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GLOBALLY CONSTRUCTED ADAPTIVE LOCAL BASIS SET FOR
SPECTRAL PROJECTORS OF SECOND ORDER DIFFERENTIAL

OPERATORS\ast 

YINGZHOU LI\dagger AND LIN LIN\ddagger 

Abstract. Spectral projectors of second order differential operators play an important role in
quantum physics and other scientific and engineering applications. In order to resolve local features
and to obtain converged results, typically the number of degrees of freedom needed is much larger
than the rank of the spectral projector. This leads to significant cost in terms of both computation
and storage. In this paper, we develop a method to construct a basis set that is adaptive to the
given differential operator. The basis set is systematically improvable, and the local features of
the projector is built into the basis set. As a result the required number of degrees of freedom
is only a small constant times the rank of the projector. The construction of the basis set uses
a randomized procedure and only requires applying the differential operator to a small number of
vectors on the global domain, while each basis function itself is supported on strictly local domains
and is discontinuous across the global domain. The spectral projector on the global domain is
systematically approximated from such a basis set using the discontinuous Galerkin method. The
global construction procedure is very flexible and allows a local basis set to be consistently constructed
even if the operator contains a nonlocal potential term. We verify the effectiveness of the globally
constructed adaptive local basis set using one-, two- and three-dimensional linear problems with local
potentials, as well as a one dimensional nonlinear problem with nonlocal potentials resembling the
Hartree--Fock problem in quantum physics.

Key words. adaptive local basis, discontinuous Galerkin, spectral projector, differential oper-
ator, quantum physics, random sampling
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1. Introduction. Consider the second order differential operator

(1.1) H =  - \Delta + V (x), x \in \Omega ,

where \Omega is a rectangular, bounded domain in Rd with periodic boundary conditions.
V is a real, bounded, and smooth potential function. Then H is a self-adjoint operator
on \Omega . Using the eigen-decomposition H\psi i = \varepsilon i\psi i, a spectral projector P is an integral
operator with its kernel defined as

(1.2) P (x,x\prime ) = 1\scrI (H)(x,x\prime ) =
\sum 
\varepsilon i\in \scrI 

\psi i(x)\psi 
\ast 
i (x

\prime ).

Here \scrI is an interval that can be interpreted as an energy window indicating the
eigenfunctions of interest, 1\scrI (\cdot ) is an indicator function, and \psi \ast 

i (x) is the complex
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GLOBALLY CONSTRUCTED ADAPTIVE LOCAL BASIS SET 93

conjugation of \psi i(x). Denote by n the number of eigenfunctions in the summation
of (1.2); then the rank of P is n. We assume that n is large, which can range
from hundreds to hundreds of thousands. The spectral projector of such a form or
of similar forms arises in many scientific and engineering problems. One notable
example is the widely used Kohn--Sham density functional theory [20, 23] in quantum
physics, where \scrI contains the lowest n eigenvalues of H. Typically, a large number
of degrees of freedom associated with a fine numerical discretization are required
to resolve the local features of \psi i's with sufficient accuracy. This is the case when
standard discretization methods such as finite difference, finite element, discontinuous
Galerkin (DG), planewave, and wavelet type of methods are used. The ratio between
the total number of degrees of freedom (DOFs) and n can range from hundreds to
hundreds of thousands in quantum physics applications [2, 40, 13]. As a consequence,
both the storage cost and the computation cost associated with the spectral projector
P can be large.

1.1. Contribution. In this paper, instead of using a general basis set, we in-
troduce a new basis set that can be specifically tailored to represent the spectral
projector P , for a given operator H and an interval \scrI . The key observation is as
follows. Let us partition \Omega into a suitable collection of nonoverlapping subdomains
called elements. If the size of each element is small enough, then the numerical rank
(also known as (a.k.a.) the approximate rank up to certain truncation tolerance
\epsilon [16]) of each row block of P restricted to any element can be bounded by a small
constant. We shall quantify the details of the statement above later in the paper.
The singular value decomposition of one such row block of P defines the optimal
basis set on an element. Since the local features of the range of P is directly built
into the basis set, we can expect that the number of DOFs in such an optimal ba-
sis set is much smaller than that in a general basis set. However, such an optimal
basis set cannot be practically obtained, since it requires the knowledge of P a pri-
ori. We devise a numerical algorithm to compute a nearly optimal basis set. This
is done by applying an approximate spectral projector, characterized by a matrix
function f(H), to a small number of random vectors defined on the global domain \Omega .
The number of random vectors is only slightly larger than the approximate rank of
f(H) restricted to each element. The range of P is then approximately a subspace
of the span of this basis set, and we find that this is an efficient and accurate way
to generate the basis functions on all elements. Due to the nonoverlapping condi-
tion, each basis function is only supported on one element and is discontinuous on
the global domain \Omega . We use the DG method [4] to patch the basis set to obtain
an approximation to \{ \psi i\} \varepsilon i\in \scrI or P . Motivated by our previous work of the locally
constructed adaptive local basis (LC-ALB) set [29, 49, 21], the basis set in this work
is dubbed the globally constructed adaptive local basis (GC-ALB) set. The LC-ALB
approach has already been demonstrated to be able to be executed efficiently on
massively parallel computers with over 100, 000 processes and to efficiently perform
large scale Kohn--Sham density functional theory calculations for systems over 20, 000
atoms [21, 7].

The GC-ALB set has the following advantages: (1) systematically improvable. As
the number of basis functions in each element increases, the accuracy of the projector
represented in this basis set systematically improves towards the converged spectral
projector. (2) Efficient. The number of basis functions is directly related to the
numerical rank of the row blocks of the projector and is much smaller compared to
the number of DOFs needed to resolve the local shape of \{ \psi i\} in the real space. The

D
ow

nl
oa

de
d 

02
/1

0/
19

 to
 1

31
.2

43
.2

22
.1

80
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

94 YINGZHOU LI AND LIN LIN

strict locality of the basis set can significantly reduce the computation and storage cost
for \{ \psi i\} and P . (3) Flexible. The construction of the basis set only requires matrix-
vector multiplication of H defined on the global domain \Omega . This allows existing
matrix-vector multiplication routines for computing Hv to be readily used without
the need of constructing auxiliary operators. This also facilitates generalizations to
operators beyond the form in (1.1). This can occur, e.g., for H =  - \Delta + V + W ,
where W is an integral operator and hence H becomes a nonlocal operator. Such
an operator arises in applications such as the Kohn--Sham density functional theory
with hybrid exchange-correlation functionals [8, 19] and the Hartree--Fock theory in
quantum physics.

1.2. Related work. In the context of quantum physics, many tailored basis sets
have been designed to reduce the number of DOFs to represent spectral projectors
(or density matrices in physics terminology). Notable examples include the Gaussian
basis set and the atomic orbital basis set [45, 38, 10]. Such basis sets are developed
based on physical intuition and can provide relatively accurate solution with much
reduced number of DOFs compared to more conventional basis sets. However, expert
knowledge is often required to systematically converge the solution. These basis sets
have also been used to ``enrich"" conventional basis sets to achieve a balance between
the small number of DOFs and the systematic convergence property [43, 46]. However,
the number of DOFs in the mixed basis representation is often much larger than those
using Gaussian orbital or atomic orbital basis sets alone.

In order to achieve systematic convergence without sacrificing the number of
DOFs, one may give up the concept of designing a basis set a priori, but instead
generate the basis set on the fly. This has been demonstrated via a number of ap-
proaches based on filtration [29, 33, 41, 12, 37] as well as optimization [44, 30, 11, 36]
principles. A common ingredient of these methods is to truncate the H operator into
a series of operators defined only on different subdomains, and the basis set is then
generated from the truncated operators. This requires each basis function to satisfy
zero Dirichlet boundary conditions at each subdomain, which is not always achievable
without sacrificing the accuracy of the resulting basis set. The method in this paper
only uses matrix-vector multiplication on the global domain, and hence the concern
from the choice of boundary conditions on local domains is completely removed. Our
numerical results indicate that the GC-ALB set can also be more efficient than the
LC-ALB set measured in terms of the number of DOFs to reach the same target
accuracy. The partition of unity method (PUM) [6] is another commonly used option
for enriching the basis set using local basis functions. Compared to PUM, the basis
functions in the DG approach are strictly localized in nonoverlapping elements and
hence are often better conditioned. In fact, one can easily obtain an orthonormal ba-
sis set in the DG approach through a local orthonormalization procedure. This also
facilitates the usage of efficient numerical techniques such as the Chebyshev filtering
techniques [51] for the computation of spectral projectors.

1.3. Outline of the paper. The rest of the paper is organized as follows. We
review the interior penalty formulation of the DG framework and introduce the op-
timal discontinuous basis set and the locally constructed adaptive local basis set in
section 2. We present the globally constructed adaptive local basis set in section 3.
The numerical results are given in section 4, followed by the conclusion and discussion
in section 5.
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2. Preliminaries.

2.1. DG method. Without loss of generality, let \Omega = (0, L)d where d = 1, 2, 3,
and \scrK be a regular partition of \Omega into a set of nonoverlapping elements. For \kappa \in \scrK ,
we denote by \kappa the closure of \kappa . For any two elements \kappa , \kappa \prime \in \scrK , the periodic
boundary condition on \Omega implies that the partition is regular across the boundary
\partial \Omega . We remark that generalizations to other boundary conditions such as Dirichlet
or Neumann boundary conditions, as well as to nonrectangular domains, can be done
with minor modification.

We denote by H1(\kappa ) the standard Sobolev space of L2(\kappa )-functions such that the
first partial derivatives are also in L2(\kappa ). We denote the set of piecewise H1 functions
by

H1(\scrK ) =
\bigl\{ 
v \in L2(\Omega )

\bigm| \bigm| v| \kappa \in H1(\kappa ) \forall \kappa \in \scrK 
\bigr\} 
,

which is also referred to as the broken Sobolev space. For v, w \in H1(\scrK ), the inner
product is

(2.1) (v, w)\scrK =
\sum 
\kappa \in \scrK 

(v, w)\kappa :=
\sum 
\kappa \in \scrK 

\int 
\kappa 

v\ast (x)w(x) dx,

which induces a norm \| v\| \scrK = (v, v)
1
2

\scrK .
For v, w \in H1(\scrK ) and \kappa , \kappa \prime \in \scrK , define the jump and average operators on a face

\kappa \cap \kappa \prime by

(2.2) \{ \{ v\} \} = 1
2 (v| \kappa + v| \kappa \prime ), \{ \{ \nabla v\} \} = 1

2 (\nabla v| \kappa +\nabla v| \kappa \prime ),

and

(2.3) [[v]] = v| \kappa n\kappa + v| \kappa \prime n\kappa \prime , [[\nabla v]] = \nabla v| \kappa \cdot n\kappa +\nabla v| \kappa \prime \cdot n\kappa \prime ,

where n\kappa denotes the exterior unit normal of the element \kappa .
In order to numerically solve the eigenvalue problem

H\psi i = \varepsilon i\psi i,

we need to identify a basis set which spans a subspace of H1(\scrK ). Let N\kappa be the
number of DOFs on \kappa , and the total number of DOFs is N\scrK =

\sum 
\kappa \in \scrK N\kappa . Let

VN (\kappa ) = span \{ \varphi \kappa ,j\} N\kappa 
j=1, where each \varphi \kappa ,j is a function defined on \Omega with compact

support only in \kappa . Hence VN (\kappa ) is a subspace of H1(\scrK ) and is associated with a
finite dimensional approximation for H1(\kappa ). Then VN =

\bigoplus 
\kappa \in \scrK VN (\kappa ) is a finite

dimensional approximation to H1(\scrK ). We also assume all functions \{ \varphi \kappa ,j\} form an
orthonormal set of vectors in the sense that

(2.4) (\varphi \kappa ,j , \varphi \kappa \prime ,j\prime )\scrK = \delta \kappa ,\kappa \prime \delta j,j\prime \forall \kappa , \kappa \prime \in \scrK , 1 \leq j \leq N\kappa , 1 \leq j\prime \leq N\kappa \prime .

The interior penalty formulation of the DG method [4] introduces the following
bilinear form:

(2.5)

a(w, v) =
\sum 
\kappa \in \scrK 

\Bigl[ 
(\nabla w,\nabla v)\kappa + (V w, v)\kappa 

\Bigr] 
+ 1

2

\sum 
\kappa \in \scrK 

\Bigl[ 
 - (\nabla w, [[v]])\partial \kappa  - ([[w]],\nabla v)\partial \kappa 

\Bigr] 
+ 1

2

\sum 
\kappa \in \scrK 

\Bigl[ 
\gamma \kappa ([[w]], [[v]])\partial \kappa 

\Bigr] 
.
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96 YINGZHOU LI AND LIN LIN

Here the terms in the first bracket corresponds to the operator H. The terms in the
second bracket are obtained from integration by parts, and the terms in the third
bracket is a penalty term to guarantee the stability of the bilinear form [5]. The
penalty parameter \gamma \kappa on each element \kappa needs to be large enough, and the value of
\gamma \kappa depends on the choice of basis set VN . For general nonpolynomial basis functions
the value of \gamma \kappa is not known a priori. One possible solution is given in [31] which
provides a formula for evaluating \gamma \kappa on the fly for general nonpolynomial basis sets
based on the solution of eigenvalue problems restricted to each element \kappa .

Using the bilinear form (2.5), the solution of

(2.6) a(\psi VN
i , v) = \varepsilon VN

i (\psi VN
i , v)\scrK \forall v \in VN

gives the numerical solution of eigenpairs of the form (\varepsilon VN
i , \psi VN

i ) and \psi VN
i \in H1(\scrK ).

Equation (2.6) can be equivalently written as a standard linear eigenvalue problem

(2.7)
\sum 
\kappa \prime ,j\prime 

HVN

\kappa ,j;\kappa \prime ,j\prime c\kappa \prime ,j\prime ;i = \varepsilon VN
i c\kappa ,j;i,

where \{ c\kappa ,j;i\} satisfies \psi VN
i =

\sum 
\kappa ,j c\kappa ,j;i\varphi \kappa ,j , and the reduced matrix HVN is of size

N\scrK \times N\scrK with matrix elements

(2.8) HVN

\kappa ,j;\kappa \prime ,j\prime = a(\varphi \kappa ,j , \varphi \kappa \prime ,j\prime ).

Using the solution of (2.7), we can select \varepsilon VN
i \in \scrI and obtain an approximation to

the spectral projector

(2.9) P (x,x\prime ) \approx 
\sum 

\varepsilon 
VN
i \in \scrI 

\psi VN
i (x)

\Bigl( 
\psi VN
i (x\prime )

\Bigr) \ast 
=

\sum 
\kappa ,\kappa \prime ,j,j\prime 

\varphi \kappa ,j(x)\Gamma \kappa ,j;\kappa \prime ,j\prime \varphi 
\ast 
\kappa \prime ,j\prime (x

\prime ).

Here \Gamma is the N\scrK \times N\scrK matrix representation of P in the basis set VN , and

(2.10) \Gamma \kappa ,j;\kappa \prime ,j\prime =
\sum 

\varepsilon 
VN
i \in \scrI 

c\kappa ,j;ic
\ast 
\kappa \prime ,j\prime ;i.

2.2. Optimal discontinuous basis set. The DG method in section 2.1 can
be applied to very general basis set VN . Here we consider the optimal basis set
VN for representing the spectral projector P with a discontinuous basis set. To
simplify the discussion below, we also use linear algebra notation in this section when
necessary. This means that we may not distinguish the kernel of an operator and a
finite dimensional matrix consisting of its nodal values discretized on a fine set of real
space grid points, with the number of grid points denoted by Ng. Then notation such
as x,x\prime can be real space grid points in \Omega , or row/column indices of vectors/matrices.
We call P (x, :) := \{ P (x,x\prime ),x\prime \in \Omega \} a row vector and P (:,x) := \{ P (x\prime ,x),x\prime \in \Omega \} a
column vector, respectively. Similarly, we call P (\kappa , :) := \{ P (x,x\prime ),x \in \kappa ,x\prime \in \Omega \} a
row block and P (:, \kappa ) := \{ P (x\prime ,x),x \in \kappa ,x\prime \in \Omega \} a column block, respectively.

Since the rank of the spectral projector P is n, if we choose a partition \scrK fine
enough we may expect that the numerical rank of each row block P (\kappa , :) becomes
small. In particular, note that the rank of P (\kappa , :) cannot exceed the number of DOFs
in \kappa , which is a constant and is independent of n. Our numerical results indicate that
this rank can often be much lower than the number of DOFs in \kappa in practice. The
singular value decomposition (SVD) of P (\kappa , :) can be written as

(2.11) P (\kappa , :) \approx \Phi \kappa S\kappa V
\ast 
\kappa ,
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where S\kappa is a diagonal matrix containing the leading N\kappa singular values on \kappa , and
\Phi \kappa (x) = [\varphi \kappa ,1(x), . . . , \varphi \kappa ,N\kappa 

(x)] for x \in \kappa . The support of each function \varphi \kappa ,j \in H1(\scrK )
is strictly in \kappa . Since \Phi \kappa 's are generated from the SVD of P , clearly the range of P is
approximately contained in span\{ \varphi \kappa ,j\} . For a given \kappa \in \scrK , the basis \Phi \kappa achieves the
smallest error in 2-norm for representing P (\kappa , :) thanks to the optimal approximation
property of the SVD [16] using N\kappa basis functions. Hence the basis set \{ \Phi \kappa \} \kappa \in \scrK 
can be regarded as the optimal discontinuous basis set for representing P for a given
set of DOFs \{ N\kappa \} \kappa \in \scrK . We illustrate the decomposition (2.11) for the entire spectral
projector P in Figure 2.1.

Fig. 2.1. Construction of the optimal discontinuous basis set for spectral projector. Left: the
spectral projector P is partitioned into 4 row blocks. Middle: each P (\kappa , :) is low-rank factorized via
SVD, i.e., P (\kappa , :) \approx \Phi \kappa (S\kappa V \ast 

\kappa ). Right: subspace VN is assembled from \{ \Phi \kappa \} .

2.3. LC-ALB set. The optimal discontinuous basis set cannot be used for prac-
tical computation, since its construction depends on the knowledge of P . One pos-
sible approximation of such a basis set using nonpolynomial basis functions is the
ALB set [29]. More specifically, we refer to this basis set the LC-ALB set, in order to
distinguish from the globally constructed adaptive local basis set in section 3.

Consider the case that \scrI contains the lowest n eigenvalues of H. In the d-
dimensional space, for each element \kappa , we form an extended element \widetilde \kappa around \kappa ,
and we refer to \widetilde \kappa \setminus \kappa as the buffer region for \kappa . Figure 2.2 illustrates a particular \kappa 
together with its buffer region. On \widetilde \kappa we solve the eigenvalue problem

Fig. 2.2. The entire two-dimensional domain is partitioned into 4 by 4 blocks denoted by the
white blocks. A particular element \kappa and its buffer region \widetilde \kappa \setminus \kappa are denoted as the red block and
yellow block, respectively.

(2.12)  - \Delta \widetilde \varphi i + V \widetilde \varphi i = \lambda i \widetilde \varphi i,
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with certain boundary conditions on \partial \widetilde \kappa . This eigenvalue problem can be solved using
standard basis set such as finite difference, finite elements, or planewaves. For the
numerical examples in this paper, the periodic boundary conditions is applied on
each \partial \widetilde \kappa , and the eigenvalue problem is solved via the pseudospectral method (the
planewave basis set). Note that the size of the extended element \widetilde \kappa is independent of
the size of the global domain and so is the number of basis functions per element. In
order to obtain VN , the eigenfunctions corresponding to lowest N\kappa eigenvalues are
restricted from \widetilde \kappa to \kappa , i.e.,

\varphi i(x) =

\Biggl\{ 
[\widetilde \varphi i] | \kappa (x), x \in \kappa ;

0, otherwise,
i = 1, . . . , N\kappa .

After orthonormalizing \{ \varphi i\} locally on each element \kappa and removing the linearly
dependent functions via a local SVD, the resulting set of orthonormal functions form
the LC-ALB set.

The advantage of the LC-ALB set is that the basis functions for each element \kappa 
can be generated completely independently. However, due to the fictitious boundary
conditions imposed on the extended element \partial \widetilde \kappa , the effectiveness of the LC-ALB
set depends on the size of the buffer region. On one extreme, if the size of the
buffer region is 0 and when the periodic boundary condition is used, since V is in
general not a periodic function on \kappa , the accuracy of the basis set can be severely
affected by the Gibbs phenomena. On the other hand, if the buffer region is chosen
to be too large, then the solution of the local eigenvalue problem (2.12) can become
expensive. In practice we find that choosing \widetilde \kappa to contain \kappa and its 3d - 1 neighboring
elements yields a relatively good balance between efficiency and accuracy, as has been
demonstrated by the usage for solving PDEs [31, 32] and for solving practical Kohn--
Sham equations [29, 21].

3. GC-ALB set. In this section, we propose a new strategy to construct an
approximation to the optimal discontinuous basis set by using matrix-vector multi-
plication involving the operator H defined on the global domain \Omega . This allows us
to overcome the difficulty of choosing the boundary condition and the size of the ex-
tended element as in the LC-ALB set. Numerical results indicate that the resulting
basis set is more effective in terms of the number of DOFs, and the strategy can be
adapted to more general cases such as when V is an integral operator with a nonlocal
kernel.

3.1. Formulation. We first introduce Algorithm 1, which is a variant of, e.g.,
Algorithm 4.1 in [18] for finding the approximate range of a numerically low rank
matrix.

Algorithm 1. Randomized range finder for a given matrix A.

Input: A \in Cp\times q. Approximate rank k.
Output: Left-singular vectors U \in Cp\times k.

1: Generate an orthonormal random matrix R \in Cq\times (k+c) where c is a small over-
sampling constant.

2: Compute W = AR.
3: Perform the SVD for W = USV \ast , with the diagonal entries of S ordered nonin-

creasingly.
4: Return the first k columns of U .

D
ow

nl
oa

de
d 

02
/1

0/
19

 to
 1

31
.2

43
.2

22
.1

80
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GLOBALLY CONSTRUCTED ADAPTIVE LOCAL BASIS SET 99

If we treat A as a dense matrix and apply the SVD directly, the computational
complexity will be \scrO (pqk). On the other hand, Algorithm 1 only requires applying
the matrix A to (k + c) vectors, together with the SVD for W which costs \scrO (pk2)
operations. Hence the randomized range finder algorithm significantly reduces the
cost, if k is much smaller than q and if the matrix vector multiplication Av can be
evaluated quickly. Usually, step 2 is the most expensive operation in Algorithm 1.

Assume \scrK is a partition of \Omega so that each matrix row block P (\kappa , :) is a numerically
low rank matrix. If we apply Algorithm 1 to P (\kappa , :), the output gives highly accurate
approximation to the optimal basis set \{ \Phi \kappa \} for \kappa \in \scrK . Furthermore, the random
matrix R can be repeatedly used for different \kappa \in \scrK . Therefore, the matrix-vector
multiplication for different matrix row blocks P (\kappa , :) do not need to be applied inde-
pendently. Instead it is equivalent to apply the entire matrix P to a random matrix
R and to perform the SVD for each element independently to obtain an approxi-
mate range represented by \Phi \kappa for each P (\kappa , :). The collection of the functions \{ \Phi \kappa \} 
gives the GC-ALB set. Algorithm 2 describes this procedure for a general matrix
A \in CNg\times Ng , where Ng is the number of DOFs corresponding to a fine numerical
discretization such as planewaves.

Algorithm 2. GC-ALB set for a given matrix A.

Input: A \in CNg\times Ng . Partition \scrK = \{ \kappa \} with approximate rank for each element
\{ N\kappa \} .
Output: The basis set \{ \Phi \kappa \} .
1: Generate an orthogonal random matrix R \in CNg\times (max\kappa N\kappa +c), where c is a

small oversampling constant.
2: Compute W = AR.
3: for \kappa \in \scrK do
4: Perform the SVD forW (\kappa , :) = U\kappa S\kappa V

\ast 
\kappa , with the diagonal entries of S\kappa ordered

nonincreasingly.
5: Obtain \Phi \kappa from the first N\kappa columns of U\kappa .
6: end for

When taking the matrix A to be the spectral projector P , Figure 3.1 illustrates
Algorithm 2 for the case that \scrK is partitions the domain \Omega into 4 elements. Comparing
to Figure 2.1 where each block of P is explicitly factorized, Figure 3.1 first applies

Fig. 3.1. GC-ALB functions. Left: the spectral projector P is applied to random vectors R.
Middle-left: the result of the left part contains the column basis of each block. Middle-right: the
column basis of each block is revealed via SVD. Right: subspace VN is assembled by \{ \Phi \kappa \} .
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P to random vectors R and then factorizes each block of PR. Such an extra step is
crucial here. Computing the dense P is expensive in terms of both computation and
memory, whereas the matrix vector multiplication Pv can be efficiently calculated,
which could be orders of magnitudes faster for large problems.

3.2. Rational approximation for matrix-vector multiplication. In order
to construct the GC-ALB set for the projector P , Algorithm 2 requires an efficient
method to compute the matrix-vector multiplication Pv. Since the spectral projector
is a nonsmooth matrix function 1\scrI (\cdot ), the computation of Pv = 1\scrI (H)v may still be a
costly procedure. Fortunately, we only need Algorithm 2 to find an approximate range
of P . Hence we may replace 1\scrI (\cdot ) by a smooth function f(\cdot ), with the requirement
that the support of f covers the interval \scrI , and that f(H)v is relatively easy to
compute. Then we can apply Algorithm 2 to find the approximate range of f(H).
The choice of f is certainly not unique. Here we use a modified Zolotarev's function
to be f(\cdot ), which is an optimal rational approximation to the indicator function as to
be demonstrated below.

Without loss of generality, we assume that \scrI = [a, b] in the following discussion.
Zolotarev's function Z2r(x; \ell ) was initially proposed as the best rational approximant
of type (2r  - 1, 2r) for the signum function sign(x) on the interval [ - 1, - \ell ] \cup [\ell , 1]
with a positive parameter \ell < 1 [52, 1]. Recently, it was composed with a M\"obius
transformation T (x) and a linear transformation [17, 25] to become the best ratio-
nal approximant of type (2r, 2r) for an indicator function 1[a,b](x) on the interval
( - \infty , a - ] \cup [a, b] \cup [b+,+\infty ), where a - and b+ are two parameters such that a - < a
and b < b+. Both the M\"obius transformation T (x) and the parameter \ell in Zolotarev's
function depend on a - and b+. To be more precise, the M\"obius transformation is
defined as follows,

(3.1) T (x) = \gamma 
x - \alpha 

x - \beta 
,

with \alpha \in (a - , a) and \beta \in (b, b+) such that

(3.2) T (a - ) =  - 1, T (a) = 1, T (b) = \ell , and T (b+) =  - \ell .

Here, the variables \alpha , \beta , \gamma , and \ell are determined by a - , a, b, and b+ via solving the
equations in (3.2). Combining with a simple linear transformation, (x + 1)/2, we
arrive at a modified Zolotarev's function,

R(x) =
Z2r(T (x); \ell ) + 1

2

=
M

2

r\sum 
j=1

aj\gamma 

\gamma 2 + c2j - 1
+

1

2
+
M

2

r\sum 
j=1

\biggl( 
wj

x - \sigma j
+

\=wj

x - \=\sigma j

\biggr) 
,

(3.3)

where \gamma is the same as in (3.1); M,aj , cj , wj , and \sigma j are constants as defined in [25];
and \=\cdot denotes the complex conjugate. \{ \sigma j , \=\sigma j\} rj=1 are known as the poles of the
modified Zolotarev's function.

When the modified Zolotarev's function is used as f(\cdot ) and the matrix A in
Algorithm 2 is replaced by f(H), the line 2 in Algorithm 2 can be evaluated via
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f(H)R =

\left(  M

2

r\sum 
j=1

aj\gamma 

\gamma 2 + c2j - 1
+

1

2

\right)  R

+
M

2

r\sum 
j=1

\Bigl( 
wj (H  - \sigma jI)

 - 1
R+ \=wj (H  - \=\sigma jI)

 - 1
R
\Bigr) 
.

(3.4)

This requires solving 2r complex-shifted linear systems, where I denotes the identity
matrix of the same size asH. If bothH andR are real matrices, then \=wj (H  - \=\sigma jI)

 - 1
R

is the complex conjugate of wj (H  - \sigma j)
 - 1
R. Therefore, solving 2r shifted linear sys-

tems in (3.4) can be reduced to solving r shifted linear systems instead. These shifted
linear systems can be solved via standard iterative methods such as generalized min-
imal residual method (GMRES) [42] and minimum residual method (MINRES) [39]
with a preconditioner. The condition number of the shifted linear systems depends
on the minimal distance between the eigenvalues of H and the shifts \{ \sigma j , \=\sigma j\} , as well
as the spectral radius of H. The minimal distance can be systematically controlled
by tuning the smoothness of the function f(\cdot ), through the adjustment of the interval
(a - , a) and (b, b+). When the spectral radius of H is large such as in the case of
the planewave discretization, we find that the inverse of a shifted Laplacian [48] is an
efficient preconditioner to reduce the condition number. Therefore, as shown in the
numerical results, the number of iterations needed for solving the linear systems can
be systematically controlled and relatively small.

Through the discussion above, the choice of a - and b+ remains to be determined.
For a fixed indicator function 1\scrI with the given interval \scrI = [a, b], a - and b+ deter-
mine the quality of the approximation of the modified Zolotarev's function in (3.3).
Generally, if either interval [a - , a] or [b, b+] becomes too narrow, it may require a
large number of terms r in (3.4) to reach the same target accuracy. This translates to
solving more shifted linear systems. However, the situation simplifies when \scrI = [a, b]
covers the lowest n eigenvalues of H, as will be demonstrated in the numerical results.
Let the eigenvalues of H be \lambda 1 \leq \lambda 2 \leq \cdot \cdot \cdot \leq \lambda n \leq \lambda n+1 \leq \cdot \cdot \cdot \leq \lambda Ng

. The parameter
a - can be an arbitrary number in ( - \infty , a), and we can set a - to be  - \infty . The choice
of b+ relies on the spectrum property of H around b. When there is an eigenvalue
gap around b; i.e., \lambda n \leq b < \lambda n+1, b+ is set to be \lambda n+1 or its estimated lower bound
calculated via a few steps of Lanczos method [51]. In the case that H has continuous
spectrum around b, we construct a small gap as b - = b and b+ = b+ \delta for some small
positive constant \delta . The consequence of such a gap is that the approximated projector
of P would include extra eigenvectors with nonzero weights. In practice, we find that
the GC-ALB method is robust to this choice of \delta . Such an observation even allows us
to choose b+ to be larger than \lambda n+1 even in the presence of a gap, in order to reduce r
and hence the computational cost. When the location of \lambda 1, \lambda n is not known a priori,
similar to the situation in Chebyshev filtering techniques [51, 50], the initial guess of
(a, b) can be efficiently obtained through a few Lanczos [24] iterations in practice.

Figure 3.2 gives an example of the modified Zolotarev's function for the approx-
imation of 1\scrI where \scrI = [ - 1, 1]. We assume 1 is in the continuous spectrum of H.
We choose a - =  - \infty and b+ = 1.1 so that r = 16 is sufficient to approximate the
indicator function with error below 10 - 10 in the interval (a, b) \cup (b+,\infty ).

3.3. Complexity. In practical computation of the spectral projector, the follow-
ing two scenarios are often encountered when counting the complexity with respect
to the increase of the number of DOFs.

1. The size of the global domain \Omega is fixed, and the number of DOFs increases
due to the refinement of the discretization.
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Fig. 3.2. An example with \scrI = [ - 1, 1] and (1,\infty ) being the excluded spectrum. A modified
Zolotarev's function is constructed with an artificial gap (1, 1.1) and r = 16. (a) and (b) describe
the locations of the poles on the complex plane. (c) is the modified Zolotarev's function and (d) is
the absolute error comparing to indicator function 1\scrI (\cdot ).

2. The size of the global domain \Omega increases, and the number of DOFs increases
proportionally to the volume of \Omega .

Let M be the number of elements in \scrK , and Ng be the number of DOFs corre-
sponding to a fine discretization on the global domain. For simplicity let all elements
have the same number of basis functions denoted by nb, and the number of DOFs
corresponding to a fine discretization on \kappa is Ng/M . Hence the total number of basis
functions is N\scrK = nbM . We also assume nb is bounded by a constant whileM,Ng can
increase. In scenario 1, we increase Ng and fix M . In scenario 2, Ng is proportional
to M while the ratio Ng/M is fixed.

The computational cost of the matrix vector multiplication associated with ap-
plying f(H) to nb random vectors is NpoleNitcHnb. Here Npole = r is the number
of poles in the rational approximation, Nit is the number of iterations to solve for
each pole, and cH is the cost of per iteration. Since f(H) is a smooth function, Npole

is bounded by a constant independent of Ng,M, nb. When a good preconditioner
is available, Nit can also be bounded by a constant. cH often is dominated by the
matrix-vector multiplication associated with H. Furthermore, when V is a local po-
tential and when the planewave basis set is used, the cost of applying H is dominated
by applying the Laplacian operator which can be performed using the fast Fourier
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transform (FFT). Then cH \sim \scrO (Ng logNg). Since nb is fixed, in both scenarios the
cost of the matrix-vector multiplication is \scrO (Ng logNg). The cost of each SVD in
step 4 is \scrO ((Ng/M)\times (nb + c)2), and the cost for all SVDs is \scrO (Ng(nb + c)2). Hence
the overall complexity for constructing the GC-ALB set is \scrO (Ng logNg). Note that
the LC-ALB approach uses a domain decomposition method, and the computational
complexity of is trivially \scrO (Ng). However, GC-ALB removes redundant calculations
due to overlapping extended elements, and our numerical results indicate that the
efficiency of the GC-ALB approach can be comparable or even faster when compared
to LC-ALB.

The use of the GC-ALB set can also significantly reduce the storage cost for the
spectral projector P . The storage cost for the GC-ALB set is (Ng/M) \times nb \times M =
Ngnb. Viewed as a matrix, the storage cost for P is N2

g . This is generally very
expensive, and P is usually stored using a low rank format as P = \Psi \Psi \ast , where \Psi is of
size Ng\times n. Then the storage cost for the coefficient matrix c\kappa ,j;i as in (2.7) is nbMn,
and the total storage cost for representing P in the GC-ALB set is Ngnb + nbMn.
Hence when the rank of the projector satisfies

n >
nb

1 - nbM/Ng
,

the use of the GC-ALB set leads to reduction in the storage cost for \Psi . In practical
applications such as Kohn--Sham equations, this condition is easy to satisfy since n
increases with respect to the system size, while nb is usually a constant on the order
of 10 \sim 100.

Similarly, the computational cost for \Psi using standard iterative eigensolvers is
asymptotically dominated by the need of orthonormalizing \Psi when n is large. The
complexity of this orthonormalization step scales as \scrO (Ngn

2). In the GC-ALB set is
constructed, the cost for the orthonormalization is reduced to \scrO (nbMn2).

Algorithm 2 for constructing the GC-ALB set can also be efficiently parallelized.
For the computation of W = AR, which is often the most time consuming step, the
solution of the Npole shifted linear systems for each column of R are all independent
of each other. Therefore, the computation can be embarrassingly parallelized up
to Npolenb processors. If more than Npolenb processors are available, they will be
organized into Npolenb processor groups, and the application of H can be parallelized
as well. For the second part of Algorithm 2, all calculations can be carried out
independently on each element.

3.4. Generalization to nonlocal potentials. Another advantage of the GC-
ALB approach is that it handles local and nonlocal potentials on the same footing.
The need of computing spectral projectors associated with nonlocal potentials arise,
for instance, in solving the Hartree--Fock-like equations in quantum chemistry [47,
34]. The Hartree--Fock-like equations require the self-consistent computation of the
projector

(3.5) H[P ] =  - 1

2
\Delta + Vion + VHxc[P ] + VX [P ], P = 1\scrI (H[P ]).

Here the interval \scrI contains the lowest n eigenvalues of H[P ]. Vion, VHxc[P ] are local
potentials, and VX [P ] is an integral operator with a nonlocal kernel. Here [P ] indicates
the nonlinear dependence with respect to P . There is no natural way to consistently
incorporate the nonlocal term VX [P ] in the LC-ALB approach, while GC-ALB only
requires the matrix-vector multiplication associated with VX [P ]. A detailed example
of (3.5) will be given in section 4.2.
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4. Numerical examples. We demonstrate the effectiveness of the GC-ALB
method for finding the spectral projector for a linear problem in one, two, and three
dimensions in section 4.1 and for a nonlinear problem in one dimension in section 4.2.
Numerical examples are performed on Stanford Sherlock cluster bigmem node with
quad socket Intel(R) Xeon(R) CPU E5-4640 @ 2.40GHz and 1.5 TB RAM. In all
numerical examples, we assume the global domain \Omega satisfies the periodic boundary
condition. The pseudospectral discretization (a.k.a. the planewave basis set) provides
the reference solution to the spectral projector, as well as the discretized operator for
performing the matrix-vector multiplication on the global domain in order to construct
the GC-ALB set. We measure the accuracy of the DG based methods in terms of the
relative error of the eigenvalues within the range of the spectral projector compared
to the reference solution, defined as\sum 

i\in \scrI | \varepsilon 
VN
i  - \varepsilon i| \sum 

i\in \scrI | \varepsilon i| 
.

The pseudospectral discretization can be identified with a set of uniform grid to
discretize \Omega . The integrals needed to construct the DG bilinear form is done using the
Legendre--Gauss--Lobatto (LGL) grid. A Fourier interpolation procedure is used to
interpolate functions from the uniform grid to the LGL grid, and a stable barycentric
Lagrange interpolation [9] procedure is used to interpolate functions from the LGL
grid back to the uniform grid when needed. In the rational approximation for the
matrix vector multiplication, 16 poles on the upper half complex plane are actually
solved. Since the potential function V (x) in all numerical examples are real, the rest
of the 16 poles are evaluated via the complex conjugation as in (3.4). For each pole,
we use the GMRES [42] method to solve the associated equations with 30 being the
restarting number and 10 - 12 being the tolerance. The preconditioner is the inverse
of a shifted Laplacian [48] with the pole being the shift, which can be carried out
efficiently using FFTs. The oversampling parameter c in Algorithm 2 is set to be 5.
All pseudospectral discretized systems, including the systems for the reference solu-
tions and the system on each extended element in LC-ALB method, are solved via the
locally optimal block preconditioned conjugate gradient method (LOBPCG) [22], and
the associated tolerance is 10 - 12 measured in terms of the maximal residual norm. We
use the interior penalty formulation to patch the discontinuous basis functions to ap-
proximate the eigenfunctions, and the penalty parameter is determined automatically
by solving a local eigenvalue problem as in [31].

4.1. Linear problems with local potentials.

4.1.1. One-dimensional case. Our first example is a second order differential
operator (1.1) on \Omega = (0, 2\pi ) in one dimension. V is a local potential with four
Gaussian potential wells at positions x = \{ 1.0367, 2.4504, 3.8642, 5.2779\} . The depth
for each well is  - 10.0 whereas the standard deviation is set to be 0.2. Figure 4.1a
shows the potential V (x). The interval \scrI associated with the spectral projector P is
assumed to cover the lowest 16 eigenvalues.

The global domain \Omega is partitioned into 7 elements. Within each element, 40 LGL
grid points are used to evaluate the integrals in the DG bilinear form accurately. The
pseudospectral method discretizes \Omega using 140 planewave basis functions, which can
be identified with a uniform grid with 140 grid points. Under these settings, three
adaptive local basis construction methods are considered, i.e., LC-ALB, GC-ALB
with rational approximation for the projector, and the optimal basis set (Opt). For
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Fig. 4.1. (a) the one-dimensional potential function (b) the relative errors of LC-ALB, GC-
ALB, and Opt method for different number of basis functions.

different methods, we vary the number of basis functions used in each element from 6
to 14. The relative error of the smallest 16 eigenvalues is measured against a reference
solution, which is calculated via the pseudospectral method with 500 planewave basis
functions directly. In the GC-ALB, we set the interval as \scrI = [a, b] = [\lambda 1, \lambda 16] and
the gap parameters as a - =  - \infty and b+ = \lambda 16 + 1.0, where \lambda 1 and \lambda 16 denote the
smallest eigenvalue and the 16th smallest eigenvalue, respectively. Figure 4.1b shows
the relative errors for different methods with varying number of basis functions. More
details are reported in Table 4.1.

Table 4.1
Numerical results for GC-ALB method and LC-ALB method. nb is the maximum number of

basis functions for each element, err is the relative error of the smallest 16 eigenvalues, TBasis and
TDG are the runtime for basis construction and DG solving, respectively, ntot iter is the total number
of iterations for solving linear systems throughout the algorithm.

Method nb err TBasis (sec) TDG (sec) ntot iter

GC-ALB

6 1.41e-04 5.69e-01 1.12e-02 147
8 2.27e-08 6.14e-01 1.06e-02 147
10 1.65e-11 6.22e-01 1.18e-02 148
12 7.64e-14 7.21e-01 1.49e-02 149
14 2.41e-14 7.24e-01 1.26e-02 150

LC-ALB

6 4.45e-04 2.91e-01 1.05e-02 -
8 4.93e-06 3.24e-01 1.06e-02 -
10 2.51e-09 3.59e-01 1.55e-02 -
12 3.71e-11 3.91e-01 1.42e-02 -
14 1.93e-13 4.20e-01 1.25e-02 -

For the one-dimensional operator, as shown in Figure 4.1b, the relative errors
for all three methods decay exponentially as the number of basis functions increases.
As discussed in section 2.2, the Opt basis defines the optimal discontinuous basis
set for a given partition of the global domain and number of basis functions in each
element, and this is confirmed in Figure 4.1b. On the other hand, the performance
both GC-ALB and LC-ALB closely follow the Opt basis. Given the same number
of basis functions, GC-ALB is about one digit more accurate than LC-ALB. When
the number of basis functions is larger than or equal to 14, both methods reach
the numerical accuracy limit and can not be further improved. The runtime of the
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GC-ALB method and LC-ALB are about the same. The numbers of total iterations
are about 148, which means the iteration number for solving each pole in (3.4) is on
average smaller than 10.

4.1.2. Two-dimensional case. This example is a second order differential op-
erator (1.1) on \Omega = (0, 2\pi )2 in two dimensions. V is a local potential with four
Gaussian wells as shown in Figure 4.2a. The depth for each well is  - 10.0 and the
standard deviation is 0.2. Similar to the one-dimensional example, the interval \scrI as-
sociated with the spectral projector P is assumed to cover the lowest 16 eigenvalues.
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Fig. 4.2. (a) the two-dimensional potential function and (b) the relative errors of LC-ALB,
GC-ALB, and Opt method for different number of basis functions.

The global domain \Omega is partitioned into 7 \times 7 elements. Within each element,
40 \times 40 two-dimensional LGL grid points are used to evaluate the integrals in the
DG bilinear form accurately. The pseudospectral method discretizes \Omega using 1402

planewave basis functions, which can be identified with a uniform two-dimensional
grid with 140 \times 140 grid points. Similar name conventions for LC-ALB, GC-ALB,
and Opt are used as in the one-dimensional example. For different methods, we vary
the number of basis functions used in each element from 8 to 22. The relative error
of the smallest 16 eigenvalues is measured against a reference solution, which is cal-
culated via the pseudospectral method with 3002 planewave basis functions directly.
In the GC-ALB, we set the interval as \scrI = [a, b] = [\lambda 1, \lambda 16] and the gap parameters
as a - =  - \infty and b+ = \lambda 16 + 0.1, where \lambda 1 and \lambda 16 denote the smallest eigenvalue
and the 16th smallest eigenvalue. Figure 4.2b shows the relative errors for differ-
ent methods with varying number of basis functions. More details are reported in
Table 4.2.

Figure 4.2b shows that the differences among LC-ALB, GC-ALB, and Opt basis
sets become more significant in two dimensions. The relative errors for Opt and GC-
ALB decreases to the level of 10 - 14 when 16 and 22 basis functions are constructed for
each element, respectively. On the other hand, the relative errors for LC-ALB method
remains around 6.37 \times 10 - 5 when 22 basis functions are used for each element. In
order to achieve a relative error that is below 10 - 12, we also find that 120 basis
functions per element are needed in the LC-ALB approach. Table 4.2 shows that the
cost for the GC-ALB and LC-ALB approaches are comparable in two dimensions. The
fluctuation of the runtime in the LC-ALB approach is mostly due to the fluctuation
of the number of iterations for the LOBPCG solver. In the GC-ALB approach, the
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Table 4.2
Numerical results of GC-ALB method and LC-ALB method for the two-dimensional example.

Method nb err TBasis (sec) TDG (sec) ntot iter

GC-ALB

6 5.27e-02 2.72e+01 2.53e-01 156
8 1.13e-02 2.95e+01 2.80e-01 156
10 2.43e-03 3.37e+01 3.29e-01 156
12 6.67e-04 3.71e+01 3.95e-01 156
14 5.98e-05 3.83e+01 4.76e-01 156
16 9.99e-06 4.15e+01 4.61e-01 156
18 2.98e-06 4.12e+01 6.31e-01 156
20 4.10e-08 4.59e+01 6.51e-01 157
22 6.87e-14 4.99e+01 6.78e-01 156

LC-ALB

6 2.27e-01 1.41e+01 2.21e-01 -
8 2.25e-02 1.49e+01 2.45e-01 -
10 5.53e-03 2.59e+01 3.12e-01 -
12 2.75e-03 2.52e+01 3.75e-01 -
14 1.67e-03 3.30e+01 4.75e-01 -
16 6.95e-04 2.76e+01 5.17e-01 -
18 2.69e-04 2.85e+01 5.90e-01 -
20 1.05e-04 2.90e+01 6.21e-01 -
22 6.37e-05 4.38e+01 7.39e-01 -

number of iterations for solving each pole here is around 9 on average for all cases,
which gives ntot iter to be around 156 in all cases.

Below we demonstrate the weak scaling performance of the GC-ALB set in two
dimensions. Starting from the potential in Figure 4.2a, we increase the size of the
domain by periodically repeating the potential along x and y directions by a factor
of \ell . We vary \ell from 1 to 6, as shown in Table 4.3, and the domain \Omega is extended
from (0, 2\pi )2 to (0, 12\pi )2. The number of planewave basis functions, the number
of elements, as well as the number of eigenvalues to be computed, are proportional
to the size of \Omega . The parameters used within each element are the same as before,
and 20 basis functions are constructed for each element. In terms of the parameters
in Zolotarev's function approximation, we set the interval as \scrI = [a, b] = [\lambda 1, \lambda n]
and the gap parameters as a - =  - \infty and b+ = \lambda n + 0.1, where \lambda 1 and \lambda n denote
the smallest eigenvalue and the nth smallest eigenvalue. The relative error of the
smallest n eigenvalues is measured against reference solutions, which are calculated
via the pseudospectral method with (300\ell )2 planewave basis functions directly. Since
the reference solution for \ell = 6 cannot be finished within the limited runtime on
the Sherlock system, only the GC-ALB runtime and the total iteration number are
reported here.

Table 4.3
Numerical results of the weak scaling of the GC-ALB method for the two-dimensional example.

Here 20 basis functions are used within each element, \ell denotes the number of repeated domain on
each dimension, n denotes the number of calculated eigenvalues.

\ell \Omega n err TBasis (sec) TDG (sec) ntot iter

1 (0, 2\pi )2 16 1.14e-07 4.97e+01 8.74e-01 156
2 (0, 4\pi )2 64 4.47e-07 3.17e+02 6.29e+00 197
3 (0, 6\pi )2 144 5.78e-07 6.21e+02 4.64e+01 209
4 (0, 8\pi )2 256 7.29e-07 2.09e+03 1.87e+02 271
5 (0, 10\pi )2 400 6.33e-07 3.53e+03 6.11e+02 268
6 (0, 12\pi )2 576 - 7.52e+03 1.66e+03 268
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Table 4.3 shows that the relative errors are approximately the same for all \ell .
The runtime, TBasis, for the basis construction in GC-ALB increases proportional to
\ell 2 log \ell , which means TBasis is quasilinear in the number of planewave basis functions
(see Figure 4.3a). Meanwhile TDG, which is the cost for solving the DG problem is
super-linear with respect to the number of planewave basis functions (see Figure 4.3b).
TBasis is consistent with the complexity analysis, and TDG is close aligned with the
complexity analysis when Ng is large. We observe that when \ell is relatively small, the
number of total iterations mildly increases with respect to \ell . As \ell keeps on increasing,
the total iteration number stays around 270.
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Fig. 4.3. Scalings of (a) average single iteration runtime and (b) DG solving time.

4.1.3. Three-dimensional case. This example is a second order differential
operator (1.1) on \Omega = (0, 2\pi )3 in three dimensions. V is a local potential with four
Gaussian wells. The depth for each well is  - 10 whereas the standard deviation is set
to be 0.2. Figure 4.2a shows the isosurface for the potential function V (x, y, z) =  - 1.
Similar to previous examples, the interval \scrI associated with the spectral projector P
is assumed to cover the lowest 16 eigenvalues.

The global domain \Omega is partitioned into 4\times 4\times 4 elements. Within each element,
30\times 30\times 30 three-dimensional LGL grid points are used to evaluate the integrals in
the DG bilinear form accurately. The pseudospectral method discretizes \Omega using 603

planewave basis functions, which can be identified with a uniform three-dimensional
grid with 60 \times 60 \times 60 grid points. Similar name conventions for LC-ALB, GC-
ALB, and Opt are used as in the one-dimensional example. For different methods,
we vary the number of basis functions used in each element from 8 to 24. The
relative error of the smallest 16 eigenvalues is measured against a reference solution,
which is calculated via the pseudospectral method with 1003 planewave basis functions
directly. In the GC-ALB, we set the interval as \scrI = [a, b] = [\lambda 1, \lambda 16] and the gap
parameters as a - =  - \infty and b+ = \lambda 16 + 0.01, where \lambda 1 and \lambda 16 denote the smallest
eigenvalue and the 16th smallest eigenvalue. Figure 4.4b shows the relative errors for
different methods with varying number of basis functions. More details are reported
in Table 4.4.

For three-dimensional systems, the GC-ALB method exhibits even clearer advan-
tage over the LC-ALB method. In Figure 4.4b and Table 4.4, the relative errors for
GC-ALB method decay quickly to the level of 10 - 11, while the asymptotic decay rate
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Fig. 4.4. (a) isosurface plot V (x, y, z) =  - 1 for the three-dimensional potential function and (b)
the relative error of LC-ALB, GC-ALB, and Opt methods with different numbers of basis functions.

Table 4.4
Numerical results of GC-ALB method and LC-ALB method for the three-dimensional example.

Method nb err TBasis (sec) TDG (sec) ntot iter

GC-ALB

6 9.89e-01 1.52e+02 3.07e+00 128
8 5.15e-01 1.60e+02 3.60e+00 128
10 1.01e-01 2.07e+02 4.34e+00 129
12 4.24e-02 1.81e+02 4.87e+00 129
14 1.64e-02 2.43e+02 5.68e+00 129
16 5.76e-03 2.40e+02 6.48e+00 129
18 9.42e-04 2.89e+02 7.66e+00 129
20 2.92e-11 3.04e+02 8.30e+00 129
22 9.63e-12 3.19e+02 8.84e+00 129
24 1.65e-11 3.51e+02 1.23e+01 129

LC-ALB

6 1.62e+00 5.25e+02 3.15e+00 -
8 8.84e-01 2.02e+03 3.31e+00 -
10 7.32e-01 1.54e+03 5.23e+00 -
12 5.73e-01 1.22e+03 6.18e+00 -
14 3.04e-01 1.16e+03 7.05e+00 -
16 6.48e-02 1.26e+03 7.82e+00 -
18 1.79e-02 1.46e+03 9.00e+00 -
20 5.00e-03 1.87e+03 9.19e+00 -
22 5.02e-03 1.81e+03 1.07e+01 -
24 5.04e-03 1.96e+03 1.20e+01 -

of the LC-ALB method is much slower. The GC-ALB approach is also more efficient
in terms of the runtime. For most of the cases in Table 4.4, the GC-ALB method
is about 6 times faster than LC-ALB method. The numbers of the applications of
the operator to test vectors are 129 in GC-ALB method for all different number of
bases. In addition, Table 4.5 shows that the number of DOFs for the GC-ALB set is
much smaller than that needed for the planewave basis set to reach the same level of
accuracy. Here the DOFs for the GC-ALB set is equal to the dimension of the DG
matrix, and the DOFs for the planewave basis set is the number of planewave basis
functions.D
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Table 4.5
Comparison of the degrees of freedom for GC-ALB method and planewave method for the three

dimensional example.

nb err DOFs n err DOFs

GC-ALB

14 1.69e-02 896

planewave

16 9.50e-03 4096
16 4.34e-03 1024 20 2.13e-03 8000
18 1.36e-04 1152 26 1.60e-04 17576
20 9.19e-12 1280 60 1.10e-10 216000

4.2. Nonlinear problems with nonlocal potentials. In order to test the ef-
fectiveness of the GC-ALB approach for nonlocal potentials, we consider the following
model for Hartree--Fock-like equations in one dimension. The Hamiltonian operator
acting on a function \psi is given by

(H[P ]\psi )(x) = - 1

2

d2

dx2
\psi (x) +

\biggl( \int 
K(x, y)(m(y) + P (y, y)) dy

\biggr) 
\psi (x)

 - \alpha 

\int 
K(x, y)P (x, y)\psi (y) dy.

(4.1)

Compared to (3.5), the second term on the right-hand side of (4.1) corresponds to
Vion and VHxc[P ] and is a local potential, while the third term corresponds to VX [P ]

and is a nonlocal potential. Here m(x) =
\sum M

i=1mi(x  - Ri), with the position of the
ith nuclei denoted by Ri. Each function mi(x) takes the form

(4.2) mi(x) =  - Zi\sqrt{} 
2\pi \sigma 2

i

e
 - x2

2\sigma 2
i ,

where Zi is an integer representing the charge of the ith nucleus. Instead of using
a bare Coulomb interaction, which diverges in one dimension, we adopt a Yukawa
kernel

(4.3) K(x, y) =
2\pi e - \mu | x - y| 

\mu \epsilon 0
,

which satisfies the equation

(4.4)  - d2

dx2
K(x, y) + \mu 2K(x, y) =

4\pi 

\epsilon 0
\delta (x - y).

As \mu \rightarrow 0, the Yukawa kernel approaches the bare Coulomb interaction given by
the Poisson equation. The parameters \epsilon 0, \alpha are used to ensure that the contribution
from different terms are comparable. And the notations here are different from the
ones in section 3.2. In this example, we choose \Omega = (0, 80), M = 8, \sigma i = 3.0,
Zi = 2.0, \mu = 0.01, \epsilon 0 = 10, \alpha = 0.05. Besides these parameters, for the Zolotarev's
function approximation in every iteration, 16 poles are used; a - =  - \infty , a is the
smallest eigenvalue calculated each iteration; b =  - 3.388 which is the converged
Fermi level; and b+ = 0. The self-consistent spectral projector P is given by the
lowest 16 eigenfunctions of H[P ].
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In order to find the self-consistent spectral projector, we use a two level self
consistent field (SCF) iteration that is commonly adopted to solve such Hartree--Fock-
like equations [14, 26]. The SCF iterations are split into an outer loop and an inner
loop. At the beginning of each outer SCF loop, we update the nonlocal potential
VX [P ] using a fixed point iteration; i.e., P is updated by the converged spectral
projector P from the inner SCF loop. In the inner SCF loop, we fix the nonlocal
potential VX [P ] as if it were independent of P and update the local potential via the
diagonal part of the projector P (x, x) using the Anderson mixing method for charge
mixing [3]. The convergence of the outer iteration is measured by the convergence of
the exchange energy defined as

(4.5) EX =  - 
\int 
P (x, y)K(x, y)P (x, y) dx dy.

In each inner SCF iteration, we apply the GC-ALB method with Zolotarev's func-
tion approximation together with the DG method to construct the spectral projector
efficiently, which is denoted as ``GC-ALB"" in the rest of this paper. As a compari-
son, we also conduct the inner and outer SCF iterations with the spectral projector
calculated via planewave method, which is denoted as ``planewave.""

Figure 4.5a and b show the convergence behavior of the two level SCF iterations
using the GC-ALB set. Figure 4.5a shows the relative error of the total local potential
for each inner SCF iteration, where x-axis is the total number of inner SCF iterations
and each line represents the inner SCF iterations for an outer SCF iteration. The
jump between the end of previous line and beginning of the next line is introduced by
the update of the nonlocal potential. This is a typical behavior in the two-level SCF
iteration for solving Hartree--Fock-like equations. As the converged spectral projector
in the inner SCF iteration getting closer to the final convergence, the magnitude of
the jump also decreases. Figure 4.5b shows the relative error of the energy associated
with the nonlocal potential for each outer SCF iteration.
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Fig. 4.5. GC-ALB: (a) The relative errors of the total local potential. Each point is a inner
SCF iteration whereas each color line indicates a outer SCF iteration. (b) The relative errors of the
energy associated with the nonlocal potential.

Table 4.6 indicates that the calculation using both the GC-ALB set and the
planewave basis set converges within 11 outer SCF iterations to a relative error around
6 \times 10 - 6, and the number of inner iterations in each outer iteration is comparable
in both methods. This indicates that the use of the GC-ALB set does not increase
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Table 4.6
Comparison of the GC-ALB method and the planewave method in SCF iteration. The Hamil-

tonian operator defined in (4.1) is solved by two levels of SCF iteration combined with either the
GC-ALB method or the planewave method. No. SCFin denotes the number of inner SCF iterations,
EX denotes the energy associated with the nonlocal potential, and rel err is the relative change of
the EX every outer SCF iteration.

Outer GC-ALB Planewave
SCF No. SCFin EX rel err No. SCFin EX rel err

1 10 -2.825403 1.77e-02 8 -2.825400 1.77e-02
2 7 -2.841545 5.68e-03 7 -2.841543 5.68e-03
3 6 -2.849557 2.81e-03 6 -2.849555 2.81e-03
4 5 -2.852925 1.18e-03 5 -2.852922 1.18e-03
5 6 -2.854591 5.84e-04 6 -2.854588 5.84e-04
6 5 -2.855331 2.59e-04 4 -2.855328 2.59e-04
7 6 -2.855691 1.26e-04 6 -2.855688 1.26e-04
8 5 -2.855855 5.73e-05 5 -2.855852 5.73e-05
9 5 -2.855934 2.77e-05 4 -2.855932 2.80e-05
10 4 -2.855970 1.27e-05 5 -2.855968 1.24e-05
11 3 -2.855989 6.45e-06 2 -2.855986 6.49e-06

the number of the SCF iterations in the nonlinear setup. The relative error from
both methods also behaves similarly throughout the SCF iteration. The spectral pro-
jector, as well as electron density defined to be diagonal of the converged projector
\rho (x) = P (x, x), for both methods are given in Figure 4.6. The pointwise relative
differences for the projector and the density are provided at the last row of Fig-
ure 4.6, where the errors are about the same level as that of the relative error in
Table 4.6.

5. Conclusion. We developed a new method to construct an efficient basis set to
represent the spectral projector of a second order differential operator H with reduced
DOFs. For a given partition of the global domain into subdomains called elements,
the optimal discontinuous basis set on any element can be given by the SVD of the
matrix row block of the spectral projector associated with the element. Our GC-ALB
can efficiently approximate such an optimal basis set in practice. The GC-ALB set
can be obtained by only applying a matrix function f(H) to a small number of random
vectors on the global domain, without the need of any buffer areas to define a series
of local problems. The GC-ALB set can be used in the context of the DG framework
to approximate the spectral projector on the global domain. When the potential
is local, the reduced DG matrix is a block sparse matrix. Hence the evaluation
of the matrix representation of the spectral projector can be evaluated using fast
methods based on sparse linear algebra operations, such as the pole expansion and
selected inversion method [28, 27], and the purification methods [35, 15]. Our method
is also flexible and can be applied to operators with local and nonlocal potentials.
We verified the effectiveness of the basis set using one-, two-, and three-dimensional
linear problems, as well as one-dimensional nonlocal, as well as nonlinear problems
resembling Hartree--Fock problems. Numerical results indicate that the GC-ALB set
achieve nearly optimal performance in terms of the number of DOFs per element,
which reduces both the storage and the computational cost. In the near future, we
will explore the usage of the GC-ALB set for Kohn--Sham density functional theory
calculations for real materials.
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Fig. 4.6. (a) Kernel of the spectral projector and (b) electron density associated with the one-
dimensional model for Hartree--Fock-like equation calculated by the GC-ALB method, whereas (c)
kernel of the spectral projector and (d) electron density are calculated by the planewave method. (e)
is the absolute difference between (a) and (c), and (f) is the absolute difference between (b) and (d).
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