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a b s t r a c t

This paper develops a new estimation procedure for ultrahigh dimensional sparse
precision matrix, the inverse of covariance matrix. Regularization methods have been
proposed for sparse precision matrix estimation, but they may not perform well with
ultrahigh dimensional data due to the spurious correlation. We propose a refitted cross
validation (RCV) method for sparse precision matrix estimation based on its Cholesky
decomposition, which does not require the Gaussian assumption. The proposed RCV
procedure can be easily implemented with existing software for ultrahigh dimensional
linear regression. We establish the consistency of the proposed RCV estimation and show
that the rate of convergence of the RCV estimation without assuming banded structure
is the same as that of those assuming the banded structure in Bickel and Levina (2008b).
Monte Carlo studies were conducted to access the finite sample performance of the RCV
estimation. Our numerical comparison shows that the RCV estimation outperforms the
existing ones in various scenarios. We further apply the RCV estimation for an empirical
analysis of asset allocation.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Precision matrix, the inverse of covariance matrix, plays an important role in statistical inference and statistical learning
such as one sample mean test, graphical modeling and linear discrimination analysis. This study is motivated by an
empirical analysis of portfolio allocation, in which the estimation of precision matrix is required (see Section 3.2 for
more details). In the classic multivariate statistical analysis, the inverse of sample covariance matrix is a natural and
consistent estimator of precision matrix. Sample covariance matrix, however, becomes singular for high dimensional
data when the sample size n is less than the dimension p of data. Thus, it is of interest to develop alternative methods
to estimate precision matrix. Bickel and Levina (2008a), Rothman et al. (2009) and Cai and Liu (2011) approached the
estimation problem by applying different thresholding methods to the sample covariance matrix. These methods may
not perform well for ultrahigh dimensional data. Yuan and Lin (2007) considered a LASSO-type method for precision
matrix and solved the optimization problem by a maxdet algorithm. Due to the important role of precision matrix in
Gaussian graphic model, Ren et al. (2015), Fan and Lv (2016) and Ren et al. (2019) studied the estimation and statistical
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inference of sparse precision matrix by assuming conditional normal distribution. However, it is challenging in verifying
the normality of high dimensional data in practice. People recast the problem of precision matrix estimation into a high
dimensional regularization regression. A constrained ℓ1 minimization procedure was proposed by Cai et al. (2011) for
sparse precision matrix estimation. Rothman et al. (2008) and Lam and Fan (2009) used the penalized likelihood method
to estimate sparse precision matrix with ℓ1 and nonconvex penalty functions, respectively. These methods are easy to
implement, and their statistical properties have been studied. However, when p ≫ n, these methods may perform poorly
due to severe spurious correlations. A comprehensive investigation of the impact of spurious collections on error variance
estimation in ultrahigh dimensional data can be found in Fan et al. (2012). This paper aims to develop a consistent and
easy-to-compute estimator of precision matrix for ultrahigh dimensional data without the Gaussian assumption.

In this paper, we propose an estimation procedure for the ultrahigh dimensional precision matrix by using refitted
cross-validation (RCV, Fan et al., 2012). We first parameterize the precision matrix using the modified Cholesky decom-
position. The decomposition is valid for any positive definite matrices and does not require the Gaussian assumption. It
has been used in some literature for the estimation of covariance or precision matrix. Specifically, the modified Cholesky
decomposition has been adopted for estimating the finite-dimensional error covariance matrix in longitudinal regression
model (Pourahmadi, 1999, 2000), for the low-dimensional covariance estimation in Huang et al. (2006), and for the high-
dimensional precision matrix estimation in Rothman et al. (2010). It is challenging to employ the Cholesky decomposition
for ultrahigh dimensional covariance matrix estimation since it leads to ultrahigh dimensional linear regression problems.
And the theoretical analyses of these problems are much more difficult than that in finite- or high-dimensional settings.
To overcome the difficulty, we proposed the RCV estimation. The RCV estimation procedure for the ultrahigh dimensional
covariance matrix can be carried out easily with the existing software for ultrahigh dimensional linear regressions. The
resulting estimator of precision matrix is symmetric and positive definite. We show that the estimator is consistent.
Moreover, we provide the convergence rate of the newly proposed estimator without assuming banded structure. The
convergence rate is the same as the rate of those methods assuming the banded structure in Bickel and Levina (2008b).

The rest of this paper is organized as follows. In Section 2, we propose the RCV estimation procedure for the precision
matrix and study its theoretical properties. In Section 3, we present a numerical comparison and an empirical study.
Technical conditions and proofs are given in Appendix.

2. An RCV estimator for precision matrix

Let x = (X1, . . . , Xp)T be a p-dimensional random vector with mean vector µ and covariance matrix Σ . Of interest
is to estimate the precision matrix Ω = Σ−1. Without loss of generality, assume µ = 0 throughout this paper. As
in Pourahmadi (1999), the modified Cholesky’s decomposition of Ω is defined as follows.

Ω = LTD−1L, (2.1)

where L is unitriangular matrix (i.e. a lower triangular matrix satisfying that each diagonal element ltt = 1, t = 1, . . . , p)
and D = diag(σ 2

1 , . . . , σ 2
p ) is a diagonal matrix. Regardless of the population distribution, the matrix decomposition is

always true for the precision matrix. Since Ω = Σ−1, (2.1) is equivalent to

LΣLT = D,

which provides us a nice interpretation of the elements in L and D. Define

ε = Lx. (2.2)

Let −βtk = ltk, the (t, k)-th entry of L for t < k and ε = (ε1, . . . , εp)T . Then (2.2) is equivalent to that X1 = ε1, and for
1 < t ≤ p,

Xt =

t−1∑
k=1

βtkXk + εt , (2.3)

with E(εt ) = 0 and var(εt ) = σ 2
t . Thus, the purpose of estimating Σ and Ω can be achieved by estimating the regression

coefficients and error variances in (2.2). Based on this idea, Pourahmadi (1999, 2000) proposed parametrization of error
covariance matrix in the analysis of longitudinal data. In the presence of sparsity on βtk, Huang et al. (2006) developed an
estimation procedure for covariance matrix Σ using penalized least squares method in the fixed and finite dimensional
setting. Rothman et al. (2010) assumed that L is banded and then applied LASSO-type estimation to estimate the regression
coefficients β’s under the high dimensional setting.

2.1. A naive estimator

To illustrate the challenge of estimating ultrahigh dimensional precision matrix, let us start with a natural extension
of the estimation procedure proposed by Huang et al. (2006). Since we will deal with ultrahigh dimensional regressions
in (2.3), we impose sparsity assumption on βt = (βt1, . . . , βt,t−1)T , and apply penalized least squares (PLS) method to
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Fig. 1. The means of estimators of diag(D) using the naive estimate and the RCV estimate.

estimate βt . After estimating βt , we use the mean squared errors (MSE) of the corresponding linear models to estimate
σ 2
t , the tth diagonal element of D.
Suppose that xi = (Xi1, . . . , Xip)T , i = 1, . . . , n are the independent and identically distributed samples from the

population of x. The PLS estimator of βt is

β̃
LS

t = argmin
βt

1
2n

n∑
i=1

(
Xit −

t−1∑
k=1

βtkXik

)2

+

t−1∑
k=1

pλt (|βtk|), (2.4)

where pλt (·) is a penalty function with tuning parameter λt . Various penalty functions can be applied, such as
ℓ1-penalty (Tibshirani, 1996), SCAD penalty (Fan and Li, 2001) and MCP penalty (Zhang, 2010). With the estimate of
βt , we can estimate σ 2

t by the MSE

σ̃ 2
t =

1

n − ∥β̃t∥0

n∑
i=1

(
Xit −

t−1∑
k=1

β̃LS
tkXik

)2

. (2.5)

where ∥·∥0 denotes the ℓ0-norm (i.e., the number of nonzero elements in the vector), and β̃LS
tk is the least squares estimator

under the model selected by the PLS method.
As the number of parameters increases, the computation consumption increases, while algorithm stability for Eq. (2.4)

may decrease, especially for the ultrahigh dimensional cases (p = O(eγ n), 0 ≤ γ < 1). When log(t) = O(nα) for some
constant α ∈ (0, 1), the penalized least squares (2.4) is difficult to carry out because of computational cost and algorithm
stability. To tackle this problem, Fan and Lv (2008) proposed the sure independence screening (SIS) procedure to quickly
reduce the ultrahigh dimension to a moderate dimension d such as d = [n/log n]. Consequently, we integrate SIS and PLS
procedures estimate the precision matrix, and obtain a naive estimator of Ω as follows.

Ω̃ = L̃T D̃−1L̃, (2.6)

where D̃ and L̃ are obtained from σ̃ 2
t , t = 1, . . . , p and β̃t , t = 1, . . . , p, respectively.

The naive estimator Ω̃ may perform well in low dimensional case. However, it may not work well under ultrahigh
dimensional setting due to the bias of σ̃ 2

t . Let Mt be the model selected by the PLS (2.4), XMt be the design matrix for the
selected model, and PMt = XMt (XT

Mt
XMt )

−1XT
Mt

be the projection matrix of the linear space spanned by the columns of
XMt . Define ζ 2

nt = εT
t PMt εt/ε

T
t εt , where εt = (εt1, . . . , εtn)T . Under certain regularity conditions, Fan et al. (2012) showed

that when log t and n have the same order, σ̃ 2
t /(1 − ζ 2

nt ) → σ 2
t in probability and

√
n{σ̃ 2

nt/(1 − ζ 2
nt ) − σ 2

t } → N(0, var(ε2
t )).

Thus, σ̃ 2
nt shrinks σ 2 by the factor (1 − ζ 2

nt ). Fan et al. (2012) demonstrated that ζ 2
nt may not tend to zero under ultrahigh

dimensional setting. This confirms that σ̃ 2
t can be an inconsistent estimator of σ 2

t for large t . As a result, D̃ may not be a
consistent estimator of D, and Ω̃ may not perform well.

Example 2.1. Before we pursue further, let us illustrate the bias of D̃ by running a small simulation study. Take D = 0.01I
and lt,k = 0.6 if k = t − 1, and 0 otherwise. The corresponding covariance matrix Σ satisfies the AR(1) structure. Set
n = 160 and p = 1000. We run 200 simulations. For each simulation, we obtain β̃t , the PLS with SCAD penalty while the
tuning parameter is selected by cross-validation, and then obtain σ̃ 2

t . The left panel of Fig. 1 presents the means of naive
estimators D̃tt for t = 1, . . . , p over 200 replications. The plot clearly shows a significant declining trend as the dimension
increases. This implies that the bias of σ̃ 2

t becomes more severe as t gets larger. Therefore, we need to develop a new
statistical method to eliminate the bias.
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Fig. 2. The flowchart of the RCV procedure for the precision matrix estimation.

2.2. RCV estimator

As shown in Fan et al. (2012), the bias of the naive estimator σ̃ 2
t comes from the spuriously correlated covariates in

the selected models. To deal with the bias issue, we propose using the RCV method for the estimation of precision matrix.
The RCV method has been used to estimate error variance in the ultrahigh dimensional linear regression (Fan et al., 2012)
and in ultrahigh dimensional additive models (Chen et al., 2018), but the RCV method is new for estimation of ultrahigh
dimensional precision matrix.

RCV procedure for precision matrix estimation consists of the following steps. In the first step, we randomly partition
the n samples into two equally sized parts X(1) and X(2). In the second step, we conduct feature screening and variable
selection procedures by using dataset X(1) for the linear model (2.3) and obtain the selected model D1,t , for each
t = 2, . . . , p. We refit the data X(2) to the selected model D1,t , and obtain the regression coefficients β̂

(1)
t and the mean

squared errors σ̂
2(1)
t for t = 2, . . . , p. Based on these estimators β̂

(1)
t s and σ̂

2(1)
t s, we can obtain the estimators L̂(1) and

D̂(1) for L and D, respectively. In the third step, we switch the roles of X(1) and X(2). We use X(2) to select model D2,t and
use X(1) to refit D2,t to obtain β̂

(2)
t and σ̂

2(2)
t for t = 2, . . . , p. We further obtain estimators L̂(2) and D̂(2). Finally, the RCV

estimators of D and L are defined as

D̂ =
D̂(1)

+ D̂(2)

2
, L̂ =

L̂(1) + L̂(2)

2
, (2.7)

and the RCV estimator for Ω is

Ω̂ = L̂T D̂−1̂L. (2.8)

Since L̂ is still a lower triangular matrix, the estimator of precision matrix Ω is positive definite. If we partition the data
into two parts with different sample sizes n1 and n2, n1 ̸= n2, then the RCV estimators of D and L are accordingly adjusted
to

L̂ =
n1̂L(1) + n2̂L(2)

n1 + n2
, and D̂ =

n1D̂(1)
+ n2D̂(2)

n1 + n2
.

As a direct comparison, we apply the RCV estimator D̂ for Example 2.1 and depicts the results in the right panel of Fig. 1,
which shows that the two methods present different trends and the proposed method indeed eliminates the bias due to
the spurious correlation. Fig. 2 demonstrates the flowchart of the RCV procedure for the precision matrix estimation.

2.3. Asymptotic properties

In this section, we study the asymptotic behavior of the proposed RCV estimator. We first introduce some notation. For
a p-dimensional vector v = (v1, . . . , vp)T , ∥v∥α stands for the ℓα-norm of v. In particular, ∥v∥0 is the number of nonzero
elements of v, and ∥v∥∞ = maxj |vj|. For a p-by-q matrix A = (aij), the operator norm is defined by

∥A∥(α,β) = sup
∥v∥α=1

∥Av∥β ,
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where x is any p-dimensional unit vector and 0 ≤ α, β ≤ ∞. In particular,

∥Σ∥(1,1) = max
j

∑
i

|σij|, ∥Σ∥(∞,∞) = max
i

∑
j

|σij|.

Define the spectral norm ∥A∥ = ∥A∥(2,2). For a p × p symmetric matrix Σ , it follows that

∥Σ∥ = λmax(Σ) ≤ (∥Σ∥(1,1)∥Σ∥(∞,∞))1/2 = max
j

∑
i

|σij|, (2.9)

where λmax(Σ) and λmin(Σ) stand for the largest and smallest eigenvalues of Σ , respectively. (See Corollary 2.3.2, Golub
and Van Loan (2012)). With a slight abuse of notation, let ∥Σ∥∞ = maxi,j |σij| be the maximum norm of a matrix and
|M| stands for its cardinality of the set M.

Denote X = (x1, . . . , xn)T and Xt be a submatrix consisting of the first (t −1) columns of X. Let M ⊆ {1, . . . , p} be the
active index set. XM,t is the submatrix of Xt with the columns indexed by M. Define the m-sparse minimal eigenvalue
and m-sparse maximal eigenvalue (Meinshausen and Yu, 2009) as

φmin(m, t) = min
M:|M|≤m

λmin(n−1XT
M,tXM,t ),

and

φmax(m, t) = max
M:|M|≤m

λmax(n−1XT
M,tXM,t ).

We need the following technical conditions to facilitate the proofs, although they may not be the weakest.

(A1) (Exponential tail conditions) Xj and εj defined in (2.2), j = 1, . . . , p satisfy the exponential condition. That is, there
exist positive constants c0 and T such that for 0 < |t| < T ,

EetX
2
j ≤ c0, and Eetε

2
j ≤ c0, j = 1, . . . , p. (2.10)

(A2) There exist a constant λ0 > 0 and constant sequence ηn such that ηn = o(n) and P(φmin(ηn, t) ≥ λ0) = 1, for all n
and t = 2, . . . , p.

(A3) Assume that there exists a constant ϵ0 > 0 such that ϵ−1
0 ≤ λmin(Ω) ≤ λmax(Ω) ≤ ϵ0.

When x follows a multivariate normal distribution or Xj’s are bounded, the exponential tail condition (A1) is satisfied.
This assumption is commonly adopted in the literature of high dimensional data modeling (Bickel and Levina, 2008a;
Yuan, 2010; Cai et al., 2011; Cai and Liu, 2011).

Condition (A2) is a common assumption for the high dimensional variable selection, which is necessary for LASSO-
type method to select all important variables. Here (A2) implies that the selected variables in stage one are not highly
correlated. Condition (A3) implies that both the smallest and largest eigenvalues of the precision matrix (and the
covariance matrix) are bounded by a constant. Recall notation L̂(j), j = 1, 2 in Section 2.2, and let ℓ̂

(j)
s and ℓ̂

(j)T
(t) be the

sth column and tth row of L̂(j), respectively. Denote kn = max1≤t≤p max1≤j≤2 max{∥̂ℓ
(j)
t ∥0, ∥̂ℓ

(j)
(t)∥0}.

Theorem 1. Denote D∗
t = {k : βtk ̸= 0} and assume that Dk,t satisfies P(Dk,t ⊇ D∗

t ) = 1 for k = 1 and 2, and t = 2, . . . , p.
Suppose that log p = O(nγ ), γ ∈ [0, 1) and kn = O

(
(n/log p)1/[3(1+α)]

)
, for any constant α > 0. Under Condition (A1), (A2)

and (A3), it follows that

∥Ω̂ − Ω∥ = OP

(√
k3n log p

n

)
. (2.11)

The condition log p = O(nγ ), γ ∈ [0, 1) is usually adopted by the literature of ultrahigh dimensional data analysis. The
order imposed on kn implies that the number of nonzero elements in each row and each column of L(j) cannot diverge
to infinite too fast. For banded L(j), we can simply control the number of nonzero elements in L(j). The convergence rate
in Theorem 1 is quite similar to that of banded matrices estimation in Bickel and Levina (2008b). Note the fact that L
of a banded matrix is still banded structure. If kn = (n/log p)1/[3(α+1)], for some constant α > 0, then the convergence
rate of (2.11) becomes OP ((log p/n)α/[2(α+1)]), which is exactly the same as that in Bickel and Levina (2008b). However,
the assumption of L in this paper is more flexible than that in Bickel and Levina (2008b) and Levina et al. (2008). Levina
et al. (2008) directly assume the banded structure, and there is no selection procedure involved in their procedure, so the
spurious correlation has much less impact on their estimation. In contrast, the proposed method assumes sparsity only
rather than the banded structure.

3. Numerical studies

We investigate the finite sample performance of the proposed estimation procedure via Monte Carlo simulation study.
We compare the proposed procedure with exiting ones in Section 3.1. We illustrate the proposed methodology by an
empirical analysis of real financial market data.
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Table 1
Simulation results for precision matrix Ω1 and Ω2 .
Ω p 20 50 100 200 500 1000 2000

Ω1 Sample Covariance 3.30 37.62 534.11 – – – –
PNL 1.05 3.55 9.25 – – – –
CLIME 3.49 10.21 22.40 – – – –
BL 0.50 1.36 2.61 5.4 14.6 28.2 56.9
Naive-LASSO-AIC 1.42 6.23 17.93 55.2 225.3 670.9 2160.7
Naive-LASSO-BIC 0.72 1.99 4.40 9.8 27.9 60.9 133.8
Naive-SCAD-AIC 1.15 5.10 15.71 79.2 1200.0 8804.2 45750.1
Naive-SCAD-BIC 0.57 1.66 3.97 9.7 31.7 77.1 180.6
RCV-LASSO-AIC 0.77 2.34 5.36 13.0 45.4 130.9 398.8
RCV-LASSO-BIC 0.58 1.56 3.54 8.0 24.3 57.6 134.9
RCV-SCAD-AIC 0.68 2.45 7.66 30.9 181.8 579.9 1579.4
RCV-SCAD-BIC 0.56 1.54 3.57 8.1 24.3 57.4 136.4

Ω2 Sample Covariance 3.20 37.06 539.81 – – – –
PNL 1.05 3.59 9.38 – – – –
CLIME 3.48 12.79 28.84 – – – –
BL 3.39 22.46 74.44 193.0 555.8 1185.5 2150.5
Naive-LASSO-AIC 1.44 6.37 18.74 54.7 233.0 714.6 2338.5
Naive-LASSO-BIC 0.71 2.06 4.62 10.1 28.9 62.7 137.9
Naive-SCAD-AIC 1.14 5.27 16.35 78.9 1170.3 8270.2 43641.6
Naive-SCAD-BIC 0.60 1.73 4.07 10.1 32.9 78.8 185.7
RCV-LASSO-AIC 0.79 2.43 5.67 13.4 49.2 142.5 433.2
RCV-LASSO-BIC 0.64 1.69 3.84 8.4 26.2 60.3 141.5
RCV-SCAD-AIC 0.71 2.49 7.88 31.1 182.7 575.9 1593.4
RCV-SCAD-BIC 0.62 1.69 3.86 8.5 26.1 60.0 143.2

3.1. Monte Carlo simulation

In this section, we conduct Monte Carlo simulation to examine the finite sample performance of the newly proposed
method. We generate random samples from a p-dimensional multi-normal distribution N (0, Ω−1). We set the precision
matrix Ω through its Cholesky decomposition LTD−1L, and consider four different scenarios.

(a) Ω1 = LTD−1L with D = I and ltt = 1, lt+1,t = ρ = 0.5 with all other ltj = 0. This is referred to as the AR(1) covariance
matrix in the literature.

(b) Ω2 = LTD−1L with D = I. We randomly choose an entry j, j < t in the tth row of L, and set ltj = ρ and all other
ltj = 0.

(c) Ω3 = LTD−1L with D = I. We randomly choose two entries j1, j2, j1 < t, j2 < t in the tth row of L, and set
lt,j1 = lt,j2 = ρ and all other ltj = 0.

(d) Ω4 = LTD−1L with D = diag(σ 2
1 , . . . , σ 2

p ). L is set in the same way as that in Ω3, but {σ 2
t , t = 1, . . . , p} are generated

by the uniform distribution Unif[1, 2].

In this simulation study, we evaluate estimation procedures by the following quadratic loss

∆(Ω̂, Ω) = tr(Ω−1Ω̂ − I)2.

Note that the quadratic loss is zero if and only if Ω̂ = Ω . In our study, we also use different criteria such as the entropy
loss (Muirhead, 1982), the Frobenius loss and the Kullback–Leibler divergence. Since the results of numerical comparison
based on different measures are almost the same under all of our simulation settings, we only present those based on
the quadratic loss to save space.

In our simulation, we set p = 20, 50, 100, 200, 500, 1000 and 2000 to investigate the impact of dimensionality, and the
sample size n = 200. For each combination, we conduct 100 replications. For the purpose of comparison, four existing
methods are considered: (1) the inverse of sample covariance matrix when p < n, labeled by ‘‘Sample Covariance" in
tables, (2) the regularized method in Bickel and Levina (2008b), denoted by ‘‘BL" for short, (3) the ℓ1 penalized normal
likelihood method in Huang et al. (2006), denoted by ‘‘PNL", and (4) the CLIME in Cai et al. (2011), denoted by ‘‘CLIME".
Since the computation cost of PNL and CLIME are much higher than others, we are able to get their results only when
p < n = 200.

We also include the naive method in our numerical comparison. For both naive estimator and RCV method, we
consider penalized least squares with the LASSO and SCAD penalties with tuning parameter chosen by Akaike information
criterion (AIC) or Bayesian information criterion (BIC). This leads to 8 combinations (Naive/RCV-LASSO/SCAD-AIC/BIC).

The simulation results for Ω1 and Ω2 are depicted in the top and the bottom panels of Table 1. From the top panel of
Table 1, we can see that the BL method preforms the best across all different p dimensions. This is expected because Ω1 and
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Table 2
Simulation results for precision matrix Ω3 and Ω4 .
Ω p 20 50 100 200 500 1000 2000

Ω3 Sample Covariance 3.18 36.65 530.51 – – – –
PNL 1.53 5.85 16.12 – – – –
CLIME 8.53 61.55 233.15 – – – –
BL 3.68 27.64 105.71 345.3 1431.8 3921.5 10462.0
Naive-LASSO-AIC 1.60 6.39 17.77 48.9 187.7 526.0 1443.1
Naive-LASSO-BIC 1.04 3.34 7.55 17.2 47.9 103.3 222.0
Naive-SCAD-AIC 1.05 3.82 9.93 25.9 106.9 347.0 1240.6
Naive-SCAD-BIC 0.73 2.20 5.01 11.8 37.5 91.9 232.0
RCV-LASSO-AIC 1.09 3.51 8.08 19.1 55.9 129.7 300.0
RCV-LASSO-BIC 1.14 3.34 7.00 15.2 38.4 83.3 179.7
RCV-SCAD-AIC 0.84 2.68 6.62 17.0 60.7 171.8 491.7
RCV-SCAD-BIC 0.87 2.49 5.57 12.5 34.8 78.5 174.3

Ω4 Sample 3.23 37.36 537.50 – – – –
PNL 1.52 6.12 17.69 – – – –
CLIME 38.25 213.24 710.07 – – – –
BL 3.71 28.60 107.97 341.2 1439.0 4015.2 10562.6
Naive-LASSO-AIC 1.68 6.65 17.77 48.5 187.5 528.5 1514.7
Naive-LASSO-BIC 1.10 3.42 7.78 17.0 47.7 103.4 222.3
Naive-SCAD-AIC 1.16 4.07 10.30 28.3 121.1 429.2 1710.4
Naive-SCAD-BIC 0.79 2.28 5.23 12.0 37.9 93.4 233.1
RCV-LASSO-AIC 1.21 3.68 8.40 18.8 57.1 134.4 323.9
RCV-LASSO-BIC 1.29 3.49 7.58 15.4 41.5 90.3 203.4
RCV-SCAD-AIC 0.95 2.90 6.95 17.2 63.7 179.0 515.5
RCV-SCAD-BIC 0.99 2.68 6.00 12.8 37.2 84.5 194.1

its Cholesky factor L are both with banded structure, and ‘BL’ method is designed for such a setting. Except for ‘BL’ method,
RCV estimator is almost superior to all other estimators. For the naive method, the BIC tuning parameter selector results in
significantly smaller quadratic loss than the AIC. This is because the AIC method tends to include more irrelevant variables,
which are likely the spuriously correlated predictors. In general, for the naive method and RCV method, the SCAD also
has smaller loss than the LASSO for most cases in Table 1. Comparing Naive-LASSO/SCAD-AIC with RCV-LASSO/SCAD-AIC,
we can see that the RCV method can effectively eliminate the effect due to spurious correlation.

Comparing the top and bottom panels of Table 1, we can find that the BL method performs much worse for Ω2 than
for Ω1, while other methods perform similarly for both Ω1 and Ω2. This is also expected since the Cholesky factor L in Ω2
does not have regular sparse structure, and thus the banded structure of Ω2 cannot be guaranteed. This directly leads to
the worse performance of BL method for Ω2. This also implies that the sparsity pattern has less influence on the results
from methods other than BL.

Table 2 presents the results for Ω3 and Ω4. We can see from Table 2 that the BL method performs poorly for these two
precision matrices. Overall patterns in Table 2 are similar to those in the bottom panel of Table 1. For cases in Table 2, the
RCV estimators provide the best results, and can effectively improve the estimation accuracy of the naive method when
p > n.

3.2. Real data analysis

In this section, we illustrate the proposed procedures by an empirical analysis. Portfolio allocation is of great interest
in financial econometrics and quantitative finance. In the Markowitz’s portfolio theory (Markowitz, 1952), it considers the
portfolio allocation with excess returns as an optimization problem

min
1
2
wTΣw

subject to wTµ ≥ µ0,

(3.1)

where µ = (µ1, . . . , µp)T is the mean vector of excess returns of the p assets, Σ is the covariance matrix of assets returns,
µ0 is the expected return. The optimal solution (µ∗, σ ∗), the expected returns and the stand deviation, constitutes an
efficient frontier (Markowitz, 1952), which theoretically clarifies that higher expected returns always comes with higher
risks. Consequently, Sharpe (1966) and Sharpe (1994) proposed using the ratio of the return to the risk as a measure
of portfolio allocation. The ratio is called the Sharpe ratio and represents the portfolio return per unit risk. Portfolio
optimization still is an active research topic (Cai et al., 2019; Ao et al., 2018).

In this example, we collect monthly excess returns for stocks in S&P 500 index that have complete records from January
1980 to December 2012. The data, collected from the Center for Research in Security Prices (CRSP), contain the returns
of 202 stocks with a time span of 396 months. We avoid the period of the subprime crisis starting in 2008 since the
market performance was totally different during that period (Fig. 3). We set the returns of the last 6, 12 or 18 months as
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Fig. 3. Equally weighted monthly Returns of portfolio (Jan. 1980∼Dec. 2012).

the testing data and the remaining data as the training data to study the asset allocation. Denote the training data of the
period from Jan. 1980 to Dec. 2006 by X(1)

= {X (1)
ij }, i = 1, . . . , 324, j = 1, . . . , 202, and the corresponding testing data

by Y(1)
= {Y (1)

ij }, i = 1, . . . , 12, j = 1, . . . , 202.
It is well known that the optimal weights (i.e., the minimizer of (3.1)) is

wopt =
µ0Σ

−1µ

µTΣ−1µ
=

µ0Ωµ

µTΩµ
, (3.2)

where Ω = Σ−1. To illustrate the proposed procedure, we consider the annualized return rates (ARR) at 10%, 20%
and 30%, respectively. By using the theory of fixed income securities, the corresponding monthly return rates are
0.8%, 1.53% and 2.21% respectively. To obtain the optimal weights, Ω and µ should be estimated through the training
data. The mean vector µ of the assets returns is estimated by the sample mean vector µ̂ = (µ̂1, . . . , µ̂p)T =

(n−1∑n
i=1 Xi1, . . . , n−1∑n

i=1 Xip)T .
The inverse of the sample covariance matrix S−1 does not perform very well due to the small sample size. Thus, we

apply the naive method and RCV method to estimate the portfolio allocation weights through the training data and to
investigate the returns of the newly constructed portfolios through the testing data. The results are presented as the
returns, the risks and the return–risk ratios. This ratio can be considered as the measure of excess return per unit of the
investment risk, which is the realized Sharpe ratio (Sharpe, 1966, 1994).

For the purpose of comparison, we use the generalized inverse of the sample covariance matrix as the benchmark, and
consider other estimates: (1) the ℓ1-regularization. The tuning parameter are chosen by AIC or BIC; (2) The regularization
with SCAD penalty. The tuning parameter is chosen by AIC or BIC; (3) The BL estimator (Bickel and Levina, 2008b). All
regularization estimators are improved by RCV technique.

We first focus on the comparison between the naive method and the RCV method with different regularization
methods. Table 3 presents the mean return, the risk and the Sharpe ratio. It clearly shows that, in terms of the Sharpe
ratio, the RCV methods perform better than the naive methods when these two methods are implemented with the same
regularization method for most cases. The RCV with SCAD-BIC performs the best among the four combinations of RCV
methods (LASSO-AIC, SCAD-AIC, LASSO-BIC and SCAD-BIC).

Next, we compare the performance of the RCV-SCAD-BIC estimation, the generalized inverse of sample covariance
matrix (labeled as Sample Cov in Table 3) and the BL estimation. From Table 3, the RCV method performs the best among
these four methods in terms of the ratio.

4. Discussions

In this paper, we have proposed the RCV estimation for ultrahigh dimensional precision matrix, and studied the
asymptotical properties of the RCV estimator. The RCV method may be used to estimate covariance matrix too since
the Cholesky decomposition has been used to estimate covariance matrix (Pourahmadi, 1999, 2000; Huang et al., 2006).
It will be of interest to examine the performance of the RCV estimation procedure for covariance matrix in the future
study.

As one referee points out that the sparsity of linear regression models resulted from Cholesky decomposition depends
on the order of variables. For this point, we regard it as a minor weakness of the proposed estimation procedure. The
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Table 3
Estimated mean return and risk of the S&P 500 portfolios analysis by using excess returns.

6-month prediction 12-month prediction 18-month prediction
with 30% ARR with 10% ARR with 20% ARR

Naive RCV Naive RCV Naive RCV

LASSO-AIC
Return −0.0011 0.0062 0.0010 0.0013 −0.0010 0.0001
Risk 0.0209 0.0254 0.0062 0.0067 0.0108 0.0131
Ratio −0.0517 0.2456 0.1583 0.2014 −0.0896 0.0104

SCAD-AIC
Return 0.0023 0.0086 0.0017 0.0013 0.0006 −0.0005
Risk 0.0263 0.0265 0.0070 0.0068 0.0120 0.0130
Ratio 0.0884 0.3260 0.2457 0.1842 0.0463 −0.0409

LASSO-BIC
Return 0.0022 0.0064 0.0014 0.0016 0.0007 0.0014
Risk 0.0172 0.0144 0.0052 0.0054 0.0095 0.0105
Ratio 0.1290 0.4460 0.2722 0.2932 0.0728 0.1314

SCAD-BIC
Return 0.0025 0.0071 0.0014 0.0016 0.0010 0.0016
Risk 0.0177 0.0154 0.0055 0.0055 0.0096 0.0100
Ratio 0.1421 0.4615 0.2532 0.2965 0.1017 0.1623

Sample Cov
Return 0.0029 0.0048 0.0003
Risk 0.0317 0.0198 0.0104
Ratio 0.0902 0.2450 0.0284

BL
Return 0.0024 0.0017 0.0003
Risk 0.0104 0.0098 0.0049
Ratio 0.2302 0.1750 0.0586

reason is that banded structure on covariance matrix or precision matrix has been assumed in the literature and the
banded structure also depends on the order of variables. In addition, we can deal with this problem by sorting the variables
according to the magnitude of their variance from the smallest to the largest in practice. This is implemented in our real
data analysis.
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Appendix

For ease of presentation, let y the t-column of X defined in Section 2.3, and Z = Xt . Rewrite Eq. (2.3) in the matrix
form:

y = Zβ + ε, (A.1)

where we also compress the subscript in βt . For an index set M, denote ZM = XM,t , and φmin(m) and φmax(m) stand for
φmin(m, t) and φmax(m, t), defined in Section 2.3, respectively.

Define the event En,t = {max1≤j≤t−1 |ZT
j ε| ≤ c

√
n log p}, where Zj is the jth column of the sample matrix Z and c is a

positive constant. To prove Theorem 1, we need the following two lemmas.

Lemma A.1. Suppose Condition (A1) hold. If log p/n = O(1), under model (A.1) it follows that P(En,t ) → 1.

Proof. By using the exponential tail condition (A1), we have, for any s ≥ 1,

P
(⏐⏐Zijεi⏐⏐ ≥ s

)
≤ P

(⏐⏐Zij⏐⏐ ≥ s1/2
)
+ P

(
|εi| ≥ s1/2

)
≤ E exp{Z2

ij } exp{−s} + E exp{ε2
i } exp{−s}

≤ c0 exp{−s}.

(A.2)

By inequality (A.2) and using the integration by parts, there exists a constant c1 > 0 such that E exp{2−1 |Zikεi|} ≤ 2+2c1.
For any m ≥ 2, we have

E
⏐⏐Zijεi⏐⏐m ≤ 2mm! E exp

{
2−1

|Zikεi|
}

≤ 2mm! (2 + 2c1)

= 2−1 (8(2 + 2c1)) 2m−2m!

(A.3)
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From Bernstein’s inequality (Theorem 2.2.11 in Vaart and Wellner (1996)),

P(|ZT
j ε| ≥ s) ≤ 2 exp

{
−

s2

4(nL1 + s)

}
, (A.4)

where L1 = 4(2 + 2c1). Thus, it follows that

P
(

max
1≤j≤t−1

⏐⏐ZT
j ε
⏐⏐ ≥ c2

√
n log p

)
≤ (t − 1) P

(⏐⏐ZT
j ε
⏐⏐ ≥ c2

√
n log p

)
≤ 2 exp

{
log(t − 1)

[
1 −

1
4(L1c−2

2 + c−1
2

√
log p/n)

]}
. (A.5)

Since t < p, log p/n = o(1), when c2 is large enough, 4L1c−2
2 + 4c−1

2
√
log p/n < 1. It turns out that P(Ec

n,t ) → 0, that is
P(En,t ) → 1.

Lemma A.2. Under Conditions in Theorem 1, it follows that

∥̂L(j) − L∥∞ = OP

(√
kn log p/n

)
,

∥D̂(j)
− D∥∞ = OP

(
n−1/2 log1/2 p

)
,

(A.6)

for j = 1, 2.

Proof. It is sufficient to show that (A.6) holds for j = 2. For model (A.1), we obtain by data splitting that y(j)t , Z(j)
t and ε

(j)
t ,

j = 1 and 2, emphasize their dependence on t . Consider the linear model

y(2)t = Z(2)
t βt + ε

(2)
t . (A.7)

By their definitions, the tth row of L is −βT
t , and the tth diagonal element of D is σ 2

t , the error variance in (A.7). Let D1t

is the index of significant predictors that are selected from X1, . . . , Xt−1 based on Z(1)
t , and consider

y(2)t = Z(2)
D1t

βD1t
+ ε

(2)
t . (A.8)

Let β̂
(2)
D1t

be the least squares estimate from (A.8), and σ̂ 2
t is the mean squares errors from (A.8). We set the t-the diagonal

element of D̂ to be σ̂ 2
t , and estimate βD1t

by β̂
(2)
D1t

, and estimate βDc
1t

by 0. To show (A.6), we establish the concentration

inequality for β̂
(2)
D1t

and σ̂ 2
t . To this end, we first derive the following tail probability

P
(β̂(2)

D1t
− βD1t


∞

≥ c1
√
log p/n

)
(A.9)

for some constant c1, and

P
(
max
1≤t≤p

|̂σ 2
t − σ 2

t | ≥ c2
√
log p/n

)
(A.10)

for some constant c2.
By the assumption P(D1t ⊇ D∗) = 1 in Theorem 1 and using the proof of (A.5), it follows that

P
(
max
k∈D1t

⏐⏐⏐Z(2) T
k ε

(2)
t

⏐⏐⏐ ≥ c
√
n log kn

)
≤ 2 exp

{
log kn

[
1 −

1
4(L1c−2 + c−1

√
log kn/n)

]}
(A.11)

When c is large enough, 4(L1c−2
+ c−1√log kn/n) < 1, and the exponential part of the last equation in (A.5) is negative.

Note that

β̂
(2)
D1t

= βD1t + (Z(2)T
D1t

Z(2)
D1t

)−1Z(2)T
D1t

ε
(2)
t . (A.12)

Then

P
(β̂(2)

D1t
− βD1t


∞

≥ c1
√
log p/n

)
= P

(( 2nZ(2)T
D1t

Z(2)
D1t

)−1 2
n
Z(2)T
D1t

ε
(2)
t


∞

≥ c1
√
log p/n

)
Let A = (a1, . . . , ap)T be a p-by-p positive definite matrix and b be a p-dimension vector. Then

∥Ab∥∞ = max
k∈{1,...,p}

⏐⏐aTkb⏐⏐ ≤ ∥b∥∞ max
k

p∑
i=1

|aki| ≤ ∥b∥∞ ∥A∥(1,1) ≤
√
p ∥b∥∞ ∥A∥ .
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By using Condition (A2) and (A.11), we have

P
(β̂(2)

D1t
− βD1t


∞

≥ c1
√
kn log kn/n

)
≤ P

(( 2nZ(2)T
D1t

Z(2)
D1t

)−1

2

2nZ(2)T
D1t

ε
(2)
t


∞

≥ c1k−1/2
n

√
kn log kn/n

)
≤ P

(2nZ(2)T
D1t

ε
(2)
t


∞

≥ ε0c1
√
log kn/n

)
= E

{
P
(Z(2)T

D1t
ε
(2)
t


∞

≥ ε0c1
√
n log kn

⏐⏐⏐X(1)
)}

≤ 2 exp

{
log kn

[
1 −

1
4(L1c−2

1 ε−2
0 + c−1

1 ε−1
0

√
log kn/n)

]}
.

(A.13)

Since k2n = o(n), when c1 is large enough, the right hand side of the above inequality goes to 0. Finally we have

P
(̂L(2) − L


∞

≥ c1
√
kn log kn log p/n

)
= P

(
max

t∈{1,...,p}

β̂(2)
D1t

− βD1t


∞

≥ c1
√
kn log kn log p/n

)
≤ pP

(β̂(2)
D1t

− βD1t


∞

≥ c1
√
kn log p/n

)
≤ 2 exp

{
log p

[
1 −

1
4(L1c−2ε−2

0 + c−1
1 ε−1

0
√
log p/n)

]}
→ 0.

Notice that log p = O(nα0 ), kn = O(n(1−α0)/2), α0 ∈ [0, 1). Thus, the first equation in (A.6) holds.
Next we consider ∥D̂(2)

−D∥∞. Denote d̂(2)t and dt to be the tth element of D̂(2) and D. Thus d̂(2)t = σ̂ 2
t , the mean squared

error of the least squares fit of model (A.7), and dt = σ 2
t , the error variance of model (A.7). As a result, it can be written

as, for t = 1, . . . , p,

d̂(2)t − dt = (n/2)−1ε(2) T (I − P(2)
D1t

)ε(2)
− dt

= (n/2)−1(ε(2) Tε(2)
− 2−1ndt ) − (n/2)−1ε(2) TP(2)

D1t
ε(2)

(A.14)

where P(2)
D1t

is the projection matrix consisting of variables indexed by D1t . Define the events An1 = {D∗
⊂ D1t} and

An2 = {D∗
⊂ D2t}, where D∗ is the true significant variable set of the jth regression model (A.14). For convenience, we

still abbreviate the subscript j in the above equations.

P
(⏐⏐⏐̂d(2)t − dt

⏐⏐⏐ ≥ ν

)
≤ P

(
(n/2)−1

⏐⏐ε(2) Tε(2)
− 2−1ndt

⏐⏐ ≥ ν/2
)

+ P
(
(n/2)−1ε(2) TP(2)

D1t
ε(2)

≥ ν/2
)

.

(A.15)

Similar to Eq. (A.4), the first term follows that

P
(
(n/2)−1

⏐⏐ε(2) Tε(2)
− 2−1ndt

⏐⏐ ≥ ν/2
)

≤ 2 exp
{
−

n2ν2

16(nL2κt + nν)

}
, (A.16)

where κt is the fourth moment of εit . For the second term, we have

P
(
(n/2)−1ε(2) TP(2)

D1t
ε(2)

≥ ν/2
)

≤ P
(
(n/2)−1ε

(2)T
t Z(2)

D1t
(Z(2)T

D1t
Z(2)
D1t

)−1Z(2)T
D1t

ε
(2)
t ≥ ν/4

)
. (A.17)

By using the condition (A2), it follows that

P
(
ε
(2)T
t Z(2)

D1t
(Z(2)T

D1t
Z(2)
D1t

)−1Z(2)T
D1t

ε
(2)
t ≥ ν

)
≤ P

((Z(2)T
D1t

Z(2)
D1t

)−1
 Z(2)T

D1t
ε
(2)
t

2
2

≥ ν

)
≤ P

(Z(2)T
D1t

ε
(2)
t

2
2

≥ λ−1
0 nν

) (A.18)

Since D1t comes from anther dataset I1, it is independent of (Z(2)
t , ε

(2)
t ). Recall the definition of kn. With the probability

one, we haveZ(2)T
D1t

ε
(2)
t

2
2

=

∑
j∈D1t

(x(2)Tj εt )2 ≤ kn max
j∈D1t

⏐⏐⏐x(2)Tj εt

⏐⏐⏐2 , (A.19)
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where x(2)j are the observations in I2 of covariate Xj. Since Xj and εt are uncorrelated, Ex(2)Tj ε
(2)
t = 0. Next consider the

concentration inequality for the term
⏐⏐⏐x(2)Tj ε

(2)
t

⏐⏐⏐. Provided that xj and εt satisfy the condition (A1) and are uncorrelated,
we still have the Bernstein’s inequality

P
(
max
j∈D1t

⏐⏐⏐x(2)Tj ε
(2)
t

⏐⏐⏐ > ν1/2
)

≤ knP

(⏐⏐⏐⏐⏐
n∑

i=1

X (2)
ij ε

(2)
it

⏐⏐⏐⏐⏐ > ν1/2

)
≤ 2kn exp

{
−

ν2
1

16(nL1 + ν1/2)

}
,

where L1 is similarly defined in the lemma A.1. The last inequality holds due to Eq. (A.3) and (A.4). Consequently, we
obtain that

P
(
ε
(2) T
t P(2)

D1t
ε
(2)
t ≥ ν

)
≤ P

(
max
j∈D1t

⏐⏐⏐x(2)Tj ε
(2)
t

⏐⏐⏐2 > λ0k−1
n nν

)
≤ 2kn exp

{
−

λ0k−1
n nν

4nL1 + 4
√

λ0k−1
n nν

}

= 2 exp

⎧⎪⎨⎪⎩log kn

⎛⎜⎝1 −

⎛⎝4L1
nkn log kn

λ0nν
+ 4

√
kn(log kn)2

λ0nν

⎞⎠−1
⎞⎟⎠
⎫⎪⎬⎪⎭ .

(A.20)

Taking ν = c3kn log kn, when c3 is large enough, the last equation in (A.20) will exponentially converge to 0. Together with
(A.15), (A.16) and (A.20), the leading term ε

(2)T
t ε

(2)
t dominates the residual term ε

(2)T
t P(2)

Dt1
ε
(2)
t . Furthermore, we apply the

similar arguments to study the diagonal matrix D̂. Then under event An = An1
⋂

An2 , taking ν = c4
√
log p/n, provided

kn = o(n1/2), we get that

P
(

max
t∈{1,...,p}

⏐⏐⏐̂d(2)t − dt
⏐⏐⏐ ≥ c4

√
log p/n

)
≤ p P

(⏐⏐⏐̂d(2)t − dt
⏐⏐⏐ ≥ c4

√
log p/n

)
≤ 2p exp

{
−

c24n log p
16(L2κkn + c4

√
n log p)

}
+ 2pkn exp

{
−

c4λ0k−1
n n

√
n log p

4L1n + 4(c4λ0k−1
n n

√
n log p)1/2

}
.

(A.21)

Since kn = O((n/log p)1/[3(1+α)]), α > 0 and log p = nγ , 0 ≤ γ < 1, the last two terms in (A.21) go to 0. Therefore,

∥D̂(2)
− D∥∞ = max

t∈{1,...,p}

⏐⏐⏐̂d(2)t − d(2)t

⏐⏐⏐ = OP
(
(n−1 log p)1/2

)
. (A.22)

Proof of Theorem 1. By assumption 0 < ϵ−1
0 ≤ λmin(Ω) ≤ λmax(Ω) ≤ ϵ0, it follows that ∥L∥ = ∥D∥ = O(1). Since D is a

diagonal matrix and RCV estimator D̂ = (̂D(1)
+ D̂(2))/2, it follows thatD̂ − D

 =
D̂ − D


∞

= Op(
√
log p/n). (A.23)

Because of
⏐⏐̂d−1

t − d−1
t

⏐⏐ =
⏐⏐̂dt − dt

⏐⏐ /⏐⏐̂dtdt ⏐⏐ and Êdt = dt ,
D̂−1

− D−1
 ≍

D̂ − D
. Using Hölder’s inequality for matrix

norm, ∥A∥ ≤
√

∥A∥(1,1) ∥A∥(∞,∞) and Lemma A.2., it follows that
̂L − L

 ≤ kn
̂L − L


∞

= OP
(
kn

√
kn log p/n

)
. Use an

inequality in Bickel and Levina (2008a),

∥A1A2A3 − B1B2B3∥

≤

3∑
j=1

∥Aj − Bj∥
∏
k̸=j

∥Bk∥ +

3∑
j=1

∥Bj∥
∏
k̸=j

∥Ak − Bk∥ +

3∑
j=1

∥Aj − Bj∥.
(A.24)

Plugging A1 = AT
3 = L̂,A2 = D̂−1, and B1 = BT

3 = L,B2 = D−1 into (A.24). By Assumption (A3), ∥L∥ = O(1) and
∥D−1

∥ = O(1). Thus,
Ω̂ − Ω

 =
̂LT D̂−1̂L − LTD−1L

 = OP (kn
√
kn log p/n). The proof of Theorem 1 is completed.
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