimension, sample size, and signal-to-noise ratio. Binary segmentation is used to estimate
the locations of possibly multiple changepoints, and the corresponding estimator is shown to be
consistent under mild conditions. Simulation studies provide the empirical size and power of
the proposed test and the accuracy of the changepoint estimator. An application to a time-course
microarray dataset identifies gene sets with significant gene interaction changes over time.

Some key words: High-dimensional data; Homogeneity test; Longitudinal data; Spatial and temporal dependence.

1. Introduction

In a typical time-course microarray dataset, thousands of gene expression values are measured
repeatedly from the same subject at different stages in a developmental process (Tai & Speed,
2006).As a motivating example, Taylor et al. (2007) conducted a longitudinal study on 69 patients
infected with the hepatitis C virus. The subjects’ gene expression values were measured once
before treatment and five times during the treatment regimen of pegylated alpha interferon and
ribavirin. One purpose of the study was to identify which genes were regulated by treatment. The
repeated measurements enable researchers to understand gene regulation over time. An important
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Fig. 1. Histogram of the number of genes among the 159 gene ontology terms analysed.

task in genomic studies is to identify gene sets with significant temporal changes (Storey et al.,
2005). Much evidence has shown that gene interaction and coregulation play a critical role in the
aetiology of various diseases (Shedden & Taylor, 2005). One application of our methods is to
identify gene sets with significant changes in their covariance matrices, because the covariance
matrix or its inverse can be used for quantifying interaction and coregulation among genes
(Danaher et al., 2015).

Assume that Yit = (Yit1, . . . , Yitp)
T is a p-dimensional random vector with mean μt and covari-

ance �t . In the aforementioned applications, the Yit (i = 1, . . . , n; t = 1, . . . , T ) represent gene
expressions for p genes in a gene set measured from the ith individual at the tth developmental
stage, where n is the sample size and T is the total number of finite stages. The number of genes,
p, in a given gene set ranges from a hundred to a few thousand, as illustrated by the histogram
in Fig. 1; but n and T are small in the study, so p can be much larger than n and T . We focus on
testing the homogeneity of covariance matrices:

H0 : �1 = · · · = �T versus H1 : �k |= �l (1)

for some 1 � k |= l � T . The alternative in (1) can be written as a changepoint-type alternative:

H1 : �1 = · · · = �k1 |= �k1+1 = · · · = �kq |= �kq+1 = · · · = �T , (2)

where k1, . . . , kq with 1 � k1 < · · · < kq < T are unknown locations of changepoints. This
alternative is of interest in practice because it specifies the locations of changes. For exam-
ple, researchers are often interested in understanding dynamic gene regulation. By identifying
the changepoints, we can infer the change pattern of gene regulation, which is important for
developing diagnostic and preventive tools for some diseases (Koh et al., 2014).

Testing the homogeneity of covariance matrices is a classical problem in multivariate analysis.
Classical methods for testing (1) include the likelihood ratio test (Muirhead, 1982) and Box’s
M test (Box, 1949). Some resampling methods have been proposed by Zhang & Boos (1992)
and Zhu et al. (2002). However, these methods are not valid for the aforementioned applica-
tions for the following reasons. First, they require n to be much larger than p, so they are not
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Homogeneity tests of covariance matrices 621

applicable under the large-p, small-n paradigm. Second, these methods are only valid for inde-
pendent samples without temporal dependence, but the independence assumption does not hold
for high-dimensional longitudinal data because the repeated measurements obtained from the
same individual are temporally dependent.

There is some existing research on testing (1) in the large-p, small-n scenario for independent
samples. Li & Chen (2012) considered testing the equality of two covariance matrices for two
independent samples. Schott (2007) and Srivastava & Yanagihara (2010) proposed test statistics
for (1) based on estimators of the sum of the weighted pairwise Frobenius norm distances between
any two covariance matrices. Zheng et al. (2015) and Yang & Pan (2017) applied random matrix
theory to test the equality of two large-dimensional covariance matrices.

Some methods have also been presented in the neuroscience literature for the large-p and large-
T setting with T > p, which is different from our large-p, small-n and small-T set-up. For example,
Barnett & Onnela (2016) proposed a sieve bootstrap covariance changepoint detection method
that requires removing both boundaries of a time series with length greater than p to avoid ill-
conditioned covariance matrices. Laumann et al. (2017) discussed a method for detecting changes
in covariances by assessing the stability of multivariate kurtosis via a simulation approach. Their
method also requires T > p to ensure the existence of the inverse of a sample covariance matrix.
In addition to the aforementioned multivariate detection procedures, a marginal pairwise testing
procedure was developed by Zalesky et al. (2014). Their approach relies on using a sliding
window to detect changes in correlation coefficients between a pair of coordinates. The p-value
for each pair is obtained by resampling residuals after fitting vector autoregressive models. It is
then used to test the homogeneity of covariance matrices through multiple testing. Although no
existing multivariate method can be applied directly to test (1) for temporally dependent data
in the large-p, small-n and small-T setting, it would be an interesting future research topic to
develop resampling techniques such as the phase-randomization method (Prichard & Theiler,
1994) for the high-dimensional set-up.

In this paper we propose a new method for testing the equality of covariance matrices for high-
dimensional longitudinal data under the large-p, small-n and small-T scenario. The proposed
method takes into account both spatial and temporal dependence. Spatial dependence refers
to the dependence among different components of Yit , and temporal dependence refers to the
dependence between Yit and Yis for any two time-points t |= s. The asymptotic distribution of
the proposed test statistic is derived under mild conditions on dependence without any explicit
requirement on the relationships between p, n and T .

We also propose a method for estimating the location of changepoints k1, . . . , kq among covari-
ance matrices. There exists some work on identifying changepoints in high-dimensional means,
but the literature for high-dimensional covariances is very small.Aue et al. (2009) laid groundwork
by considering a p-dimensional multivariate, possibly high-dimensional, time series set-up where
T diverges, n = 1 and p < T . Their test statistic involves the inverse of a p×p sample covariance
matrix, which is singular if p > T . Thus, their method is not applicable to high-dimensional
longitudinal data. In the case of finite p and n but diverging T , one major concern is that the
changepoint estimator is not consistent (Hinkley, 1970) and only the ratios ki/T (i = 1, . . . , q)
are consistent. When p is finite but n → ∞, it has been shown that changepoints can be estimated
consistently. However, it is not clear how the data dimension affects the rate of convergence. We
study the rate of convergence of our proposed changepoint estimator and find that it depends on
the data dimension, sample size, noise level and signal strength. Consistency of the changepoint
estimator is possible even in the high-dimensional case. Furthermore, we develop a binary seg-
mentation procedure for identifying the locations of multiple changepoints, whose consistency
is also established.
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Our work is related to, but different from, that of Li & Chen (2012), who considered a test for the
equality of two covariance matrices with two independent samples. First, we consider a general
homogeneity test of covariance matrices with more than two populations, while Li and Chen dealt
with only a two-sample case. Second, Li and Chen’s test was for two independent samples, but
our proposed method can accommodate both temporal and spatial dependence. Moreover, our
method is designed to test for the existence of changepoints among high-dimensional covariance
matrices for longitudinal data. Therefore, the test procedure considered in this paper differs from
that in Li & Chen (2012).

This paper makes the following contributions. From a methodological perspective, the pro-
posed test procedure provides a novel solution to changepoint detection problems in the large-p,
small-n and small-T scenario. The test statistic combines the strengths of the maximum and
Frobenius norms, and is powerful against the alternative. Second, we propose a method for esti-
mating locations of changepoints among high-dimensional covariance matrices. The proposed
changepoint detection and identification procedures are widely applicable without any sparsity
assumption. We establish the asymptotic distribution of a test statistic for data with general tem-
poral and spatial dependence. The identification procedure for multiple changepoints is shown to
be consistent. Our results reveal the effects of data dimension, sample size, and signal-to-noise
ratio on the rate of convergence of the changepoint estimator. The proposed methods formally
address two challenges that are unsolved in the existing covariance changepoint literature: the
large-p, small-n and small-T issue, and spatial and temporal dependence.

2. Basic setting

Let Yit = (Yit1, . . . , Yitp)
T be the observed p-dimensional random vector for the ith individual

at time-point t = 1, . . . , T , where T � 2 and i = 1, . . . , n. Assume that Yit follows the model

Yit = μt + εit , (3)

where μt is a p-dimensional unknown mean vector and εit = (εit1, . . . , εitp)
T is a multivariate

normally distributed random error vector with mean zero and covariance var(εit) = �t . A gen-
eralization to the non-Gaussian set-up is given in the Supplementary Material. In addition, it is
assumed that εit = �tZi, where �t is a p × m matrix with m � pT and Zi is an m-dimensional
standard multivariate normally distributed random vector, so that cov(εis, εjt) = �s�

T
t = Cst if

i = j ∈ {1, . . . , n} and cov(εis, εjt) = 0 if i |= j. The random errors {εit}n
i=1 are independent, but

{εit}T
t=1 depend on each other. Of interest is to test whether any changepoints among covariances

occur at some time-points t ∈ {1, . . . , T − 1}. We test the hypothesis H0 versus H1 specified in
(1) and (2). If H0 is rejected, we further estimate the locations of changepoints.

3. Homogeneity tests of covariance matrices

At each t ∈ {1, . . . , T −1}, we define a measure Dt = w−1(t)
∑t

s1=1
∑T

s2=t+1 tr{(�s1 −�s2)
2},

where w(t) = t(T − t). The measure Dt characterizes the differences between the covariances
before t and after t. Clearly, Dt = 0 for all t ∈ {1, . . . , T − 1} under H0, and Dt > 0 for any t
under H1. Therefore, max1�t�T−1 Dt = 0 under H0 and max1�t�T−1 Dt > 0 under H1. Thus,
Dt is useful for distinguishing the null and alternative hypotheses.

Measure Dt is different from the measure S1,T = ∑T−1
s1=1

∑T
s2=s1+1 tr{(�s1 − �s2)

2} in Schott
(2007), who used S1,T in constructing a homogeneity test as specified in (1) for independent
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Homogeneity tests of covariance matrices 623

samples. In fact, for any t ∈ {1, . . . , T − 1}, Dt = S1,T − (S1,t + St+1,T ), where S1,t and St+1,T
quantify the differences between covariances only before time t and only after time t, respectively.
These are not useful for measuring the differences between covariances before and after time t.
Measure Dt removes both S1,t and St+1,T from S1,T .

To construct an unbiased estimator of Dt , we need an unbiased estimator of tr(�s1�s2). We
make use of U-statistic-type estimators because they avoid bias that is not ignorable in a high-
dimensional setting (Bai & Saranadasa, 1996; Chen & Qin, 2010). Otherwise, bias correction
could be a challenge and require conditions on the data dimension and sample size that limit

the scope of applications. Let
∼∑

denote summation over mutually different indices of sample

subjects. For example,
∼∑

i,j,k means summation over {(i, j, k) ∈ {1, . . . , n} : i |= j, j |= k , k |= i}.
For any s1, s2 ∈ {1, . . . , T }, define Us1s2,0 = (1/P2

n)
∑n

i |=j(Y
T
is1

Yjs2)
2 as an unbiased estimator

of tr(�s1�s2) + μT
s1

�s2μs1 + μT
s2

�s1μs2 + (μT
s1

μs2)
2, where Pk

n = n!/(n − k)!. To remove the

nuisance terms μT
s1

�s2μs1 and (μT
s1

μs2)
2, we define Us1s2,1 = (1/P3

n)
∼∑

i, j,k Y T
is1

Yjs2Y T
js2

Yks1

as an unbiased estimator of μT
s1

�s2μs1 + (μT
s1

μs2)
2; similarly, Us2s1,1 is an unbiased estima-

tor of μT
s2

�s1μs2 + (μT
s1

μs2)
2. To remove the nuisance term (μT

s1
μs2)

2, we define Us1s2,2 =
(1/P4

n)
∼∑

i, j,k , l Y T
is1

Yjs2Y T
ks1

Yls2 as an unbiased estimator of (μT
s1

μs2)
2. A computationally effi-

cient formulation of Us1s2,1 and Us1s2,2 is given in the Appendix. Finally, we define an unbiased
estimator for tr(�s1�s2) as

Us1s2 = Us1s2,0 − Us1s2,1 − Us2s1,1 + Us1s2,2. (4)

The estimator Us1s2 is a generalization of the estimator for the trace of the covariance given by
Chen et al. (2010) and Li & Chen (2012). For t = 1, . . . , T − 1, an unbiased estimator of Dt is

D̂nt = 1

w(t)

t∑
s1=1

T∑
s2=t+1

(Us1s1 + Us2s2 − Us1s2 − Us2s1).

To study the asymptotic variance of D̂nt for t = 1, . . . , T − 1, define

V0t =
∗∑

s1, s2,
h1, h2

∑
u,v,

k ,l∈{1,2}

(−1)|u−v|+|k−l| tr2(Csuhk CT
svhl

)

and

V1t =
∗∑

s1, s2,
h1, h2

∑
u,k∈{1,2}

(−1)|u−k| tr
{
(�s1 − �s2)Csuhk (�h1 − �h2)C

T
suhk

}
,

where
∑∗

s1, s2,
h1, h2

= ∑t
s1=1

∑T
s2=t+1

∑t
h1=1

∑T
h2=t+1. If no temporal dependence exists, then

Csuhk = 0 for any su |= hk , and V0t = ∑∗
s1, s2

∑
u,v∈{1, 2} tr2(�su�sv) where

∑∗
s1,s2

=∑t
s1=1

∑T
s2=t+1. Up to a scale factor, this V0t is the portion of the variance of D̂nt for the case

with independent samples under H0.
The asymptotic setting considered in this paper is p(n) → ∞ as n → ∞, where p is considered

to be a function of n. We do not require a specific relationship between p and n. Instead, for any
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624 P.-S. Zhong, R. Li AND S. Santo

t ∈ {1, . . . , T − 1} we have two regularity conditions. Writing A⊗2 = AAT for any matrix A, the
conditions are as follows:

Condition 1. tr{(�T
s2

Cs1h1�h2)
⊗2} = o(V0t) for any s1, s2, h1, h2 ∈ {1, . . . , T };

Condition 2. tr[{(�s1 + �s2)
T(�s1 − �s2)(�s1 − �s2)}⊗2] = o(nV1t) for s1 ∈ {1, . . . , t} and

s2 ∈ {t + 1, . . . , T }.
Condition 1 generalizes Condition 2, which was imposed by Li & Chen (2012), to a T -

sample test with temporal dependence. If there is no temporal dependence, Condition 1 can
be simplified to tr(�s2�s1�h2�s1) = o(V0t). In general, the left-hand side of the equality in
Condition 1 is bounded by {tr(�h2�h1�h2�h1)tr(�s2�s1�s2�s1)}1/2, which is of order O(p)

if all the eigenvalues of �t are bounded. If the temporal dependence is not overwhelming so
that V0t � pδ for any δ > 1, then Condition 1 holds. To appreciate this point, consider a null
hypothesis case with Cst = (1 − rst, n)� for s, t ∈ {1, . . . , T }. Here 1 − rst,n measures the
temporal correlation. If rst,n is small for all s and t, then the temporal dependence among {Yit}T

t=1
is strong. Let rn = ∑∗

s1, s2, h1, h2

∑
u,v,k , l∈{1,2}(−1)|u−v|+|k−l|rsuhk ,nrsvhl , n. If rst,n → 0 for all s and

t, then V0t � rntr2(�2) � rnp2 provided all the eigenvalues of � are bounded. If the temporal
dependence is not too strong so that 1/p = o(rn), then Condition 1 holds as p → ∞. Intuitively,
Condition 1 implies that spatial and temporal dependence cannot be too strong.

Condition 2 is automatically true under H0 because its left-hand side equals zero; hence it is
not needed under H0. If there is no temporal dependence, it can be shown that the left-hand side
of Condition 2 is tr{(�2

s1
− �2

s2
)2}, whose order is no greater than V1t . Therefore, Condition 2

is not needed for data without temporal dependence. This condition implies that the alternatives
should not be too far away from the null hypothesis; otherwise, the alternatives would be easy to
detect because the test statistics would diverge to infinity.

Theorem 1 states the mean and variance of D̂nt . The proof is given in the Supplementary
Material.

Theorem 1. The expectation of D̂nt is E(D̂nt) = Dt. Under Condition 1, the leading-order
variance of D̂nt is σ 2

nt = w−2(t)(4V0t/n2 + 8V1t/n).

Based on Theorem 1, we observe that E(D̂nt) = Dt = 0 under H0. Under alternative H1 in
(2), it is clear that E(D̂nt) > 0 for all t under H1. Therefore, D̂nt is able to distinguish the null
and alternative hypotheses in (1) and (2).

If T = 2 and no temporal dependence exists, V0t and V1t are, respectively, simplified to V01 =
tr2(�2

1)+ 2 tr2(�1�2)+ tr2(�2
2) and V11 = ∑∗

s1, s2

∑2
u=1 tr[{�su(�s1 −�s2)}2], the same as the

expressions obtained by Li & Chen (2012). For a general case with temporal dependence, V01 =
tr2(�2

1)+2 tr2(�1�2)+ tr2(�2
2)−4{tr2(�1C21)+ tr2(�2C12)}+2{tr2(C12CT

12)+ tr2(C12C12)}.
The last four terms in V01, because of the temporal dependence, are not included in Li and Chen’s
test. However, in general these four terms are not ignorable. Therefore, Li and Chen’s procedure
is not suitable for temporally dependent data even in the two-sample case.

We now study the asymptotic distribution of D̂nt . The following theorem establishes the
asymptotic normality of D̂nt . The proof is given in the Supplementary Material.

Theorem 2. Under Conditions 1 and 2, σ−1
nt (D̂nt −Dt) → N (0, 1) in distribution as n → ∞,

where σ 2
nt is defined in Theorem 1.

We do not require explicit conditions on p and n in Theorem 2. The asymptotic normality
holds provided Conditions 1 and 2 hold. In particular, we only need Condition 1 under the null
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Homogeneity tests of covariance matrices 625

hypothesis. Thus, our test is valid under Condition 1 without Condition 2, which is needed only
for studying the power of the test. The normality assumption in model (3) is not essential and
can be relaxed to a multivariate model as considered in Chen et al. (2010) and Li & Chen (2012).
See the Supplementary Material for the generalization to the non-Gaussian case.

Under H0, Dt = 0 for all t ∈ {1, . . . , T − 1}. Theorem 2 indicates that σ−1
nt,0D̂nt converges

to N (0, 1) in distribution where σ 2
nt,0 = 4V0t/{nw(t)}2 is the variance of D̂nt under H0. An

asymptotic α-level rejection region is Rt = {σ−1
nt,0D̂nt > zα}, where zα is the upper α-quantile of

the standard normal distribution. For each t ∈ {1, . . . , T −1}, one can use Rt to test the hypothesis
in (1). Provided that one test based on D̂nt rejects the null hypothesis, one might suspect that
changepoints exist among the covariance matrices. Accordingly, t in D̂nt could be considered as
a tuning parameter, and it is hard to decide which t should be used for testing in practice. To
make the proposed method free of any tuning parameter and adaptive to unknown changepoints,
we propose the following statistic for testing the hypothesis in (1):

Mn = max
1�t�T−1

σ̂−1
nt,0D̂nt , (5)

where σ̂ 2
nt,0 = 4V̂0t/{nw(t)}2. The estimator V̂0t can be constructed by replacing

tr(Csuhk CT
svhl

) in V0t with Ususv ,hk hl , an unbiased estimator of tr(Csuhk CT
svhl

). Define
Ususv ,hk hl = Ususv ,hk hl ,0 − Ususv ,hk hl ,1 − Usvsu,hlhk ,1 + Ususv ,hk hl ,2, where Ususv ,hk hl ,0 =
(1/P2

n)
∑n

i |=j=1 Y T
isu

YjsvY
T
ihk

Yjhl is an unbiased estimator of tr(Csuhk CT
svhl

) + μT
sv

Csuhk μhl +
μT

su
Csvhlμhk + μT

su
μsvμ

T
hk

μhl , Ususv ,hk hl ,1 = (1/P3
n)

∼∑
i,j,g Y T

isu
YjsvY

T
ihk

Yghl is an

unbiased estimator of μT
sv

Csuhk μhl + μT
su

μsvμ
T
hk

μhl , and Ususv ,hk hl ,2 = (1/P4
n)×

∼∑
i,j,g,f Y T

isu
YjsvY

T
ghk

Yfhl is an unbiased estimator of μT
su

μsvμ
T
hk

μhl . A computationally efficient
formulation of the estimators Ususv ,hk hl ,q (q = 1, 2) is similar to that for Us1,s2,q defined in (4).

Under H0 and Condition 1, following a derivation similar to that in Lemma S4 in
the Supplementary Material, the leading order of the cov(D̂nt , D̂nq) can be shown to
be Qn,tq, where Qn,tq = ∑t

s1=1
∑q

h1=1

∑T
s2=t+1

∑T
h2=q+1 Vn0(s1, s2, h1, h2)/{w(t)w(q)} and

Vn0(s1, s2, h1, h2) = (4/n2)
∑

u,v,k ,l∈{1,2}(−1)|u−v|+|k−l| tr2(Csuhk CT
svhl

). Then the covariance

between σ−1
nt,0D̂nt and σ−1

nq,0D̂nq is Qn,tq/
√

(Qn,ttQn,qq), which is the correlation between D̂nt and

D̂nq.
Let VnD be a correlation matrix whose (t, s) component is Qn, ts/

√
(Qn, ttQn, ss) for t, s ∈

{1, . . . , T − 1}. Assume that VnD converges to VD as n → ∞. The following theorem provides
the asymptotic distribution of Mn.

Theorem 3. Under Condition 1, we have that under H0, Mn → W in distribution as n → ∞,
where W = max1�t�T−1 Zt and Z = (Z1, . . . , ZT−1)

T is a multivariate normally distributed
random vector with mean zero and covariance VD.

According to Theorem 3, an α-level test for (1) rejects the null hypothesis if Mn > Wα , where
Wα is the α-quantile of W such that pr(W > Wα) = α. Let Zn be a N (0, V̂nD)-distributed random
vector with the (t, s) component of V̂nD estimated by Q̂n,ts/

√
(Q̂n,ttQ̂n, ss), where

Q̂n, ts = 4

n2w(t)w(s)

t∑
s1=1

s∑
h1=1

T∑
s2=t+1

T∑
h2=s+1

∑
u, v, k , l∈{1,2}

(−1)|u−v|+|k−l| U 2
susv , hk hl

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article-abstract/106/3/619/5498374 by Pennsylvania State U
niversity user on 26 August 2019



626 P.-S. Zhong, R. Li AND S. Santo

with Ususv ,hk hl defined just below (5). Simulations suggest that the plug-in estimates of the cor-
relation matrix V̂nD are reliable when the sample size is approximately 40 or above. See the
Supplementary Material for a detailed comparison of V̂nD and VnD. The quantile Wα can be
approximated by Wn,α obtained from the multivariate normal distribution by finding the quantile
wn,α = (Wn,α , . . . , Wn,α)T satisfying pr(Zn < wn,α) = 1 − α. The quantile wn,α can be computed
using the R (R Development Core Team, 2019) package mvtnorm (Genz et al., 2018), and no
simulation is needed to find Wn,α .

The lower bound for the power based on Mn is

pr(Mn > Wα) � max
1�t�T−1

pr(σ̂−1
nt,0D̂nt > Wα) = max

1�t�T−1
�

(
−σnt,0

σnt
Wα + Dt

σnt

)
, (6)

where �(·) is the standard normal cumulative distribution function. If Dt/σnt dominates Wα , the
right-hand side of (6) is the maximum power of the test using Rt constructed on a single D̂nt , so
the test based on Mn is more powerful than any test based on a single D̂nt .

The test statisticMn can be improved under sparse alternatives where the differences among the
�t reside in only a few components. Inspired by Fan et al. (2015), we propose a power-enhanced
test statistic, M∗

n, to improve the power under sparse alternatives. Let Ȳs1v = ∑n
i=1 Yis1v/n

be the sample mean and σ̂s1,uv = ∑n−1
i=1 (Yis1u − Ȳs1u)(Yis1v − Ȳs1v)/(n − 1) the sample

covariance between components u, v ∈ {1, . . . , p}. Define D̂nt,uv as a plug-in estimator of
Dnt,uv = ∑t

s1=1
∑T

s2=t+1(σs1, uv −σs2, uv)
2, where σs1,uv is the (u, v) component of �s1 . Let C(uv)

sk ht

be the (u, v) component of Csk ht , and define G(uv)
sk slhths

= {C(vu)
sk hs

C(uv)
sk hs

+ C(vv)
sk hs

C(uu)
sk hs

}{C(vu)
slht

C(uv)
slht

+
C(vv)

slht
C(uu)

slht
} + {C(vu)

sk ht
C(uv)

sk ht
+ C(vv)

sk ht
C(uu)

sk ht
}{C(vu)

slhs
C(uv)

slhs
+ C(vv)

slhs
C(uu)

slhs
}. The variance of D̂nt,uv under

H0 is σ 2
nt, uv0 = ∑∗

s1, s2,
h1, h2

∑
k ,l,

s,t∈{1,2}
(−1)|k−l|+|s−t|G(uv)

sk slhths
/n2. The power-enhanced test statistic is

M∗
n = max

1�t�T−1

{
σ̂−1

nt,0D̂nt + λn

∑
u�v

I (D̂nt,uv > δn,pσ̂nt,uv0)

}
,

where σ̂ 2
nt, uv0 is a plug-in estimator of σ 2

nt, uv0 and I (·) denotes the indicator function. The choices
of the tuning parameters δn, p and λn are discussed in the Supplementary Material. A numeri-
cal simulation in the Supplementary Material illustrates the performance of M∗

n under sparse
alternatives.

4. Changepoint identification

If H0 is rejected, then there exist changepoints among the covariances �t . We first consider an
alternative with one changepoint:

H∗
1 : �1 = · · · = �k1 |= �k1+1 = · · · = �T , (7)

where k1 is the true changepoint, whose location is estimated by

k̂1 = arg max
1�t�T−1

D̂nt . (8)
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Define the weight function

r(t; k) =
{

(T − k)/(T − t), 1 � t � k ,
k/t, k + 1 � t � T − 1.

For any fixed value k ∈ {1, . . . , T − 1}, the function r(t; k) achieves its maximum value at
t = k . Let βn = max1�t�T−1 max {√V0t ,

√
(nV1t)} and �n = tr{(�1 −�T )2}. The next theorem

establishes the rate of convergence of the changepoint estimator k̂1 obtained by (8) under the
alternative H∗

1 .

Theorem 4. Under the alternative H∗
1 in (7), E(D̂nt) = Dt = r(t; k1)�n and Dt attains its

maximum at t = k1. Moreover, k̂1 − k1 = Op{βn/(n�n)}.
Since r(t; k1) achieves its maximum at t = k1, the first part of Theorem 4 indicates that t = k1

maximizes E(D̂nt) as a function of t. This is the rationale for estimating k1 through (8). When
the data dimension is fixed, k̂1 − k1 = Op(1/

√
n). The effect of the data dimension is reflected

in both βn and �n. Here βn can be considered as noise and �n can be viewed as the signal. If the
signal level is larger than the noise level, the rate of convergence of k̂1 is faster than Op(1/

√
n).

On the other hand, if βn is not smaller than n�n, k̂1 is not consistent.
Next, we consider the alternative H1 with multiple changepoints k1 < · · · < kq, as specified in

(2). Under H∗
1 , we have shown in Theorem 4 that the maximum of Dt is attained at changepoint k1.

Theorem 5. Under H1 in (2), the maximum value of Dt is attained at one of the changepoints
among k1 < · · · < kq.

If we estimate the multiple changepoints by repeatedly applying the estimation method in (8)
for the population version Dt to all subsequences with nonzero Dt , Theorem 5 ensures that we find
all the true changepoints. This property is important for applying the binary segmentation method
to identify multiple changepoints, as demonstrated by E. Venkatraman in a 1992 unpublished
technical report from the Department of Statistics at Stanford University.

To describe the proposed binary segmentation method, we first define some notation. Let
[It] represent the quantities computed based on the data within the time interval It , a subset of
[1, T ]. For example, Mn[t1, t2] is the test statistic defined in (5) calculated based on Y [t1, t2],
the data collected between times t = t1 and t = t2 for t1 < t2. Specifically, Mn[t1, t2] =
maxt1�t<t2 σ̂−1

nt,0[t1, t2]D̂nt[t1, t2].
The binary segmentation method can be summarized as follows. Let αn be a number specified in

Theorem 6. In the first step, compute Mn[1, T ]. If Mn[1, T ] < Wαn[1, T ], where Wαn[1, T ] is the
cut-off quantile estimated based on Y [1, T ], we accept the null hypothesis and stop. Otherwise,
we identify the changepoint, say k̂1, using (8). Next, we compute Mn for both subsequences
Y [1, k̂1] and Y [k̂1 + 1, T ]. For each subsequence, we repeat the first step until no changepoints
can be identified or the number of repeated measurements in the subsequence is less than two.

Let It be any interval of the form [kf + 1, kg] (where f ∈ {0, . . . , q − 1} and g ∈ {2, . . . , q + 1}
with f + 1 < g, k0 = 0 and kq+1 = T ) that contains at least one changepoint kj for j ∈
{1, . . . , q}. Define msnr = minIt maxks∈It σ−1

nks,0[It]Dks[It], the smallest maximum signal-to-noise
ratio among all segmentations It .

Theorem 6. Assume that αn → 0 and msnr diverges so that Wαn = o(msnr). For all It ,
if βn[It] = o(nDks[It]) for some changepoints ks ∈ It , then limn→∞ pr(q̂ = q; k̂j = kj, j =
1, . . . , q) = 1.
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Table 1. Empirical size and power of the proposed test: percentages of simulation replications
that reject the null hypothesis under settings (I) and (II)

T = 5 T = 8
p p

Setting δ n 500 750 1000 500 750 1000
(I) 40 4.6 4.8 6.4 4.8 4.8 4.4

0 (size) 50 4.6 5.2 5.4 4.4 5.8 4.6
60 6.0 4.4 4.2 5.4 4.2 3.6
40 21.4 27.6 24.8 35.6 34.6 34.2

0.05 50 37.0 36.0 36.0 49.8 48.8 52.0
60 45.6 49.2 46.2 59.6 65.6 65.0
40 99.6 100 99.8 100 100 100

0.10 50 100 100 100 100 100 100
60 100 100 100 100 100 100

(II) 40 4.4 5.4 5.0 4.4 4.0 4.8
0 (size) 50 5.6 4.6 4.8 6.0 5.2 5.6

60 4.8 4.6 4.2 3.6 5.6 5.0
40 33.4 35.8 38.2 50.2 52.0 51.6

0.10 50 44.2 48.6 47.0 68.4 70.6 74.0
60 65.4 63.6 60.4 87.0 89.6 88.0
40 99.8 99.8 99.6 100 100 100

0.20 50 99.8 100 100 100 100 100
60 100 100 100 100 100 100

The first assumption, Wαn = o(msnr), is a very mild condition, which ensures the consistency
of the proposed test at each step of the binary segmentation. The second assumption, βn[It] =
o(nDks[It]), is needed to ensure the consistency of the changepoint estimators. Theorem 6 implies
that the proposed binary segmentation procedure consistently estimates the number and locations
of changepoints.

5. Simulation studies

In this section, we present multiple simulation studies to demonstrate the finite-sample
performance of the proposed method. The data were generated from the model

Yit = μt +
L∑

h=0

At,hηi(t−h) (i = 1, . . . , n; t = 1, . . . , T ),

where At,h is a p × p matrix, μt = 0, and ηit are p-dimensional multivariate normally distributed
random vectors with mean 0 and covariance Ip. Let t � s. This implies that cov(Yit , Yis) =∑L

h=t−s At, hAT
s, h−(t−s) if t − s � L and cov(Yit , Yis) = 0 if t − s > L, and allows dependence

among components within the vector Yit and dependence among {Yit}T
t=1 at different time-points.

In the simulation studies, we set n = 40, 50 and 60, p = 500, 750 and 1000, T = 5 and 8,
and L = 3. The simulation results reported in Tables 1 and 2 were based on 500 replications.
The results in Table 3 were based on 100 simulation replications. More simulation results for
non-Gaussian random vectors and sparse alternatives, as well as a numerical comparison with a
pairwise-based method, are presented in the Supplementary Material.
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Table 2. Percentages of correct changepoint identification among all rejected hypotheses under
settings (I) and (II)

T = 5 T = 8
p p

Setting δ n 500 750 1000 500 750 1000
(I) 40 41.12 37.96 40.65 30.18 29.88 37.58

0.05 50 51.35 45.81 43.33 39.52 39.34 41.54
60 52.63 53.28 52.17 49.33 49.70 55.08
40 93.17 96.60 95.19 93.79 93.80 96.40

0.10 50 98.00 98.60 98.20 98.40 97.20 99.00
60 99.20 99.80 99.40 99.80 98.60 99.00

(II) 40 49.10 45.51 55.50 43.12 47.15 47.10
0.10 50 65.00 61.51 55.98 53.80 61.19 58.65

60 72.78 69.72 64.57 67.59 72.99 75.23
40 90.58 90.98 89.16 95.80 96.00 95.60

0.20 50 93.37 92.60 93.20 98.60 98.20 99.40
60 97.00 96.20 96.40 99.80 99.80 99.80

Let k1 = [T/2]be the largest integer no greater than T/2. For t ∈ {1, . . . , k1}, we set At, h = A(1)

for h ∈ {0, . . . , L}. For t ∈ {k1+1, . . . , T } and h ∈ {0, . . . , L}, At, h = A(2). Two simulation settings
were used for the generation of the A matrices. In setting (I), we set A(1) = {0.6|i−j|I (|i−j| < p/5)}
and A(2) = {(0.6+δ)|i−j|I (|i−j| < p/5)}. If δ = 0, A(1) and A(2) are the same and the covariances
of Yit are the same for all t. Hence the null hypothesis, H0, is true. If δ |= 0, the null hypothesis is
false and k1 is the true changepoint. In setting (II), we set A(1) = {(|i − j| + 1)−2I (|i− j| < p/5)}
and A(2) = {(|i − j| + δ + 1)−2I (|i− j| < p/5)}. As in setting (I), a value of δ = 0 corresponds to
the null hypothesis being true. If δ |= 0, k1 is the underlying true changepoint for the covariance
matrices.

Table 1 reports the empirical size and power of the proposed test for the homogeneity of
covariance matrices under setting (I) at nominal level 0.05. We observe that the size of the
proposed test is reasonably close to the nominal level. The power increases as n increases, as δ

increases, and as T increases. Table 1 also provides the empirical size and power of the proposed
test under simulation setting (II). The results in setting (II) are very similar to those in setting (I).

When the null hypothesis is false under settings (I) and (II), the percentages of correct iden-
tification are summarized in Table 2. The percentage of correct identification is the percentage
of simulation replications that estimate the location of the changepoint correctly among all those
that reject the null hypothesis. When T = 5 the true changepoint is k1 = 2, and when T = 8 the
true changepoint is k1 = 4. In both settings, for almost all the cases, the percentages increase as
n and δ increase.

To assess the performance of the proposed binary segmentation procedure for identifying
multiple changepoints, we generated data using simulation set-up (II) with two changepoints,
k1 and k2. When T = 5, k1 = 2 and k2 = 4. When T = 8, k1 = 4 and k2 = 6. For
t ∈ {kj−1 + 1, . . . , kj}, we set At,h = A(j) for h ∈ {0, . . . , L} and j = 1, 2, 3 with k0 = 0 and
k3 = T . Here, A(1) and A(2) were taken to be the same as in setting (II), and we set A(3) = A(1).
The values of δ were chosen to be 0.15 and 0.25. The average true positives and average true
negatives are summarized in Table 3. The true positives are the correctly identified changepoints,
and the true negatives are the correctly identified time-points at which no covariance change
exists. For T = 5, the maximum number of true positives and true negatives for each is 2. For
T = 8, the maximum numbers of true positives and true negatives are 2 and 5, respectively.
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Table 3. Average true positives and average true negatives for identifying multiple change-
points using the proposed binary segmentation method; standard errors are included after each
number. For T = 5, the maximum number of true positives and true negatives for each is 2;
for T = 8, the maximum numbers of true positives and true negatives are 2 and 5, respectively

δ = 0.15 δ = 0.25
T p n ATP SE ATN SE ATP SE ATN SE

5

500
40 1.10 0.36 1.90 0.30 1.81 0.39 1.92 0.27
50 1.36 0.48 1.87 0.37 1.94 0.24 1.98 0.14
60 1.57 0.50 1.92 0.27 2.00 0.00 1.92 0.28

750
40 1.11 0.37 1.82 0.41 1.76 0.43 1.94 0.24
50 1.38 0.49 1.92 0.27 2.00 0.00 1.96 0.24
60 1.47 0.50 1.90 0.30 2.00 0.00 1.98 0.14

1000
40 1.15 0.36 1.90 0.30 1.87 0.34 1.95 0.22
50 1.22 0.42 1.96 0.20 1.96 0.20 1.96 0.20
60 1.54 0.50 1.96 0.20 2.00 0.00 1.98 0.14

8

500
40 1.40 0.49 4.84 0.40 1.91 0.29 4.90 0.30
50 1.62 0.49 4.85 0.36 1.97 0.17 4.92 0.27
60 1.78 0.42 4.89 0.32 2.00 0.00 4.95 0.22

750
40 1.52 0.50 4.82 0.39 1.90 0.30 4.85 0.36
50 1.67 0.47 4.83 0.38 1.97 0.17 4.94 0.24
60 1.81 0.40 4.90 0.34 2.00 0.00 4.90 0.30

1000
40 1.43 0.50 4.82 0.44 1.88 0.33 4.92 0.27
50 1.68 0.47 4.80 0.40 1.99 0.10 4.96 0.25
60 1.84 0.37 4.92 0.27 2.00 0.00 4.94 0.24

ATP, average true positives; ATN, average true negatives; SE, standard error.

The results in Table 3 show that the proposed binary segmentation procedure performs well as
the sample size, n, increases and as the signal, δ, increases.

6. An empirical study

In this section, we apply our proposed method to a time-course gene expression dataset col-
lected by Taylor et al. (2007). The goal was to identify gene sets with significant changes in
covariances over time and estimate their respective changepoints, should any exist. The data
come from a study where peripheral blood mononuclear cells were collected from 69 patients
with the hepatitis C virus. The cells were collected once before treatment, day 0, and five times
during treatment, on days 1, 2, 7, 14 and 28. The treatment consisted of pegylated alpha interferon
and ribavirin. More information about the experiment can be found in Taylor et al. (2007).

Prior to the application of our method, the data were pre-processed. The gene expres-
sions with low quality measurements were removed if the corresponding Microarray Suite 5.0
signal transcript was classified as absent. We kept only individuals with gene expression
arrays at all six time-points. After pre-processing, our dataset consisted of 46 individuals
with gene expression arrays at days 0, 1, 2, 7, 14 and 28. The original dataset is available at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7123.

The genes were grouped into gene sets that were defined by gene ontology, which classifies
genes according to their attributes in three biological domains: molecular function, biological
process, and cellular component (Ashburner et al., 2000). For instance, the gene ontology term
labelled 0006468 is related to introducing a phosphate group onto a protein; hence, this gene
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Table 4. Significant gene ontology terms, test statistic values, number of genes in each gene
ontology term, identified changepoints, and estimated local false discovery rates

GO Number of genes Test statistic value Changepoints Local FDR

0006511 132 11.10 4, 5 0.012
0030054 136 9.92 1, 4, 5 0.044
0042493 128 9.54 5 0.064
0008219 122 9.34 4, 5 0.076
0006357 167 9.13 1, 4 0.090
0005765 116 8.93 4 0.103
0019904 117 8.87 4, 5 0.106
0008285 148 8.75 1, 2, 5 0.115
0048471 263 8.04 1, 4, 5 0.168
0005739 661 8.04 4, 5 0.168

GO, gene ontology; Local FDR, local false discovery rate.

ontology term would consist of all the genes that have a role in that biological process. A given
gene can be a member of multiple gene ontologies. For example, in our processed dataset, gene
ontology 0006468 consists of 221 genes and gene ontology 0007155 consists of 134 genes, with
64 genes in common. After filtering the dataset according to the procedure above, 159 gene
ontology terms were analysed. We applied our method to gene ontology terms with a minimum
of 100 genes. Figure 1 displays the number of genes in the 159 gene ontology terms. Each gene
set analysed had a gene count much larger than the sample size of 46 patients.

Let Y (g)
it (i = 1, . . . , 46, t = 1, . . . , 6) be the gene expression data for the gth gene ontology term

of the ith individual at time t, where t = 1 represents day 0, before treatment, and t = 2, 3, 4, 5, 6
represent the times during the treatment of hepatitis C virus with pegylated alpha interferon and
ribavirin. Assume model (3) for each gene ontology term, Y (g)

it = μ
(g)
t + ε

(g)
it for g = 1, . . . , 159,

where μ
(g)
t is an unknown mean vector and var(ε(g)

it ) = �
(g)
t . The assumptions on ε

(g)
it in model

(3) incorporate temporal dependence so that {ε(g)
it }T

t=1 are dependent over time. For each gene

ontology term, we tested whether the covariance matrices �
(g)
t are the same across all t. In

addition, the changepoints were identified for those gene ontology terms found to be significant.
For the gth gene ontology term, we computed D̂(g)

nt /σ̂(g),nt,0 for t = 1, . . . , 5 and the covari-

ance matrix estimator V̂ (g)

n, D. Let M̃(g)
n be the maximum of the standardized test statistics

{V̂ (g)

n, D}−1/2{σ̂−1
(g), n1,0D̂(g)

n1 , . . . , σ̂−1
(g), n5,0D̂(g)

n5 }T. For each gene ontology term, the local false dis-

covery rate was estimated using {M̃(g)
n }159

g=1 based on the method proposed by Efron (2007). As
suggested in Efron (2007), a cut-off value of 0.20 was used for the local false discovery rate
procedure. There were 10 gene ontology terms that had a local false discovery rate less than or
equal to 0.20. These 10 significant gene ontology terms and their corresponding number of genes,
test statistic value, estimated changepoints, and local false discovery rate are given in Table 4.
Among those gene ontology terms listed in Table 4, term 0008285 is associated with the reduction
or stoppage of cell proliferation. This is of interest, as Kannan et al. (2011) had noted that the
hepatitis C virus reduces cell proliferation. Thus, the results here suggest that treatment using
pegylated alpha interferon and ribavirin has some effect on the covariances of those genes that
play a role in cellular proliferation.

After identifying ten significant gene ontology terms, we applied binary segmentation to iden-
tify all changepoints. We discovered that eight terms have a changepoint at t = 5, day 14, eight
have a changepoint at t = 4, day 7, and four terms have a changepoint at t = 1, day 0. Recall that

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article-abstract/106/3/619/5498374 by Pennsylvania State U
niversity user on 26 August 2019



632 P.-S. Zhong, R. Li AND S. Santo

t = 4, day 7 t = 5, day 14 t = 6, day 28

t = 1, day 0 t = 2, day 1 t = 3, day 2

Fig. 2. Correlation network map for gene ontology term 0030054. Each dot represents a gene within the gene ontology.
A link between dots indicates an interaction between genes.

a changepoint at time t = 5 implies that the covariance matrix at time t = 5 is not equal to that
at time t = 6. Hence, most of the identified changes in the covariance matrices occurred by the
initial day of treatment or later in the treatment cycle. These findings complement those of Taylor
et al. (2007), who observed that for the majority of the genes that were altered in expression, the
changes occurred in the early days of treatment and again, marginally, between treatment days 7
and 28. To illustrate the changes in the covariance matrices, Fig. 2 displays the correlation net-
works of gene ontology term 0030054 at the six time-points. We see that the correlation networks
change at time-points 1, 4 and 5, which is consistent with the identified changepoints reported in
Table 4.
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Appendix

Computation of the proposed statistics

To save on computational costs, we can rewrite Us1s2,1 and Us1s2,2 defined in (4) in a computationally
efficient form as follows. First, we consider Us1s2,1, which can be rewritten as

P3
nUs1s2,1 =

n∑
j=1

(
n∑

i=1

Y T
is1

Yjs2

)2

−
n∑

i, j=1

(Y T
is1

Yjs2)
2 − 2

n∑
k |=j=1

Y T
js1

Yjs2Y T
js2

Yks1 .
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Therefore, the computational complexity of Us1s2,1 with respect to the sample subjects is of the order of n2,
not n3. To write Us1s2,2 in a computationally efficient form, we first define

Vs1s2,1 = (1/P3
n)

∼∑
i,j,kY T

is1
Yjs2Y T

js1
Yks2 .

Similar to Us1s2,1, we can write Vs1s2,1 as

P3
nVs1s2,1 =

n∑
j=1

(
n∑

i=1

Y T
is1

Yjs2

)(
n∑

i=1

Y T
is2

Yjs1

)
−

n∑
i, j=1

Y T
is1

Yjs2Y T
js1

Yis2

−
n∑

k |=j=1

Y T
js1

Yjs2Y T
js1

Yks2 −
n∑

i |=j=1

Y T
is1

Yjs2Y T
js1

Yjs2 .

The computational complexity of Vs1s2,1 with respect to the sample subjects is also of the order of n2.
Finally, we can write Us1s2,2 as

P4
nUs1s2,2 =

(
n∑

i |=j=1

Y T
is1

Yjs2

)2

− P3
n(Us1s2,1 + Us2s1,1 + 2Vs1s2,1) − P2

nUs1s2,0

−
n∑

i |=j=1

(Y T
is1

Yjs2)(Y
T
is2

Yjs1).

Based on the above expression for P4
nUs1s2,2, we can see that the computational complexity of Us1s2,2 with

respect to the sample subjects is of the order of n2. In summary, the computational cost of the proposed
statistic Us1s2 with respect to the sample subjects is of the order of n2.
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