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1. Introduction

Kohn–Sham density functional theory (Hohenberg and Kohn 1964, Kohn
and Sham 1965) (DFT) is today the most widely used electronic struc-
ture theory in chemistry, materials science and other related fields, and was
recognized by the Nobel Prize in Chemistry awarded to Walter Kohn in
1998. Despite being developed in the mid-1960s, Kohn–Sham DFT was
not a popular approach until the beginning of the 1980s, when practical
exchange-correlation functionals obtained from quantum Monte Carlo cal-
culations (Ceperley and Alder 1980, Perdew and Zunger 1981) became avail-
able. Together with the development of more advanced exchange-correlation
functionals (e.g. Lee, Yang and Parr 1988, Becke 1993, Perdew, Burke and
Ernzerhof 1996a, Heyd, Scuseria and Ernzerhof 2003), Kohn–Sham DFT
has been demonstrated to be capable of predicting chemical and material
properties for a wide range of systems from first principles. More specifically,
under the Born–Oppenheimer approximation that the nuclei are treated as
classical particles, in principle the only input needed for Kohn–Sham DFT
calculations is the most basic information concerning the system: atomic
species and atomic positions.

The success of Kohn–Sham DFT cannot be separated from the vast
improvement in numerical algorithms and computer architecture, partic-
ularly during the 1980s and 1990s. Some relatively basic ideas, such as us-
ing the conjugate gradient method for solving eigenvalue problems (Payne
et al. 1992), efficient use of the planewave basis set (i.e. pseudospectral
methods) (Kresse and Furthmüller 1996), and density matrix based meth-
ods (i.e. computing matrix functions) (Goedecker 1999), have been cited
thousands to tens of thousands of times. Unfortunately, to a large extent ap-
plied mathematicians have missed this ‘golden era’ of developing numerical
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methods for Kohn–Sham DFT, so most numerical methods used in practical
calculations were developed by physicists and chemists. By the middle of the
2000s, many numerical methods widely used today had been implemented in
commercial or open source software packages, such as ABINIT (Gonze et al.
2016), CASTEP (Clark et al. 2005), FHI-aims (Blum et al. 2009), Molpro
(Werner et al. 2012), NWChem (Valiev et al. 2010), Qbox (Gygi 2008),
QChem (Shao et al. 2015), Quantum ESPRESSO (Giannozzi et al. 2017),
SIESTA (Soler et al. 2002) and VASP (Kresse and Furthmüller 1996), to
name just a few. In fact, the availability of these robust and mature soft-
ware packages is the driving force behind the wide range of applicability of
Kohn–Sham DFT for practical physical and chemical systems.

On the other hand, as Kohn–Sham DFT is being applied to ever larger and
more complex quantum systems, new numerical challenges have emerged
and thus provided new opportunities for further algorithmic development.
For instance, the cost of orthogonalizing Kohn–Sham orbitals is typically
not noticeable for small systems. However, the computational cost of this
step scales cubically with respect to the system size, and quickly dominates
the computational cost for large systems, often known as the ‘cubic scaling
wall’. Due to the cubic scaling wall, most practical electronic structure cal-
culations are performed for systems with tens to hundreds of atoms, and can
occasionally reach a few thousand atoms. Since the orthogonalization step is
so inherently wired into all eigensolvers, any algorithm with reduced asymp-
totic complexity must necessarily not seek for an eigen-decomposition of the
Kohn–Sham Hamiltonian. It should be noted that most electronic structure
software packages used today are designed around the eigensolver. Hence
avoiding the eigensolver entirely implies major changes for the algorithmic
and software flow. With massively parallel high performance computers
(HPC) becoming more widely available, it is also crucial to develop scal-
able numerical algorithms that can be efficiently scaled to tens of thousands
of computational processors to tackle challenging electronic structure prob-
lems within a reasonable amount of wall clock time. With the development
of low complexity and scalable new algorithms in the past decade, it is
now possible to carry out electronic structure calculations for systems with
tens of thousands of atoms, even for difficult metallic systems (i.e. systems
without an energy band gap).

Another trend in recent developments of DFT is to move towards more
complex exchange-correlation functionals. This is because simple exchange-
correlation functionals, such as those based on local density approximation
(LDA) and generalized gradient approximation (GGA), cannot reach ‘chem-
ical accuracy’ (error of the energy below 1 kcal/mol) needed for quantitative
predictability for many important systems, such as transition metal oxides.
To this end, more involved functionals on the fourth and fifth rungs of
the ‘Jacob’s ladder’ of exchange-correlation functionals (see the discussion
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in Section 2.5) become useful, and sometimes indispensable, for treating
such systems. These functionals not only have a more complex formula-
tion but may also fundamentally change the mathematical and hence al-
gorithmic structure of the Kohn–Sham DFT problem. For instance, Kohn–
Sham DFT with rung-1 to rung-3 functionals can be solved as a nonlin-
ear eigenvalue problem with differential operators. The operator becomes
an integro-differential operator when rung-4 functionals (also called hybrid
functionals) are used, and the very notion of self-consistency becomes diffi-
cult to define properly when rung-5 functionals are used. We remark that
practical electronic structure calculations with such functionals have only
been pursued for the past decade in the physics community, at least when
a large basis set such as the planewave basis set is concerned. The compu-
tational scaling of hybrid functional calculations is also cubic with respect
to the system size, the same as that of the LDA and GGA functionals.
However, hybrid functionals involve the Fock exchange operator, and the
computational time of hybrid functional calculations can often be more than
20 times larger than that of LDA and GGA calculations. Therefore hybrid
functional calculations are typically done for systems with tens to hundreds
of atoms. Rung-5 functional calculations are even more expensive. This
brings new opportunities for designing better algorithms to overcome the
computational bottleneck with more complex functionals. With the devel-
opment of new algorithms, the cost of hybrid functional calculations can
now be reduced to within twice the cost of GGA calculations, thus enabling
hybrid functional calculations for systems with thousands of atoms.

As a final example, the surge of ‘high-throughput computing’, such as
that driven by the materials genome initiative (https://www.mgi.gov), re-
quires hundreds of thousands of calculations to be performed automatically
to form a vast database. This requires all steps of numerical algorithms to
be performed in a robust fashion. Many numerical algorithms in electronic
structure calculations were not designed to meet this criterion, as they often
require many ‘knobs’, i.e. tuning parameters to reach convergence. Some-
times the tuning parameters require heavy human intervention and expert
knowledge of the system. Therefore, the design of numerical methods to
perform the same task, but in a more robust and automatic fashion, also
raises new challenges.

There have been numerous advances in the past two decades towards
addressing such new challenges, including our own attempts to reduce com-
putational complexity, improve parallel scalability and design robust al-
gorithms in a number of directions. This review aims to introduce both basic
concepts and recent developments in numerical methods for solving Kohn–
Sham DFT to a mathematical audience. Although we will try to cover the
whole landscape of DFT algorithms, the discussion is heavily biased towards
our own work and view of the field, and some omissions are inevitable.
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For simplicity, unless otherwise specified, we will consider isolated, charge-
neutral, spinless systems throughout this review. Most methods we discuss
can be easily generalized to periodic systems with Γ-point sampling of the
Brillouin zone (i.e. systems with periodic boundary conditions), and of-
ten further to periodic systems with general k-point sampling strategies,
charged systems, as well as spin-polarized systems. We will also focus on
the so-called ‘single-shot’ DFT calculations, i.e., calculations for a single
given atomic configuration. The algorithms can then be used naturally
when calculations for multiple – or even massively many – atomic config-
urations are needed, such as in the context of geometry optimization and
ab initio molecular dynamics simulation (Car and Parrinello 1985, Marx
and Hutter 2009). For a more general introduction to density functional
theory, we refer readers to books by Parr and Yang (1989), Dreizler and
Gross (1990), Eschrig (1996), Kaxiras (2003), Martin (2008) and Lin and
Lu (2019).

The basic theory and formalism of Kohn–Sham DFT will be introduced
in Section 2. The rest of the paper discusses components of the DFT calcu-
lations: numerical discretization in Section 3, evaluation of the Kohn–Sham
maps in Sections 5 and 6, and self-consistent iteration in Section 7. In ad-
dition, Section 4 is devoted to several algorithmic tools that have proved to
be helpful in a number of contexts in electronic structure calculations. Sec-
tion 8 concludes with an outlook for trends and future developments. The
list of notations is given at the end of the paper for readers’ convenience.

2. Theory and formulation

2.1. Quantum many-body problem

In principle, all particles in a physical system, including both nuclei and elec-
trons, are quantum particles and should be treated using quantum mechan-
ics. Since the mass of the lightest element in the periodic table (hydrogen)
is around 2000 times larger than that of the electron, the commonly used
Born–Oppenheimer approximation assumes that the nuclei can be described
by classical mechanics. This is often an accurate approximation, and will
be assumed throughout this review.

In this review, we are mostly concerned with isolated systems surrounded
by a vacuum in R3. This is also called the ‘free space’ boundary condition.
Other settings such as the Dirichlet boundary condition in a finite-sized box
can be discussed similarly. We use atomic units (a.u.), i.e. me = e = ~ =
1/(4πε0) = kB = 1, where me is the mass of an electron, e is the unit charge,
~ is the reduced Planck constant, 1/(4πε0) is the Coulomb constant, and kB
is the Boltzmann constant. Under the Born–Oppenheimer approximation,
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the many-body Hamiltonian with M nuclei and N electrons in R3 is

H =

N∑
i=1

−1

2
∆ri +

N∑
i=1

Vext(ri; {RI}) +

N∑
i<j

1

|ri − rj |
+

M∑
I<J

ZIZJ
|RI −RJ |

≡ T̂ + V̂ext + V̂ee + EII, (2.1)

where the first three terms on the second line are the kinetic energy, external
potential and electron–electron interactions respectively:

T̂ =

N∑
i=1

−1

2
∆ri , V̂ext =

N∑
i=1

Vext(ri; {RI}), V̂ee =

N∑
i<j

1

|ri − rj |
.

For a given atomic configuration {RI}, the ion–ion interaction simply adds
a constant shift to the Hamiltonian with

EII =
M∑
I<J

ZIZJ
|RI −RJ |

.

We remark that the treatment of periodic systems (more specifically, with
a Γ-point only sampling strategy of the Brillouin zone) is very similar to
that for isolated systems. Even for isolated charge-neutral systems, periodic
boundary conditions are often used, since they give reasonably accurate ap-
proximations as long as certain care is taken with the electrostatic energy
(Makov and Payne 1995). Periodic boundary conditions are also more nat-
ural for certain numerical methods, such as planewave methods, even for
molecular systems.

The ground state is often the most important state. This is because the
energy gap E1 − E0 for many electron systems is of the order of electron
volts (eV), or 104 Kelvin when the unit of measurement is kBT (kB is
the Boltzmann constant). This is much greater than room temperature
(300 Kelvin). According to the Boltzmann distribution, the probability of
the quantum state Ei being occupied is e−βEi/Z, where β is the inverse
temperature, and Z is a normalization factor called the partition function.
Hence the ground state is often the dominating state. Even for certain
systems where E1 − E0 is small or zero, the ground state can still be very
important. This paper focuses on the calculation of the ground-state energy.
In the discussion below, we will simply refer to E0 as E for notational
simplicity.

Let xi = (ri, σi) denote both the spatial and spin degrees of freedom for
the ith electron (though electrons are indistinguishable quantum particles).
The many-body ground-state wavefunction Ψ(x1, . . . ,xN ) is associated with
the smallest eigenvalue E of the linear eigenvalue problem

HΨ = EΨ. (2.2)
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Due to the Pauli exclusion principle for the identical electrons, Ψ is a totally
anti-symmetric function:

Ψ(x1, . . . ,xi, . . . ,xj , . . . ,xN ) = −Ψ(x1, . . . ,xj , . . . ,xi, . . . ,xN ). (2.3)

The Courant–Fisher minimax theorem states that eigenvalue problem (2.2)
can also be viewed as an optimization problem,

E = inf
|Ψ〉∈AN ,〈Ψ|Ψ〉=1

〈Ψ|H|Ψ〉, (2.4)

where AN is the set of totally anti-symmetric functions. Equation (2.4) is
the variational principle for the ground state in quantum mechanics. Here

〈Ψ|Ψ〉 :=

∫
Ψ∗(x1, . . . ,xN )Ψ(x1, . . . ,xN ) dx1 · · ·xN = 1 (2.5)

defines the normalization condition for the many-body wavefunction, and
the integration with respect to a multi-index x should be interpreted as∫

f(x) dx :=
∑

σ∈{↑,↓}

∫
R3

f(r, σ) dr. (2.6)

In order to solve the quantum many-body problem, it appears at first sight
that one has to know the quantum many-body wavefunction. Surprisingly,
this is at least formally not the case if we are only interested in the ground
state. First established by Hohenberg and Kohn (1964), density functional
theory (DFT) discovered that the many-body electron density, defined by

ρ(r) = N
∑

σ∈{↑,↓}

∫
|Ψ((r, σ),x2, . . . ,xn)|2 dx2 · · · dxN , (2.7)

is all one needs to determine the quantum many-body ground state. More
specifically, assuming the ground state is non-degenerate, there is a one-to-
one correspondence between the electron density ρ and the external poten-
tial Vext, so that knowledge of ρ is sufficient to reconstruct the many-body
wavefunction Ψ. Shortly thereafter, Mermin (1965) proposed the DFT for-
mulation in the finite temperature set-up to include thermal effects as well.
The most widely used form of DFT, called Kohn–Sham DFT, was proposed
by Kohn and Sham (1965). Below we introduce DFT from the perspective
of constrained minimization, which was first proposed by Levy (1979) and
then rigorously established by Lieb (1983). We also remark that there is as
yet no analogous mathematically rigorous theory of DFT for excited states.
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412 L. Lin, J. Lu and L. Ying

2.2. Kohn–Sham density functional theory

According to the variational principle (2.4), the ground-state energy can be
written as a constrained minimization problem:

E = inf
Ψ∈AN ,〈Ψ|Ψ〉=1

〈Ψ|H|Ψ〉 = inf
ρ∈JN

{
inf

Ψ∈AN
Ψ7→ρ

〈Ψ|H|Ψ〉

}
. (2.8)

Here, on the right-hand side, a constrained minimization given the density
ρ is first carried out for the wavefunction Ψ. The resulting value is then
optimized as a functional of ρ within the function space

JN =

{
ρ ≥ 0 :

∫
ρ(r) dr = N, ∇√ρ ∈ L2(R3)

}
. (2.9)

Here the condition ∇√ρ ∈ L2(R3) is implied by the finiteness of the kinetic
energy, since

1

2

∫
|∇√ρ(r)|2 dr ≤ N

2

∑
σ∈{↑,↓}

∫
|∇rΨ((r, σ),x2, . . . ,xn)|2 dx1 · · · dxN

= 〈Ψ|T̂ |Ψ〉. (2.10)

It can also be proved that ρ ∈ JN implies that there exists at least one
Ψ ∈ AN with finite kinetic energy such that Ψ 7→ ρ (Lieb 1983).

Therefore the constrained minimization procedure is well-defined, and we
have

E = inf
ρ∈JN

{
inf

Ψ∈AN
Ψ7→ρ

〈Ψ|(T̂ + V̂ee)|Ψ〉+

∫
ρ(r)Vext(r) dr

}
+ EII (2.11)

= inf
ρ∈JN

{
FLL[ρ] +

∫
ρ(r)Vext(r) dr

}
+ EII. (2.12)

Here, together with equation (2.7), we have used

〈Ψ|V̂ext|Ψ〉 = N

∫
|Ψ(x1, . . . ,xN )|2Vext(r1) dx1 · · · dxN =

∫
ρ(r)Vext(r) dr.

(2.13)

The functional FLL[ρ] is universal, since it depends only on the kinetic and
electron–electron repulsion but not on the external potential Vext, which
is specified by the atomic configuration. Another important consequence
of density functional theory, often known as the Hohenberg–Kohn theorem
(Hohenberg and Kohn 1964), is that if ρ? is the minimizer of (2.12) and
if Ψ? is the unique minimizer that results in FLL[ρ?], then the many-body
ground-state wavefunction Ψ? is determined by the electron density ρ?. In
other words, if the ground state is non-degenerate, then there is a one-to-
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one mapping between the ground-state electron density and the many-body
ground-state wavefunction. All that remains to make DFT useful is thus a
good explicit expression that approximates the functional FLL[ρ].

Since the very early days of quantum mechanics, physicists have been
seeking the approximation to FLL[ρ] (before it was connected to density
functional theory) pioneered by Thomas (1927) and Fermi (1927). Until
the 1960s, efforts were mainly restricted to uniform electron gas, that is, the
system is in a periodic box with a constant external potential field, where
many calculations can be done analytically. Despite significant progress
in the past few decades, modelling FLL[ρ] remains a very difficult task.
To appreciate the difficulty, just recall the atomic shell structure from the
eigenfunctions of the Hamiltonian operator of a hydrogen atom. It is already
highly non-trivial to find such a mapping for a single atom. Furthermore, in
chemistry and materials science, the absolute value of the energy is usually
not the most important quantity. It is the relative energy difference that
determines whether or not a chemical process should occur. This often
requires the ground-state energy to be calculated with 99.9% accuracy or
higher.

The breakthrough of density functional theory is generally attributed
to Kohn and Sham (1965), who proposed combining DFT with single-
particle orbital structure. Given N one-particle orthonormal spin-orbitals
{ψi(x)}Ni=1, that is,

〈ψi|ψj〉 :=

∫
ψ∗i (x)ψj(x) dx = δij , i, j = 1, . . . , N, (2.14)

the associated Slater determinant is given by

Ψ(x1, . . . ,xN ) =
1√
N !

det


ψ1(x1) ψ1(x2) · · · ψ1(xN )
ψ2(x1) ψ2(x2) · · · ψ2(xN )

...
...

. . .
...

ψN (x1) ψN (x2) · · · ψN (xN )

, (2.15)

which is anti-symmetric by the property of determinants. The computation
of the electron density (2.7) with respect to a Slater determinant can be
simplified as

ρ(r) =
N∑
i=1

∑
σ∈{↑,↓}

|ψi(r, σ)|2. (2.16)

Using constrained minimization over Slater determinants, the Kohn–Sham
proposal can be interpreted as

FLL[ρ] = inf
Ψ∈A0

N
Ψ7→ρ

〈Ψ|T̂ |Ψ〉+
1

2

∫
ρ(r)ρ(r′)

|r− r′|
dr dr′ + Exc[ρ], (2.17)
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Figure 2.1. (Credit: Burke 2012.) A ‘zoo’ of exchange-correlation functionals in
DFT.

where A0
N is the set of Slater determinants with N orbitals. It turns out that

for any ρ ∈ JN there exists at least one Ψ ∈ A0
N that gives the density ρ,

and the constrained minimization of the kinetic energy term is well-defined
(Lieb 1983). In equation (2.17), the first term corresponds to the kinetic
energy from N non-interacting single-particle orbitals. The second term
is the Hartree energy, which characterizes the electron–electron repulsion
energy at the mean-field level. The last term Exc[ρ], called the exchange-
correlation functional, at first glance simply defines whatever we do not
know about FLL[ρ]. The insight from Kohn and Sham (1965) is that the
kinetic and Hartree terms often account for more than 95% of the total
energy. Therefore the approximation to Exc[ρ], while still very difficult, is
a much easier task than approximating FLL[ρ] directly. As a result, the
approximation to the ground-state energy in the Kohn–Sham DFT is given
by minimizing over the Kohn–Sham energy functional:

EKS = inf
Ψ∈A0

N

{
〈Ψ|T̂ |Ψ〉+

1

2

∫
ρ(r)ρ(r′)

|r− r′|
dr dr′

+ Exc[ρ] +

∫
ρ(r)Vext(r) dr

}
+ EII, (2.18)

with ρ given by the Slater determinant Ψ. Writing the kinetic energy of the
Slater determinant more explicitly, we have

EKS = inf
{ψi}Ni=1,〈ψi|ψj〉=δij

FKS({ψi}) + EII (2.19)
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Figure 2.2. The ‘Jacob’s ladder’ of exchange-correlation functionals.

with

FKS({ψi}) =
1

2

N∑
i=1

∫
|∇rψi(x)|2 dx +

∫
ρ(r)Vext(r) dr

+
1

2

∫
ρ(r)ρ(r′)

|r− r′|
dr dr′ + Exc[ρ]. (2.20)

The Kohn–Sham DFT would in principle be exact if we had access to
the exact exchange-correlation functional Exc[ρ]. The exchange-correlation
functional is also universal, i.e. independent of the external potential Vext

and hence the atomic configuration. In order to use Kohn–Sham DFT
in practice, the exchange-correlation functional Exc must be approximated.
Starting from the local density approximation proposed by Kohn and Sham,
a ‘zoo’ of exchange-correlation functionals has been proposed: see an incom-
plete list in Figure 2.1 by Burke (2012).

According to Perdew (Perdew and Schmidt 2001, Perdew 2013), these
exchange-correlation functionals can be organized using a ‘Jacob’s ladder’
for exchange-correlation functionals (Figure 2.2). When no exchange-correl-
ation functional is used, Kohn–Sham DFT is essentially a Hartree approxim-
ation (with Pauli’s exclusion principle). In such a case, DFT is significantly
less accurate than Hartree–Fock theory (Szabo and Ostlund 1989), and the
latter is often regarded as the starting point of quantum chemistry. This
is referred to as ‘Hartree’s hell’. Moving up the ladder, the accuracy of
the DFT calculation generally improves towards the ‘heaven of chemical
accuracy’ of 1 kcal/mol (or 1.6 × 10−3 Hartree per atom) when compared
to experimental results. Correspondingly, the functional forms become in-
creasingly more complex, which leads to higher computational costs.
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On the first rung of the ladder, we have the local density approximation
(LDA), where Exc is modelled locally by the electron density

Exc[ρ] =

∫
εxc(ρ(r)) dr. (2.21)

Note that the integrand εxc(ρ(r)) depends only on the electron density at r.
The most widely used LDA exchange-correlation functional is obtained by
parametrizing the result from the quantum Monte Carlo simulation (QMC)
obtained for the uniform electron gas system in the 1980s (Ceperley and
Alder 1980, Perdew and Zunger 1981). Although most, if not all, real
chemical and materials systems are very different from the uniform electron
gas system, the Kohn–Sham DFT calculations with such LDA exchange-
correlation functionals already perform surprisingly well for many systems.

In order to improve the accuracy of the exchange-correlation functional,
on the next rung of the ladder we have the generalized gradient approx-
imation (GGA) (Lee, Yang and Parr 1988, Becke 1988, Perdew, Burke and
Ernzerhof 1996a), which in addition depends on information on the gradient
of electron density,

Exc[ρ] =

∫
εxc(ρ(r), σ(r)) dr, (2.22)

where the functional depends only on the norm of the gradient

σ(r) := |∇ρ(r)|2

due to local rotational symmetry. The GGA functionals are currently the
most widely used functionals since they achieve a balance between accuracy
and computational cost.

The third rung of the ladder is the meta-GGA approximation (Staroverov,
Scuseria, Tao and Perdew 2003, Sun, Ruzsinszky and Perdew 2015), where
second-order derivative information is also added to the approximation, in
particular the kinetic energy density

τ(r) :=
1

2

∑
σ∈{↑,↓}

N∑
i=1

|∇rψi(r, σ)|2.

The meta-GGA energy functional then takes the form

Exc[{ψi}] =

∫
εxc(ρ(r), σ(r), τ(r)) dr. (2.23)

Some other meta-GGA functionals also involve second-order information on
the density, i.e. ∇2ρ(r), and for simplicity we omit treatment of such terms.
Since τ is the local kinetic energy of the orbitals, it may seem that the
meta-GGA functional is no longer strictly a density functional. It turns out
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that the Euler–Lagrange equation associated with the meta-GGA functional
can still be written in the same form as that of the LDA and GGA energy
functionals, as we will see in the next section. Hence, the LDA, GGA
and meta-GGA functionals are known as semi-local functionals, and their
numerical treatment is very similar, as will be discussed in Section 5.

Let us remark that the exchange-correlation functionals discussed so far
do not explicitly depend on spin degrees of freedom (i.e. they are only func-
tionals of the electron density rather than the spin-dependent electron dens-
ity). Spin-dependent exchange-correlation functionals, such as local-spin-
density approximation (LSDA) (von Barth and Hedin 1972), are developed
for spin-polarized systems. From the perspective of numerical algorithms
they are rather similar to the exchange-correlation functionals without spin
dependence, so we will not go into the details.

The exchange-correlation functionals beyond the third rung are called
non-local functionals, and will be discussed in Section 2.5. Before diving
into these more complicated exchange-correlation functionals, we first in-
troduce the Kohn–Sham equations, i.e. the Euler–Lagrange equation for
Kohn–Sham density functional theory.

2.3. Kohn–Sham equations for semi-local functionals

In order to minimize the Kohn–Sham energy functional (2.20), we need to
find the stationary point of the Lagrangian. Let us consider the case of the
LDA exchange-correlation functional first. Note that

1

2

δFKS({ψi})
δψ∗i (x)

=

(
−1

2
∆r + Vext + VH [ρ] + Vxc[ρ]

)
ψi(x) =: HKS[ρ]ψi(x),

(2.24)
where the effective Kohn–Sham Hamiltonian HKS[ρ] is an operator acting
on the orbitals which depends on ρ, given by the orbitals as in equation
(2.16). The Hartree potential VH is given by the Coulomb kernel via

VH [ρ](r) = (vCρ)(r) :=

∫
ρ(r′)

|r− r′|
dr′, (2.25)

and the exchange-correlation potential is defined to be the functional deriv-
ative of Exc, that is,

Vxc[ρ] =
δExc[ρ]

δρ
, (2.26)

which for now can be thought of as a ρ-dependent potential acting on or-
bitals. Vxc of more general forms will be discussed further and made more
explicit at the end of this section.
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Taking into account the orthonormality condition (2.14), we obtain the
Euler–Lagrange equations

HKS[ρ]ψi(x) =

(
−1

2
∆r + Vext + VH [ρ] + Vxc[ρ]

)
ψi(x) =

N∑
j=1

ψj(x)λij ,

(2.27)

where the λij are Lagrange multipliers. Let us further simplify the Euler–
Lagrange equations to reveal the structure of the problem. First note that
due to the orthonormality of {ψi} and the self-adjointness of HKS[ρ], we
have

λij = 〈ψj |HKS[ρ]|ψi〉 = 〈ψi|HKS[ρ]|ψj〉∗ = λ∗ji. (2.28)

Therefore Λ = (λij) is a Hermitian matrix, and we may assume an eigen-
decomposition of Λ as

Λ = U diag(ε1, . . . , εn)U∗, (2.29)

where U is a unitary matrix.
Now consider a rotation of the orbitals, that is,

ϕi(x) =
N∑
j=1

ψj(x)Uji. (2.30)

Since U is a unitary matrix, the transformation preserves the electron dens-
ity and hence the effective Kohn–Sham Hamiltonian. The equations for the
rotated orbitals {ϕi} become

HKS[ρ]ϕi(x) = HKS[ρ]

N∑
j=1

ψj(x)Uji =

N∑
k,j=1

ψk(x)λkjUji

=
N∑
k=1

ψk(x)Ukiεi = ϕi(x)εi. (2.31)

Therefore, without loss of generality (up to a rotation of orbitals), it suffices
to consider the Euler–Lagrange equations of the form(
−1

2
∆r + Vext + VH [ρ] + Vxc[ρ]

)
ψi(x) = εiψi(x), i = 1, . . . , N. (2.32)

Since the operator HKS depends on the orbitals {ψi} via the electron density
ρ, this is a set of nonlinear eigenvalue problems, known as the Kohn–Sham
equations. Here the Hamiltonian is nonlinear with respect to the eigen-
vectors, rather than the eigenvalues.

The Kohn–Sham equations (2.32) must be solved self-consistently with
respect to the electron density ρ. For a given electron density ρ, the Hamil-
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tonian HKS[ρ] = −1
2∆r + Veff(r) is a self-adjoint linear operator, where the

effective potential induced by ρ is

Veff(r) = Vext(r) + VH [ρ](r) + Vxc[ρ](r). (2.33)

The Kohn–Sham orbitals {ψi} are thus eigenfunctions of HKS[ρ]. It should
be noted that a priori there is no guarantee that {ψi}Ni=1 should correspond
to the lowest N eigenvalues (counting multiplicity) of HKS[ρ] to achieve
the global minimum of the Kohn–Sham energy functional (2.18). In prac-
tice, this is often assumed in solving the Kohn–Sham equations, known as
the aufbau principle. It is known that the aufbau principle holds for non-
interacting systems, as well as certain Hartree–Fock models. However, it
can be violated for more complex models such as Kohn–Sham DFT. As-
suming the aufbau principle, the first N eigenfunctions {ψi}Ni=1 are called
occupied orbitals, while the eigenfunctions of HKS[ρ] with higher eigenvalues
are called virtual or unoccupied orbitals.

For Kohn–Sham DFT with semi-local exchange-correlation functionals,
the effective Kohn–Sham potential Veff [ρ], and hence the Hamiltonian mat-
rix, depends only on the density ρ through the Kohn–Sham potential. We
refer to the mapping from Veff to ρ as the Kohn–Sham map, denoted by

ρ = FKS[Veff ]. (2.34)

The electron density ρ can be evaluated from the Kohn–Sham map by solv-
ing a linear eigenvalue problem, or using density matrix techniques, to be
discussed in Section 5. Hence ρ and Veff should be iteratively determined by
each other until convergence. This is called the self-consistent field (SCF)
iteration.

The numerical solution for solving the Kohn–Sham equations can thus be
divided into three subproblems, as illustrated in Figure 2.3: discretization
of the Kohn–Sham Hamiltonian using a finite basis set, evaluation of the
Kohn–Sham map, and iteration until reaching self-consistency. The content
of this review is thus largely organized around these three topics. Note that
during the self-consistent iteration, one also needs to form the Kohn–Sham
Hamiltonian by evaluating the Hartree and exchange-correlation potential.
With some abuse of terminology, we consider this step as part of the dis-
cretization problem in Figure 2.3. We remark that the evaluation of the
Hartree potential requires solving a Poisson equation. Depending on the
choice of the basis set, the solution can be efficiently obtained using the fast
Fourier transform or multigrid methods (see e.g. Brandt 1977, Brandt, Mc-
Cormick and Ruge 1985, Briggs, Henson and McCormick 2000, Fattebert
and Bernholc 2000).

Let us now come back to the exchange-correlation potential, given by
the functional derivative of Exc with respect to the density. For LDA, the
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420 L. Lin, J. Lu and L. Ying

Figure 2.3. Three subproblems for the self-consistent solution of the Kohn–Sham
equations. With some abuse of terminology, the step of forming the Kohn–Sham
Hamiltonian is considered to be part of the discretization step in this figure.

variation of Exc is given by

δExc =

∫
∂εxc

∂ρ
(ρ(r))δρ(r) dr.

Hence

Vxc[ρ](r) =
δExc

δρ(r)
=
∂εxc

∂ρ
(ρ(r)).

For GGA, the variation with respect to the density gives

δExc =

∫
∂εxc

∂ρ
δρ+

∂εxc

∂σ
δσ dr.

Using the chain rule,

δσ = |∇(ρ+ δρ)|2 − |∇ρ|2 = 2∇ρ · ∇δρ+O(|δρ|2),

we have

δExc =

∫
∂εxc

∂ρ
δρ+ 2

∂εxc

∂σ
(∇ρ ·∇δρ) dr =

∫
∂εxc

∂ρ
δρ− 2∇·

(
∂εxc

∂σ
∇ρ
)
δρ dr.

Thus

Vxc[ρ] =
∂εxc

∂ρ
− 2∇ ·

(
∂εxc

∂σ
∇ρ
)
.

The derivation of the exchange-correlation potential is slightly different for
meta-GGA, since the kinetic energy density τ(r) explicitly involves the
Kohn–Sham orbitals {ψi}. We still start with

δExc =

∫
∂εxc

∂ρ
δρ+

∂εxc

∂σ
δσ +

∂εxc

∂τ
δτ dr.
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Since

δτ(r) =

N∑
i=1

1

2
∇ψ∗i (r) · ∇δψi(r) +

1

2
∇δψ∗i (r) · ∇ψi(r),

we can use integration by parts to obtain∫
∂εxc

∂τ
δτ dr = −1

2

N∑
i=1

∫
δψ∗i∇ ·

(
∂εxc

∂τ
∇
)
ψi dr

− 1

2

N∑
i=1

∫
ψ∗i∇ ·

(
∂εxc

∂τ
∇
)
δψi dr. (2.35)

Recall that the Kohn–Sham equation is obtained by variation with respect to
δψ∗i , thus the exchange-correlation ‘potential’ Vxc[ρ] applied to the occupied
orbital ψi can be viewed as

Vxc[ρ]ψi =

[
∂εxc

∂ρ
− 2∇ ·

(
∂εxc

∂σ
∇ρ
)
− 1

2
∇ ·
(
∂εxc

∂τ
∇
)]
ψi. (2.36)

Therefore, the exchange-correlation functional Vxc[ρ] is still independent of
the orbitals, and can be defined only from the electron density as

Vxc[ρ] =
∂εxc

∂ρ
− 2∇ ·

(
∂εxc

∂σ
∇ρ
)
− 1

2
∇ ·
(
∂εxc

∂τ
∇
)
. (2.37)

Strictly speaking this is no longer a potential, as it involves a differential
operator ∇ · ((∂εxc/∂τ)∇) acting on the orbitals. On the other hand, this
is still a local operator, and can be treated in a similar way to our previous
discussions.

For simplicity, for the rest of the paper we will neglect the spin degrees
of freedom and consider the ‘spinless’ electrons. Hence all single-particle
orbitals can be written as ψi(r) instead of ψi(x). The numerical algorithms
can be easily adapted to take into account the spin degrees of freedom.

2.4. Density matrix formulation

Consider a (one-body) Hamiltonian operator H = −1
2∆ + V . Assume that

H has a discrete spectrum and denote the eigenpairs of H as {(εi, ψi)}:

Hψi = εiψi. (2.38)

Assume that the system has N electrons that occupy the first N eigenstates
according to Pauli’s exclusion principle. Here, for definiteness, we assume
that εN < εN+1 to avoid degeneracy.

The Kohn–Sham energy functionals are invariant with respect to unitary
rotations of the orbitals. The unitary rotation matrix is often referred to as
the gauge degrees of freedom. Hence, the physical quantity is the subspace
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422 L. Lin, J. Lu and L. Ying

spanned by the occupied orbitals, instead of the individual eigenfunctions.
This subspace span{ψi}i=1,...,N is known as the Kohn–Sham occupied sub-
space and can be represented by the density matrix

P =
N∑
i=1

|ψi〉〈ψi|. (2.39)

Since the {ψi} are orthonormal, we have

P 2 =

N∑
i,j=1

|ψi〉〈ψi|ψj〉〈ψj | =
N∑
i=1

|ψi〉〈ψi| = P. (2.40)

Hence P is self-adjoint and idempotent, and is the projection operator onto
the occupied space. The kernel of P , viewed as an integral operator, is given
by

P (r, r′) =
N∑
i=1

ψi(r)ψ∗i (r
′). (2.41)

In particular, we observe that the diagonal part of the kernel is just the
electron density

P (r, r) =
N∑
i=1

ψi(r)ψ∗i (r) =
N∑
i=1

|ψi(r)|2 = ρ(r). (2.42)

Moreover the trace of P is equal to the number of electrons:

TrP =

∫
P (r, r) dr = N. (2.43)

The Kohn–Sham equations can be reformulated in terms of the density
matrix. Compared with the orbital representation, the density matrix is
more intrinsic, as it is invariant with respect to the unitary rotation of the
orbitals. In terms of numerical algorithms, use of the density matrix can
also be advantageous, especially for large-scale problems, as we will discuss
in Section 5.

Note that P can be represented independent of the orbitals. Since H is a
self-adjoint operator, for any Borel-measurable function f on the real line,
a matrix function f(H) can be defined using its spectral decomposition as

f(H) =
∑
i

f(εi)|ψi〉〈ψi|. (2.44)

Recall that for simplicity we have assumed that the spectrum of H is dis-
crete. Thus, assuming that εN < εN+1 and the parameter µ ∈ R satisfies
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εN ≤ µ < εN+1, we have

1(−∞,µ](H) =
∑
i

1(−∞,µ](εi)|ψi〉〈ψi| =
∑
i:εi≤µ

|ψi〉〈ψi| =
N∑
i=1

|ψi〉〈ψi| = P.

(2.45)
We conclude with

P = 1(−∞,µ](H), (2.46)

where the right-hand side is the spectral projection onto the interval (−∞, µ].
Here µ is known as the Fermi level or the chemical potential.

2.5. Non-local functionals

Let us now introduce the non-local exchange-correlation functionals, which
are on the fourth and fifth rungs of Perdew’s ladder above the semi-local
ones introduced in Section 2.2. These more complex density functionals
can improve the fidelity of DFT, but they may significantly increase the
computational cost at the same time.

On the fourth rung are the so-called hybrid density functionals, such
as B3LYP (Becke 1993), PBE0 (Perdew, Ernzerhof and Burke 1996b) and
HSE (Heyd, Scuseria and Ernzerhof 2003). They have been shown to im-
prove the accuracy of Kohn–Sham DFT calculations, such as the computa-
tion of adsorption energies for molecules on surfaces, and molecular frontier
level alignment relative to metals and semiconductors. This is achieved by
incorporating a fraction of the Hartree–Fock exact exchange or screened
exchange operator into the Kohn–Sham Hamiltonian. The hybrid energy
functionals depend not only on the density but also on the density matrix,
and hence, strictly speaking, they are no longer ‘pure’ density function-
als. A hybrid functional typically takes the following form of hybridization
based on a density-based exchange energy and the exact exchange energy
(Becke 1993, Heyd et al. 2003):

Exc[P ] = Ec[ρ] + (1− α)Ex[ρ] + αEEX
x [P ]. (2.47)

Here α is a parameter for the fraction of the non-local exchange contribution,
and Ex and Ec are the exchange and correlation parts (see e.g. Martin 2008
for the separation of the exchange-correlation functional into the exchange
and correlation components, respectively) from semi-local functionals, such
as GGA functionals. EEX

x [P ] is the (screened) Hartree–Fock exchange en-
ergy corresponding to the density matrix P :

EEX
x [P ] = −1

2

∫∫
|P (r, r′)|2K(r, r′) dr dr′, (2.48)

where K(r, r′) is the kernel for the electron–electron interaction. For ex-
ample, for Hartree–Fock exchange, K(r, r′) = vC(r, r′) = 1/|r − r′| is
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the Coulomb kernel. In theories with screened Fock exchange interactions
(Heyd et al. 2003), K can be a screened Coulomb kernel with K(r, r′) =
erfc(αs|r− r′|)/|r− r′|, where αs is the inverse screening length parameter.

On the fifth rung of the ladder, we have functionals that depend not
only on the density and occupied Kohn–Sham orbitals but also on other
quantities such as the eigenvalues and virtual orbitals of the Kohn–Sham
effective Hamiltonian. They are sometimes referred to as orbital function-
als. Examples of such functionals include the double hybrid functionals
(Grimme 2006, Zhang, Xu and Goddard III 2009, Goerigk and Grimme
2014), van der Waals functionals (Dion et al. 2004), random phase approx-
imation (RPA) functionals (Ren, Rinke, Joas and Scheffler 2012b, Chen
et al. 2017), and other functionals based on many-body perturbation the-
ory (see e.g. Mori-Sánchez, Wu and Yang 2005, Ren, Rinke, Scuseria and
Scheffler 2013, Zhang, Rinke and Scheffler 2016).

For an example of rung-5 functionals, let us consider the RPA functional,
for which the exchange-correlation Exc = Ex + Ec consists of the exact
exchange and the random phase approximation (Bohm and Pines 1953, Gell-
Mann and Brueckner 1957) of the correlation energy Ec given by

ERPA
c =

1

2π

∫ ∞
0

Tr[ln(1− χ̂0(iω)vC) + χ̂0(iω)vC ] dω, (2.49)

where vC is the Coulomb kernel in (2.25), and χ̂0 is the dynamic polarizab-
ility operator

χ̂0(r, r′, iω) =
occ∑
i

vir∑
a

ψ∗i (r)ψa(r)ψ∗a(r
′)ψi(r

′)

εi − εa − iω
+ c.c. (2.50)

Here ‘occ’ and ‘vir’ denote the set of occupied and virtual orbitals, re-
spectively, and c.c. stands for the complex conjugate of the previous term.
Approximation of the correlation is obtained by applying random phase ap-
proximation combined with the adiabatic connection (Langreth and Perdew
1975, Gunnarsson and Lundqvist 1976, Ren et al. 2012b). Note that equa-
tion (2.50) contains the virtual orbitals and also the Kohn–Sham orbital
energies, which result from the dynamic linear response of the system.

The Kohn–Sham equations of non-local functionals involve non-local op-
erators (hence the name non-local functionals). For rung-4 functionals, the
Kohn–Sham equations take the form

H[P ]ψi =

(
−1

2
∆ + Vext + VHxc[ρ] + αV EX

x [P ]

)
ψi = εiψi,∫

ψ∗i (r)ψj(r) dr = δij , P (r, r′) =

N∑
i=1

ψi(r)ψ∗i (r
′). (2.51)

Here VHxc is the Hartree and exchange-correlation contribution from the
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electron density ρ only, and V EX
x [P ] is derived from the exact exchange

functional EEX
x [P ], with kernel

V EX
x [P ](r, r′) = −P (r, r′)K(r, r′). (2.52)

V EX
x [P ] is often called the Fock exchange operator, and is negative semi-

definite. Equation (2.51) is called the Hartree–Fock-like equation. In this
case the Kohn–Sham map in equation (2.34) becomes the generalized Kohn–
Sham map from Veff to the density matrix P . The numerical treatment of
the exact exchange term, as well as the Hartree–Fock-like equation, will be
discussed in detail in Section 6.

The self-consistency for RPA functionals is much more complicated, since
the functional involves virtual orbitals and orbital energies. Most current
strategies are to first obtain the effective Hamiltonian and corresponding
Kohn–Sham orbitals based on a semi-local or hybrid functional, and then
calculate the RPA correlation in a post-processing step. Self-consistency
calculations have been performed using the optimized effective potential
(OEP) framework (Godby, Schlüter and Sham 1986, Godby, Schlüter and
Sham 1988, Fukazawa and Akai 2015) or more recently the generalized
optimized effective potential approach (Jin et al. 2017), but they come
with considerable numerical effort. Finding an efficient approach for self-
consistent treatment of RPA functionals is an active research area, and in
this review we will not discuss self-consistency for rung-5 functionals in
detail.

2.6. Finite temperature density functional theory

The Kohn–Sham density functional theory for ground-state quantum sys-
tems discussed so far can be extended to systems at finite temperature
(Mermin 1965). Instead of a variational principle for the ground-state en-
ergy, the functional for free energy is minimized with respect to the density
matrix, that is,

Fβ [ρ] = inf
P∈D
P 7→ρ

(
1

2
Tr((−∆)P ) + β−1 Tr(P lnP + (I − P ) ln(I − P ))

+
1

2

∫
ρ(r)ρ(r′)

|r− r′|
dr dr′ + Exc,β [ρ]

)
, (2.53)

where Tr(P lnP + (I − P ) ln(I − P )) is the Fermi–Dirac entropy (Parr and
Yang 1989) and D is the set of all one-particle density matrices for an N -
electron system:

D = {P ∈ B(L2(R3)) : P = P ∗, 0 � P � I,TrP = N}. (2.54)

Here B(L2(R3)) stands for the bounded operators on L2(R3) and the con-
straint 0 � P � I comes from the Pauli exclusion principle. To see this, let
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the eigen-decomposition of P be

P =
∑
i

fi|ψi〉〈ψi|. (2.55)

The constraints 0 � P � I and TrP = N imply that the occupation number
{fi} satisfies

0 ≤ fi ≤ 1 and
∑
i

fi = N. (2.56)

Thus no state is occupied by more than one electron. Here the summation
is performed over all single-particle orbitals, rather than only the occupied
ones.

We can write the variational problem more explicitly in terms of the
(fi, ψi) as

F = inf
{fi},{ψi}

0≤fi≤1,
∑
i fi=N

〈ψi|ψj〉=δij

FKS
β ({fi}, {ψi}), (2.57)

with

FKS
β ({fi}, {ψi})

=
1

2

∑
i

∫
fi|∇ψi|2 dr + β−1

∑
i

(fi ln fi + (1− fi) ln(1− fi))

+

∫
ρ(r)Vext(r) dr +

1

2

∫
ρ(r)ρ(r′)

|r− r′|
dr dr′ + Exc,β [ρ], (2.58)

and the density is given by

ρ(r) =
∑
i

fi|ψi(r)|2. (2.59)

In principle, the exchange-correlation functional for the finite temperature
Exc,β [ρ] depends on β and also has a ladder of approximation schemes like
the zero temperature case. However, most finite temperature DFT calcula-
tions in practice still use the temperature-independent exchange-correlation
functional at the semi-local level. The zero and finite temperature func-
tional approximations share the same mathematical structure. Hence, for
the purpose of our discussions, we will not explicitly distinguish them below.

We now consider the Kohn–Sham equations for the finite temperature
functional (2.53). As the functional involves minimization with respect to
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the density matrix P , it is more convenient to consider the combined min-
imization of density and the associated density matrix:

inf
P∈D

(
1

2
Tr((−∆)P ) + β−1 Tr(P lnP + (I − P ) ln(I − P ))

+
1

2

∫
ρ(r)ρ(r′)

|r− r′|
dr dr′ + Exc,β [ρ]

)
, (2.60)

where ρ is given by the diagonal of the density matrix P . Taking the
variation with respect to P , we obtain the Euler–Lagrange equation

HKS
β [ρ] + β−1(lnP − ln(I − P ))− µ = 0, (2.61)

where µ is the Lagrange multiplier associated with the constraint Tr P =
N and the effective Hamiltonian is given as in the zero temperature case
(cf. (2.24)), that is,

HKS
β [ρ] = −1

2
∆ + Vext + VH [ρ] + Vxc,β [ρ]. (2.62)

Solving (2.61) for P , we get

P = [I + exp(β(HKS
β [ρ]− µ))]−1. (2.63)

Letting fβ be the Fermi–Dirac distribution function

fβ(ε) =
1

1 + exp(βε)
, (2.64)

we arrive at the self-consistent equation

P = fβ(HKS
β [ρ]− µ) =

∑
i

fβ(εi − µ)|ψi〉〈ψi|, (2.65)

where εi and ψi are the eigenvalue and associated eigenfunction of HKS
β [ρ]

respectively. We see that the occupation number is given by

fi = fβ(εi − µ) =
1

1 + exp(β(εi − µ))
. (2.66)

Thus fi ∈ (0, 1), and all eigenstates are occupied with a fractional number.
Also, notice that as β → ∞ (zero temperature limit), fβ converges to the
function f∞:

f∞(ε) =


1 ε < 0,

1/2 ε = 0,

0 ε > 0.

(2.67)

Let µβ denote the Lagrange multiplier for the inverse temperature β, where
we make the dependence on β explicit. In the limit, we can show that (as
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before, we assume εN < εN+1)

lim
β→∞

µβ =
1

2
(εN + εN+1) =: µ∞. (2.68)

Therefore, the density matrix of finite temperature is consistent with the
definition of the chemical potential at zero temperature. Compared to equa-
tion (2.46), we may also write

P = f∞(H − µ∞).

2.7. Pseudopotential approximation

In typical electronic structure calculations, not all electrons play the same
role. In a single-particle picture, it is well known that the core electrons
(i.e. orbitals with relatively low energies) are barely affected by the chem-
ical environment. It is therefore desirable to remove the core electrons from
the actual computation, and solve the Kohn–Sham equations for valence
electrons (i.e. orbitals with relatively high energies) only. Another difficulty
in all-electron calculations lies in the treatment of the singular Coulomb
interaction between nuclei and electrons, which introduces a cusp in the
Kohn–Sham orbitals at each atomic position. The electron–nucleus cusp
makes uniform basis functions such as planewaves (to be discussed in Sec-
tion 3.1) very inefficient for all-electron calculations.

Hence the pseudopotential approximation is introduced to solve both is-
sues simultaneously, which is widely used especially in solid-state physics
and materials science. Although this is not a systematically controlled ap-
proximation, numerical results indicate that the error introduced by the use
of the pseudopotential can be much smaller compared to other sources of
error in Kohn–Sham DFT calculations. Simply speaking, the use of pseudo-
potentials has the following benefits.

(1) The number of Kohn–Sham orbitals depends only on the number of
valence electrons. This is particularly important for heavy elements,
where each atom involves several tens of electrons, while the number
of valence electrons can be much smaller.

(2) The valence electron orbitals are typically smoother than the core elec-
tron orbitals, and hence require a smaller number of basis functions
such as planewaves to resolve.

(3) After removing the core electrons, the resulting pseudo-valence electron
orbitals have fewer nodes near the nuclei. This further enhances the
smoothness of the orbitals and reduces computational cost.

Below we introduce the basic idea of the norm-conserving pseudopotential
(Hamann, Schlüter and Chiang 1979, Troullier and Martins 1991) – the
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earliest and still the most widely used form of pseudopotential. With some
abuse of notation, in this section we use Cartesian coordinates (r1, r2, r3)>

and spherical coordinates (r, θ, φ)> for the same electron position r inter-
changeably. When a function f(r) depends only on the radial distance r,
we will not distinguish between f(r) and f(r). Similarly, if f(r) depends
only on the angular variables θ and φ, we will not distinguish between f(r)
and f(θ, φ).

For a single atom at the origin R = 0, the electron–nucleus interaction
becomes Vext(r) = −Z/r, where Z is the charge of the nucleus. Consider
the atomic Kohn–Sham equation(

−1

2
∆ + Vext(r) + VHxc[ρ](r)

)
ψi(r) = εiψi(r), i = 1, . . . , N,

ρ(r) =
N∑
i=1

|ψi(r)|2. (2.69)

Here VHxc includes the contribution from the Hartree and exchange-correl-
ation interactions, which also depend only on the radial distance r if the
electron density ρ(r) = ρ(r) satisfies spherical symmetry. However, some
single-particle orbital ψi(r) might not be spherically symmetric and thus
still depend on all components of r.

Let us separate the N Kohn–Sham orbitals into two groups: core elec-
tron orbitals {ψi}Nci=1 and valence electron orbitals {ψi}Ni=Nc+1. This also
defines the number of valence orbitals Nv := N − Nc. The goal of the
pseudopotential approximation is to find an operator Vps which is defined
to satisfy the following modified equation:(

−1

2
∆ + Vps + VHxc[ρ̃](r)

)
ψ̃i(r) = ε̃iψ̃i(r), i = 1, . . . , Nv,

ρ̃(r) =

Nv∑
i=1

|ψ̃i(r)|2. (2.70)

The orbitals {ψ̃i} are called pseudo-valence orbitals, and the eigenvalues {ε̃i}
are called pseudo-valence eigenvalues, respectively. Note that we need only
solve Nv instead of N orbitals. Furthermore, we require that the solution
to equation (2.70) satisfies the following conditions, which are called the
Hamann–Schlüter–Chiang (HSC) conditions (Hamann et al. 1979).

(1) The pseudo-valence eigenvalues agree with the real valence eigenvalues:

ε̃i = εi+Nc , i = 1, . . . , Nv. (2.71)
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(2) The pseudo-valence orbitals agree with the real valence orbitals outside
a given radius rc:

ψ̃i(r) = ψi+Nc(r), r ≥ rc, i = 1, . . . , Nv. (2.72)

(3) The pseudo-valence orbitals are normalized, that is,

〈ψ̃i|ψ̃i〉 = 1. (2.73)

In particular, condition (3) is called the norm-conservation condition, which
leads to the name of this class of pseudopotential approximation. Although
the pseudo-valence orbitals should form an orthonormal set of functions, in
the discussion below we will associate the orbitals with spherical harmonic
functions that are orthogonal to each other. Hence the orthogonality con-
dition will be automatically satisfied, and only the normalization condition
is imposed here.

The choice of pseudopotential satisfying the HSC conditions is by no
means unique. In order to construct a Vps satisfying the HSC conditions, for
simplicity let us first consider the case where Nv = 1. Note that the pseudo-
valence orbital ψ̃1 now becomes the ground state of equation (2.70), and
must therefore be a nodeless function (Lieb and Loss 2001). On the other
hand, the real valence orbital ψ1 should be orthogonal to all core orbitals,
and therefore must have nodes within the core region r ≤ rc. Hence the real
and pseudo-valence orbitals have qualitatively different shapes within the
core region, but this does not affect the shape of the valence orbitals outside
the core region due to HSC condition (2). When Nv = 1, the valence orbital
is expected to be spherically symmetric (called an s-orbital):

ψNc+1(r) = ϕ(r), (2.74)

where we use the notation ϕ(r) to emphasize that the valence orbital de-
pends only on the radial distance r and is real. Similarly the pseudo-valence
orbital should also be spherically symmetric and we denote

ψ̃1(r) = ϕ̃(r). (2.75)

In such a case, Vps can be chosen to be a local potential that depends only on
r, denoted by Vloc(r). To see this, we may simply choose a pseudo-valence
orbital ϕ̃(r) such that HSC conditions (2) and (3) are satisfied. In order to
satisfy HSC condition (1), we may invert the Schrödinger equation (2.70) as

Vloc(r) = ε1 +
∆rψ̃1(r)

2ψ1(r)
− VHxc[ρ̃](r) = ε1 +

1

2r2

∂

∂r

(
r2∂ϕ̃

∂r

)
− VHxc[ρ̃](r).

(2.76)
Note that Vloc(r) depends only on the radial distance due to the assump-

tions of ψ̃1 and ρ̃. Figure 2.4 shows an example comparing the valence
2s orbital of the fluorine atom (F) in an all-electron calculation, and the
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Pseudo s orbital

Figure 2.4. Comparison of the 2s orbital of the fluorine atom in an all-electron and
a pseudopotential calculation. The cut-off radius rc is set to 1.0 a.u.

pseudo-valence orbital using a Troullier–Martins pseudopotential (Troullier
and Martins 1991). We find that the orbital becomes significantly smoother
in the pseudopotential approximation. In particular, the pseudo-valence
orbital is nodeless in the core region.

However, such a strategy becomes problematic when Nv > 1. To see
this, following the notation of solutions to hydrogen-like atoms (Landau
and Lifshitz 1991), we first relabel the real and pseudo-valence orbitals as
(here r̂ = r/r)

ψlm(r) = ϕl(r)Ylm(r̂), ψ̃lm(r) = ϕ̃l(r)Ylm(r̂). (2.77)

The integers l,m are called the azimuthal and magnetic quantum num-
bers, respectively. For each azimuthal quantum number l, the admissible
integer m should satisfy −l ≤ m ≤ l. Compared to the complete solution
for hydrogen-like atoms, the choice of ‘valence electron’ fixes the principal
quantum number implicitly. The radial parts ϕl, ϕ̃l are real. Ylm(r̂) is a
spherical harmonic function defined on S2, which can also be viewed as a
function Ylm(θ, ϕ) that depends only on the angular degrees of freedom in
spherical coordinates. The spherical harmonic functions satisfy the ortho-
normality condition∫

S2
Y ∗lm(r̂)Yl′m′(r̂) dr̂

=

∫ π

0

∫ 2π

0
Y ∗lm(θ, ϕ)Yl′m′(θ, ϕ) sin2 θ dϕ dθ = δll′δmm′ . (2.78)
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Now if we choose a radial function ϕ̃l for the pseudo-valence orbital ψ̃lm,
we may invert the Schrödinger equation and obtain

Vloc,l(r) = εl +
∆rψ̃lm(r)

2ψlm(r)
− VHxc[ρ̃](r)

= εl +
1

2r2

∂

∂r

(
r2∂ϕ̃l
∂r

)
− l(l + 1)

2r2
ϕ̃l(r)− VHxc[ρ̃](r). (2.79)

Due to the spherical symmetry, εl, Vloc,l depend only on l but not on m.
Again, Vloc,l(r) is only a function of the radial distance r. Clearly Vps cannot
be equal to Vloc,l(r) for all different choices of l.

Below we demonstrate that HSC condition (1) can be satisfied if we allow
Vps to be a non-local potential, i.e. an integral operator. We first choose the
local potential to be Vloc,l0 for a particular angular momentum l0. Then let
the kernel of Vps take the following form:

Vps(r, r
′) = Vloc,l0(r)δr,r′ +

∑
lm

Ylm(r̂)(Vloc,l(r)− Vloc,l0(r))δr,r′Y
∗
lm(r̂′)/r2.

(2.80)

Applying equation (2.80) to a pseudo-valence orbital ψ̃lm, we have

(Vpsψ̃lm)(r) =

∫
Vps(r, r

′)ψ̃lm(r′) dr′

= Vloc,l0(r)ψ̃lm(r) + Ylm(r̂)(Vloc,l(r)− Vloc,l0(r))ϕ̃l(r)

= Vloc,l(r)ψ̃lm(r). (2.81)

Here we have used the form (2.77) and the orthonormality condition of
spherical harmonics. Combined with equation (2.79), we find that HSC

condition (1) is satisfied for any valence orbital ψ̃lm under consideration.
Since the kernel of Vps is local with respect to the radial variable, and

non-local with respect to angular variables, equation (2.80) is called the
semi-local form of the pseudopotential. However, for a general atomic con-
figuration, the semi-local form cannot be treated efficiently other than being
discretized as a dense matrix. Therefore the semi-local pseudopotential is
rarely used in practice. In order to reduce the computational cost, we may
note that it is only necessary for equation (2.81) to hold. Define

δVloc,l(r) := Vloc,l(r)− Vloc,l0(r). (2.82)

We note that

〈δVloc,lψ̃lm|ψ̃l′m′〉 =

∫
δVloc,l(r)ϕ̃

∗
l (r)ϕ̃l′(r)Y

∗
lm(r̂)Yl′m′(r̂) dr

= δll′δmm′

∫ ∞
0

r2δVloc,l(r)|ϕ̃l(r)|2 dr. (2.83)
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Here we have used the orthonormality condition of the spherical harmonics.
Now define the pseudopotential as

Vps = Vloc,l0 +
∑
lm

1

〈δVloc,lψ̃lm|ψ̃lm〉
|δVloc,lψ̃lm〉〈δVloc,lψ̃lm|. (2.84)

We may readily verify that

Vpsψ̃lm = Vloc,l0ψ̃lm + δVloc,lψ̃lm = Vloc,lψ̃lm, (2.85)

which means that Vps also satisfies HSC condition (1). Compared to the
semi-local form, the pseudopotential (2.84) consists of a local component, as
well as a non-local component that can be stored as a low-rank matrix. The
rank is equal to the number of pseudo-valence orbitals under consideration.
This is called the Kleinman–Bylander form of non-local pseudopotential
(Kleinman and Bylander 1982), and is used in almost all modern electronic
structure software packages using norm-conserving pseudopotentials.

Let us define

blm(r) =
1√

|〈δVloc,lψ̃lm|ψ̃lm〉|
δVloc(r)ϕ̃l(r)Ylm(r̂), (2.86)

which is called a projection vector. From HSC condition (2) and equation
(2.79), we may readily find that blm(r) = 0 if r ≥ rc, and hence is localized

in real space. Defining γl = sign(〈δVloc,lψ̃lm|ψ̃lm〉) and Vloc(r) := Vloc,l0(r),
we may rewrite the kernel of the Kleinman–Bylander form as

Vps(r, r
′) = Vloc(r)δr,r′ +

∑
lm

γlblm(r)b∗lm(r′). (2.87)

Finally, the pseudopotential (2.87) only comes from one atom centred at
the origin. For a general atomic configuration {RI}MI=1, the kernel of the
non-local pseudopotential takes the form

Vps(r, r
′; {RI}) =

{
M∑
I=1

Vloc,I(r−RI)

}
δr,r′

+

{
M∑
I=1

LI∑
`=1

γ`,Ib`,I(r−RI)b
∗
`,I(r

′ −RI)

}
= Vloc(r; {RI})δr,r′ + Vnl(r, r

′; {RI}). (2.88)

Here we have combined lm into a multi-index `. Furthermore, Vloc,I , b`,I and
the number of projection vectors LI depend on the atom type and hence
have the added index I. In this notation, Vloc and Vnl denote the collection
of local and non-local parts of the pseudopotential, respectively. Equation
(2.88) is the general form of norm-conserving pseudopotential and will be
assumed throughout this review.
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More explicitly, the Kohn–Sham energy under the pseudopotential ap-
proximation becomes

EKS = inf
{ψi}Ni=1,〈ψi|ψj〉=δij

(2.89){
1

2

N∑
i=1

∫
|∇ψi(r)|2 dr +

N∑
i=1

∫
ψ∗i (r)Vnl(r, r

′; {RI})ψi(r′) dr dr′

+

∫
ρ(r)Vloc(r; {RI}) dr +

1

2

∫
ρ(r)ρ(r′)

|r− r′|
dr dr′ + Exc[ρ]

}
+ EII.

The corresponding Kohn–Sham Hamiltonian becomes

HKS[ρ] = −1

2
∆ + Vloc + Vnl + VH [ρ] + Vxc[ρ]. (2.90)

When the electron density is given, the effective potential (2.33) becomes

Veff(r) = Vloc(r) + VH [ρ](r) + Vxc[ρ](r), (2.91)

where we have separated out the contribution from the non-local pseudo-
potential Vnl.

Remarks

Although not discussed here, another major reason for using pseudopotential
is to take into account relativistic effects, which are non-negligible for heavy
elements such as lead and gold. Since relativistic effects mainly affect the
behaviour of core electrons, we may solve the relativistic Dirac–Kohn–Sham
equation (Thaller 1992, Belpassi, Tarantelli, Sgamellotti and Quiney 2005)
for a single atom to obtain the relativistically corrected valence orbitals ψlm
and energies εl. The rest of the procedure for generating the pseudopotential
is the same as above.

There are a number of widely used norm-conserving pseudopotentials,
such as the Troullier–Martins (TM) pseudopotential (Troullier and Martins
1991), the Hartwigsen–Goedecker–Hutter (HGH) pseudopotential (Hart-
wigsen, Goedecker and Hutter 1998) and the optimized norm-conserving
Vanderbilt (ONCV) pseudopotential (Hamann 2013), to name just a few.
All these pseudopotentials can be written in the form (2.88), though the in-
terpretation of Vloc, b` and even the number of projectors L may be different.
Recently the semi-local form of the pseudopotential has been analysed math-
ematically (Cancès and Mourad 2016). However, the Kleinman–Bylander
form of pseudopotential may occasionally introduce ‘ghost states’, which
are unphysical states with artificially low energies. In practice such ghost
states can often be removed by choosing the local potential to have a dif-
ferent angular momentum l, and hence they are often not considered to be
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a problem in most electronic structure calculations. However, the existence
of ghost states introduces difficulty into the mathematical analysis.

It may appear that the norm-conservation condition should be natur-
ally imposed since the pseudo-valence orbitals ψ̃lm should be eigenfunc-
tions of a modified Schrödinger operator. However, it has been found that
by relaxing the norm-conservation condition, one can further improve the
smoothness of the pseudopotential and hence reduce the computational cost.
The most well-known example is the Vanderbilt ultrasoft pseudopotential
(Vanderbilt 1990). Moreover, the widely used projected augmented wave
(PAW) method (Blöchl 1994) can also be viewed as a pseudopotential,
which also violates the norm-conservation condition. Compared to norm-
conserving pseudopotentials, one drawback of such approaches is that the
Kohn–Sham equations become inherently a generalized eigenvalue problem
even when the basis set is orthonormal (see Section 3).

2.8. Physical quantities of interest

Once the Kohn–Sham equations have converged, the total energy can be
evaluated readily from equation (2.89). It can also be evaluated from the
Kohn–Sham eigenvalues as

EKS =
N∑
i=1

εi −
1

2

∫
ρ(r)ρ(r′)

|r− r′|
dr dr′ −

∫
ρ(r)Vxc[ρ](r) dr + Exc[ρ] + EII.

(2.92)

Here the summation of the eigenvalues
∑N

i=1 εi is called the band energy.
The difference between the total energy and the band energy (other than the
nuclei interaction energy EII) is called the double-counting term, which is
due to the nonlinearity of the Hartree energy and the exchange-correlation
energy functionals. When finite temperature effects are included, the en-
tropy also needs to be evaluated in order to compute the free energy.

In Kohn–Sham DFT, besides the total energy and the electron density,
we are often interested in computing the atomic force, which is necessary
for performing geometry relaxation and ab initio molecular dynamics sim-
ulation. Once the SCF iteration reaches convergence, the force on the Ith
atom can be computed as the negative derivative of the total energy with
respect to the atomic position RI :

FI = −∂E
KS({RI})
∂RI

. (2.93)

The required derivative can be computed directly, for example via finite
differences. However, even for first-order accuracy, the number of energy
evaluations for a system containing M atoms is 3M + 1, that is, the Kohn–
Sham equations must be solved 3M+1 times independently. This approach
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becomes prohibitively expensive as the system size increases. The cost of
the force calculation is greatly reduced via the Hellmann–Feynman theorem
(Martin 2008), which states that, at self-consistency, the partial derivative
∂/∂RI only needs to be applied to terms in equation (2.89) which depend
explicitly on the atomic position RI . The Hellmann–Feynman (HF) force
is then given by

FI = −
∫
∂Vloc

∂RI
(r; {RI})ρ(r) dr−

N∑
i=1

∫
ψ∗i (r)

∂Vnl

∂RI
(r, r′; {RI})ψi(r′) dr dr′

+
∑
J 6=I

ZIZJ
|RI −RJ |3

(RI −RJ). (2.94)

Note that equation (2.88) gives

∂Vloc

∂RI
(r; {RI}) =

∂Vloc,I

∂RI
(r−RI) = −∇rVloc,I(r−RI),

and

∂Vnl

∂RI
(r, r′; {RI})

=

LI∑
`=1

γI,`

(
∂bI,`
∂RI

(r−RI)b
∗
I,`(r

′ −RI) + bI,`(r−RI)
∂b∗I,`
∂RI

(r′ −RI)

)

= −
LI∑
`=1

γI,`(∇rbI,`(r−RI)b
∗
I,`(r

′ −RI) + bI,`(r−RI)∇r′b
∗
I,`(r

′ −RI)).

Then the Hellmann–Feynman force in equation (2.94) can be written as

FI =

∫
∇rVloc,I(r−RI)ρ(r) dr

+ 2Re

N∑
i=1

LI∑
`=1

γI,`

(∫
ψ∗i (r)∇rbI,`(r−RI) dr

)(∫
b∗I,`(r

′ −RI)ψi(r
′) dr′

)
+
∑
J 6=I

ZIZJ
|RI −RJ |3

(RI −RJ). (2.95)

From the computational cost point of view, if we let Ng denote the number
of grid points to discretize quantities such as ρ(r) in the global domain to
perform a quadrature, then the cost of computing the force due to the
local potential

∫
∇rVloc,I(r−RI)ρ(r) dr is O(Ng), since Vloc,I(r−RI) is a

delocalized quantity in the global domain. On the other hand, each non-local
projector bI,`(r−RI) is localized around RI , and the cost of evaluating the
integral (

∫
ψ∗i (r)∇rbI,`(r−RI) dr) or (

∫
b∗I,`(r

′−RI)ψi(r
′) dr′) is a constant

Nl independent of the global number of grid points Ng. The computation
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Numerical methods for Kohn–Sham DFT 437

of the last term, ∑
J 6=I

ZIZJ
|RI −RJ |3

(RI −RJ),

involves only scalar operations, and its cost is usually negligibly small in
electronic structure calculations. Ng and NI are proportional to the number
of electrons N . Hence, neglecting constant terms independent of N , we have
that the computational cost of the Hellmann–Feynman force on each atom
is O(Ng +NLINl) ∼ O(N), and the cost of computing forces on all atoms
is O(N2).

Remarks

The computational cost of evaluating equation (2.95) can scale as O(N3)
if implemented straightforwardly. This is because, for each atom, the asso-
ciated non-local pseudopotential needs to be applied to all orbitals via an
integral. The cost is thus MNNg ∼ O(N3). Note that each projection vec-
tor b`,I has (at least approximately) compact support in real space and can
thus be stored as a sparse vector, using the real-space representation (see
Section 3.1.2). The number of non-zeros in the sparse vector is independent
of the number of quadrature points in the global domain. The cost is then
reduced to O(N2) as discussed above. We remark that use of the real-space
representation may result in higher numerical error than the Fourier space
representation (see Section 3.1.1), especially if the real-space grid is not
dense enough. Hence several electronic structure software packages such
as Quantum ESPRESSO still prefer the Fourier space representation, even
though the cost scales as O(N3). In certain contexts, the computational
cost can be further reduced to O(N) using density matrix formalism (see
Section 3.3).

The atomic force evaluated as in equation (2.95) uses the Hellmann–
Feynman theorem, and hence is called the Hellmann–Feynman force. When
numerical discretization as in Section 3 is under consideration, the derivat-
ive of the Kohn–Sham energy may involve the derivative with respect to a
basis function. If the basis set depends on the atomic configuration, such
as in the case of Gaussian-type orbitals to be discussed in Section 3.2, then
the Hellmann–Feynman force does not agree with the negative derivative
of the Kohn–Sham energy. The remaining difference is called the Pulay
force (Pulay 1969). On the other hand, if the discretization is independ-
ent of atomic configuration, such as in the case of the planewave basis set
in Section 3.1, the Pulay force vanishes and the Hellmann–Feynman force
becomes exact. We also remark that even if the basis set depends on the
atomic configuration, the magnitude of the Pulay force will systematically
decrease as the basis set approaches the complete basis set limit.
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3. Numerical discretization

In order to solve Kohn–Sham DFT in practice, the Hamiltonian operator
must first be discretized, for instance by a finite-sized basis set. The effi-
ciency of a discretization scheme can be measured in terms of the number
of degrees of freedom per atom, or the dimension of the discretized Hamil-
tonian matrix. Besides this standard metric, one special feature of electronic
structure calculations is that the choice of the discretization scheme can dir-
ectly affect the effectiveness of subsequent numerical methods to evaluate
the Kohn–Sham map, which is to be discussed in detail in Sections 5 and 6.
In the following discussion, we divide the numerical discretization schemes
roughly into three categories: large basis sets (Section 3.1), small basis sets
(Section 3.2) and adaptive basis sets (Section 3.3).

3.1. Large basis sets

In electronic structure calculations, a large basis set typically requires 100 ∼
10 000 basis functions per atom to achieve chemical accuracy, even when
pseudopotentials are used. The size of the resulting Hamiltonian matrix
is usually of the order of 103 ∼ 106. Hence it is not numerically efficient,
or even feasible at all, to diagonalize the Hamiltonian matrix. In such a
case, iterative algorithms should be used to compute the occupied orbitals,
which will be discussed in Section 4.2. Most standard basis sets used to solve
PDEs numerically fall into this category, for instance the planewave method
(Payne et al. 1992, Kresse and Furthmüller 1996) (also known as the Fourier
basis set, or more precisely, the pseudospectral method), the finite element
method (Tsuchida and Tsukada 1995, Suryanarayana et al. 2010, Bao, Hu
and Liu 2012, Chen et al. 2014) and the wavelet method (Genovese et al.
2008), to name just a few. Strictly speaking, the finite difference method
(Chelikowsky, Troullier and Saad 1994) does not use a basis set. However,
the number of degrees of freedom needed by the finite difference method
is approximately in the same range, and hence finite difference can also be
regarded as a large basis set method. The main advantage of using a large
basis set is that physical quantities such as energies and forces can converge
systematically with respect to refinement of the basis set, by tuning one or
a few parameters.

3.1.1. Fourier basis set

For charge-neutral systems, periodic boundary conditions are often suffi-
ciently accurate when the Coulomb energy is treated with care (Makov and
Payne 1995). One of the key advantages of working with periodic boundary
conditions is that they allow use of the Fourier basis set, which is arguably
the most widely used large basis set for electronic structure calculations. In
the Fourier basis set, the basis functions are of the form exp(ig·r), where the
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Numerical methods for Kohn–Sham DFT 439

parameter g is chosen from a specific set of frequencies. The Fourier basis
set has several key advantages. First, the discretization of the Kohn–Sham
Hamiltonian takes a rather simple form under this basis set. Second, as it is
independent of the atom configurations, the Pulay force vanishes, thus mak-
ing the force calculation rather straightforward. Third, by leveraging the
fast Fourier transform (FFT), computation of the matrix–vector multiplic-
ation with the Kohn–Sham Hamiltonian can be carried out efficiently, and
this allows for efficient iterative diagonalization while evaluating the Kohn–
Sham map. However, the Fourier basis set also comes with a noticeable
disadvantage: as a fixed basis set, it lacks the flexibility of local refinement,
which can be a serious issue for all-electron calculations. Fortunately, intro-
duction of the pseudopotentials addresses this problem by eliminating the
singularity at the nuclei, as well as the highly localized core electrons. This
allows one to focus solely on the smooth valence electrons. In the rest of
this subsection, we shall work with the Kohn–Sham Hamiltonian under the
pseudopotentials approximation as in equation (2.90).

Let us consider for simplicity a rectangular computational domain Ω =
[0, L1]× [0, L2]× [0, L3] with periodic boundary conditions. It is natural to
associate with Ω a reciprocal lattice in frequency space given by

L∗ =

{
g =

(
2π

L1
i1,

2π

L2
i2,

2π

L3
i3

)
: (i1, i2, i3) ∈ Z3

}
,

and the Fourier basis functions are the complex exponentials

φg(r) =
1√
|Ω|

exp(ig · r)

indexed by each g ∈ L∗. In order to obtain a finite set of basis functions, one
typically introduces an energy cut-off Ecut and restricts to only the Fourier
modes indexed by

Gcut :=

{
g ∈ L∗ :

1

2
|g|2 ≤ Ecut

}
⊂ L∗.

We will use Nb to denote the cardinality of Gcut, i.e. the number of basis
functions used within the energy cut-off.

In order to present the Kohn–Sham Hamiltonian under this basis, it is
convenient to introduce two Cartesian grids, one in frequency space and one
in real space. The one in frequency space is

G =

{
g =

(
2π

L1
i1,

2π

L2
i2,

2π

L3
i3

)
:

− n1

2
≤ i1 <

n1

2
,−n2

2
≤ i2 <

n2

2
,−n3

2
≤ i3 <

n3

2

}
,

where n1, n2, and n3 are chosen in such a way that the width of G in each
dimension is typically twice the width of Gcut. The reason for such a choice
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Figure 3.1. Illustration of the grids used for the Fourier basis set: X, G and Gcut.

will be discussed below. The Cartesian grid in real space is denoted by

X =

{
r =

(
i1
n1
L1,

i2
n2
L2,

i3
n3
L3

)
: 0 ≤ i1 < n1, 0 ≤ i2 < n2, 0 ≤ i3 < n3

}
.

Note that the number of grid points in both grids is equal to Ng = n1n2n3.
For a function ψ(r) in the span of {φg(r) : g ∈ Gcut} with spanning

coefficients {ψ̂g : g ∈ Gcut}, its value at any point r ∈ X is given by

ψ(r) =
∑

g∈Gcut

ψ̂gφg(r) =
∑

g∈Gcut

ψ̂g
1√
|Ω|

exp(ig · r). (3.1)

Suppose now that ψ(r) is a sufficiently smooth function. Then the basis

coefficients {ψ̂g : g ∈ G} can be approximated using the samples of ψ(r)
at X, computed via the inverse Fourier transform as

ψ̂g =

∫
Ω
ψ(r)φ∗g(r) dr

=

∫
Ω
ψ(r)

1√
|Ω|

exp(− ig · r) dr ≈
∑
r∈X

√
|Ω|
Ng

ψ(r) exp(− ig · r). (3.2)

Note that the last approximation is exact if ψ(r) belongs to the span of
{φg(r) : g ∈ Gcut}.

Equations (3.1) and (3.2) show how to transform between the real-space
and frequency-space representations for a function ψ(r). Given the spanning

coefficients {ψ̂g : g ∈ Gcut}, the values {ψ(r) : r ∈ X} are computed by first

extending ψ̂g from Gcut to G with zero-padding and then applying a discrete
inverse Fourier transform. In the opposite direction, given the real-space
values {ψ(r) : r ∈ X}, the coefficients {ψ̂g : g ∈ Gcut} are computed by first
applying a discrete Fourier transform and then restricting the result from
G to Gcut. In terms of computational efficiency, it is essential that both
directions can be accelerated using the fast Fourier transform. Figure 3.1
illustrates the grids involved in these conversions.
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Numerical methods for Kohn–Sham DFT 441

The Fourier basis set typically results in a dense matrix for the Kohn–
Sham Hamiltonian in (2.89). Direct diagonalization of such dense matrices
is often computationally too expensive. As a result, iterative diagonaliz-
ation is often used instead (see Section 4.2). The key step of an iterative
diagonalization algorithm is the application of the Kohn–Sham Hamiltonian
to a given function represented in the Fourier basis set.

More precisely, for a function ψ given in terms of its Fourier coefficients
{ψ̂g : g ∈ Gcut}, the goal is to evaluate the Fourier coefficients of HKSψ
in Gcut effectively. Note from the definition (2.90) that the Kohn–Sham
Hamiltonian HKS can be decomposed into three parts:

• the kinetic energy part −1
2∆,

• the local potential part, that is,

Vloc + VH [ρ] + Vxc[ρ],

where Vloc is the local part of the pseudopotential approximation,

• the non-local part of the pseudopotential approximation Vnl.

The overall strategy is to treat each part individually, either in real space
or in frequency space depending on computational convenience.

Before describing in detail how each of these three parts is treated, we
note that the Kohn–Sham Hamiltonian depends on the electron density ρ(·).
In the actual numerical computation, one needs access to the values of ρ(·)
at each r ∈ X. ρ(r) is formed from the current copies of the Kohn–Sham
orbitals {ψi(r)} with i = 1, . . . , N . In the Fourier basis method, {ψi(r)} are

represented in the frequency domain ψ̂g;i with g ∈ Gcut. The computation
of ρ(r) involves evaluating ψi(r) for each i (i.e. one fast Fourier transform),
squaring them, and summing the results over i = 1, . . . , N . In order to avoid
the aliasing error coming from the squaring step, it is typically required that
the sidelength of G is significantly larger than the diameter of the grid Gcut

(for details see e.g. Fornberg 1998). In this case, the conventional choice in
the electronic structure community is to set the sidelength of G to be at
least twice the diameter of Gcut, as mentioned above.

With ρ(r) ready at each r ∈ X, let us now go through each of the three
parts when applying the Kohn–Sham Hamiltonian HKS to a function ψ.
First, consider the kinetic energy part −1

2∆ψ. It is well known that a
differential operator in real space is equivalent to a pointwise multiplication
operator in frequency space. Therefore, applying the kinetic part −1

2∆ can

be carried out by multiplying ψ̂g by 1
2 |g|

2 for each g ∈ Gcut.
Second, for the computation of the local potential part, one first applies

an inverse Fourier transform on {ψ̂g : g ∈ Gcut} to obtain the real-space
representation {ψ(r) : r ∈ X}. As mentioned above, the local potential
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consists of several parts,

(Vloc(r) + VH [ρ](r) + Vxc[ρ](r))ψ(r), (3.3)

The Hartree potential involves convolution in real space, and therefore it is
convenient to treat it in the Fourier domain. More precisely, one first ap-
plies the Fourier transform to the electron density ρ(r) with r ∈ X to obtain
{ρ̂g : g ∈ Gcut}. Then each ρ̂g is multiplied by 1/|g|2, except that at g = 0
it is kept at zero. This is due to the charge neutrality assumption, which
allows the formally divergent contribution from the Fourier mode g = 0 to
be cancelled by the contribution from the electron–ion interaction. Finally,
an inverse Fourier transform brings the result back to real space. When all
the parts are ready, we compute the sum and multiply the result pointwise
with ψ(r). Note that the above procedure of computing derivative terms
in frequency space and the multiplication terms in real space is the pseudo-
spectral method for the numerical solution of partial differential equations
(Fornberg 1998).

Third, the computation of the non-local potential part∫ ( M∑
I=1

LI∑
`=1

γ`,Ib`,I(r−RI)b
∗
`,I(r

′ −RI)

)
ψ(r′) dr′ (3.4)

can be treated either in frequency or in real space. When the basis functions
b`,I(r

′) are localized, the treatment in real space is often preferred due to
its simplicity. More precisely, one evaluates the integral

∫
b∗`,I(r

′)ψ(r′) dr′

for each pair (`, I) with a discrete sum over X and then scales b`,I(r) with
this integral value before summing them up over (`, I).

At this point, one holds the contribution from both local and non-local
potentials in the spatial grid X. In order to obtain its coefficients in fre-
quency space on the grid Gcut, one simply applies a discrete fast Fourier
transform.

3.1.2. Real-space representation
The above discussion is given in terms of the Fourier basis set. Most of the
computation can be carried out almost equivalently in terms of a real-space
basis function set. Therefore, for each r′ ∈ X we define the coefficients

ϕ̂g;r′ =
1√
Ng

e− ig·r′

with g ∈ G. Its inverse Fourier transform is a real-space function

ϕr′(r) =
∑
g∈G

ϕ̂g;r′φg(r) =
1√
Ng|Ω|

∑
g∈G

exp(ig · (r− r′)). (3.5)

This is called the periodic sinc function (Skylaris, Haynes, Mostofi and
Payne 2005), or psinc function for short. In particular, the psinc functions
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can be viewed as the numerical δ-function on the discrete set X:

ϕr′(r) =

√
Ng

|Ω|
δr,r′ , r, r′ ∈ X. (3.6)

Hence a smooth function ψ(r) can be expanded as

ψ(r) ≈
∑
r′∈X

ϕr′(r)ψ(r′). (3.7)

The basis set {ϕr′} is often called the psinc basis set, or the planewave dual
basis set. For a given function, the nodal representation (3.7) allows us
to identify its function values evaluated at Cartesian grid points with the
expansion coefficients under the psinc basis set. This is particularly conveni-
ent for describing many numerical algorithms below, such as the selected
columns of the density matrix method (Section 4.3) and the interpolative
separable density fitting method (Section 4.4). If a discretization scheme
allows such a nodal representation, it is often referred to as a real-space
representation. In such a case, the number of basis functions Nb can be
identified with the number of grid points Ng. The finite difference discret-
ization can also be viewed as a real-space representation. However, with
some abuse of notation we shall use the words psinc basis set and real-space
representation interchangeably in the following discussion. When the real-
space representation is used, we may also slightly abuse the notation by

using r to denote an element from a discrete set of points {ri}
Ng
i=1.

3.2. Small basis set

In electronic structure calculations, a small basis set typically only requires
10 ∼ 100 basis functions per atom to achieve chemical accuracy. This can
be the case even for all-electron calculations in the absence of pseudopo-
tentials. The reason why such a small basis set can be achieved without
significant deterioration of the accuracy is that in quantum chemistry the
electron orbitals usually do not vary arbitrarily in the presence of a chemical
environment. Hence useful information can be extracted from the atomic
limit, which gives rise to the atomic basis set. The size of the discretized
Hamiltonian matrix is often of the order of 102 ∼ 104, which makes direct
diagonalization of the Hamiltonian matrix a viable approach (and often the
fastest option for small systems too) to solve Kohn–Sham DFT. For certain
discretization schemes and exchange-correlation functionals, the discretized
Hamiltonian is even a sparse matrix due to the spatial localization of the
basis set. This permits the use of efficient numerical methods to reduce the
asymptotic complexity.

In order to understand the atomic basis set, let us first recall the one-body
Schrödinger equation for hydrogen-like atoms, given in spherical coordinates
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(r, θ, ϕ) by

Eψ(r) = (3.8)

− 1

2

(
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2

)
ψ(r)− Z

r
ψ(r).

The spherical part of the operator is given by

− 1

r2
L2 := − 1

r2

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

)
, (3.9)

where L2 is the spherical Laplacian operator, whose eigenfunctions are
given by the spherical harmonics Ylm(θ, ϕ) parametrized by the azimuthal
quantum number l and the magnetic quantum number m. For each non-
negative integer l, the admissible m are given by −l,−l + 1, . . . , l. The ei-
genfunction of the one-body Schrödinger operator for hydrogen-like atoms
is then given by

ψi(r) =
ui(r)

r
Ylm(r̂), (3.10)

where the term r in the denominator is used to capture the singularity of
the solution near the origin r = 0. For notational simplicity we let l,m
depend implicitly on the orbital index i.

The idea of the atomic basis set is then to use functions of the type (3.10)
centred at each atom in the system to discretize the Kohn–Sham equations.
Given the nuclei positions {RI}, the basis set is given by{
ϕi(r−RI) =

ui(|r−RI |)
|r−RI |

Ylm

(
r−RI

|r−RI |

)
: i = 1, . . . , nI , I = 1, . . . ,M

}
,

(3.11)
where nI atomic orbitals are used for the Ith nucleus. Such discretization
has the clear advantage that the basis set is able to capture the singularity
of the solutions to the Kohn–Sham problem near the nuclei. Hence only
a small number of degrees of freedom are needed to discretize the Kohn–
Sham orbitals. Moreover, the atomic basis set can be used even without the
pseudopotential approximation.

Based on different choices of the radial part of the basis functions ui,
some widely used small basis sets are as follows.

(1) Slater-type orbital (STO). The radial part takes the form

u(r) = Crn e−ζr, (3.12)

where the non-negative integer n plays the role of principal quantum
number, ζ is a constant related to the effective charge of the nucleus,
and C is the normalization factor. The physical motivation of STO is
clear, as (3.12) gives the radial part of the eigenfunctions of hydrogen-
like atoms.
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(2) Gaussian-type orbitals (GTO). Numerical integration involving STO
can be difficult (we will further discuss the quadrature issues below).
Gaussian-type orbitals – Gaussian functions or Gaussians multiplied
by polynomials – are proposed as basis functions to avoid this diffi-
culty, since many integrals can then be calculated explicitly. Many
GTO basis sets have been proposed (Jensen 2013) in the quantum
chemistry literature, starting from the idea of fitting STO using a few
Gaussians (known as the STO-nG minimal basis), to the most widely
used correlation-consistent basis sets (Dunning 1989).

(3) Numerical atomic-orbitals (NAO). Instead of using a predetermined
analytical form of the basis functions, the idea of NAO is to obtain ui
by numerically solving a Schrödinger-like radial equation (after writing
wavefunctions as products of the radial part and spherical harmonics,
as in (2.77)). Thus we have(

−1

2

d2

dr2
+
l(l + 1)

r2
+ vi(r) + vcut(r)

)
ui(r) = εiui(r), (3.13)

where (l(l + 1))/r2 comes from the spherical Laplacian and the choice
of spherical harmonics with azimuthal quantum number l, vi(r) is a
radial potential chosen to control the main behaviour of ui, and vcut(r)
is a confining potential to ensure that ui decays rapidly beyond a cer-
tain radius and can be treated as a compactly supported function. We
refer readers to Blum et al. (2009) for details. The compact support
ensures the locality of the resulting discrete Hamiltonian and facilitates
numerical computations based on the NAO.

Let us denote the collection of atomic orbital basis functions by

{φp(r) : p = 1, . . . , Nb}.
In general, the basis set is not orthonormal. Therefore, by the usual Galer-
kin projection, the Kohn–Sham equation becomes a (nonlinear) generalized
eigenvalue problem,

Hci = εiSci, (3.14)

where H is the discrete Hamiltonian matrix

Hpq = 〈φp|H|φq〉, (3.15)

and S is the overlap matrix (i.e. Gram matrix)

Spq = 〈φp|φq〉. (3.16)

Since the basis functions {φp} are by construction either compactly sup-
ported or decay rapidly, the resulting H and S matrices are sparse, which
enables efficient algorithms for solving the Kohn–Sham eigenvalue problems,
as will be discussed in Section 5.
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After solving (3.14), the Kohn–Sham orbitals are

ψi(r) =
∑
p

φp(r)cp,i, (3.17)

and thus the electron density is given by

ρ(r) =

N∑
i=1

|ψi(r)|2 =

N∑
i=1

Nb∑
p,q=1

c∗p,icq,iφ
∗
p(r)φq(r). (3.18)

Thus, to obtain the contribution to the matrix elements Hij from the
Hartree potential, the two-electron repulsion integral (we adopt the physi-
cists’ notation, as opposed to the chemists’ notation) of the form

〈pq|rs〉 =

∫∫
φ∗p(r)φ∗q(r

′)φr(r)φs(r
′)

|r− r′|
dr dr′ (3.19)

is needed. In the case of Gaussian orbitals, the above integral can be ob-
tained analytically by reducing the problem to integrals of Gaussians using
the integral representation of the Coulomb kernel

1

r
=

1

π1/2

∫ +∞

−∞
exp(−r2ξ2) dξ. (3.20)

For other basis functions, numerical quadratures are needed, for example by
using the density fitting technique (see Section 4.4). We also refer readers
to Reine, Helgaker and Lindh (2012) for a review of multi-electron integrals.

As discussed in Section 2.8, since small basis sets are typically constructed
to be centred around each atom, the Hellmann–Feynman force may not be
accurate enough for the atomic force, unless a large number of basis func-
tions are used in the calculation. In such a case, the Pulay force involving
derivative quantities {∂φp/∂RI} is needed. We refer readers to Soler et al.
(2002), for example, for details of the implementation in the context of
numerical atomic orbitals.

3.3. Adaptive basis set

As discussed in Section 3.1, a large basis set allows one to systematically
improve the accuracy of the numerical discretization by tuning one or a
handful of parameters (e.g. the kinetic energy cut-off Ecut in the planewave
method and the grid spacing in the finite difference method). The disad-
vantage of a large basis set is the much higher number of degrees of freedom
per atom. On the other hand, as shown in Section 3.2, a small basis set
can significantly reduce the number of degrees of freedom per atom, but it
can be more difficult to improve its quality in a systematic fashion, and the
improvement may rely heavily on the practitioner’s experience with the un-
derlying chemical system. An adaptive basis set aims to combine the best of
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both worlds, namely to achieve systematic improvability while significantly
reducing the number of degrees of freedom per atom.

While adaptive basis sets are not yet as widely used as large or small
basis sets, there have been a number of developments along this direction
in the past few decades. Examples include the non-orthogonal generalized
Wannier function (NGWF) approach in the ONETEP package (Skylaris
et al. 2005), the adaptive minimal basis approach in the BigDFT pack-
age (Mohr et al. 2014), the filter diagonalization approach (Rayson and
Briddon 2009), the localized spectrum slicing approach (Lin 2017) and the
adaptive local basis set approach (Lin, Lu, Ying and E 2012a), to name just
a few. Below we briefly introduce the adaptive local basis set (ALB) (Lin
et al. 2012a) approach, which uses a discontinuous basis set for electronic
structure calculations.

The basic idea of ALB is to partition the global domain into a number of
subdomains (called elements), and to generate basis functions that are adap-
ted to the Kohn–Sham solutions for each element. This allows the resulting
basis functions to capture the structure of atomic orbitals but also effects
from the chemical environment. Each basis function is continuous inside its
associated supporting element but discontinuous across element boundar-
ies. Then the discontinuous Galerkin (DG) method (see e.g. Babuška and
Zlámal 1973, Arnold 1982, Cockburn, Karniadakis and Shu 2000) is used
to construct a finite-dimensional projected Kohn–Sham Hamiltonian matrix
with significantly reduced dimension. The projected Kohn–Sham problem
can be solved efficiently in a similar way to the case when a small basis set
is used.

Let Ω denote the global computational domain with periodic boundary
conditions, and let K be a collection of quasi-uniform rectangular partitions
of Ω into non-overlapping elements:

K = {κ1, κ2, . . . , κM}. (3.21)

For κ ∈ K, we let κ denote the closure of κ. The periodic boundary condition
on Ω implies that the partition is regular across the boundary ∂Ω.

We let H1(κ) denote the standard Sobolev space of L2(κ)-functions such
that the first partial derivatives are also in L2(κ). We denote the set of
piecewise H1-functions by

H1(K) = {v ∈ L2(Ω) : v|κ ∈ H1(κ), for all κ ∈ K},
which is also referred to as the broken Sobolev space. For v, w ∈ H1(K), we
define the L2-inner product as

(v, w)K =
∑
κ∈K

(v, w)κ :=
∑
κ∈K

∫
κ
v∗(r)w(r) dr, (3.22)

which induces a norm ‖v‖K = (v, v)
1/2
K . For v, w ∈ H1(K) and κ, κ′ ∈ K,
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define the average and jump operators on a face κ ∩ κ′ by

〈v〉 =
1

2
(v|κ + v|κ′), 〈∇v〉 =

1

2
(∇v|κ +∇v|κ′), (3.23)

and [[
v
]]

= v|κnκ + v|κ′nκ′ ,
[[
∇v
]]

= ∇v|κ · nκ +∇v|κ′ · nκ′ , (3.24)

where nκ denotes the exterior unit normal of the element κ.
In order to solve Kohn–Sham DFT in the broken Sobolev space H1(K),

we also need to identify a basis set which spans a subspace of H1(K). Let
Nκ be the number of DOFs on κ, and the total number of DOFs is Nb =∑

κ∈KNκ. Let V(κ) = span {φκ,j}Nκj=1, where each φκ,j is a function defined

on Ω compactly supported in κ. Hence V(κ) is a subspace of H1(K) and
is associated with a finite-dimensional approximation for H1(κ). Then V =⊕

κ∈K V(κ) is a finite-dimensional approximation to H1(K). We also assume
all functions {φκ,j} form an orthonormal set in the sense that

(φκ,j , φκ′,j′)K = δκ,κ′δj,j′ , for all κ, κ′ ∈ K, 1 ≤ j ≤ Nκ, 1 ≤ j′ ≤ Nκ′ .
(3.25)

For the moment, we assume that the basis set V has been given. For
w, v ∈ V, we introduce the following bilinear form:

a(w, v) =
∑
κ∈K

[
1

2
(∇w,∇v)κ + ((Veff + Vnl)w, v)κ

− (∇w,
[[
ψv
]]

)∂κ − (
[[
w
]]
,∇v)∂κ + α(

[[
w
]]
,
[[
v
]]

)∂κ

]
. (3.26)

Here the first term on the right-hand side is the kinetic energy, and the
second term is the effective local potential and the non-local potential as in
equation (2.91). The third and fourth terms are obtained from integration
by parts of the Laplacian operator, which cures the ill-defined operation
of applying the Laplacian operator to discontinuous functions on the global
domain. The last term is a penalty term to guarantee the stability condition
(Arnold, Brezzi, Cockburn and Marini 2002). The penalty parameter needs
to be sufficiently large, and the value of α depends on the choice of basis
set V.

In order to find the approximate Kohn–Sham orbitals {ψi}Ni=1 ⊂ V,
that is,

ψi(r) =
∑
κ

Nκ∑
j=1

cκ,j;iφκ,j(r), (3.27)
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(a) (b) (c)

Figure 3.2. (Credit: Hu, Lin and Yang 2015.) A model system in 2D partitioned
into 16 (4 × 4) equal-sized elements. The elements are denoted by Ei.

we minimize the following energy functional:

EDG({ψi}) =
N∑
i=1

a(ψi, ψi), (3.28)

subject to the orthonormal constraint for {ψi}. The associated Euler–
Lagrange equation corresponding to this minimization problem gives rise
to the following eigenvalue problem:∑

κ′,j′

HDG
κ,j;κ′,j′cκ′,j′;i = εDG

i cκ,j;i, i = 1, . . . , N, (3.29)

where the projected Hamiltonian matrix is given by

HDG
κ,j;κ′,j′ = a(φκ,j , φκ′,j′). (3.30)

The HDG matrix can be naturally partitioned into matrix blocks as
sketched in Figure 3.2. The kinetic energy and the local pseudopotential can
only contribute to the diagonal matrix blocks. The terms from boundary
integrals can contribute to both the diagonal and the off-diagonal blocks
of HDG corresponding to adjacent elements. Each boundary term involves
only two neighbouring elements by definition, as plotted in Figure 3.2(a).
For the non-local pseudopotential, since a projection vector of the non-local
pseudopotential is spatially localized, we require the dimension of every ele-
ment along each direction (usually around 6 ∼ 8 Bohr) to be larger than
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the size of the non-zero support of each projection vector (usually around
2 ∼ 4 Bohr). Thus, the non-zero support of each projection vector can over-
lap with at most 2d elements as shown in Figure 3.2(b) (d = 1, 2, 3). As a
result, each non-local pseudopotential term may also contribute to both the
diagonal and the off-diagonal blocks corresponding to adjacent elements. In
summary, HDG is a sparse matrix and the non-zero matrix blocks corres-
pond to interactions between neighbouring elements (Figure 3.2(c)).

From the solution of the eigenvalue problem (3.29), we may compute the
electron density as

ρ(r) =
N∑
i=1

∑
κ

∣∣∣∣∑
j

cκ,j;iφκ,j(r)

∣∣∣∣2. (3.31)

Note that the computation of the electron density can be performed locally
in each element due to the locality of the basis functions φκ,j . Then the
electron density can be fed back to the next step of the SCF iteration.

There are several methods to generate the basis set V in the broken So-
bolev space. Here we introduce the adaptive local basis set in Lin, Lu, Ying
and E (2012a), which is obtained by solving local Kohn–Sham problems.
For each element κ, we form an extended element κ̃ around κ, and we refer
to κ̃\κ as the buffer region for κ. On κ̃ we solve the eigenvalue problem(

−1

2
∆ + V κ̃

eff + V κ̃
nl

)
φ̃κ,j = λκ,jφ̃κ,j . (3.32)

with certain boundary conditions on ∂κ̃. Here we define V κ̃
eff = Veff |κ̃ to

be the restriction of the effective potential at the current SCF step to κ̃,
and V κ̃

nl = Vnl|κ̃ to be the restriction of the non-local potential to κ̃. This
eigenvalue problem can be solved using a standard basis set such as finite
difference, finite elements or planewaves. Note that the size of the extended
element κ̃ is independent of the size of the global domain, and so is the num-
ber of basis functions per element. We then restrict {φ̃κ,j} from κ̃ to κ. The
truncated functions are not necessarily orthonormal. Therefore, we apply a
singular value decomposition (SVD) to obtain {φκ,j}. The SVD procedure
can ensure the orthonormal constraint of the basis functions inside each ele-
ment, as well as eliminating the approximately linearly dependent functions
in the basis set. We then extend each φk,j to the global domain by setting
it to zero outside κ to generate the basis set V. As a result, the overlap
matrix corresponding to the adaptive local basis set is an identity matrix.

There are a number of possible ways to set the boundary conditions for the
local problem (3.32). In practice, we use the periodic boundary condition

for all eigenfunctions {φ̃κ,j} in κ̃. In some sense, the details of the boundary
condition do not affect the accuracy of the adaptive local basis set much
as the buffer size increases. The periodic boundary condition permits the
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Numerical methods for Kohn–Sham DFT 451

use of Fourier basis sets for solving the local problem. Note that while
the eigenfunctions are required to satisfy periodic boundary conditions, the
potential is obtained from the restriction of the global Kohn–Sham potential
to the extended element. The size of each extended element should be
chosen to balance between the effectiveness of the basis functions and the
computational cost of obtaining them. For a typical choice used in practice,
the elements are chosen to be of the same size, and each element contains
on average a few atoms. The partition does not need to be updated when
the atomic configuration is changed, as in the case of structure optimization
and molecular dynamics.

Once the SCF iteration reaches convergence, we may evaluate the atomic
forces. Recall the discussion in Section 2.8 that the atomic force generally
consists of two components: the Hellmann–Feynman force and the Pulay
force. Since each ALB depends on the atomic configuration, the Pulay force
does not vanish as in the planewave basis set. Compared to atomic orbitals,
the Pulay force for the adaptive basis set is much more difficult to evalu-
ate. Nonetheless, the adaptive basis sets are constructed to be aware of the
environment of each atom, and can be much closer to a complete basis set
for describing occupied states than numerical atomic orbitals. Numerical
results indicate that the Pulay force for the atomic basis set is indeed small,
and use of the Hellman–Feynman formula can readily achieve chemical ac-
curacy (Zhang et al. 2017). We also remark that using the spatial locality
of the basis set V, the computational cost of evaluating the force for all
atoms can be reduced from O(N2) to O(N). Compared to equation (2.95),
the main reduction of the computational cost comes from (i) the localized
pseudocharge associated with the local pseudopotential Vloc,I (the pseudo-
charge is defined as −∆Vloc,I/4π), and (ii) the density matrix formulation
for the contribution from the non-local pseudopotential. We refer readers
to Zhang et al. (2017) for more details.

The adaptive local basis set and the DG formulation have been imple-
mented in the DGDFT (discontinuous Galerkin density functional theory)
software package. DGDFT is a massively parallel electronic structure soft-
ware package designed for large-scale DFT calculations involving up to tens
of thousands of atoms (Hu, Lin and Yang 2015). As an illustrating ex-
ample, Figure 3.3 shows the ALBs of a 2D phosphorene monolayer with
140 phosphorus atoms (P140). This is a two-dimensional system, and the
global domain is partitioned into 64 equal-sized elements along the Y and
Z directions, respectively. We show the isosurfaces of the first three ALB
functions for the element denoted by E10 in Figure 3.3(a–c). Each ALB
function shown is strictly localized inside E10 and is therefore discontinuous
across the boundary of elements. On the other hand, each ALB function is
delocalized across a few atoms inside the element since they are obtained
from eigenfunctions of local Kohn–Sham Hamiltonian. Although the basis
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(a) (b)

(c) (d)

Figure 3.3. (Credit: Hu, Lin and Yang 2015.) The P140 system, with the isosur-
faces (0.04 Hartree/Bohr3) of the first three ALB functions belonging to the tenth
element E10: (a) φ1, (b) φ2, (c) φ3 and (d) the electron density ρ in the top and
side views in the global domain in the example of P140. The red and blue regions
indicate positive and negative isosurfaces, respectively. There are 64 elements and
80 ALB functions in each element, corresponding to 37 basis functions per atom.

functions are discontinuous, the electron density is well-defined and is very
close to being a continuous function in the global domain (Figure 3.3(d)).

Figure 3.4 shows the convergence of the total energy and atomic forces
for the quasi-1D and 3D Si systems with an increasing number of ALB
functions per atom. First, we see that chemical accuracy is obtained with
less than ten basis functions per atom for the quasi-1D system and a few
tens of basis functions per atom for the 3D system. Furthermore, for the
quasi-1D Si system, we find that the total energy error can be as small as
2.78 × 10−8 Ha/atom and the maximum error of the atomic forces can be as
small as 8.47 × 10−7 Ha/Bohr when 22.5 ALB functions per atom are used.
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(a) (b)

Figure 3.4. (Credit: Zhang et al. 2017.) Convergence of DGDFT total energy
and forces for quasi-1D and 3D Si systems to reference planewave results with
increasing number of ALB functions per atom. (a) Total energy error per atom
∆E (Ha/atom). (b) Maximum atomic force error ∆F (Ha/Bohr). The dashed
green line corresponds to chemical accuracy. We set Ecut = 60 Ha and penalty
parameter α = 40. When the number of basis functions per atom is sufficiently
large, the error is well below the target accuracy (green dashed line).

For the bulk 3D Si system, the total energy error can be as small as 2.10 ×
10−6 Ha/atom and the maximum error in atomic forces can be as small as
1.70 × 10−5 Ha/Bohr when 71.11 ALB functions per atom are used.

Remarks

The adaptive basis set is closely related to the ‘hybrid basis set’, which
directly combines the large basis set and the small basis set. The idea
of such a combination dates back to Slater in his augmented planewave
method (APW) (Slater 1937), which was later improved to become the
linearized APW method (Andersen 1975). The idea is to use an atomic
basis set near the atom to resolve the singularity due to the electron–nucleus
interaction in all-electron calculations, and use smooth functions such as
planewaves in the interstitial region. Since planewaves are used without
compression, the number of degrees of freedom per atom in the hybrid basis
set is still relatively large. Recently there have been further developments
along this direction using a partition of unity approach (Cai, Bai, Pask and
Sukumar 2013) and the discontinuous Galerkin approach (Lu, Cai, Xin and
Guo 2013).

The interior penalty formulation of DG requires setting a penalty para-
meter. For general non-polynomial basis functions, the value of the penalty
parameter is not known a priori. We have demonstrated that the adjustable
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penalty parameter is mainly used to ensure the stability of the numerical
scheme, and has relatively little effect on the accuracy of the scheme when
it takes a large range of values (Lin et al. 2012a, Hu et al. 2015). Another
possible solution can be found in Lin and Stamm (2016), which provides
a formula for evaluating α on the fly for general non-polynomial basis sets
based on the solution of eigenvalue problems restricted to each element κ.
This further leads to rigorous a posteriori error estimates for using non-
polynomial basis functions in the DG setting to solve linear PDEs and ei-
genvalue problems (Kaye, Lin and Yang 2015, Lin and Stamm 2016, Lin and
Stamm 2017). This allows adaptive refinement of the basis set to improve
its efficiency for heterogeneous systems.

The adaptive local basis set has been improved in a number of directions.
As in the NGWF approach, the adaptive local basis set can be obtained via
numerical optimization (Lin, Lu, Ying and E 2012b), which rigorously elim-
inates the Pulay force when the minimizer is achieved. The basis functions
can also be obtained from solutions to linear systems on the global domain,
which removes the need to impose artificial boundary conditions on the ex-
tended element and simultaneously improves the accuracy of the basis set
(Li and Lin 2019). The adaptive local basis set can also be constructed by
partitioning the discretized basis indices instead of the continuous domain
(Xu, Suryanarayana and Pask 2018). This is called the discrete discontinu-
ous basis projection method. Formally, this is a Galerkin method instead
of a discontinuous Galerkin approach, and the advantage of this method is
that it removes the need to impose penalty conditions on the basis set.

4. Algorithmic tools

This section introduces a few algorithmic tools that are useful in electronic
structure calculations. We introduce direct and iterative eigensolvers in
Sections 4.1 and 4.2, respectively. These are the standard methods for
solving the eigenvalue problem obtained in Kohn–Sham DFT after discret-
ization. In Section 4.3 we discuss how to compress information on the
Kohn–Sham orbitals through localization. Localized representation of the
occupied space forms the basis for linear scaling algorithms for insulating
systems to be discussed in Section 5.2. Then in Section 4.4 we introduce
the interpolative separable density fitting (ISDF) technique to compress the
information stored in the pair products of Kohn–Sham orbitals, which will
become useful in reducing the computational cost of Kohn–Sham DFT cal-
culations with rung-4 and rung-5 functionals. We remark that eigensolvers,
localization and density fitting are generic techniques that are useful in a
number of other contexts of scientific computing. Hence we summarize these
techniques separately in this section.
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4.1. Direct diagonalization methods

When a small basis set is used and the system size is not too large, it is
most efficient to solve the standard or generalized eigenvalue problem (3.14)
using a generic eigensolver for dense matrices. It can be performed in serial
using the LAPACK software package (Anderson et al. 1999) or in parallel
using the ScaLAPACK software package (Blackford et al. 1997). Recently
dense solvers specialized for solving large-scale Hermitian eigenvalue prob-
lems, such as ELPA (Marek et al. 2014), have been demonstrated to be
more efficient and to scale massively in parallel to more than 100 000 com-
putational cores. As a rule of thumb, dense eigensolvers are most efficient
when the matrix dimension is 10 000 or less, but are not commonly used
when the matrix dimension is beyond 100 000, due to the steep increase of
the computational cost that scales as O(N3

b ).

4.2. Iterative diagonalization methods

When a large basis set is used, iterative diagonalization methods that rely
on the matrix–vector product of HKS[ρ] with arbitrary vectors become par-
ticularly attractive, especially when the matrix–vector product can be per-
formed efficiently. The two common cases are when HKS[ρ] is sparse and
when HKS[ρ] is constructed using the Fourier basis set so that the fast Four-
ier transform can be used. Among the iterative diagonalization methods,
we focus on Krylov subspace methods here. The discussion of another class
of methods called filtering methods will be deferred to Section 5.1.

The key idea of Krylov subspace methods is to form a low-dimensional
subspace and approximate the eigenpairs with those of the projected Hamil-
tonian into this subspace. Of these methods, the Davidson–Liu method
(Davidson 1975, Liu 1978) and the LOBPCG method (Knyazev 2001) are
widely used due to their simplicity and efficiency.

Consider for simplicity the standard eigenvalue problem

HX = XΛ,

where the columns of the Nb × N matrix X are the eigenvectors and the
diagonal entries of the N ×N diagonal matrix Λ give the eigenvalues.

In its simplest version, the Davidson–Liu method solves this problem
by iteratively minimizing Tr[X∗HX] over a matrix X that satisfies the
orthogonality constraint X∗X = I and takes its columns from a subspace
spanned by a collection of 2N vectors. These 2N vectors are set to be the
columns of the matrix X from the previous step and another Nb×N matrix
W , which is a preconditioned residual of X. More precisely, in each iteration
one updates X via

X ← XCX +WCW , W = TR := T (HX −X(X∗HX)),
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Algorithm 1: Davidson–Liu method for solving the Kohn–Sham DFT
eigenvalue problems Hψi = εiψi

Input: Hamiltonian matrix H and initial wavefunctions {ψ0
i }Ni=1.

Output: Eigenvalues {εi}Ni=1 and wavefunctions {ψi}Ni=1.
1: Initialize X by {ψ0

i }Ni=1 and orthonormalize X.
2: while convergence not reached do
3: Compute the preconditioned residual W ← T (HX −X(X∗HX)),

where T is a preconditioner.
4: Update the trial subspace S ← [X,W ].
5: Solve the projected eigenvalue problem S∗HSC = S∗SCΛ and

obtain the coefficients C =

[
CX
CW

]
.

6: Compute X ← SC.
7: end while
8: Update {ψi}Ni=1 ← X.

where R = HX −X(X∗HX) is the residual and T is a preconditioner that
is ideally close to (H − λI)−1 with a certain shift λ. The original version of
the Davidson–Liu method allows one to use many copies of the history; here,
in order to simplify the discussion, we keep only the most recent copy of X
and W . The coefficients CX and CW are obtained by computing the lowest
N eigenpairs of the projected 2N × 2N generalized eigenvalue problem

S∗HSC = S∗SCΛ, C =

[
CX
CW

]
∈ R2N×N ,

where S = [X,W ] ∈ RNb×2N represents the trial subspace and C contains
the optimal coefficients. The Davidson–Liu method is summarized in Al-
gorithm 1.

The LOBPCG algorithm improves on the Davidson–Liu algorithm by in-
troducing a conjugate search direction. More precisely, it solves HX = XΛ
by iteratively minimizing Tr[X∗HX] over X that satisfies the orthogonality
constraint X∗X = I and takes its columns from a subspace spanned by 3N
vectors. These 3N vectors are the columns of the matrix X of the previous
step, its preconditioned residual W and an extra matrix P that consists of
certain conjugate directions. The coefficients CX , CW and CP are obtained
by computing the lowest N eigenpairs of the projected 3N × 3N generalized
eigenvalue problem

S∗HSC = S∗SCΛ, C =

CXCW
CP

 ∈ R3N×N ,
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Algorithm 2: LOBPCG method for solving the Kohn–Sham DFT
eigenvalue problems Hψi = εiψi

Input: Hamiltonian matrix H and initial wavefunctions {ψ0
i }Ni=1.

Output: Eigenvalues {εi}Ni=1 and wavefunctions {ψi}Ni=1.
1: Initialize X by {ψ0

i }Ni=1 and orthonormalize X.
2: while convergence not reached do
3: Compute the preconditioned residual W ← T (HX −X(X∗HX)),

where T is a preconditioner.
4: Update the trial subspace S ← [X,W,P ].
5: Solve the projected eigenvalue problem S∗HSC = S∗SCΛ and

obtain the coefficients C =

⎡
⎣CX

CW

CP

⎤
⎦.

6: Compute the conjugate gradient direction P ← WCW + PCP .
7: Compute X ← XCX + P .
8: end while
9: Update {ψi}Ni=1 ← X.

where S = [X,W,P ] is the trial subspace. The LOBPCG method is outlined
in Algorithm 2.

Note that when N is relatively small (N ∼ 10–1000), the computa-
tional cost of the 2N × 2N or 3N × 3N projected eigenvalue problem in
the Rayleigh–Ritz step is negligible. However, when N is relatively large
(N ∼ 1000–10 000), the cost of solving such projected eigenvalue problems
can become dominant. Furthermore, even with recent advances in dense
eigensolvers such as ELPA (Marek et al. 2014), the Rayleigh–Ritz step can
still limit the parallel scalability and dominate the wall clock time of the
Davidson–Liu and LOBPCG algorithms when a large number of processors
are used.

More recently, the projected preconditioned conjugate gradient (PPCG)
(Vecharynski, Yang and Pask 2015) algorithm has been proposed to reduce
the cost of the Rayleigh–Ritz step. The main idea of PPCG is to replace the
3N×3N projected eigenvalue problem of LOBPCG by N subproblems, each
of size 3× 3. Compared to the solution of the subspace problem from a full
Rayleigh–Ritz step, PPCG relaxes the optimality of the search direction
at each step, but the advantage is that all N subproblems can be solved
independently. The computational cost of this step scales linearly with N ,
and is negligibly small even when N is large. The orbitals still need to be
orthogonalized at each step to avoid degeneracy. We remark that the idea
of the PPCG method is closely related to another variant of the LOBPCG
method called LOBPCG II (Knyazev 2001).
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Remarks

Algorithms 1 and 2 update all columns of X simultaneously. This is often
referred to as a block eigensolver, which can efficiently utilize BLAS 3 level
matrix–matrix multiplication operations, and is suitable for parallelization.
The disadvantage of a block eigensolver is that the cost of the Rayleigh–Ritz
step can be expensive when N becomes large. Different eigenvectors often
converge with different rates, and the subspace problem may thus become
degenerate. In such a case, the converged eigenvectors should be deflated
from the unconverged ones to avoid instability. Another strategy is to solve
the eigenpairs one by one, starting from the smallest eigenvalue. Such a
method is often referred to as a single-band method (Payne et al. 1992) in
electronic structure calculation. Since each eigenvector is directly orthogon-
alized with all previously converged eigenvectors, the single-band method
can be numerically more stable. Besides the eigensolvers mentioned in this
section, the linear eigenvalue problem can also be solved via optimization
methods under orthogonality constraints (Payne et al. 1992, Edelman, Arias
and Smith 1998, Yang, Meza and Wang 2006, Wen and Yin 2013). We also
remark that optimization techniques can be used to minimize the nonlin-
ear Kohn–Sham energy functional directly with respect to the Kohn–Sham
orbitals.

The choice of the preconditioner T can significantly affect the convergence
rate of eigensolvers. In the context of the planewave basis set, the most
commonly used preconditioner (Teter, Payne and Allan 1989) is diagonal

in frequency space, T = F−1T̂F , where F is the discrete Fourier transform
matrix, with the coefficients T̂ given by

T̂ (g,g′) = δg,g′

(
27 + 18Eg + 12E2

g + 8E3
g

27 + 18Eg + 12E2
g + 8E3

g + 16E4
g

)
, (4.1)

where Eg = |g|2/2 is the kinetic energy associated with the Fourier mode g.
The purpose of the choice (4.1) is that the Fourier modes of long wavelengths
(i.e. |g| is small) remain approximately unchanged, while Fourier modes
of short wavelengths (i.e. |g| is large) are dampened by 1/Eg, which is
approximately 2(−∆)−1. The rationale is that the Laplacian operator is
an unbounded operator, while the pseudopotential, Hartree and exchange-
correlation potentials are usually bounded operators. As the planewave
basis set is being refined, the Laplacian operator dominates the spectral
radius of the Hamiltonian, especially along the Fourier modes with short
wavelengths. Hence, along such modes, the preconditioner T approximates
H−1 well.

The preconditioner (4.1) can be efficiently implemented in the context
of the planewave basis set using only two FFTs per orbital, but it be-
comes considerably more difficult in other large basis sets such as the finite
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element method, and the finite difference method. In such a case, one of-
ten performs preconditioning by directly taking T = −∆−1, and applying
the preconditioner to the residual vector r amounts to solving a Poisson
equation.

4.3. Localization methods

Localized representations of electronic wavefunctions have a wide range
of applications in quantum physics, chemistry and materials science. As
they require significantly less cost for both storage and computation, loc-
alized representations are the foundation of so-called ‘linear scaling meth-
ods’ (Kohn 1996, Goedecker 1999, Bowler and Miyazaki 2012) for solving
quantum problems (see more discussion in Section 5.2). They can also be
used to analyse the chemical bonding in complex materials, interpolate the
band structure of crystals, accelerate ground and excited state electronic
structure calculations, and form reduced-order models for strongly correl-
ated many-body systems (Marzari et al. 2012).

The localization problem can be stated as follows. The Kohn–Sham or-
bitals {ψi}Ni=1 are eigenfunctions of a Hamiltonian matrix, and are generally
delocalized across the entire system, i.e. with significant magnitude in large
portions of the computational domain. Nonetheless, if we apply a unitary
rotation U ∈ CN×N to the Kohn–Sham orbitals

wi(r) =
N∑
j=1

ψj(r)Uji, (4.2)

the density matrix and hence the electron density are invariant with re-
spect to such rotation. However, for certain systems there exist unitary
transformations for which the resulting orthonormal functions {wi}Ni=1 are
approximately only supported on a small portion of the computational do-
main. For isolated systems, {wi}Ni=1 are often called Boys orbitals (Foster
and Boys 1960), while for periodic systems they are often called Wannier
functions (Wannier 1937). Below we will simply refer to the localized orbit-
als as Wannier functions.

For isolated systems surrounded by a vacuum, the occupied orbitals al-
ways decay exponentially to zero as |r| → ∞ (Lieb and Loss 2001). Hence
qualitatively, both the Kohn–Sham orbitals ψi and the localized orbitals wi
decay exponentially, and the localization is defined only in a quantitative
sense.

On the other hand, for periodic crystals, the Kohn–Sham orbitals satisfy
the Bloch boundary condition on each unit cell, and hence are delocalized on
a macroscopic scale. However, for insulating systems with a finite band gap,
the kernel of the density matrix decays exponentially along the off-diagonal
direction (Kohn 1959, Blount 1962, Nenciu 1983, E and Lu 2011, Benzi,
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Boito and Razouk 2013, Lin and Lu 2016), in the sense that

|P (r, r′)| . e−C|r−r
′|, |r− r′| → ∞. (4.3)

This is related to the near-sightedness principle in the physics literature
(Kohn 1996, Prodan and Kohn 2005).

If the system is also topologically trivial, then one may further find a
proper choice of the gauge to construct a set of exponentially localized
Wannier functions (Kohn 1959, Blount 1962, Kivelson 1982, Nenciu 1983,
Brouder et al. 2007, E, Li and Lu 2010, Panati and Pisante 2013). Therefore,
localized representation can make a qualitative difference. In the past few
decades, many numerical algorithms have been designed to compute such
localized orbitals (Marzari and Vanderbilt 1997, Koch and Goedecker 2001,
Gygi 2009, Damle, Lin and Ying 2015, Mustafa, Coh, Cohen and Louie 2015,
Cancès, Levitt, Panati and Stoltz 2017, Damle, Lin and Ying 2017, Damle
and Lin 2018).

For isolated systems, the localized representation can be identified by
minimizing the following spread functional (Foster and Boys 1960, Marzari
and Vanderbilt 1997):

inf
U

Ω[{wi}Ni=1] =

N∑
i=1

[
〈wi|r2|wi〉 − (〈wi|r|wi〉)2

]
subject to wi =

N∑
j=1

ψjUji, U
∗U = IN . (4.4)

In three-dimensional space, the formula for the functional Ω should be in-
terpreted as

3∑
α=1

[〈wi|r2
α|wi〉 − (〈wi|rα|wi〉)2] := 〈wi|(r− 〈r〉i) · (r− 〈r〉i)|wi〉,

where 〈r〉i := 〈wi|r|wi〉. Hence the spread functional can be written com-
pactly as

Ω[{wi}Ni=1] =

N∑
i=1

〈wi|(r− 〈r〉i)2|wi〉.

The functional Ω characterizes the total spatial spread of the rotated or-
bitals {wi}, in terms of the second moment around each centre 〈r〉i. A
smaller spread value indicates a more localized representation of the Kohn–
Sham occupied subspace. Numerically, the localization problem (4.4) can
be solved as a constrained minimization problem. One main drawback of
the localization procedure above is the reliance on a nonlinear optimization
subproblem, and in practice such nonlinear optimization algorithms can
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frequently get stuck at local minima, which can lead to a qualitatively dif-
ferent physical interpretation.

The selected column of the density matrix (SCDM) method (Damle et al.
2015) is a recently developed procedure to overcome this problem. For
simplicity we focus on the case of isolated, insulating systems below, and
the formulation can be generalized to periodic crystals as well as metallic
systems (Damle and Lin 2018). We also assume that the real-space repres-
entation is used, and we do not distinguish a continuous vector ψ(r) and

the corresponding discretized vector {u(ri)}
Ng
i=1, where the grid point ri also

serves as a basis index in the real-space representation.
For an isolated system, the density matrix P is a spectral projector of

rank N to the occupied space. The kernel of the density matrix remains the
same under the unitary transformation

P (r, r′) =

N∑
i=1

wi(r)w∗i (r
′).

Thus, if there exists a set of localized orbitals {wi}, P (r, r′) also decays
rapidly as |r− r′| → ∞. Intuitively, if we can select a set of N points C :=
{r̂µ}Nµ=1 so that the corresponding column vectors of the kernel {P (r, r̂µ)}Ni=1
are the ‘most representative’ and well-conditioned column vectors of P ,
these vectors almost form the desired Wannier functions up to the orthonor-
mality condition.

In order to select the set C, using a real-space representation, we let
Ψ = [ψ1, . . . , ψN ] ∈ CNg×N be a matrix with orthonormal columns. The
corresponding discretized density matrix kernel, still denoted by P , is given
by P = ΨΨ∗. From a numerical linear algebra point of view, the most
representative column vectors can be identified via a QR factorization with
column-pivoting (QRCP) (Golub and Van Loan 2013) applied to P , that is,

PΠ = Q̃R̃. (4.5)

Here Π ∈ RNg×Ng is a permutation matrix, Q̃ ∈ CNg×Ng is a unitary matrix,
and R̃ ∈ CNg×Ng is an upper triangular matrix. The QRCP decomposition
is not unique, but the absolute value of the diagonal entries |R̃ii| should

always follow a non-increasing order, i.e. |R̃11| ≥ |R̃22| ≥ · · · . Note that P

is a rank-N matrix, and hence we must have R̃n,n = 0, n > N . The row
indices of the non-zero entries in the first N columns of Π directly give the
set C.

One drawback of this method is that the cost of QRCP applied to P
scales as O(N3

g ), or at least O(N2
gN). This becomes prohibitively expensive

when a large basis set representation is used. The SCDM method (Damle
et al. 2015) proposes that the set C can be equivalently computed via the
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QRCP of the matrix Ψ∗ as

Ψ∗Π = QR ≡ Q[R1, R2]. (4.6)

Here Q ∈ CN×N is a unitary matrix of reduced dimension, R1 ∈ CN×N is
an upper triangular matrix, and R2 ∈ CN×(Ng−N) is a rectangular matrix.
The cost of the factorization (4.6) only scales as O(NgN

2), which is similar
to the cost of the matrix orthogonalization step in iterative eigensolvers as
discussed in Section 4.2. Once the factorization (4.6) is obtained, we readily
have

PΠ = ΨΨ∗Π = (ΨQ)[R1, R2].

Hence QRCP applied to Ψ∗ implicitly provides a QRCP for the density
matrix P .

Having chosen C, we must now orthonormalize the localized column vec-
tors {P (r, r̂µ)}Nµ=1 without destroying their locality. Note that

P (r, r̂µ) =

N∑
i=1

ψi(r)Ξi,µ,

where Ξ ∈ CN×N has matrix elements

Ξi,µ = ψ∗i (r̂µ). (4.7)

One way to enforce the orthogonality is

wµ(r) =
N∑
i=1

ψi(r)Ui,µ, U = Ξ(Ξ∗Ξ)−1/2. (4.8)

It is clear that U ∈ CN×N is a unitary matrix, and U is in fact the minimizer
of the orthogonal Procrustes problem:

U = arg min
V ∗V=I

‖V − Ξ‖F . (4.9)

In the quantum chemistry literature, the solution of the orthogonal Pro-
crustes problem via the matrix square-root transformation in equation (4.8)
is called the Löwdin transformation (Löwdin 1950).

Note that

(Ξ∗Ξ)µ,ν =

N∑
i=1

ψi(r̂µ)ψ∗i (r̂ν) = P (r̂µ, r̂ν). (4.10)

The decay properties of the matrix P imply that {P (r̂µ, r̂ν)} is a localized

matrix, but of smaller size N×N . If the eigenvalues (Ξ∗Ξ)−1/2 are bounded
away from 0, then (Ξ∗Ξ)−1/2 will itself be localized (E and Lu 2011, Benzi
et al. 2013), and consequently {wi}Ni=1 will be localized, orthonormal Wan-
nier functions. Pseudocode for the SCDM algorithm is given in Algorithm 3.
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Algorithm 3: Selected columns of the density matrix (SCDM)
algorithm

Input: Kohn–Sham orbitals Ψ ∈ CNg×N
Output: Localized orbitals W ∈ CNg×N

1: Compute the selected columns set C := {r̂µ}Nµ=1 using QRCP
via (4.6).

2: Evaluate the Ξ matrix via (4.7).
3: Perform orthogonalization via (4.8).

Below we demonstrate the performance of the SCDM method by com-
puting localized basis functions for two three-dimensional systems. Fig-
ure 4.1(a) shows one of the orthogonalized SCDM orbitals, obtained from a
silicon crystal with 512 atoms consisting of 4×4×4 unit cells with a diamond
structure, and the dimension of each unit cell is 10.26 × 10.26 × 10.26 a.u.
Figure 4.1(b) shows one of the orthogonalized SCDM orbitals, obtained
from a water system with 64 molecules in a cubic supercell with dimension
22.08× 22.08× 22.08 a.u. The orbitals are very localized in real space and
resemble the shape of maximally localized Wannier functions (Marzari and
Vanderbilt 1997). In fact, in this case the method automatically finds the
centres of all localized orbitals, which for the silicon crystal are in the middle
of the Si–Si bond, and for water is closer to the oxygen atoms than to the
hydrogen atoms.

Remarks

Besides using Löwdin transformation, the gauge matrix U can also be dir-
ectly identified from the QRCP (4.6) via a simple choice U = Q. This in
fact corresponds to another orthogonalization method called the Cholesky-
QR factorization, and in this context the Cholesky decomposition can be
performed explicitly or implicitly (Golub and Van Loan 2013, Damle et al.
2017). Numerical results indicate that the two orthogonalization methods
have comparable performance. However, the Löwdin transformation can be
better when the system has certain spatial symmetries, and can be more
easily generalized to periodic crystals.

The numerical methods for finding localized orbitals from the set of oc-
cupied orbitals of an insulating systems can be directly generalized to any
set of eigenvalues in a given energy interval I satisfying the band isolation
condition:

inf
εi∈I,εi′ /∈I

|εi − εi′ | := εg > 0. (4.11)

When this condition is violated (i.e. εg = 0), the eigenvalues in I become
entangled. Entangled eigenvalues appear ubiquitously in metallic systems,
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(a) (b)

Figure 4.1. (Credit: Damle, Lin and Ying 2015.) Isosurface for an orthogonalized
SCDM orbital. (a) A silicon crystal with 512 Si atoms (yellow balls). The red
isosurface characterizes the localized orbitals located between two Si atoms. (b) A
water system with 64 O atoms (red balls) and 128 H atoms (white balls). The yellow
and blue isosurfaces characterize the positive and negative portions of localized
orbitals.

and also in insulating systems when conduction bands or a selected range
of valence bands are considered. The problem now becomes significantly
more difficult: to identify a subspace Vw that admits a localized basis, and
to construct such a basis.

The most widely used method to construct localized functions in this
scenario is a disentanglement procedure (Souza, Marzari and Vanderbilt
2001). However, the result of the disentanglement procedure may depend
sensitively on the initial guess. Often, detailed knowledge of the underlying
physical system is required to obtain physically meaningful results. The
SCDM method has been extended to handle systems with an entangled
band structure in a more robust way (Damle and Lin 2018, Damle, Levitt
and Lin 2019), using QRCP for a set of ‘quasi’ density matrices. Figure 4.2
demonstrates that the extended SCDM algorithm can accurately interpolate
the band structure of graphene, even when zooming in on the region near
the Dirac point.

4.4. Interpolative separable density fitting method

Kohn–Sham DFT calculations with rung-4 functionals and beyond often
require computing quantities related to the pair product of orbitals, in the
form {ϕ∗i (r)ψj(r)}Ni,j=1. Below we present a technique called interpolative
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Figure 4.2. (Credit: Damle and Lin 2018.) Wannier interpolation with SCDM for
the band structure for graphene (a) below the Fermi energy and (b) near the Dirac
point. Direct calculation (red lines) and SCDM-based Wannier interpolation (blue
circles). Here the chemical potential µ = −2.5 eV, σ = 4.0 eV, and we use a
12× 12× 1 k-grid to construct the Wannier functions.

separable density fitting (ISDF) (Lu and Ying 2015, Lu and Ying 2016),
which allows us to reduce the number of pairs from O(N2) to O(N) in
general. This can be used to reduce the cost of rung-4 functional calculations
with a large basis set (Hu, Lin and Yang 2017a, Dong, Hu and Lin 2018)
(see Section 6.1), as well as RPA correlation energy calculations (Lu and
Thicke 2017a) (see Section 6.3). It has also been shown to be useful in other
contexts such as large-scale phonon calculations (Lin, Xu and Ying 2017).

To see why it is possible to find a compressed representation of the pair
products, let us consider a real-space representation. Note that the number
of grid points Ng to represent the orbital pairs scales linearly with respect
to N . Hence, as N increases, the number of orbital pairs will eventually
exceed Ng. This suggests that the numerical rank of {ϕ∗iψj}, viewed as
a matrix of size Ng × N2, must scale asymptotically as O(N). On the
analytic level, consider the first N eigenfunctions {ψi}, i = 1, . . . , N of an
effective Hamiltonian on a compact domain or closed manifold. Lu, Sogge
and Steinerberger (2018) proved that for any ε there exists a subspace BN
of dimension Oδ(ε

−δN1+δ) such that

‖ψiψj −ΠBN (ψiψj)‖L2 ≤ ε, (4.12)

where δ is an arbitrary positive constant. In other words, we can approx-
imate the N2 pair products of eigenfunctions with almost O(N) auxiliary
basis functions, regardless of the discretization level.
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Motivated by the above observation, the ISDF method uses the following
compression format:

ϕ∗i (r)ψj(r) ≈
Nµ∑
µ=1

ϕ∗i (r̂µ)ψj(r̂µ)ζµ(r). (4.13)

Here {r̂µ}
Nµ
µ=1 is a subset of real-space grid points {ri}

Ng
i=1 on which the

orbitals are evaluated. We will refer to {r̂µ}
Nµ
µ=1 as the interpolation points,

and {ζµ(r)}Nµµ=1 sampled on {ri}
Ng
i=1 the interpolation vectors.

The ISDF decomposition can also be understood from the perspective of
interpolation. Let {r̂µ} denote a set of grid points in real space, and let
ζµ(r) be the Lagrange interpolation function on these grid points satisfying

ζµ(r̂µ′) =

{
1 µ = µ′,

0 otherwise.
(4.14)

Then the ISDF decomposition would become sufficiently accurate as one

systematically refines the set {r̂µ}
Nµ
µ=1. In the worst case, all grid points

need to be selected and Nµ = Ng. However, numerical evidence and ana-
lytical results suggest that the decomposition often becomes sufficiently ac-
curate when Nµ � Ng, especially when both {ϕi(r)} and {ψi(r)} consist of
functions that are sufficiently smooth.

We first assume that the interpolation points {r̂µ} are given, and discuss
how to find the interpolation vectors. Define

{Zij(r) := ϕ∗i (r)ψj(r)}1≤i≤N,1≤j≤N , (4.15)

and equation (4.13) can be written as

Z = ΘC, (4.16)

where each column of Z is defined by equation (4.15) sampled on real-space

grids {ri}
Ng
i=1. Θ = [ζ1, ζ2, . . . , ζNµ ] contains the interpolating vectors, and

each column of C with a multi-index (i, j) is given by

[ϕ∗i (r̂1)ψj(r̂1), . . . , ϕ∗i (r̂µ)ψj(r̂µ), . . . , ϕ∗i (r̂Nµ)ψj(r̂Nµ)]>.

Equation (4.16) is an over-determined linear systems with respect to the
interpolation vectors Θ. One possible way to solve the over-determined
system is to impose the Galerkin condition

ZC∗ = ΘCC∗. (4.17)

It follows that the interpolating vectors can be obtained from

Θ = ZC∗(CC∗)−1. (4.18)

Note that the solution given by equation (4.18) is a least-squares approx-
imation to the solution of equation (4.13).
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Algorithm 4: Interpolative separable density fitting (ISDF) method

Input: Functions {ϕi(r)} and {ψj(r)}
Output: Interpolation points {r̂µ}, C, and Θ

1: Form a matrix Z of size Ng ×N2 with column ij given by
{Zij(r) := ϕ∗i (r)ψj(r)}1≤i≤N,1≤j≤jN ,

2: Perform QRCP to Z∗ to obtain Z∗Π = QR. Here Q is an N2 ×Ng

matrix that has orthonormal columns, R is an upper triangular
matrix, and Π is a permutation matrix. Although a naive
implementation takes O(N2N2

g ) steps, randomized projection
using the pair product structure of Z can reduce the complexity to
O(NN2

g ).
3: The locations of the non-zero entries of the first Nµ columns of Π

give {r̂µ} and C.
4: Θ = ZC∗(CC∗)−1.

It may appear that the cost of matrix–matrix multiplications ZC∗ and
CC∗ scales as O(N4), because the size of Z is Ng × N2 and the size of C
is Nµ × N2. However, both multiplications can be carried out with fewer
operations due to the separable structure of Z and C, and the computational
complexity of computing the interpolation vectors is therefore O(N3).

In order to optimize the set of interpolation points, a general strategy is
to use the QR factorization with column pivoting (QRCP), as in the case
of the SCDM method in Section 4.3. Pseudocode for the ISDF algorithm is
given in Algorithm 4.

To demonstrate the interpolation points selected from the QRCP pro-
cedure, we consider a water molecule, with Nµ = 8 interpolation points
distributed in real space (see Figure 4.3). The choice of interpolation points
agrees with chemical intuition: the locations of these points are consistent
with the distribution of the electron density, and the points are relatively
well separated, so that the set of interpolation vectors do not become lin-
early dependent.

The disadvantage of using equation (4.16) directly is that the storage re-
quirement for the matrix Z is O(N3) and the computational cost associated
with a standard QRCP procedure is O(N4). One possibility is to lower the
cost of QRCP by using a random matrix to subsample columns of the mat-
rix Z to form a smaller matrix Z̃ of size Ng × Ñµ, where Ñµ is only slightly
larger than Nµ (Lu and Ying 2015, Lu and Ying 2016). The reduced matrix
size allows the computational cost of the QRCP procedure to be reduced to
O(N3). Since the QRCP algorithm has been implemented in standard linear
algebra software packages such as LAPACK and ScaLAPACK, the imple-
mentation and parallelization of ISDF is then relatively straightforward.
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(a) (b)

Figure 4.3. (Credit: Hu, Lin and Yang 2017a.) (a) The electron density (yellow

isosurfaces) and (b) the interpolation points (green squares) {r̂µ}
Nµ
µ=1 (Nµ = 8)

selected from the real-space grid points {ri}
Ng
i=1 (Ng = 663) for a water molecule in

a 10 Å × 10 Å × 10 Å box. The white and red balls denote hydrogen and oxygen
atoms, respectively.

Another possibility for choosing interpolation points is to use a heuristic
strategy. Note that an effective choice of the set of interpolation points
should satisfy the following two conditions.

(i) The distribution of the interpolation points should roughly follow the
distribution of the electron density. In particular, there should be more
points when the electron density is high, and fewer or even zero points
if the electron density is very low.

(ii) The interpolation points should not be very close to each other. Oth-
erwise matrix rows represented by the interpolation points are nearly
linearly dependent, and the matrix formed by the interpolation vectors
become highly ill-conditioned.

The QRCP procedure satisfies both (i) and (ii) simultaneously. On the
other hand, the conditions above can also be satisfied via a much simpler
centroidal Voronoi tessellation (CVT) procedure applied to a weight vector,
such as the electron density. More specifically, in the centroidal Voronoi
tessellation (CVT) approach, we may partition the grid points in the global
domain into Nµ Voronoi cells. The interpolation points can then be simply
chosen to be the centroids corresponding to each cell. The CVT procedure
can be effectively implemented through a K-Means algorithm (MacQueen
1967). Besides reduction of the computational cost, the use of a K-Means
algorithm also produces a smoother potential energy surface, particularly
in the context of ab initio molecular dynamics. We refer to Dong, Hu and
Lin (2018) for more details of this approach.
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Remarks
As in the SCDM method in Section 4.3, the ISDF method also relies on the
real-space representation and smoothness of the orbitals. When small basis
sets such as Gaussian-type orbitals are used, one possible way of using ISDF
is to first interpolate the orbitals onto a real-space grid. However, in the
context of all-electron calculations, the grid size needed to reach chemical
accuracy can be exceedingly large. Hence in the quantum chemistry liter-
ature, the compression is often performed using the density fitting method
(a.k.a. resolution of identity) (Weigend 2002, Ren et al. 2012a), applied to

the basis functions {φp}Nbp=1 directly. More specifically, density fitting seeks
the following decomposition:

φ∗p(r)φq(r) ≈
Nµ∑
µ=1

Cpqµ ζµ(r), (4.19)

where the number of auxiliary functions Nµ is expected to be much smaller
than the number of pairs N2

b . The density fitting method can be viewed as
an approximate solution to the singular value decomposition (SVD) of the
matrix formed by the product of pairs of orbitals.

We remark that there is an important technical difference between ISDF
and standard density fitting methods. In ISDF, the interpolation points
{r̂µ} are chosen first, and the auxiliary functions {ζµ} are decided accord-
ingly via a least-squares procedure. The interpolation coefficients in ISDF
are obtained directly with a factorized form

Cpqµ = φ∗p(r̂µ)φq(r̂µ). (4.20)

In standard density fitting methods, the auxiliary functions are often chosen
a priori, and part of the reason is to facilitate the computation of the two-
electron integrals in subsequent calculations. The interpolation coefficients
{Cpqµ } are then determined via a least-squares procedure. Since {Cpqµ } is
generally a dense three-way tensor, the computational cost of density fitting
scales generally as O(N4) unless additional locality constraints are enforced
(Ren et al. 2012a).

Another technique to reduce the cost of the density fitting method is
the tensor hypercontraction (THC) method (Parrish, Hohenstein, Mart́ınez
and Sherrill 2012, Parrish, Hohenstein, Mart́ınez and Sherrill 2013), which
is closely related to the ISDF method. Conceptually, THC aims at com-
pressing the two-electron integrals directly, without going through inter-
mediate decomposition of the form (4.19) with separable coefficients as in
(4.20). However, since the two-electron integrals is a four-way tensor to
start with, the computational cost associated with the THC decomposition
can be O(N5). Once the decomposition is obtained, the THC format can
then be used to reduce the cost of post-Hartree–Fock calculations, such as
MP2 and coupled cluster theories.
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5. Evaluation of the Kohn–Sham map: semi-local functional

When solving Kohn–Sham DFT using the self-consistent field iteration, the
most computationally expensive step is the evaluation of the Kohn–Sham
map. For a given effective Hamiltonian at the current iteration, one needs
to determine the electronic structure, in the form of occupied orbitals or the
electron density. In this section we discuss the evaluation of the Kohn–Sham
map for semi-local functionals. Given an effective Hamiltonian as a matrix,
the straightforward way to obtain the corresponding density is to use con-
ventional direct diagonalization (see Section 4.1) or iterative diagonalization
(see Section 4.2) algorithms to obtain the low-lying eigenfunctions and then
the electron density. These methods inherently display cubic scaling with
respect to the system size, and become computationally expensive or even
infeasible for large-scale systems.

To reduce the computational cost, it is important to realize that we re-
quire only the electron density in the Kohn–Sham map, but not the eigen-
functions or eigenvalues. More efficient algorithms can thus be developed for
the Kohn–Sham map. In Section 5.1, we review filtering methods that are
iterative methods not trying to converge to each individual eigenvector, but
instead to the occupied subspace, which can often be much more efficient
than traditional iterative solvers for eigenvalue problems.

Since we do not need each individual eigenvector, we can use an alternat-
ive representation for the occupied subspace, such as the density matrix or
localized orbitals. By exploiting the sparsity, it is even possible to achieve
linear scaling for insulating systems. We will review such methods in Sec-
tion 5.2. While linear scaling methods are in principle desirable, it is often
challenging to control their accuracy unless the system has a relatively large
gap. The pole expansion and selected inversion method (PEXSI) has been
developed as a reduced scaling method that yields accurate approximation
for general systems, which will be discussed in Section 5.3.

5.1. Filtering methods

Instead of using Krylov-type methods to approximate the low-lying eigen-
modes, one can also identify the low eigenmodes by evaluating an appro-
priate polynomial of the Hamiltonian H. The main criterion for choos-
ing such a polynomial p(z) is that it should maximize the magnitudes at
the eigenvalues λ1, . . . , λN and at the same time minimize the magnitudes
at the eigenvalues λN+1, . . . , λNb . One of the most popular choices is the
shifted-and-scaled Chebyshev polynomial Pk(z) that maps the standard in-
terval [−1, 1] to [λN+1, λNb ], where the subscript k denotes the degree of this
Chebyshev polynomial (Zhou, Saad, Tiago and Chelikowsky 2006). The ab-
solute values of Chebyshev polynomials are bounded by 1 within the interval
[−1, 1] and grow rapidly outside this interval. Hence the shifted-and-scaled
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Algorithm 5: Chebyshev filtering method for solving the Kohn–Sham
DFT eigenvalue problems Hψi = εiψi

Input: Hamiltonian matrix H and an orthonormal matrix X ∈ CNb×Ns .
Output: Eigenvalues {εi}Ni=1 and wavefunctions {ψi}Ni=1.

1: Estimate λN+1 and λNb using a few steps of the Lanczos algorithm.
2: while convergence not reached do
3: Apply the Chebyshev polynomial Pk(H) to X: Y = Pk(H)X.
3: Orthonormalize columns of Y .
4: Compute the projected Hamiltonian matrix H̃ = Y ∗HY and solve

the eigenproblem H̃Ψ̃ = Ψ̃D̃.
5: Subspace rotation X = Y Ψ̃.
6: end while
7: Update {ψi}Ni=1 from the first N columns of X.

Chebyshev polynomial Pk(z) only amplifies the occupied states of the H. In
practice, one does not know a priori the values of λN+1 and λNb . These val-
ues need to be estimated from the Kohn–Sham Hamiltonian (e.g. applying a
few steps of the Lanczos iteration (Zhou, Chelikowsky and Saad 2014)), and
also updated on the fly. When applying the Chebyshev filtering algorithm,
we also often choose the number of states Ns to be slightly larger than the
number of occupied orbitals N , to accelerate the convergence. Pseudocode
for the Chebyshev filtering algorithm is shown in Algorithm 5.

The Chebyshev filtering algorithm is presented here as a diagonalization
procedure, that is, one iterates until the low-lying eigenvalues converge.
However, in many implementations, due to the existence of the outer SCF
iteration, one often performs a handful of iterations (applying Chebyshev
polynomials and orthonormalization) and accepts whatever improvement it
produces. Sometimes even a single iteration per outer SCF iteration may be
sufficient. An equivalent view is that it combines the outer SCF loop with
the inner diagonalization loop, without performing accurate diagonalization.
For many problems, such a combination does not increase the number of
outer SCF iterations and hence may significantly reduce the overall running
time.

Application of the Chebyshev polynomial to all occupied states scales as
O(NbN). For large problems, the most expensive step is the solution of the
Rayleigh–Ritz problem in step 4 (also called the subspace diagonalization
step) of Algorithm 5, which scales as O(N3). Although the cubic scal-
ing cannot be avoided in the filtering-based approaches, the prefactors can
be significantly reduced by the following complementary subspace method
(Banerjee et al. 2018).
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In the Chebyshev filtering approach, the density matrix is computed as

P = Y P̃Y ∗, (5.1)

where P̃ ∈ RNs×Ns is the projected density matrix, with its eigenvalues
given by the occupation numbers {fi}Nsi=1, evaluated according to the Fermi–
Dirac distribution in equation (2.66), for example (we switch to the finite
temperature case here). Since Ns is only slightly larger than N , most of the
occupation numbers are approximately equal to 1. We denote states 1 to
N1 as those with occupation numbers equal to 1 within numerical tolerance.
The remaining states, from N1 + 1 to Ns, have occupation numbers less
than 1. Let Nt be the number of these fractionally occupied states, i.e.
Nt = Ns−N1. The eigenvectors of the projected density matrix are {ψ̃i}Nsi=1,
and we may rewrite the expression for the projected density matrix as

P̃ =

Ns∑
i=1

fi ψ̃i ψ̃
∗
i

=

Ns∑
i=1

ψ̃i ψ̃
∗
i −

Ns∑
i=N1+1

ψ̃i ψ̃
∗
i +

Ns∑
i=N1+1

fi ψ̃i ψ̃
∗
i

= Ĩ −
Ns∑

i=N1+1

(1− fi) ψ̃i ψ̃∗i . (5.2)

In equation (5.2) above, Ĩ is the identity matrix of dimension Ns×Ns. That
the first term of equation (5.2) is the identity matrix follows from the resol-
ution of the identity. Hence, if the Nt top eigenvectors ψ̃i and corresponding
occupation numbers fi are known, the projected density matrix P̃ may be
computed. Thus, instead of determining the full Ns ×Ns set of vectors, we
need to determine only an extremal block of vectors (of dimension Ns×Nt),
corresponding to the states i = N1 + 1 to Ns.

Moreover, physical quantities such as the electron density, energy, entropy
and atomic force can all be computed by knowing only the top eigenstates.
These eigenstates can be efficiently evaluated via several Chebyshev polyno-
mial filtering steps applied to the projected Hamiltonian matrix H̃. Using
this complementary subspace strategy with two levels of Chebyshev filtering
(CS2CF), for insulating systems, the Rayleigh–Ritz step may be avoided al-
together. For metallic systems, the cost of the Rayleigh–Ritz step can also
be significantly reduced. Table 5.1 shows that the CS2CF strategy can
be applied to insulating and metallic systems with O(104) atoms and effi-
ciently parallelized over O(104) computational cores. The wall clock time to
solution can be more than an order of magnitude faster than parallel dense
diagonalization methods such as ELPA for large systems.
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Table 5.1. (Credit: Banerjee et al. 2018.) Wall clock times for one SCF iteration
large systems using the CS2CF strategy in DGDFT.

System No. of No. of Comput. CS2CF CS2CF ELPA (s)
atoms electrons cores time (s) subspace

time (s)

Electrolyte
3D3×3×3

8 586 29 808 3 456 34 19 647

SiDiamond
3D10×10×10

8 000 32 000 3 456 40 24 648

Graphene
2D8×8

11 520 23 040 4 608 35 27 262

CuFCC
3D10×10×10

4 000 44 000 3 000 75 46 199

LiBCC
3D12×12×12

27 648 82 944 12 960 180 165 5844

Remarks

The idea of filtering the Hamiltonian matrix also appears in the spectral
slicing approach (Zhang, Smith, Sternberg and Zapol 2007, Polizzi 2009,
Schofield, Chelikowsky and Saad 2012, Aktulga et al. 2014). The basic idea
is to project matrix functions fi(H) to a set of orbitals, where fi(·) can be
polynomials or rational functions approximately supported only on a small
segment Ii. Then one may perform diagonalization methods to compute
the eigenvalues restricted to the segment. Finally, the eigenvalues obtained
from different segments of the spectrum are merged together. The spec-
tral splicing approach is naturally suited to massive parallelization. Each
core or multiple cores together may focus on calculations associated with
one segment, and may significantly reduce the wall clock time. Note that
spectral slicing methods may involve multiple parameters, such as the par-
titioning strategy of the spectrum, the degrees of filtering polynomials, and
the merging strategy of different segments of the spectrum. Finding an ef-
ficient and robust strategy to determine these parameters is still an active
research area.

5.2. Linear scaling methods

Direct diagonalization and iterative methods for solving the Kohn–Sham
eigenvalue problem scale cubically with system size. The cubic scaling is
the bottleneck for electronic structure calculations of large systems. When a
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set of localized basis functions such as atomic orbitals and real-space repres-
entation are used, the resulting Hamiltonian matrix from the Kohn–Sham
eigenvalue problem is localized. For insulating systems, the density matrix
is localized and there exist localized representations – Wannier functions
– for the subspace spanned by the occupied orbitals, as discussed in Sec-
tion 4.3. One might hope to obtain the electronic structure, in the form of
either a density matrix or localized orbitals, with a computation cost that
scales linearly with system size. Such algorithms are referred to as ‘linear
scaling methods’. Many algorithms have been proposed and investigated
over the past 30 years.

To achieve linear scaling, one needs to bypass the diagonalization of the
Kohn–Sham Hamiltonian matrix. The crucial observation is that in the
self-consistent iteration, we do not need full information on the eigenvectors.
Thus, it is possible to reformulate the Kohn–Sham eigenvalue problem in a
way that allows us to exploit the locality of the density matrix or localized
orbitals to reduce computational complexity. In the following, we review
a few representative linear scaling methods. While the list does not cover
all algorithms developed in the literature, the discussion covers most of the
existing ideas and strategies to achieve linear scaling. We refer readers to
Goedecker (1999) and Bowler and Miyazaki (2012) for a more extensive
review of linear scaling methods.

5.2.1. Divide-and-conquer method

The divide-and-conquer method proposed by Weitao Yang (Yang 1991a,
Yang 1991b) is the first linear scaling method proposed in the literature for
Kohn–Sham DFT. The idea of divide-and-conquer is to divide the physical
system into several subsystems. The effective Hamiltonian for each subsys-
tem is then solved separately, and the electron density of the whole system
is obtained by merging the results of the subsystems together.

The divide-and-conquer method for each SCF step is described in Al-
gorithm 6. Here a real-space representation is assumed. The divide-and-
conquer method was originally developed for discretization using localized
basis functions (Yang 1991a, Yang 1991b), in which case the algorithm is
slightly different but shares the same spirit.

The divide-and-conquer method relies on the near-sightedness of the elec-
tron matter, as formulated by Kohn (1996). Roughly speaking, the depend-
ence of electron density at r on the effective potential at r′ is negligible
when |r− r′| is large. Hence, in the interior of the domain Ωκ, the electron
density corresponding to the Hamiltonian H is well approximated by that
of the truncated Hamiltonian Hκ, since H agrees with Hκ inside Ωκ. To
make this work, besides requiring that the original system H is insulating,
we also require that the truncated system Hκ does not destroy the energy
gap (which could happen in practice, e.g. for heterogeneous systems). See
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Algorithm 6: Divide-and-conquer method for evaluating the Kohn–
Sham map

Input: Hamiltonian matrix H.
Output: Electron density ρ corresponding to H.
1: Construct an overlapping partition {Ωκ} of the whole computational

domain Ω and the associated partition of unity {pκ} satisfying∑
κ

pκ(r) = 1, for all r ∈ Ω and supp pκ ⊂ Ωκ.

2: Hκ = H|Ωκ : restrict the Hamiltonian on the subdomain Ωκ with
appropriate boundary conditions.

3: Solve the eigenvalue problem in each subsystem

Hκψ
κ
j (r) = εκjψ

κ
j (r), r ∈ Ωκ.

4: Determine the Fermi energy μ by fixing the total number of
electrons:

N =
∑
κ

∑
j

fβ(ε
κ
j − μ)

∫
Ωκ

pκ(r)|ψκ
j (r)|2 dr,

where fβ is the Fermi–Dirac function.
5: Construct the electron density as

ρ(r) =
∑
κ

pκ(r)
∑
j

fβ(ε
κ
j − μ)|ψκ

j (r)|2.

Chen and Lu (2016) for a mathematical analysis of the divide-and-conquer
method, based on the analysis tools developed in E and Lu (2011).

Further developments of the divide-and-conquer method and related do-
main decomposition type method can be found in Yang and Lee (1995),
Wang, Zhao and Meza (2008), Zhao, Meza and Wang (2008), Barrault,
Cancès, Hager and Le Bris (2007) and Bencteux et al. (2008). A great
advantage of the method lies in the intrinsic parallelism of the computa-
tion for each subsystem, which has been utilized for large-scale calcula-
tions with more than 106 atoms and 1012 electronic degrees of freedom
(Kobayashi and Nakai 2009, Ohba et al. 2012, Shimojo, Kalia, Nakano and
Vashishta 2008, Shimojo et al. 2011).

The divide-and-conquer method is based on separating the total compu-
tational domain into smaller ones and solving the eigenvalue problem for
each subdomain. There are other linear scaling methods based on reformu-
lations of the Kohn–Sham problems to bypass the eigenvalue problem, as
we will discuss below.
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5.2.2. Orbital minimization methods

According to the Courant–Fisher variational principle, the first N eigen-
vectors of the discretized Hamiltonian matrix H can be found by solving

E = min
X, X∗X=I

Tr(X∗HX), (5.3)

where X ∈ CNb×N is the matrix of discretized orbitals. The orthogonality
constraint X∗X = I is a bottleneck for linear scaling, as the cost of both the
Gram–Schmidt orthogonalization and the Rayleigh–Ritz step scale cubically
with respect to the system size.

The orbital minimization method (OMM) (Mauri, Galli and Car 1993, Or-
dejón, Drabold, Grumbach and Martin 1993, Mauri and Galli 1994, Ordejón,
Drabold, Martin and Grumbach 1995) is based instead on an unconstrained
variational formulation,

E = min
X

Tr((2I −X∗X)(X∗(H − εmax)X)), (5.4)

where εmax is an upper bound of the eigenvalue of H. The shift of the
Hamiltonian by −εmax makes all its eigenvalues negative, so the objective
function is bounded from below, while it does not affect the eigenvectors
of H.

While the OMM variational problem looks rather different from (5.3), it
can be shown that the global minimizer X of (5.4) spans the eigenspace
of the lowest N eigenvalues of H (assuming non-degeneracy) (Mauri et al.
1993, Pfrommer, Demmel and Simon 1999). In fact, somewhat surprisingly,
while the objective function (5.4) is non-convex, it is proved in Lu and
Thicke (2017b) that every local minimum of (5.4) is in fact also a global
minimum. Thus it suffices for an optimization algorithm to converge locally.

The OMM minimization can be used as an alternative to direct diagon-
alization, as a way to obtain the Kohn–Sham map. This is implemented
in the library libOMM (Corsetti 2014) with the preconditioned conjugate
gradient algorithm.

More commonly, OMM is combined with truncation of the iterates of X
to achieve linear scaling by only keeping O(1) entries for each column of X
during the iteration (Mauri et al. 1993, Ordejón et al. 1993). The hope is
that the algorithm converges to the localized representation of the occupied
space for insulating systems. However, with truncation, the optimization
procedure might get stuck. Strategies to alleviate the problem have been
proposed, for example in Kim, Mauri and Galli (1995), Tsuchida (2007),
Gao and E (2009) and Lu and Thicke (2017b). The OMM is used in the
SIESTA package (Soler et al. 2002) to achieve linear scaling.

As in OMM, localization and truncation steps can also be combined with
other iterative algorithms that only rely on the subspace (rather than in-
dividual eigenvectors) to achieve linear scaling. One such algorithm is the
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localized subspace iteration algorithm (E et al. 2010, Garcia-Cervera, Lu,
Xuan and E 2009), based on the Chebyshev filtering method (Algorithm 5).
The Rayleigh–Ritz step (i.e. step 4 of Algorithm 5) is replaced by a local-
ization and truncation step to maintain sparsity.

5.2.3. Density matrix minimization methods

Besides using orbitals, one can also use the density matrix in the variational
approach for linear scaling algorithms. The starting point is the following
variational principle in terms of density matrices:

E = min
P

Tr(PH)

subject to P 2 = P, P = P ∗, TrP = N. (5.5)

In the above minimization, the idempotency constraint P 2 = P is not easy
to deal with, similar to the orthogonality constraint for orbitals. The idea is
to circumvent the constraint by using some alternative variational principles.
One such variational principle is

E = min
P
EDMM[P ] := min

P
Tr((3P 2 − 2P 3)(H − µ))

subject to P = P ∗, (5.6)

where µ is the chemical potential assumed to be known, whose determina-
tion can be done by solving the constraint that TrP = N (we will further
discuss how to determine the chemical potential at the end of Section 5.2.4).
Note that in (5.6) we have replaced P in the trace term by the polynomial
3P 2 − 2P 3 (this is known as the McWeeny purification polynomial, which
will be discussed in more detail in Section 5.2.4) and used a constant shift of
the Hamiltonian by the chemical potential. To minimize (5.6), one can typ-
ically start with an initial guess (e.g. P(0) = 1

2I) and employ the conjugate
gradient method to minimize the energy.

The energy (5.6) is in fact not bounded from below. Let εi be one of the
eigenvalues of H that is larger than µ; we can take P =

∑
i fi|ψi〉〈ψi| and

send fi →∞ to make the energy go to −∞. On the other hand, convergence
can be proved with particular choices of initial conditions and minimization
algorithms. The variation of (5.6) can be computed as

δEDMM = Tr

[
δEDMM

δP
δP

]
, (5.7)

where

δEDMM

δP
= 3(PH +HP − 2µP )− 2(P 2H + PHP +HP 2 − 3µP 2). (5.8)
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When P commutes with H, equation (5.8) can be simplified as

δEDMM

δP
= (6P − 6P 2)(H − µ) = 6P (I − P )(H − µ). (5.9)

Equation (5.9) suggests that DMM may have many stationary points. In
fact, any ‘pure’ density matrix satisfying P 2 = P is a stationary point.
Nonetheless, if the initial guess P0 is not a stationary point, and can be
represented as

P0 =
∑
i

fiψiψ
∗
i ,

where 0 < fi < 1 for all i, that is, all the states are fractionally occupied.
Then

δEDMM

δP0
=
∑
i

6(εi − µ)fi(1− fi)ψiψ∗i . (5.10)

Thus, if εi < µ, the gradient direction will increase fi, and vice versa.
The steepest descent algorithm will then converge to the density matrix
corresponding to H, if the chemical potential µ is correctly chosen. A
common choice of initial condition is P0 = 1

2I, which satisfies the condition
0 < fi < 1 in general.

We may also understand the OMM functional (5.4) from the perspective
of density matrices. Setting P = XX∗, we can rewrite (5.4) as

E = min
P

Tr((2P − P 2)(H − Emax))

subject to P = P ∗, 0 � P � I, rankP ≤ N. (5.11)

The semi-definite constraint 0 � P � I is not easy to deal with (see Lai,
Lu and Osher 2015, Lai and Lu 2016 for some algorithms for zero and finite
temperature extensions), and hence in practice the OMM formulation in
terms of orbitals is preferred.

Density matrix based algorithms provide a possible route to reduce the
computational complexity for the evaluation of the Kohn–Sham map. Note
that the gradient of the DMM energy (5.8) only involves matrix–matrix
multiplication operations. Hence, if each matrix can be approximated by a
sparse matrix, as in the case of insulating systems (see Section 4.3), the com-
putational cost may be significantly reduced. For such systems, the number
of non-zero entries of the density matrix only increases linearly with respect
to N . Therefore with a proper implementation, all matrix–matrix multiplic-
ation operations can be carried out with O(N) cost, which leads to linear
scaling. The DMM algorithm is used by the ONETEP package (Skylaris
et al. 2005) together with optimization of the localized basis functions.
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5.2.4. Density matrix purification

Besides density matrix minimization, another class of density matrix based
algorithms is density matrix purification, which works for zero temperature
systems, as it directly uses the idempotency of the density matrix.

Let us first consider the problem of constructing an idempotent matrix,
starting from a given Hermitian matrix with eigenvalues close to 0 and 1
(but not exactly 0 and 1). One strategy is McWeeny purification (McWeeny
1960), which recursively applies the function fMcW(x) = 3x2 − 2x3 to the
matrix, starting from the initial Hermitian matrix P0:

Pn+1 = fMcW(Pn) = 3P 2
n − 2P 3

n . (5.12)

To see why McWeeny purification works, note that the iterate remains Her-
mitian throughout the iteration and the eigenfunctions remain the same; it
hence suffices to keep track of the eigenvalues. By focusing on a specific
eigenvalue λ0 of P0, we have

λn+1 = fMcW(λn) = 3λ2
n − 2λ3

n. (5.13)

The fixed point of this map is given by the solution to

x = fMcW(x) = 3x2 − 2x3, (5.14)

whose three roots are given by 0, 1/2 and 1. Calculating the derivative of
fMcW shows that

f ′McW(x) = 6x− 6x2 =


0 x = 0,

3/2 x = 1/2,

0 x = 1.

(5.15)

Therefore, 0 and 1 are the stable fixed points, while 1/2 is unstable. We
also observe that

x < fMcW(x) for x ∈ (0, 1/2),

x > fMcW(x) for x ∈ (1/2, 1).

Hence, the iteration converges to 0 if the initial condition lies in [0, 1/2),
while it converges to 1 if the initial condition lies in (1/2, 1]. (See Figure 5.1.
In fact, the iteration converges to 0 if starting within [−1/2, 1/2) and to 1
if starting within (1/2, 3/2].)

Given these observations, let us now consider how to use purification to
get the density matrix

P = 1(−∞,0](H − µ). (5.16)

Note that P shares the same eigenfunctions as H, so this fits into the puri-
fication framework. We want to make all the eigenvalues of H below the
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Algorithm 7: McWeeny purification algorithm for density matrix

Input: Hamiltonian matrix H and chemical potential µ.
Output: Density matrix P .

1: Estimate lower and upper bounds of eigenvalues εmin and εmax, such
that spec(H) ⊂ [εmin, εmax].

2: Set initial density matrix

P ← α

2
(µ−H) +

1

2
I,

with α = min{(εmax − µ)−1, (µ− εmin)−1}.
3: while convergence not reached do
4: P ← fMcW(P )
5: end while

chemical potential µ converge to 1 and all the eigenvalues of H above con-
verge to 0. Algorithm 7 starts from a rescaled version of the matrix µ−H
and applies purification.

The initial density matrix

P0 =
α

2
(µ−H) +

1

2
I

with the proper choice of α guarantees convergence. Observe that at the
mth iteration, the density matrix is approximated by

P ≈ Pm = fMcW ◦ fMcW ◦ · · · ◦ fMcW(P0). (5.17)

This is a polynomial of the Hamiltonian H and gives a recursive polynomial
approximation to the density matrix. Due to the recursion, the degree of
the polynomial becomes quite high: in the mth iteration, the polynomial
has highest degree monomial x3m where 2m matrix–matrix multiplication is
needed. This is useful since our goal is to obtain a polynomial approximation
of a Heaviside function (Fermi–Dirac function at zero temperature), hence
a high-order polynomial is required to reduce the effect of the Gibbs phe-
nomenon. In fact, the McWeeny purification method can be understood as
the Newton–Schultz algorithm for the matrix sign function (Higham 2008),
and thus gives a fast iterative scheme for the density matrix.

One drawback of McWeeny purification and the density matrix minim-
ization discussed above is that they require the chemical potential µ as
input. Extensions that do not rely on input chemical potential have been de-
veloped, such as the canonical purification (Paler and Manolopoulos 1998),
trace correcting purification (Niklasson 2002), trace resetting purification
(Niklasson, Tymczak and Challacombe 2003) and generalized canonical
purification (Truflandier, Dianzinga and Bowler 2016). These algorithms
are used in large-scale parallel implementations (Chow, Liu, Smelyanskiy
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Figure 5.1. Shape of fMcW for McWeeny purification.

and Hammond 2015, Dawson and Nakajima 2018). We refer interested
readers to Niklasson (2011) for a recent review on these methods.

5.2.5. Fermi operator expansion

Another approach to yielding linear scaling algorithms is the Fermi oper-
ator expansion (FOE) method. Consider the density matrix at the finite
temperature

P = fβ(H − µ). (5.18)

The right-hand side is a matrix function with respect to the Hamiltonian
matrix H. Instead of diagonalizing H and evaluating the matrix func-
tion using the eigen-decomposition, the basic idea of FOE is to expand the
Fermi–Dirac function fβ(·) into an m-term expansion as

fβ(ε) ≈ fβ,m(ε) =

m∑
n=1

gn(ε). (5.19)

The corresponding matrix function approximation is

fβ(H − µ) ≈ fβ,m(H − µ) =

m∑
n=1

gn(H − µ). (5.20)

The above formulation is general. We only require each term gn(H − µ)
to be a simple function, so that the corresponding matrix function can be
evaluated directly without diagonalizing the matrix. For instance, gn can
be chosen to be a polynomial function or a rational function.

The approximation error of the matrix form (5.20) is directly related to
that of the scalar form (5.19). Given the eigendecomposition

Hψi = εiψi,
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we have for any vector v

(fβ(H−µ)−fβ,m(H−µ))v =
∑
i

(fβ(εi−µ)−fβ,m(εi−µ))ψi〈ψi|v〉. (5.21)

Thus,

‖(fβ(H − µ)− fβ,m(H − µ))v‖22
=
∑
i

|fβ(εi − µ)− fβ,m(εi − µ)|2|〈ψi|v〉|2

≤ sup
i
|fβ(εi − µ)− fβ,m(εi − µ)|2

∑
i

|〈ψi|v〉|2

= sup
t∈spec(H−µ)

|fβ(t)− fβ,m(t)|2‖v‖22. (5.22)

The equation above can be rewritten as

‖fβ(H − µ)− fβ,m(H − µ)‖2 ≤ ‖fβ(·)− fβ,m(·)‖∞, (5.23)

where the left-hand side is the operator norm for matrices and the right-
hand side is the L∞-norm for scalar functions. Thus the error of the Fermi
operator expansion (5.20) will be small as long as the corresponding ap-
proximation is small in the sense of expansions for scalar functions (5.19).

One example of FOE is to expand the Fermi–Dirac function into poly-
nomials (Goedecker and Colombo 1994):

fβ(ε) ≈
m∑
n=1

cnε
n−1. (5.24)

The corresponding matrix function version is

fβ(H − µ) ≈
m∑
n=1

cn(H − µ)n−1. (5.25)

Note that each term of equation (5.25) is simply a matrix power (H − µ)n,
which can be evaluated using only matrix–matrix multiplication recursively,
without diagonalizing the matrix H. In order to implement the FOE (5.25)
for a high-order polynomial, it is more efficient and stable to expand fβ(t)
using Chebyshev polynomials. For insulators, the number of terms needed in
equation (5.25) scales as log ε−1 to reach target accuracy ε (Trefethen 2008).
In particular, the number of terms is independent of the system size and
can be treated as a constant. When H is a sparse matrix, this means that
the polynomial approximation to fβ(H − µ) is a sparse matrix as well, and
the number of non-zeros only scales linearly with respect to the system size.
Hence the FOE method (5.25) is a linear scaling algorithm.

Besides expansion using polynomials, another possibility is to approxim-
ate the Fermi–Dirac function using rational functions. A rational function
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can be decomposed into a linear combination of terms of the form (ε−z)−p,
where z ∈ C and p ≥ 1. In particular, if all terms use p = 1 the result-
ing expansion is called a simple pole expansion, or just the pole expansion.
Compared to polynomial expansion, there are two main advantages in using
the rational expansion. First, the number of terms needed for the rational
expansion can be much smaller than that needed for polynomial expan-
sion to achieve the same accuracy. This is particularly the case for systems
with small gaps. Second, the use of the pole expansion can yield fast al-
gorithms with reduced complexity even for metallic systems. This is called
the pole expansion and selected inversion algorithm (PEXSI), which will
be discussed in Section 5.3. To our knowledge, PEXSI is so far the only
algorithm allowing such complexity reduction.

5.3. Pole expansion and selected inversion method

While linear scaling algorithms in principle yield fast algorithms for the
evaluation of Kohn–Sham maps, their accuracy often crucially depends on
the decay of orbitals or density matrices, and they are usually only suitable
for insulating systems with a large gap. Another practical drawback is that
they often require user input on support of truncation and other tuning
parameters to achieve a balance between efficiency and accuracy. The pole
expansion and selected inversion method (PEXSI) (Lin et al. 2009b, Lin,
Chen, Yang and He 2013) is a reduced scaling algorithm with computational
scaling at most O(N2) and smaller for lower-dimensional systems. While it
has a worse computational scaling than linear, the PEXSI algorithm can be
applied to general systems and gives accurate results.

The PEXSI algorithm is one type of FOE method, and uses the following
pole expansion to approximate the Fermi–Dirac distribution:

P ≈
m∑
l=1

ωl(H − zl)−1. (5.26)

If the band gap is small or zero, the number of terms needed in order
for the polynomial expansion to reach a certain target accuracy ε scales as
O(β∆E), where ∆E is the spectral radius of the shifted operator H − µ
(Goedecker 1999). Although the number of terms of a straightforward
construction of the pole expansion also scales as O(β∆E) (Baroni and
Giannozzi 1992), it has subsequently been improved to O((β∆E)1/2) (Ozaki
2007), O((β∆E)1/3) (Ceriotti, Kühne and Parrinello 2008), and finally
O(log(β∆E)) (Lin, Lu, Ying and E 2009a).

In order to obtain such a pole expansion, one possibility is to use the
Cauchy contour integral formulation. Note that the Fermi–Dirac function
fβ(ε) = 1/(1 + eβε) is a meromorphic function in C, and the only poles are
at ε = (2n+ 1)iπ/β, n ∈ Z. Furthermore, fβ(ε) can be expanded using the
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Figure 5.2. Contour integral representation and pole expansion for the density
matrix at finite temperature.

following Matsubara expansion (Mahan 2000):

fβ(ε) =
1

2
− 1

β

∑
n∈Z

1

ε− (2n+ 1)iπ/β
. (5.27)

Note that equation (5.27) only converges conditionally, and the infinite sum-
mation must be performed symmetrically with respect to the positive and
negative choices of n. The number of terms needed in the direct truncation
of the Matsubara series naturally scales as O(β∆E).

The efficiency of the pole expansion can be improved by using a contour
integral formulation:

fβ(H − µ) =
1

2π i

∮
C
fβ(z)((z + µ)I −H)−1 dz. (5.28)

Here the contour C should be chosen so that it includes all the (real) eigen-
values ofH−µ, without including any poles of fβ(z), i.e. (2n+1)iπ/β, n ∈ Z.
This leads to the ‘dumbbell-shaped’ contour used in Lin, Lu, Ying and E
(2009a) (Figure 5.2). The contour is symmetric with respect to the chemical
potential µ. The discretization points are chosen to be denser around µ to
resolve the sharp transition of the Fermi–Dirac function at µ. At finite tem-
perature, the contour integral formulation remains well-defined for gapless
systems, i.e. εN = εN+1.
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Each term in the pole expansion corresponds to a matrix inverse, or
Green’s function (zl −H)−1, which can be evaluated directly without diag-
onalizing the matrix H. Equation (5.26) converts the problem of computing
P to the problem of computing m Green’s functions. In order to find the
Kohn–Sham map, we do not need the entire density matrix P , but only the
electron density which corresponds to the diagonal entries of P (again for
simplicity we assume that the basis set is orthogonal and the overlap matrix
S is an identity matrix). This amounts to the question of finding the diag-
onal entries of a Green’s function. Note that even if H is a sparse matrix,
the matrix inverse Gl := (zl−H)−1 can be a fully dense matrix. One naive
method is to first evaluate each Green’s function and extract its diagonal
elements. However, when H is a sparse matrix, the computation of diagonal
entries, and more generally the entries of Gl corresponding to the sparsity
pattern of H, can be evaluated much more efficiently by means of the se-
lected inversion method (Erisman and Tinney 1975, Lin et al. 2009b, Lin
et al. 2011, Jacquelin, Lin and Yang 2016).

Although we assume H to be a general Hermitian matrix throughout the
paper, for the simplicity of discussion in this section, we assume H to be
a real symmetric matrix. This makes A = zl − H ∈ CNb×Nb a complex
symmetric, non-singular matrix. For such a matrix, the standard approach
to computing A−1 is to first decompose A as

A = LDL>, (5.29)

where L is a unit lower triangular matrix and D is a diagonal or a block-
diagonal matrix. Equation (5.29) is often known as the LDL> factorization
of A. Given such a factorization, one can obtain A−1 = (x1, x2, . . . , xNb) by
solving a number of triangular systems,

Ly = ej , Dw = y, L>xj = w, (5.30)

for j = 1, 2, . . . , Nb, where ej is the jth column of the identity matrix I. The
computational cost of such algorithms is generally O(N3

b ). However, when
A is sparse, we can exploit the sparsity structure of L and ej to reduce the
complexity of computing selected components of A−1.

The selected inversion algorithm can be heuristically understood as fol-
lows (Lin et al. 2011). Let A be partitioned into the 2 × 2 block form

A =

(
α b>

b Ã

)
. (5.31)

The first step of an LDL> factorization produces a decomposition of A that
can be expressed by

A =

(
1
` I

)(
α

Ã− bα−1b>

)(
1 `>

I

)
, (5.32)
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where α is often referred to as a pivot, ` = bα−1 and S = Ã − bα−1b> is
known as the Schur complement. The same type of decomposition can be ap-
plied recursively to the Schur complement S until its dimension becomes 1.
The product of lower triangular matrices produced from the recursive pro-
cedure, which all have the formI 1

`(i) I

,
where `(1) = ` = bα−1, yields the final L factor. At this last step the matrix
in the middle becomes diagonal, which is the D matrix.

From equation (5.32), A−1 can be expressed by

A−1 =

(
α−1 + `>S−1` −`>S−1

−S−1` S−1

)
. (5.33)

This expression suggests that once α and ` are known, the task of computing
A−1 can be reduced to that of computing S−1. Because a sequence of Schur
complements is produced recursively in the LDL> factorization of A, the
computation of A−1 can be organized in a recursive fashion too. Clearly,
the reciprocal of the last entry of D is the (Nb, Nb)th entry of A−1. Starting
from this entry, which is also the 1 × 1 Schur complement produced in the
(Nb − 1)th step of the LDL> factorization procedure, we can construct the
inverse of the 2×2 Schur complement produced at the (Nb−2)th step of the
factorization procedure, using the recipe given by (5.33). This 2× 2 matrix
is the trailing 2×2 block of A−1. As we proceed from the lower right corner
of L and D towards their upper left corner, more and more elements of
A−1 are recovered. Finally, we may recover all the diagonal entries of A−1

exactly. In fact, given the factorization A = LDL>, the selected inversion
algorithm can be used to efficiently compute all entries

{A−1
i,j : (L+ L>)i,j 6= 0}.

The validity of the selected inversion algorithm can be verified by the
following statement. For any 1 ≤ k < Nb, define

C = {i : Li,k 6= 0, i > k}. (5.34)

Then all entries {A−1
i,k : i ∈ C}, {A−1

k,j : j ∈ C}, and A−1
k,k can be computed

using only the L,D factors and

{A−1
i,j : (L+ L>)i,j 6= 0, i, j > k}.
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Algorithm 8: Selected inversion algorithm based on LDL>

factorization

Input: LDL> factorization of a symmetric matrix A ∈ CNb×Nb .
Output: Selected elements of A−1, i.e. {A−1

i,j : (L+ L>)i,j 6= 0}.
1: Calculate A−1

Nb,Nb
← (DNb,Nb)

−1.
2: for k = Nb − 1, . . . , 1 do
3: Find the collection of indices C = {i | i > k, Li,k 6= 0}.
4: Calculate A−1

C,k ← −A
−1
C,CLC,k.

5: Calculate A−1
k,C ← (A−1

C,k)
>.

6: Calculate A−1
k,k ← (Dk,k)

−1 −A−1
k,CLC,k.

7: end for

To see why this is the case, consider {A−1
i,k : i ∈ C}. As in equation (5.33)

we can derive

A−1
i,k = −

Nb∑
j=k+1

A−1
i,j Lj,k, i ∈ C. (5.35)

If Lj,k 6= 0, then A−1
i,j is needed in the sum. Since we are only interested

in computing A−1
i,k for i ∈ C, the i and j indices are constrained to satisfy

the conditions Lj,k 6= 0 and Li,k 6= 0. Due to the non-zero fill-in pattern
in the LDL> factorization, we have (L + L>)i,j 6= 0 and the statement is
proved for {A−1

i,k : i ∈ C}. The argument is the same for {A−1
k,j : j ∈ C} due

to symmetry. Finally for the diagonal entry, we have

A−1
k,k = D−1

k,k −
Nb∑

i=k+1

Li,kA
−1
i,k , (5.36)

which can be readily computed given {A−1
i,k : i ∈ C} is available. This proves

the statement above.
In order to understand the asymptotic complexity of the selected inver-

sion algorithm, without loss of generality we assume the sparsity pattern of
H is similar to that obtained by the second-order central difference discret-
ization of a Laplace operator. The computational cost associated with the
LDL> factorization, as well as the selected inversion algorithm, scales as
O(Nb), O(N1.5

b ) and O(N2
b ) for one-, two- and three-dimensional systems,

respectively (Lin et al. 2009a). We remark that such a complexity count
is robust to changes of the discretization scheme as long as local basis sets
are used. Hence for quasi-1D systems (such as nanotubes) and quasi-2D
systems (such as monolayer systems and surfaces), the computational cost
also scales as O(Nb) and O(N1.5

b ), respectively. Pseudocode for the selected
inversion algorithm is given in Algorithm 8.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000047
Downloaded from https://www.cambridge.org/core. Access paid by the UC Berkeley Library, on 15 Jun 2019 at 01:21:41, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000047
https://www.cambridge.org/core


488 L. Lin, J. Lu and L. Ying

In practice, a column-based sparse factorization and selected inversion
algorithm as illustrated in Algorithm 8 may not be efficient due to the lack
of level 3 BLAS operations. For a sparse matrix A, the columns of A and
the L factor can be partitioned into supernodes. A supernode is a set of
contiguous columns J = {j, j + 1, . . . , j + s} of the L factor that have the
same or similar non-zero sparsity structure below the (j+s)th row (Ashcraft
and Grimes 1989). This allows use of matrix–matrix multiplications, which
can significantly improve the efficiency.

The pole expansion and selected inversion (PEXSI) method (Lin et al.
2009a, Lin et al. 2011, Jacquelin et al. 2016) therefore combines the pole
expansion and the selected inversion, and evaluates the Kohn–Sham map
without solving any eigenvalues or eigenfunctions. The selected inversion
method is an exact method if exact arithmetic is used, that is, the only
error in the selected inversion method is due to round-off errors. Hence
the accuracy of the PEXSI method is determined by the pole expansion,
which can be systematically improved by increasing the number of poles m.
The PEXSI method is ideally suited to massively parallel computers. The
treatment of the poles can be parallelized in a straightforward fashion, with
communication only needed at the end to construct the density matrix.
The selected inversion method itself can also be massively parallelizable to
thousands of processors (Jacquelin et al. 2016), and the total number of
processors that can be efficiently used by PEXSI can be over 100 000.

The PEXSI software package (available at http://www.pexsi.org, distrib-
uted under the BSD license) has now been integrated into electronic struc-
ture packages such as BigDFT, CP2K, DGDFT, FHI-aims, QuantumWise
ATK and SIESTA, and is part of the ‘Electronic Structure Infrastructure’
(ELSI) package (Yu et al. 2018).

In addition to computing the charge density at a reduced computational
complexity in each SCF iteration, we can also use PEXSI to compute energy,
free energy and the atomic forces efficiently without diagonalizing the Kohn–
Sham Hamiltonian, using the same set of poles as those used for computing
the charge density (Lin et al. 2013). Another numerical issue associated with
the PEXSI technique, as well as the Fermi operator expansion techniques
in general, is to determine the chemical potential, so that the condition

N = Nβ(µ) := Tr[P ] (5.37)

is satisfied. Note that Nβ(·) is a non-decreasing function of µ. Hence the
chemical potential can be determined via a bisection strategy, or Newton’s
method. When Newton’s method is used, the chemical potential converges
rapidly near its correct value. However, the standard Newton’s method may
not be robust enough when the initial guess is far away from the correct
chemical potential. It may give, for example, too large a correction when
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N ′β(µ) is close to zero, such as when µ is near the edge or in the middle of
a band gap.

One way to overcome the above difficulty is to efficiently approximate the
function Nβ(ε) to narrow down the region in which the correct µ must lie.
This function can be seen effectively as a (temperature smeared) cumulative
density of states, counting the number of eigenvalues in the interval (−∞, ε).
We can evaluate such a zero temperature limit, denoted by N∞(ε), again
without computing any eigenvalues of H. Instead, we perform a matrix
decomposition of the shifted matrix H − ε = LDL>, where L is unit lower
triangular and D is diagonal. It follows from Sylvester’s law of inertia
(Sylvester 1852) that the inertia (the number of negative, zero and positive
eigenvalues) of a real symmetric matrix does not change under a congruent
transform, that D has the same inertia as that of H − ε. Hence, we can
obtain N∞(ε) by simply counting the number of negative entries in D. Note
that the matrix decomposition H − ε = LDL> can be computed efficiently
by using a sparse LDL> or LU factorization in real arithmetic. It requires
fewer floating point operations than the complex arithmetic direct sparse
factorization used in PEXSI.

We apply the parallel PEXSI method to the DG Graphene 2048 and
DG Graphene 8192 systems, which are disordered graphene systems with
2048 and 8192 atoms, respectively, and compare its performance with a
standard approach that requires a partial diagonalization of (H,S). We
use a ScaLAPACK subroutine pdsyevr (Vömel 2010), which is based on the
multiple relatively robust representations (MRRR) algorithm, to perform
the diagonalization.

Figure 5.3 shows that for graphene problems with 2048 and 8192 pro-
cessors, the PEXSI technique is nearly two orders of magnitude faster than
the ScaLAPACK routine pdsyevr, and can be scalable to a much larger
number of processors. The advantage of PEXSI becomes even clearer for
a disordered graphene system with 32 768 atoms (see Figure 5.4). For this
case, the diagonalization routine is no longer feasible, while the time to
solution for the PEXSI technique can be as small as 241 s.

Remarks

Unlike most linear scaling algorithms discussed in this section, the PEXSI
method does not rely on the decay properties of the density matrix. Hence
the efficiency of PEXSI is roughly the same for metallic, semiconducting and
insulating systems. For insulating systems with a relatively large energy
gap, PEXSI may become slightly more efficient due to the potentially smal-
ler number of poles needed to approximate the density matrix. The compu-
tational cost of PEXSI scales as O(Nα

b ), where α = 1, 3/2, 2 for quasi-1D,
2D and 3D systems, respectively, where Nb is the number of basis functions.
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Figure 5.3. (Credit: Jacquelin, Lin and Yang 2016.) Wall clock time versus number
of cores for a graphene system.

Compared to dense eigensolvers which scale as O(N3
b ), the PEXSI method

can be highly advantageous for large systems, as demonstrated in numerical
results above. On the other hand, recall that iterative diagonalization meth-
ods discussed in Section 4.2 scale as O(NbN

2); we find that the cross-over
point between PEXSI and iterative diagonalization methods is roughly at

N ∼ N
(α−1)/2
b . This implies that PEXSI is most efficient when small basis

sets such as Gaussian-type orbitals are used, and becomes less efficient for
large basis sets such as finite elements. This statement is in fact true for
most linear scaling methods discussed in Section 5.2.
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Figure 5.4. (Credit: Jacquelin, Lin and Yang 2016.) Wall clock time versus number
of cores for a graphene system with 32 768 atoms.

In the discussion above, we have assumed that H is a real symmetric
matrix, and hence A = zl − H is complex symmetric. This assumption is
valid for molecular systems, as well as Γ point sampling of periodic systems.
In a more general situation, such as in the context of k-point sampling for
periodic systems, or when the system is magnetic, H is a Hermitian matrix,
and A = zl −H is merely a structurally symmetric matrix. In such a case,
the LDL> factorization should be replaced by the LU factorization, and the
non-symmetric version of the selected inversion algorithm should be used
instead (Jacquelin, Lin and Yang 2018). Besides PEXSI, general-purpose
selected inversion algorithms are also available in other software packages
such as PARDISO (Schenk and Gartner 2006) and MUMPS (Amestoy, Duff,
L’Excellent and Koster 2001). The selected inversion-type algorithms are
also used in other contexts such as quantum transport calculations (Li,
Ahmed, Klimeck and Darve 2008, Petersen et al. 2009).

Recently it has been shown that the pre-constant of the logarithmic scal-
ing factor can be further reduced to be numerically near-optimal (Moussa
2016). This makes the pole expansion highly efficient for metallic systems,
and the number of poles needed in practical calculations is typically only
10 ∼ 40.

During the self-consistency field iteration, the zero temperature limit
N∞(ε) evaluated from the inertia-counting procedure may be used to con-
struct upper and lower bounds on the chemical potential. Then, coupled
with a strategy to evaluate Nβ(ε) accurately using PEXSI over multiple
energy points ε, we may accurately determine the chemical potential within
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the window specified by the inertia-counting procedure. In particular, it
is possible to perform PEXSI calculations over multiple energy points only
once per SCF iteration, without sacrificing accuracy at convergence (Jia and
Lin 2017).

6. Evaluation of the Kohn–Sham map: non-local functional

Kohn–Sham DFT calculations with non-local functionals, such as rung-4
functionals (hybrid functionals) and rung-5 functionals, can be considerably
more costly than calculations with exchange-correlation functionals from the
first three rungs of the ladder. More specifically, Kohn–Sham equations with
local and semi-local functionals can be viewed as eigenvalue problems cor-
responding to differential operators. When a rung-4 functional is used, the
Kohn–Sham Hamiltonian operator becomes an integro-differential operator
due to the Fock exchange term. For rung-5 functionals, the self-consistency
is computationally rather challenging, and most calculations are done as a
post-processing step to obtain the correlation energy as a perturbation to
the self-consistent solution for a semi-local functional.

Throughout the discussion in this section, we assume that a large basis set
such as planewaves or real-space representation is used. We first discuss nu-
merical methods for evaluating the Fock exchange operator in Section 6.1.
We introduce an acceleration technique called the adaptive compression
method in Section 6.2. We discuss a method for evaluating the RPA correl-
ation energy as an example of the rung-5 functionals in Section 6.3.

6.1. Fock exchange operator

The Fock exchange operator V EX
x [P ] is an integral operator, introduced in

equation (2.52), recalled here for readers’ convenience:

V EX
x [P ](r, r′) = −P (r, r′)K(r, r′),

where

P (r, r′) =

N∑
i=1

ψi(r)ψ∗i (r
′).

Here we assume the system is an insulating system for simplicity. The kernel
of V EX

x [P ] is not of low rank due to the Hadamard product (i.e. element-
wise product) between the kernels of P and K. When a small basis set
Φ = [φ1, . . . , φNb ] is used, each occupied orbital is expanded as

ψi(r) =
∑
p

φp(r)cp,i, i = 1, . . . , N. (6.1)
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The matrix elements of the Fock exchange operator become

(V EX
x [P ])pq = −

∫
φ∗p(r)P (r, r′)K(r, r′)φq(r

′) dr dr′

= −
N∑
i=1

∑
r,s

cr,ic
∗
s,i

∫
φ∗p(r)φr(r)φ∗s(r

′)φq(r
′)K(r, r′) dr dr′

:= −
N∑
i=1

∑
r,s

cr,ic
∗
s,i〈ps|rq〉. (6.2)

Equation (6.2) defines the two-electron integral tensor 〈ps|rq〉, which is a
fourth-order tensor. Hence the computational cost of constructing the Fock
exchange matrix (V EX

x [P ])pq typically scales as O(N4).
It turns out that when a large basis set is used, the asymptotic complex-

ity associated with the Fock exchange operator can be reduced to O(N3)
without approximation. Note that in such a case, it is often prohibitively
expensive to explicitly construct or to store the Fock exchange operator
directly. It is only viable to apply it to an occupied orbital ψj as

(V EX
x [P ]ψj)(r) = −

N∑
i=1

ϕi(r)

∫
K(r, r′)ϕ∗i (r

′)ψj(r
′) dr′, (6.3)

for

P =

N∑
i=1

|ϕi〉〈ϕi|.

Here we deliberately distinguish the orbitals in the density matrix ({ϕi})
and the orbitals V EX

x acts on ({ψj}) to emphasize that they may corres-
pond to different density matrices before self-consistency is achieved. The
integral

∫
K(r, r′)ϕ∗i (r

′)ψ(r′) dr′ can be implemented by solving N Poisson-
like equations. Let Ng denote the grid size, and the computational cost of
solving each Poisson-like equation scales as O(Ng logNg) when fast Four-
ier transform can be used. When applied to all pairs of occupied orbitals,
the computational cost scales as O(Ng logNgN

2) to O(N3). Note that the
preconstant of this cubic scaling component can be very large. In practical
Hartree–Fock calculations, the application of the Fock exchange operator
can often take more than 95% of the overall computational time.

The Hartree–Fock-like equations require the density matrix P to be com-
puted self-consistently. A common strategy is to solve the linearized Hartree–
Fock equation by fixing the density matrix P so that H[P ] becomes a fixed
operator. Then one solves a nonlinear fixed-point problem to obtain the
self-consistent P . The most time-consuming step is to solve the linearized
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Hartree–Fock equation. We will describe the strategy for achieving self-
consistency in Section 7.4.

In order to reduce the computational cost of evaluating the Fock exchange
operator, one strategy is to compute in parallel with a large number of
cores. Note that the N2 Poisson-like equations associated with the pair
products ϕ∗i (r)ψj(r) are independent of each other. Hence one may employ
in principle O(N2) processors to distribute the work (Duchemin and Gygi
2010, Valiev et al. 2010). The disadvantage of this approach is that the rest
of the components of a Kohn–Sham solver often cannot scale to such a large
number of processors, and hence the excessive number of computational
cores may not be used efficiently.

In Section 4.3, we have introduced localization techniques to find local-
ized representations of the Kohn–Sham subspace via the density matrix and
Wannier functions. These techniques can be used to reduce the computa-
tional cost of evaluating the Kohn–Sham map as in Section 5. They can also
be used to reduce the cost of applying exchange operators to O(N). More
specifically, let {ϕi}, {ψj} be exponentially localized Wannier functions after
a proper rotation operation, and the pair product ϕ∗i (r)ψj(r) would vanish
if the support sets of ϕi and ψj do not overlap with each other. This reduces
the number of pairs from O(N2) to O(N). Furthermore, each Poisson-like
equation only needs to be solved on a computational domain that is inde-
pendent of the system size. Taking both factors into account, we find that
the cost of equation (6.3) is reduced to O(N). We refer readers to Wu,
Selloni and Car (2009) and Dawson and Gygi (2015), for example, for more
details of linear scaling hybrid functional calculations. As in the discussion
in Section 5.2, linear scaling algorithms typically have a large prefactor,
and hence they become advantageous to the cubic scaling methods only for
systems of relatively large sizes.

On the other hand, for metallic and semi-conducting systems, the decay
rate of the density matrix along the off-diagonal direction can be very slow.
This may also introduce a significantly larger number of non-zero entries in
the Hamiltonian matrix. Hence Green’s function-based methods, such as
the PEXSI method, become less efficient in the context of hybrid functional
calculations.

However, the interpolative separable density fitting (ISDF) (Lu and Ying
2015) technique introduced in Section 4.4 can be applicable to insulating,
semiconducting and metallic systems. Following the ISDF decomposition
equation (4.13), the Poisson-like equation only needs to be solved with
{ζµ(r)} on the right-hand side. This reduces the number of Poisson-like
equations from O(N2) to Nµ ∼ O(N). Of course, the solutions of these
equations need to be reassembled through linear algebra operations to ob-
tain {V EX

x [P ]ψj}Nj=1. The cost of these linear algebra steps is still O(N3)
but the preconstant can be effectively reduced (Hu et al. 2017a, Dong
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et al. 2018). Hence ISDF is effective when it is relatively costly to solve
Poisson-like equations, such as in the context of planewave methods, and
even more so for finite difference and finite element methods.

6.2. Adaptive compression method

When a large basis set is used, the standard method for solving Hartree–
Fock-like equations self-consistently is the two-level nested SCF method in
Section 7.4. The motivation for this method is that the Fock exchange
energy is only a small fraction (usually 5% or less) of the total energy,
although such a contribution is sufficient to result in qualitatively different
results for the study of many chemical systems. The main idea is then
to separate the self-consistent field (SCF) iteration into two sets of SCF
iterations. In the inner SCF iteration, the exchange operation V EX

x defined
by a set of orbitals {ϕi}Ni=1 is fixed, and the Hamiltonian operator depends
only on the density ρ(r). This allows the use of efficient charge mixing
schemes to reduce the number of SCF iterations. In other words, the SCF
iteration then proceeds as in Kohn–Sham DFT calculations with a fixed
exchange operator. In the outer SCF iteration, the orbitals defining the
exchange operator are updated via a fixed-point iteration. Furthermore,
each inner SCF iteration requires the solution of a linear eigenvalue problem,
which is to be performed with iterative diagonalization methods discussed in
Section 4.2 and requires repeated application of the Hamiltonian operator
to occupied orbitals. The application of the Fock exchange operator to
occupied orbitals according to equation (6.3) appears in this innermost loop,
which makes electronic structure calculations with rung-4 functionals much
more costly than those with rung-1 to rung-3 functionals.

The adaptively compressed exchange operator (ACE) method (Lin 2016)
accelerates hybrid functional calculations by reducing the frequency of ap-
plications of the Fock exchange operator without compromising the accuracy
of the self-consistent solution. This is achieved by constructing a low-rank
surrogate operator, denoted by Ṽ EX

x , to approximate the Fock exchange op-
erator V EX

x . Note that V EX
x is generally a dense, full-rank operator. Hence

the low-rank surrogate cannot be expected to be accurate when applied
to an arbitrary vector. Instead we only require Ṽ EX

x to be accurate when
applied to all occupied orbitals.

More specifically, for a given set of orbitals {ϕi}Ni=1 defining the density
matrix implicitly and thus the exchange operator, we first compute the
application of the exchange operator to {ϕi}Ni=1 using

Wi(r) = (V EX
x [{ϕ}]ϕi)(r), i = 1, . . . , N. (6.4)

The adaptively compressed exchange operator, denoted by Ṽ EX
x , should
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satisfy the conditions

(Ṽ EX
x ϕi)(r) = Wi(r) and Ṽ EX

x (r, r′) = (Ṽ EX
x (r′, r))∗. (6.5)

The choice of this surrogate operator is not unique. One possible choice
satisfying the conditions (6.5) is given by

Ṽ EX
x (r, r′) =

N∑
i,j=1

Wi(r)BijW
∗
j (r′), (6.6)

where B = M−1 is a negative definite matrix, and

Mkl =

∫
ϕ∗k(r)Wl(r) dr.

Perform Cholesky factorization for −M , i.e. M = −LL∗, where L is a lower
triangular matrix. Then we get B = −L−∗L−1. Define the projection vector
in the ACE formulation as

ξk(r) =

N∑
i=1

Wi(r)(L−∗)ik. (6.7)

Then the adaptively compressed exchange operator is given by

Ṽ EX
x (r, r′) = −

N∑
k=1

ξk(r)ξk(r
′). (6.8)

The ACE can be readily used to reduce the computational cost of the
exchange energy, without the need to solve any extra Poisson equations,
using

EEX
x =

1

2

N∑
i=1

∫∫
ψ∗i (r)Ṽ EX

x (r, r′)ψi(r
′) dr dr′

= −1

2

N∑
i,k=1

∣∣∣∣∫ ψ∗i (r)ξk(r) dr

∣∣∣∣2. (6.9)

Note that once ACE is constructed, the cost of applying Ṽ EX
x to any or-

bital ψ is similar to the application of a non-local pseudopotential operator,
thanks to its low-rank structure. ACE only needs to be constructed once
per outer iteration, and can be repeatedly used for all the subsequent inner
SCF iterations for the electron density, and each iterative step for solving
the linear eigenvalue problem. The ACE formulation has been integrated
in electronic structure software packages such as Quantum ESPRESSO.

Table 6.1 demonstrates the accuracy of the ACE formulation for Kohn–
Sham DFT calculations with the HSE06 (Heyd et al. 2003) hybrid func-
tional, for silicon systems ranging from 64 to 1000 atoms. The ACE formu-
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Table 6.1. Comparison between the conventional hybrid DFT calculations and
ACE-enabled hybrid DFT calculations in terms of the HF energy EEX

x (Hartree)
and the energy gap Egap (Hartree) for the Si64, Si216, Si512 and Si1000 systems.
The corresponding relative errors of the HF energy are shown in parentheses.

Methods ACE HSE06 Conventional HSE06

Systems EEX
x Egap EEX

x Egap

Si64 −13.541616 (10−6) 1.488335 −13.541629 1.488352
Si216 −45.471192 (10−7) 1.449790 −45.471190 1.449790
Si512 −107.698011 (10−7) 1.324901 −107.698016 1.324902
Si1000 −210.300628 (10−6) 1.289162 −210.300524 1.289128

Table 6.2. Comparison between the conventional hybrid DFT calculation and an
ACE-enabled hybrid DFT calculation in terms of the number of inner SCF itera-
tions and wall clock time spent in each outer SCF iteration for Si1000 on 2000 cores.

Methods ACE HSE06 Conventional HSE06

#Outer SCF #Inner SCF Time (s) #Inner SCF Time (s)

1 6 356 6 2518
2 5 320 5 2044
3 5 308 4 1665

lation can evaluate the HF energy and energy gap accurately (total energy
difference is under 10−4 Hartree) even for large systems, and the remaining
difference is in fact due to the tolerance of the SCF iteration. Table 6.2
demonstrates that ACE can perform hybrid functional calculations at a
fraction of the cost of conventional methods (Hu et al. 2017c).

The efficiency of the ACE formulation also rests on the assumption that
the magnitude of the Fock exchange operator is relatively small compared to
other components of the Hamiltonian. To be more specific, we demonstrate
below that in the context of linearized Hartree–Fock-like equations, the ACE
formulation leads to desirable convergence properties compared to standard
iterative solvers.

To make the discussion more general, we consider the following linear
eigenvalue problem (linearized Hartree–Fock-like equations take this form):

(A+B)vi = λivi, i = 1, . . . , N. (6.10)

Here A,B ∈ CNb×Nb are Hermitian matrices. The eigenvalues {λi} are real
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and ordered non-decreasingly. Due to the Pauli exclusion principle we need
to compute the eigenpairs (λi, vi) corresponding to the lowest N eigenvalues,
which are assumed to be separated from the rest of the eigenvalues by a
positive spectral gap λg := λN+1 − λN . The matrix A in (6.10) is obtained
by discretizing the Hamiltonian operator excluding the exchange operator,
while B as a discretization of the exchange operator is negative definite.

In order to reduce the number of matrix–vector multiplication operations
Bv, the simplest idea is to fix wi := Bvi at some stage, and to replace Bvi
with wi for a number of iterations. This leads to the following subproblem:

Avi + wi = λivi, i = 1, . . . , N. (6.11)

Note that equation (6.11) is not an eigenvalue problem: if vi is a solution
to (6.11), then vi multiplied by a constant c is typically not a solution.
Equation (6.11) could be solved using optimization-based methods, but such
a problem is typically more difficult than a Hermitian eigenvalue problem.
In practice, software packages for solving Hartree–Fock-like equations are
typically built around eigensolvers, which is another important factor that
makes subproblem (6.11) undesirable.

The adaptive compression method re-uses the information in {wi} in a dif-
ferent way, retaining the structure of the eigenvalue problem (6.10). Define
V = [v1, . . . , vN ], W = [w1, . . . , wN ], so V,W ∈ CNb×N , and construct

B̃[V ] = W (W ∗V )−1W ∗. (6.12)

Since B ≺ 0, W ∗V ≡ V ∗BV has only negative eigenvalues and is invertible.
B̃[V ] is Hermitian of rank N , and agrees with B when applied to V as

B̃[V ]V = W (W ∗V )−1W ∗V = W = BV. (6.13)

We shall refer to the operation from B to B̃[V ] as an adaptive compression.

It turns out that the adaptive compression B̃[V ] is the unique rank-N Her-

mitian matrix that agrees with B on spanV . Furthermore, B � B̃[V ] � 0
(Lin and Lindsey 2019).

Note that the subspace span V is precisely the solution for (6.10) and is

not known a priori. Therefore B̃ needs to be constructed in an adaptive
manner. Starting from some initial guess V (0), we will obtain a sequence
V (k) and corresponding compressed operators B̃[V (k)]. More specifically,
ACE uses a fixed-point iteration given by

(A+ B̃[V (k)])v
(k+1)
i = λ

(k+1)
i v

(k+1)
i , i = 1, . . . , N. (6.14)

In each iteration, after B̃[V (k)] is constructed, (6.14) can be solved via any
iterative eigensolver to obtain V (k+1). The iterative eigensolver only re-
quires application of A and the low-rank matrix B̃ to vectors, and does not
require any additional application of B until V (k+1) is obtained. If span V (k)

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000047
Downloaded from https://www.cambridge.org/core. Access paid by the UC Berkeley Library, on 15 Jun 2019 at 01:21:41, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000047
https://www.cambridge.org/core


Numerical methods for Kohn–Sham DFT 499

Algorithm 9: Adaptive compression method for solving linear
eigenvalue problem

1: Initialize V (0) by solving Av
(0)
i = λ

(0)
i v

(0)
i , i = 1, . . . , N .

2: while convergence not reached do
3: Compute W (k) = BV (k).
4: Evaluate [(W (k))∗V (k)]−1 to construct B̃[V (k)] implicitly.
5: Solve (6.14) to obtain V (k+1).
6: Set k ← k + 1.
7: end while

converges to span V , then the consistency condition B̃[V ]V = BV is satis-
fied, and the adaptive compression method is numerically exact. The ad-
aptive compression method for solving the linear eigenvalue problem (6.10)
is given in Algorithm 9, where we initialize V (0) by solving the eigenvalue
problem in the absence of B.

At first glance, the advantage of converting a linear eigenvalue problem
(6.10) into a nonlinear eigenvalue problem (6.14) is unclear. The advant-
age of the adaptive compression method comes from the decoupling of the
matrix–vector multiplication operations Av and Bv, and asymptotically the
number of Bv operations is independent of the spectral radius ‖A‖2. More
specifically, starting from an initial density matrix P (0), the asymptotic con-
vergence rate measured by the convergence of the density matrix at the kth
iteration is given by

‖P − P (k)‖2 . γk‖P − P (0)‖2, where γ ≤ ‖B‖2
‖B‖2 + λg

. (6.15)

Furthermore, one may prove that the adaptive compression method con-
verges globally starting from almost every initial guess. We refer readers to
Lin and Lindsey (2019) for more details.

Remarks

An alternative way to adaptively reduce the rank of the exchange operator
is via a projector-based compression of the exchange operator (Duchemin
and Gygi 2010, Boffi, Jain and Natan 2016). Compared to the discussion
in Section 2.7, we can also find that the Kleinman–Bylander form of the
pseudopotential follows the same spirit as that in the ACE formulation to
construct a low-rank approximation to the semi-local pseudopotential. How-
ever, in the case of the pseudopotential, the orbitals are fixed and are not
computed adaptively. The adaptive compression method is also related to
the Nyström sketching method in numerical optimization, and can be used
to accelerate the convergence rate of optimization-based electronic structure
solvers as well (Hu et al. 2018).
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6.3. RPA correlation energy

After hybrid functionals that involve the exact exchange operator, the next
family of approximations to the exchange-correlation functional involves
virtual orbitals, such as the random phase approximation to the correlation
functional discussed in Section 2.5; see (2.49). The approximate functional
form on the fifth rung is still under active development and thus the efficient
numerical algorithm for such functionals is also an active research field with
many recent ideas and on-going work. It is beyond the scope of this work to
review all these developments, and we will restrict our focus to recent work
on cubic scaling algorithms for the computation of RPA correlation energy
(Lu and Thicke 2017a) based on the interpolative separable density fitting,
as discussed in Section 4.4.

Several cubic scaling methods to calculate the RPA correlation energy
have been developed. Recall that the dynamic polarizability operator is
defined as

χ̂0(r, r′, iω) =
occ∑
i

vir∑
a

ψ∗i (r)ψa(r)ψ∗a(r
′)ψi(r

′)

εi − εa − iω
+ c.c. (6.16)

The general idea is to split up the i and a dependence in the computation of
χ̂0 by introducing a new integral. Two different integrals have been utilized
for this purpose. The first is

−
∫ ∞

0
eεit e−εat e− iωt dt =

1

εi − εa − iω
, (6.17)

where εa > εi since the former corresponds to a virtual orbital and the latter
to an occupied orbital. Using this integral, one separates the dependence
of i and a in (6.16) into a product of exponentials inside the integral. This
leads to the Laplace transform cubic scaling methods. This idea was first
applied to RPA calculations by Kaltak, Klimeš and Kresse (2014a, 2014b),
using a projector augmented wave (PAW) basis. It was later extended
to atomic orbitals (Schurkus and Ochsenfeld 2016, Luenser, Schurkus and
Ochsenfeld 2017, Wilhelm, Seewald, Del Ben and Hutter 2016). Another
integral decomposition that can be used to break up the i and a depend-
ence is

1

2π i

∮
C

1

(λ− εi + iω)(λ− εa)
dλ =

1

εi − εa − iω
, (6.18)

where C is a positively oriented closed contour that encloses εi − iω, but
not εa: an example is shown in Figure 6.1. This idea was first used in the
context of cubic scaling RPA in Moussa (2014), and combined with the ISDF
approach in Lu and Thicke (2017a) to further reduce the computational
cost by taking advantage of the ‘low-rank’ nature of χ̂0. If the usual density
fitting approximation is used, the χ̂0 cannot be constructed in O(N3) since
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Figure 6.1. (Credit: Lu and Thicke 2017a.) An example of contour C . The blue
points represent {εi ± iω}Ni=1 (for a particular choice of ω) and the green points
represent {εa}Norb

a=N+1.

i and a are coupled in the coefficients of the density fitting method. The
solution to this is provided by the interpolative separable density fitting
(ISDF) method (Lu and Ying 2015) which keeps the dependence on i and a
separate. We remark that density fitting has been widely used to improve
the computational efficiency in electronic structure theory, including rung-5
functionals (Feyereisen, Fitzgerald and Komornicki 1993, Weigend, Häser,
Patzelt and Ahlrichs 1998, Ren et al. 2012a); the ISDF has the additional
benefit of keeping indices separated to make it more flexible.

After we choose the contour C and apply Cauchy’s integral formula to
split up the dependence of i and a in the denominator of (6.16), we obtain
a reformulation for χ̂0 which can be computed in cubic time complexity,

〈r|χ̂0(iω)|r′〉 =

occ∑
i

vir∑
a

ψ∗i (r)ψa(r)ψ∗a(r
′)ψi(r

′)

εj − εk − iω
+ c.c. (6.19)

=
1

2π i

∮
C

( occ∑
i

ψ∗i (r)ψi(r
′)

λ− εi + iω

)( vir∑
a

ψa(r)ψ∗a(r
′)

λ− εa

)
dλ+ c.c.

Similar to that discussed in the case of PEXSI (see Section 5.3), the con-
tour integral can be discretized and the number of quadrature points is
logarithmic in (εNorb

− εN )/(εN+1− εN ); we refer readers to Lu and Thicke
(2017a) for details.
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Note that the formula (6.19) already provides a cubic scaling method for
calculating χ0(iω). In particular, ignoring logarithmic factors, χ0(iω) can
be calculated with cost O(NorbN

2
g ), assuming we keep Norb total orbitals in

the summation (known as the virtual orbital cut-off). However, the number
of grid points Ng could be much larger than the number of orbitals Norb.
This motivates the use of ISDF to reduce the prefactor in the computational
cost. We approximate the χ̂0 operator by an operator χ̃0 by using the ISDF
approximation:

〈r|χ̂0(iω)|r′〉

=
1

2π i

∮
C

( occ∑
i

ψ∗i (r)ψi(r
′)

λ− εi + iω

)( vir∑
a

ψa(r)ψ∗a(r
′)

λ− εa

)
dλ+ c.c.

≈
∑
µν

1

2π i

∮
C

( occ∑
i

ψ∗i (r̂µ)ψi(r̂ν)

λ− εi + iω

)( vir∑
a

ψa(r̂µ)ψ∗a(r̂ν)

λ− εa

)
dλ ζµ(r)ζν(r′) + c.c.

=:
∑
µν

χ0
µν(iω)ζµ(r)ζν(r′) =: 〈r|χ̃0(iω)|r′〉, (6.20)

where the last line defines χ0
µν and χ̃0. We note that in the above the

separability of the ISDF coefficients into the i and a components is crucial.
Without this separability (e.g. if a conventional density fitting were used)
we would not be able to calculate χ̃0 in cubic time since the sums over i
and a would not decouple.

We now return our attention to the RPA correlation energy under ran-
dom phase approximation (2.49). Given χ̃0 sufficiently close to χ̂0, we can
approximate Tr[ln(I − χ̂0vC)] using (with a suitable choice of constant c for
convergence of the series)

ln(I − χ̃0vC) = ln[cI − ((c− 1)I + χ̃0vC)]

= ln(c)I + ln

[
I − 1

c
((c− 1)I + χ̃0vC)

]
= ln(c)I −

∞∑
`=1

[(c− 1)I + χ̃0vC ]`

`c`

= ln(c)I −
∞∑
`=1

1

`c`

∑̀
p=0

(
`

p

)
(c− 1)`−p(χ̃0vC)p, (6.21)

and represent each the polynomial in terms of χ̃0vC on the right-hand side
in the auxiliary basis. After some manipulation, this results in our final
desired approximation,

Tr[ln(1− χ̂0(iω)vC) + χ̂0(iω)vC ] ≈ Tr[ln(1− χ0(iω)v) + χ0(iω)v], (6.22)

where χ0 and v are the matrix elements in the auxiliary basis.
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Algorithm 10: Cubic scaling calculation of the RPA correlation energy

Input: Kohn–Sham orbitals {ψk} and corresponding energies {εk}.
Output: ERPA

c

1: Use {ψk}Norb
k=1 as the input to ISDF to obtain {r̂μ}Nμ

k=1 and {ζμ}Nμ

k=1.
2: Compute the matrix vμ,ν = 〈ζμ|vC |ζν〉.
3: For each quadrature point ωm for the contour integral on C :

(a) Compute χ0
μ,ν(iωm) as defined in (6.20).

(b) Compute
1

2π
Tr[ln(1− χ0(iωm)v) + χ0(iωm)v].

4: Calculate

ERPA
c =

1

2π

∫ ∞

0
Tr[ln(1− χ0(iω)v) + χ0(iω)v] dω

via numerical quadrature.

We present the cubic scaling algorithm for the calculation of the RPA
correlation energy as in Algorithm 10. Details of the algorithm can be
found in Lu and Thicke (2017a).

Our numerical results use the following test problem. Our two-dimensional
spatial grid is 10×10N equally spaced points. First, we solve for the Kohn–
Sham orbitals of the periodic system with an external potential consisting
of N Gaussian potential wells, the centres of which are randomly perturbed
from the centres of their respective 10 × 10 box of grid points. Then the
eigenvectors of H are used as the orbitals in the calculation of the RPA
correlation energy.

We investigate the cubic scaling behaviour of the algorithm in Figure 6.2.
The quartic scaling method using traditional density fitting is also plotted
for comparison. In this example, we choose the virtual orbital cut-off Norb =
0.2Ng and the system size is scaled up to N = 160. We observe that the
cubic scaling algorithm greatly outperforms the quartic scaling algorithm
for large system sizes.

7. Self-consistent field iteration

In this section we discuss numerical methods for performing self-consistent
field (SCF) iterations. In Sections 7.1 and 7.2 we introduce basic SCF
iteration techniques such as the fixed-point iteration and the simple mixing
method, as well as acceleration techniques based on Newton and quasi-
Newton methods. We introduce these techniques in the context of semi-local
functionals. In Section 7.3 we discuss preconditioning techniques for SCF
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Figure 6.2. (Credit: Lu and Thicke 2017a.) Timing results for the quartic scaling
method are plotted with solid lines, and results for the cubic scaling method are
plotted with dashed lines. For reference, the purple and green dotted lines represent
the slopes of N4 and N3 respectively. (a) Comparison of the time required to
calculate χ0 and the time to perform the respective density fitting schemes for
each method. (b) The total running time to calculate ERPA

c for each method.

Section 7.4 introduces SCF techniques specifically for non-local functionals.
Throughout the discussion, we will assume a large basis set is used.

7.1. Fixed-point iteration and simple mixing

For a fixed atomic configuration, the self-consistent iteration starts from cer-
tain initial electron density denoted by ρ0. We let ρk, Vk denote the electron
density and the effective potential Veff at the kth SCF iteration, respect-
ively. When pseudopotentials are used, since the non-local pseudopotential
is independent of ρ, Veff is still a local potential as in equation (2.91). Then
the flow of the SCF iteration becomes

· · · → ρk → Vk = Veff [ρk] → ρk+1 → Vk+1 = Veff [ρk+1] → · · · . (7.1)

Depending on the starting point, the relation (7.1) can be viewed as a
mapping from ρk to ρk+1, or from Vk to Vk+1. The former viewpoint is
called density mixing, while the latter is called potential mixing. There is
no qualitative difference between the two types of mixing schemes. However,
the density mixing has the extra constraint that the density must be non-
negative everywhere, and must be normalized to have the correct number of
electrons. In practice, this constraint can be easily satisfied by setting all the
negative entries of ρ (usually these entries have very small magnitude) to 0
or a small positive number, followed by a normalization step. On the other
hand, potential mixing is formally free of such constraints, and hence we will
consider potential mixing below. We remark that both density mixing and

iterations specific to semi-local functionals using a large basis set. Similarly
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packages, and the algorithm below for potential mixing can be used for
density mixing as well.

When self-consistency is reached, the converged effective potential is de-
noted by V� and satisfies the nonlinear equation

V� = Veff [FKS[V�]]. (7.2)

The simplest version of the SCF iteration is the fixed-point iteration,
where the potential at the (k + 1)th step is directly given by the output
potential at the kth step:

Vk+1 = Veff [FKS[Vk]]. (7.3)

Since the exchange-correlation functional is neither convex nor concave
with respect to the electron density, rigorous study of the global convergence
properties of SCF schemes in Kohn–Sham DFT calculations is difficult.
Hence we consider the linear response regime, where we assume the initial
effective potential V0 is already close to V�. Let

ek := Vk − V�

be the error of the potential at the kth iteration. In order to study the
propagation of the error in the fixed-point iteration (7.3), we apply the
chain rule

ek+1 = fHxcχ0ek +O(‖ek‖2). (7.4)

Here fHxc = δVeff/δρ is the kernel for the Hartree and exchange-correlation
contributions, and χ0 = δFKS/δV is called the independent particle polar-
izability operator. In the linear response regime, we assume the O(‖ek‖2)
term is small and it is omitted in the following discussion. Then after k
steps

ek ≈ (fHxcχ0)
ke0. (7.5)

Hence in the linear response regime, the convergence of the fixed-point itera-
tion requires that the spectral radius of the operator, denoted by rσ(fHxcχ0),
is smaller than 1. Unfortunately, such a spectral radius is generally much
larger than 1, and the error in the fixed-point iteration will therefore di-
verge, even if the initial potential is already very close to the self-consistent
potential.

In order to achieve the self-consistent solution, the simplest practically
usable scheme is the simple mixing method, which introduces a slight modi-
fication of the fixed-point iteration, shown in Algorithm 11. The iteration
can also be written equivalently as

Vk+1 = αVeff [FKS[Vk]] + (1− α)Vk. (7.6)

potential mixing strategies are widely used in electronic structure software
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Algorithm 11: Simple mixing method

Input: Initial guess V0 of the potential and relaxation parameter α.
1: for k = 0, . . . , until convergence do
2: Apply the Kohn–Sham map to compute the density ρk = FKS[Vk].
3: Form the residual error rk = Vk − Veff [ρk].
4: Vk+1 = Vk − αrk.
5: end for

Here εd = I − fHxcχ0 is called the dielectric operator. Equation (7.7) can
be iterated, yielding

ek ≈ (I − αεd)
ke0. (7.8)

When the exchange-correlation functional contribution is dropped from
fHxc, the resulting approximation is called the random phase approxima-
tion (RPA).1 Then εd can be transformed using a similarity transformation
to a positive definite matrix. In particular, εd is diagonalizable with real
positive eigenvalues. In order to achieve convergence in the linear response
regime, we need each eigenvalue of εd, denoted by λ, to satisfy

|1− αλ| < 1,

or equivalently

0 < α <
2

λ
.

Let λmin and λmax denote the smallest and largest eigenvalues of εd, respect-
ively, and the spectral radius rσ(εd) is then given by λmax. If

0 < α <
2

rσ(εd)
(7.9)

is satisfied, the simple mixing would converge.
It remains to determine the optimal choice of α satisfying the constraint

(7.9). This requires the solution of the following minimax problem:

min
α

max
λ

|1− αλ|. (7.10)

1 Here the meaning of ‘RPA’ is related to the RPA functional in Section 6.3, in the
sense that the exchange-correlation kernel is dropped in both cases, but the usage has
different origins.

In the simple mixing method, the error propagation follows

ek+1 = (I − αεd)ek +O(‖ek‖2). (7.7)
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The optimal choice of α satisfies

1− αλmin = αλmax − 1, (7.11)

or

α =
2

λmin + λmax
. (7.12)

Substituting this choice of α into (7.7), we find that the optimal convergence
rate of simple mixing is

max
λ
|1− αλ| = λmax − λmin

λmax + λmin
=
κ(εd)− 1

κ(εd) + 1
. (7.13)

Here κ(εd) = λmax/λmin is the condition number of the dielectric operator.
In practical calculations, the condition number might be very large and

the simple mixing method converges with a very slow rate. Thus the simple
mixing method is rarely used directly in practical electronic structure cal-
culations.

7.2. Newton and quasi-Newton type methods

The convergence of the simple mixing method often requires a rather small
mixing constant α. Hence the SCF procedure may take many iterations
to converge. One possible acceleration can be achieved by using Newton’s
method, which can be written as

Vk+1 = Vk − J −1
k rk. (7.14)

Here Jk is the Jacobian matrix for the residual map

δV 7→ δV − Veff

[
FKS[Vk + δV ]

]
.

Note that at converged potential V?, the Jacobian matrix J? = εd. Hence
the simple mixing method can also be interpreted as approximating the
inverse of the Jacobian matrix J −1

k simply by αI in the evaluation of the
Jacobian matrix for the composition map Veff ◦ FKS. For a system with N
electrons, the evaluation of the Jacobian matrix requires in principle O(N)
evaluations of the Kohn–Sham map, which is prohibitively expensive.

The Jacobian-free Newton–Krylov method replaces the need for the ex-
plicit evaluation of the Jacobian matrix by solving a linear equation

JkδVk = −rk (7.15)

to obtain the Newton update δVk. This can be done using iterative methods
for solving linear equations, such as the generalized minimal residual method
(GMRES) (Saad and Schultz 1986). In order to compute the matrix–vector
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multiplication related to the Jacobian matrix, one can use the finite differ-
ence approximation

JkδVk ≈ δVk −
(
Veff

[
FKS[Vk + δVk]

]
− Veff

[
FKS[Vk]

])
. (7.16)

The finite difference calculation requires at least one additional function
evaluation of FKS(Vk + δV ) per iteration step. Therefore, even though
Newton’s method may exhibit local quadratic convergence, each Newton
iteration may take many inner iterations in order to solve the linear equa-
tion (7.15).

A widely used alternative to Newton’s method is the class of quasi-Newton
methods, which replace J −1

k with an approximate matrix Ck that is easy
to compute and apply. Then the updating strategy becomes

Vk+1 = Vk − Ckrk. (7.17)

Using Broyden’s techniques (Nocedal and Wright 1999), one can sys-
tematically approximate Jk or J −1

k . In Broyden’s second method, Ck is
obtained by performing a sequence of low-rank modifications to some initial
approximation C0 of the Jacobian inverse using a recursive formula (Fang
and Saad 2009, Marks and Luke 2008). At each step, Ck is obtained by
solving the following constrained optimization problem:

min
C

1

2
‖C − Ck−1‖2F

subject to Sk = CYk, (7.18)

where Ck−1 is the approximation to the Jacobian constructed in the (k−1)th
Broyden iteration. The matrices Sk and Yk above are defined as

Sk = (sk, sk−1, . . . , sk−`), Yk = (yk, yk−1, . . . , yk−`), (7.19)

where sj and yj are defined by sj = Vj−Vj−1 and yj = rj−rj−1 respectively.
The number ` is the length of history used in Broyden’s method, which is
typically set to 5 ∼ 20 in practical calculations.

Equation (7.18) is a constrained optimization problem and can be solved
using the method of Lagrange multipliers, given by

Ck = Ck−1 + (Sk − Ck−1Yk)Y
†
k . (7.20)

Here Y †k denotes the Moore–Penrose pseudo-inverse of Yk, that is, Y †k =

(Y ∗k Yk)
−1Y ∗k . We remark that in practice Y †k is not constructed explicitly

since we need only apply Y †k to a residual vector rk. This operation can
be carried out by solving a linear least-squares problem with appropriate
regularization (e.g. through a truncated singular value decomposition).

A variant of Broyden’s method is Anderson’s method (Anderson 1965),
which is widely used in electronic structure software packages. Anderson’s
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Algorithm 12: Anderson’s method

Input: Initial guess V0 of the potential, relaxation parameter α, history
length `

1: for k = 0, . . . , until convergence do
2: Apply the Kohn–Sham map to compute the density ρk = FKS[Vk].
3: Form the residual error rk = Vk − Veff [ρk].
4: Define Sk = (sk, sk−1, . . . , sk−`) with sj = Vj − Vj−1 and

Yk = (yk, yk−1, . . . , yk−`) with yj = rj − rj−1. For k < `, keep only
the vectors starting from index 0 for both Sk and Yk matrices.

5: Form dk = Y †k rk by solving a linear least-squares problem with
appropriate regularization.

6: Vk+1 = Vk − α(rk − Ykdk)− Skdk.
7: end for

method fixes Ck−1 to the initial approximation C0 when solving (7.18) dur-
ing each iteration. It follows from equation (7.17) that Anderson’s method
updates the potential as

Vk+1 = Vk − C0(I − YkY †k )rk − SkY †k rk. (7.21)

In particular, if C0 is set to αI, we obtain Anderson’s method,

Vk+1 = Vk − α(I − YkY †k )rk − SkY †k rk,

commonly used in Kohn–Sham DFT solvers. Pseudocode for Anderson’s
method is shown in Algorithm 12.

An alternative way to derive Broyden’s method is through a technique
called direct inversion of iterative subspace (DIIS). The technique was ori-
ginally developed by Pulay to accelerate Hartree–Fock calculations (Pulay
1980). Hence it is often referred to as Pulay mixing. The motivation of
Pulay’s method is to minimize the residual V −Veff [FKS(V )] within the sub-
space spanned by {Vk−`−1, . . . , Vk}. In Pulay’s original work (Pulay 1980),
the optimal approximation to V is expressed as

Vopt =

k∑
j=k−`−1

αjVj ,

where Vj (j = k − ` − 1, . . . , k) are previous approximations to V , and the

coefficients αj are chosen to satisfy the constraint
∑k

j=k−`−1 αj = 1.
When the Vj are all sufficiently close to the fixed-point solution,

Veff

[
FKS

(∑
j

αjVj

)]
≈
∑
j

αjVeff [FKS(Vj)]

holds approximately. Hence we may obtain αj (and consequently Vopt) by
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solving the following quadratic programming problem:

min
{αj}

∥∥∥∥ k∑
j=k−`−1

αjrj

∥∥∥∥2

2

subject to
k∑

j=k−`−1

αj = 1, (7.22)

where rj = Vj − Veff [FKS(Vj)].
Note that (7.22) can be reformulated as an unconstrained minimization

problem if Vopt is required to take the form

Vopt = Vk +
k∑

j=k−`
βj(Vj − Vj−1),

where βj can be any unconstrained real number. Again, if we assume
Veff [FKS(V )] is approximately linear around Vj and let b = (βk−`, . . . , βk)

>,

minimizing ‖Vopt − Veff [FKS(Vopt)]‖ with respect to {βj} yields b = −Y †k rk,
where Yk is the same as that defined in (7.19). Then Pulay’s method for
updating V is thus Vk+1 = Vopt. More generally, we may introduce a C0

matrix as

Vk+1 = Vopt − C0(Vopt − Veff [FKS(Vopt)]). (7.23)

Substituting Vopt = Vk − SkY
†
k rk into (7.23), together with the linear-

ity assumption of Veff [FKS(V )], yields exactly Anderson’s updating for-
mula (7.21).

The matrix C0 plays the role of a preconditioner, and hence a better
C0 can be chosen to accelerate the convergence of Anderson’s method in
practical electronic structure calculations, as will be discussed in Section 7.3.

It is worthwhile remarking that a variant of the Pulay method above can
be derived by taking other definitions of the residual vector r. This leads
to the commutator-DIIS (C-DIIS) method (Pulay 1982), which defines the
residual as the commutator of the Hamiltonian operator and the density
matrix. This is the most widely used method in quantum chemistry software
packages for achieving self-consistency. On the other hand, the C-DIIS
method requires explicit storage of the density matrix and the Hamiltonian
matrix for a few iterations, and hence is only feasible for calculations with
small basis sets.

In the C-DIIS method, the residual, now written as R, is the commutator
between H[P ] and P , that is,

R[P ] = H[P ]P − PH[P ]. (7.24)

Note that the Hamiltonian matrix H[P ] and the effective potential Veff [P ]

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000047
Downloaded from https://www.cambridge.org/core. Access paid by the UC Berkeley Library, on 15 Jun 2019 at 01:21:41, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000047
https://www.cambridge.org/core


Numerical methods for Kohn–Sham DFT 511

contain the same information. Let Hk denote the approximate Hamiltonian
produced at step k. We define a new Hamiltonian H̃k+1 at step (k+ 1) as a
linear combination of previous approximations to the Hamiltonian, that is,

H̃k+1 =
k∑

j=k−`−1

αjHj , (7.25)

where αj satisfies the constraint
∑k

j=k−`−1 αj = 1. Each Hamiltonian mat-
rix Hj defines a density matrix Pj via the generalized Kohn–Sham map.
Before self-consistency is reached, the residual Rj = R[Pj ] defined by equa-
tion (7.24) is non-zero. However, when all the Hamiltonian matrices {Hj}
are close to the self-consistent Hamiltonian operator H?, it is reasonable
to expect the residual associated with H̃k+1 to be well approximated by

R̃k+1 ≡
∑k

j=k−`−1 αjRj . The C-DIIS method determines {αj} by minimiz-

ing R̃k+1, that is, we solve the following constrained minimization problem
in each C-DIIS iteration:

min
{αj}

∥∥∥∥ k∑
j=k−`−1

αjRj

∥∥∥∥2

F

subject to
k∑

j=k−`−1

αj = 1. (7.26)

Here the Frobenius norm is defined as ‖A‖2F = Tr[A∗A].
As in the comparison between Anderson’s method and Pulay’s method

above, the constraint in (7.26) can be eliminated by rewriting equation
(7.25) as

H̃k+1 = Hk +

k∑
j=k−`

βj(Hj−1 −Hj). (7.27)

Define Yj = Rj−1 −Rj for k− `+ 1 ≤ j ≤ k. Then the constraint minimiz-
ation problem (7.26) becomes an unconstrained minimization problem:

min
{βj}

∥∥∥∥Rk +

k∑
j=k−`+1

βjYj

∥∥∥∥2

F

. (7.28)

As a result, equation (7.28) has an analytic solution,

β = −M−1b, (7.29)

where the `× ` matrix M and the vector b are defined as

Mij = Tr[Y ∗i Yj ], bj = Tr[Y ∗j Rk], (7.30)

respectively.
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7.3. Preconditioning techniques

From the analysis of the simple mixing method we observe that the con-
vergence rate is determined by the condition number of εd = J?. Hence we
should examine the dependence of κ(J?) with respect to the system size.
Here we mainly examine periodic systems, of which the system size is of-
ten characterized by the number of unit cells in the computational domain.
To simplify our discussion, we assume the unit cell to be a simple cubic
cell with a lattice constant L. For non-periodic systems such as molecules,
we can construct a fictitious (cubic) supercell that encloses the molecule
and periodically extend the supercell so that properties of the system can
be analysed via Fourier analysis. In both cases, we assume the number of
atoms in each supercell is proportional to L3.

When J? is similar to a positive definite matrix, the smallest eigenvalue
λmin is often independent of the system size, but the largest eigenvalue λmax

may depend sensitively on the system size. For instance, for the jellium
system (or uniform electron gas), J? becomes a diagonal matrix in the
Fourier space, and the eigenvalues can be evaluated explicitly as (Ziman
1979)

λq = 1 +

(
4π

q2
+ κ2

)
γFL(q), q ∈ R3, (7.31)

where q = |q|, γ, κ are constants, and FL(q) is known as the Lindhard
response function, which satisfies

lim
q→0

FL(q) = 1, lim
q→∞

FL(q) = 0. (7.32)

The above formulation is formally valid when the system size is infinite.
Note that the smallest possible value q is 2π/L, and then λmax is bounded
by 1 + γ(L2/π+κ2). As a result, the convergence of SCF iteration schemes
becomes slower as the system size increases. If the mixing parameters are
not adjusted properly, the long wavelength modes (corresponding to small q)
tend to be amplified as the SCF iteration proceeds. This phenomenon is
called ‘charge sloshing’.

In order to accelerate the convergence, one can replace the scalar α in
the simple mixing method with a matrix C0, and the convergence rate is
then determined by the condition number of the matrix C0J?. As discussed
in Section 7.2, the choice of the matrix C0 in Anderson’s method plays
the role of a preconditioner. The ideal preconditioner is C0 = J −1

? as
κ(C0J?) = 1. This corresponds to Newton’s method. To overcome charge
sloshing, a widely used preconditioner is the Kerker preconditioner (Kerker
1981), which is much easier to apply. It assigns a smaller weight to the
long wavelength Fourier modes in order to attenuate charge sloshing. More
specifically, the Kerker preconditioner is a diagonal matrix in the Fourier
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space, and its eigenvalues are given by

λKerker
q = 1 +

4πγ̃

q2
, (7.33)

where γ̃ > 0 is an adjustable parameter. For the uniform electron gas, the
matrix C0J? is a diagonal matrix in the Fourier space, and its eigenvalues are

λ̃q =
q2 + γFL(q)(4π + κ2q2)

q2 + 4πγ̃
. (7.34)

The eigenvalue λ̃q becomes approximately 1 for large q and FL(q)γ/γ̃ for
small q. Hence, after preconditioning, the eigenvalues can be bounded by
constants independent of the system size. In practice it is found that the
Kerker preconditioner is an effective preconditioner for simple metals such
as sodium (Na) or aluminium (Al).

However, the Kerker preconditioner is not an appropriate preconditioner
for insulating systems. Although in general the Jacobian associated with
the insulating system cannot be diagonalized by the Fourier basis, it can
be shown that e iq·r is an approximate eigenfunction of the independent
particle polarizability operator χ0 with the corresponding eigenvalue −ξq2

(Pick, Cohen and Martin 1970, Ghosez, Gonze and Godby 1997) for small
q, where ξ > 0 is a constant factor. If we neglect the contribution from
the exchange-correlation kernel, e iq·r is also an approximate eigenfunction
of J? with the corresponding eigenvalue 1 + (4π/q2)q2ξ = 1 + 4πξ for small
q. If C0 is chosen to be the Kerker preconditioner, then the corresponding
eigenvalue of C0J? for small q is approximately

λ̃q =
q2

q2 + 4πγ̃
(1 + 4πξ).

As the system size L increases, the smallest eigenvalue λ̃q ∼ L−2, and thus
the condition number κ(C0J?) increases as the system size increases. For
simple insulating systems, one good preconditioner is simply a constant, as
the convergence of the simple mixing method is already independent of the
system size.

As in the above discussion, simple insulating and metallic systems call for
different types of preconditioners to accelerate the convergence of a fixed-
point iteration for solving the Kohn–Sham problem. A natural question
one may ask is how we should construct a preconditioner for a complex
material that may contain both insulating and metallic components or metal
surfaces. This leads to the elliptic preconditioner (Lin and Yang 2013) as
one promising strategy.

Note that under RPA (neglecting the exchange-correlation kernel), we
may approximate J −1

? as

J̃ −1
? = (v−1

C − χ0)−1v−1
C .
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Since the Coulomb kernel v−1
C = −∆/(4π), applying J̃ −1

? to a residual
vector rk simply amounts to solving the equation

(−∆− 4πχ0)r̃k = −∆rk. (7.35)

To construct a preconditioner, we will replace χ0 with a simpler operator.
In many cases, we can choose the approximation to be a local (diagonal)
operator defined by a function b(r), although other types of more sophist-
icated operators are possible. To compensate for the simplification of χ0,
we replace the Laplacian operator on the left of (7.35) by −∇ · (a(r)∇) for
some appropriately chosen function a(r). This additional change yields the
following elliptic PDE:

(−∇ · (a(r)∇) + 4πb(r))r̃k = −∆rk. (7.36)

Because our construction of the preconditioner involves solving an elliptic
equation, equation (7.36) is called an elliptic preconditioner.

The elliptic preconditioner is naturally compatible with previous precon-
ditioners for simple metals or insulators. For example, for uniform electron
gas, setting a(r) = 1 and b(r) = −γ̃ for some constant γ̃ > 0 yields

(−∆ + 4πγ̃)r̃k = −∆rk. (7.37)

The solution of the above equation is exactly the same as that produced by
the Kerker preconditioner. For simple insulating system, setting a(r) = α−1

and b(r) = 0 yields

−α−1∆r̃k = −∆rk.

The solution to the above equation is simply

r̃k = αrk. (7.38)

Such a solution corresponds to simple mixing with a mixing parameter α.
For a complex system that consists of both insulating and metallic com-

ponents, it is desirable to choose approximations to a(r) and b(r) that are
spatially dependent. The asymptotic behaviour of χ with respect to the
sizes of both insulating and metallic systems suggests that a(r) and b(r)
should be chosen to satisfy a(r) ≥ 1 and b(r) ≥ 0.

The implementation of the elliptic preconditioner only requires solving an
elliptic equation, for instance through an iterative linear solver, such as the
conjugate gradient method. In particular, fast algorithms such as multigrid
(Brandt 1977), the fast multipole method (FMM) (Greengard and Rokhlin
1987), hierarchical matrix solvers (Hackbusch 1999) and hierarchical semi-
separable (HSS) matrix solvers (Chandrasekaran, Gu and Pals 2006) can be
used to solve (7.36) in O(N) arithmetic operations.
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Algorithm 13: Two-level nested SCF method for solving Hartree–Fock-
like equations

1: while Exchange energy is not converged do
2: while Electron density ρ is not converged do
3: Solve the linear eigenvalue problem Hψi = εiψi with any

iterative eigensolver.
4: Update ρout(r)←

∑N
i=1|ψi(r)|2.

5: Update ρ using ρout and charge densities computed and saved
from previous iterations using a charge mixing scheme.

6: end while
7: Compute the exchange energy.
8: Update {ϕi}Ni=1 ← {ψi}Ni=1.
9: end while

7.4. Rung-4 functionals

As discussed in Section 7.2, the C-DIIS method is the most widely used
method for Kohn–Sham DFT calculations with non-local functionals using
a small basis set, such as Gaussian-type orbitals and atomic orbitals. How-
ever, it requires the explicit storage of the density matrix and the Hamil-
tonian matrix, and thus cannot be used in the setting of a large basis set
such as planewaves. On the other hand, one cannot simply take the out-
put Kohn–Sham orbitals from one SCF iteration and use them as the input
Kohn–Sham orbitals for the next SCF iteration. As analysed in Section 7.1,
such a fixed-point iteration is vulnerable to large eigenvalues of the Jacobian
matrix and can suffer from the ‘charge sloshing’ problem. In practice, the
most commonly used method for converging Kohn–Sham DFT calculations
with a large basis set is a two-level nested SCF procedure. This is imple-
mented, for instance, in the Quantum ESPRESSO software package. The
motivation for using a two-level SCF procedure is to apply advanced charge
mixing schemes to the electron density in the inner iteration to mitigate
charge sloshing, and to use a fixed-point iteration to update the Kohn–Sham
orbitals and consequently the exchange potential in the outer iteration. The
update of the exchange potential is more costly, even though its contribution
to total energy is typically much smaller.

The two-level nested SCF method is summarized in Algorithm 13. In
each outer iteration, the exchange operator VX [P ] is updated. This is impli-
citly done by updating a set of orbitals {ϕi}Ni=1 defining the density matrix

as P =
∑N

i=1 ϕiϕ
∗
i . We remark that this set of orbitals may be different

from the Kohn–Sham orbitals in the inner SCF iteration. The update is
done through a fixed-point iteration, that is, {ϕi}Ni=1 are given by the out-
put Kohn–Sham orbitals in the previous outer iteration. In the inner SCF
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iteration, with the exchange operator fixed, the Hamiltonian H depends only
on the electron density ρ. Charge mixing schemes for ρ can be performed in
a similar fashion to what is done in a standard Kohn–Sham DFT calculation
without the exchange operator in the inner SCF iteration. Finally, within
each inner iteration, with both P and ρ fixed, the Hartree–Fock-like equa-
tion becomes a linear eigenvalue problem and can be solved by an iterative
eigensolver discussed in Section 4.2. The outer SCF iteration continues un-
til convergence is reached, which can be monitored using the change in the
exchange energy, for example.

Recently, a new method, called the projected commutator DIIS (PC-
DIIS) method, has been introduced so that the C-DIIS method can be
used for Kohn–Sham DFT calculations with non-local functionals performed
with a large basis set (Hu, Lin and Yang 2017b). Since it is not possible
to explicitly store or mix the density matrices in such calculations, it is
tempting to perform the DIIS procedure on the Nb × N orbital matrix
Ψ = [ψ1, . . . , ψN ]. However, one key difference between the density matrix
and the orbital matrix is that the former is gauge-invariant. That is, if we
replace Ψ with ΨU , where U is an N ×N unitary gauge matrix, the density
matrix P = ΨΨ∗ = ΨUU∗Ψ∗ does not change. Therefore, it is completely
safe to combine two density matrices constructed from Ψ that differ by a
gauge transformation, as the total energy is gauge-invariant.

However, since the orbital matrix Ψ is not gauge-invariant, combining
successive approximations to Ψ that differ by a gauge transformation may
hinder the stability of the SCF iteration. To overcome this difficulty, we in-
troduce an auxiliary orbital matrix Φ that spans the same subspace spanned
by Ψ. This orbital matrix is obtained by applying the orthogonal projection
operator associated with Ψ to a reference orbital matrix Φref to be specified
later. That is, Φ is chosen to be

Φ = PΦref = Ψ(Ψ∗Φref). (7.39)

We require Φref to be fixed throughout the entire SCF procedure. Note
that Φ is invariant to any gauge transformation applied to Ψ. Therefore,
the auxiliary orbital matrices obtained in successive SCF iterations can be
safely combined to produce a better approximation to the desired invariant
subspace. The columns of Φ are generally not orthogonal to each other.
However, as long as the columns of Φ are not linearly dependent, both Ψ
and Φ span the range of the density matrix P , which can also be written as

P = Φ(Φ∗Φ)−1Φ∗. (7.40)

The PC-DIIS method constructs a new approximation to Φ in the kth
SCF iteration by taking a linear combination of the auxiliary orbital matrices
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Φk−`, . . . ,Φk obtained in the most recent `+ 1 iterations, that is,

Φ̃k+1 =

k∑
j=k−`

αjΦj . (7.41)

The coefficients {αj} in (7.41) are determined by minimizing the residual

associated with Φ̃k+1, which, under the assumption that Φj are sufficiently
close to the solution of the Kohn–Sham equations, is well approximated by
R ≡

∑k
j=k−` αjRΦj , where the residual associated with an auxiliary orbital

matrix Φ is defined by

RΦ = H[P ]PΦref − PH[P ]Φref = (H[P ]Ψ)(Ψ∗Φref)−Ψ((H[P ]Ψ)∗Φref).
(7.42)

Note that evaluation of the residual in equation (7.42) only requires mul-
tiplying H[P ] by Ψ and the multiplications of matrices of sizes Nb×N and
N × N only. These operations are already used in iterative methods for
computing the desired eigenvectors Ψ of H. The PC-DIIS algorithm does
not require P,H[P ] or R to be constructed or stored explicitly.

An interesting observation is that if Φref = Ψ then Ψ∗H[P ]Ψ is a diagonal
matrix denoted by Λ. Consequently, the projected commutator takes the
form

RΦ = H[P ]Ψ−ΨΛ. (7.43)

This expression coincides with the standard definition of the residual asso-
ciated with an approximate eigenpair (Λ,Ψ). Hence the PC-DIIS method
can also be viewed as an extension of an iterative eigensolver for nonlinear
problems.

As in the reformulation of the constrained minimization problem into an
unconstrained minimization problem in the C-DIIS method, the constrained
minimization problem

min
{αj}

∥∥∥∥ k∑
j=k−`

αjRΦj

∥∥∥∥2

F

subject to

k∑
j=k−`

αj = 1, (7.44)

to be solved in the PC-DIIS method can also be reformulated as an uncon-
strained minimization problem. Using the same change of variable as that
presented in Section 7.2, we can write

Φ̃k+1 = Φk +

k∑
j=k−`+1

βj(Φj−1 − Φj). (7.45)

If we let YΦj = RΦj−1 − RΦj , the coefficients βj in (7.45) can be retrieved
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Algorithm 14: The PC-DIIS method for solving Hartree–Fock-like
equations

Input: Reference orbitals Φref .
Output: Approximate solution Ψ = {ψi}, i = 1, 2 . . . , N .
1: Construct the initial Hamiltonian H and evaluate the exchange

energy using Φref .
2: while Exchange energy is not converged do
3: Solve the linear eigenvalue problem H[P ]ψi = εiψi using an

iterative eigensolver.
4: Evaluate Φ, RΦ according to (7.39), (7.42).
5: Perform the DIIS procedure according to (7.45) to obtain the

new Φ̃ which implicitly defines a density matrix P via (7.40).
6: Update the Hamiltonian H[P ].
7: Compute the exchange energy.
8: end while

from the vector β = −(MΦ)−1bΦ, where

MΦ
ij = Tr[Y ∗

Φi
YΦj ], bΦj = Tr[Y ∗

Φj
RΦk

]. (7.46)

Once Φ̃k+1 is obtained, a density matrix associated with this orbital matrix
is implicitly defined through equation (7.40). This implicitly defined density
matrix allows us to construct a new Hamiltonian from which a new set of
Kohn–Sham orbitals Ψk+1 and auxiliary orbitals Φk+1 can be computed.
We now discuss how to choose the gauge-fixing matrix Φref . Note that in

hybrid functional calculations, the contribution from the exchange operator
is relatively small. Hence the density matrix associated with Kohn–Sham
orbitals obtained from a DFT calculation that uses a local or semi-local
exchange-correlation functional is already a good initial guess for the density
matrix required in a hybrid functional calculation. Therefore, we may use
these orbitals as Φref . Compared to the two-level nested loop structure, the
PC-DIIS method only requires one level of SCF iteration. The PC-DIIS
method is summarized in Algorithm 14.

The discussion above is applicable when Ψ only contains the occupied
orbitals. When Ψ also involves the virtual orbitals, we use the fact that the
density matrix defining the Fock exchange operator only involves the occu-
pied orbitals, and we need only apply the PC-DIIS method to the occupied
orbitals. We also remark that the PC-DIIS method is not yet applicable for
finite temperature calculations with fractionally occupied orbitals.
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8. Conclusion and future directions

In this paper, we have reviewed some basic aspects and recent developments
of numerical strategies for solving Kohn–Sham DFT. Most of the numer-
ical methods focus on large systems, either due to the presence of a large
number of electrons (thousands to tens of thousands), or due to the use of a
large basis set (such as the planewave basis set). In this sense, the numerical
algorithms in this paper are more suitable for applications in quantum phys-
ics and materials science, which often favour a large basis set and relatively
large system sizes. On the other hand, the quantum chemistry literature
often favours a small basis set (such as Gaussian-type orbitals) and relat-
ively small system sizes, partly due to their focus on post-Hartree–Fock and
post-DFT methods, which can be much more accurate but also more costly
than DFT calculations. Even so, we remark that there has been growing in-
terest in large system sizes and large basis sets in quantum chemistry (Sun,
Berkelbach, McClain and Chan 2017, Stoudenmire and White 2017, Mard-
irossian, McClain and Chan 2018), and the methods or ideas reviewed in
this paper may then become applicable as well.

Although many advanced numerical methods have been implemented in
mature DFT software packages, there are still many outstanding challenges
for solving Kohn–Sham DFT. Below we provide our own perspectives or-
ganized according to the contents of this review.

(1) Numerical discretization. The pseudopotential approximation greatly
facilitated the efficient discretization of the Kohn–Sham Hamiltonian.
Nonetheless, it is not a systematic approximation, and is regarded by
many as one of the ‘artistic’ components for solving Kohn–Sham DFT.
Efficient discretizations that allow efficient all-electron calculations to
be performed accurately, such as the numerical atomic basis sets, wave-
lets, and recent development of the Gausslet basis set (White 2017),
are still very much of interest. A key challenge would be to effectively
control the number of degrees of freedom, so that calculations can still
be performed efficiently for large systems.

(2) Evaluation of the Kohn–Sham map with semi-local functionals. The
cross-over point of linear scaling methods and reduced scaling meth-
ods over conventional cubic scaling methods is still large, especially
for three-dimensional bulk systems. Note that some key factors affect-
ing the cross-over point, such as the decay rate of the density matrix,
are determined by physical systems under consideration rather than
numerical algorithms. Hence one cannot realistically expect the cross-
over point to be reduced to below several hundreds of atoms in general.
Nonetheless, many physical processes, such as the battery degradation
process, require large simulation of systems with thousands to tens
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of thousands of atoms. Therefore further improvement of numerical
algorithms and their parallel scalability, particularly for metallic sys-
tems, may enable a wide range of applications beyond reach today.

(3) Evaluation of the Kohn–Sham map with non-local functionals. The ap-
plicability range of Kohn–Sham DFT is ultimately determined by the
choice of exchange-correlation functionals, and an increasing number
of numerical calculations are now performed using rung-4 and rung-
5 functionals. In some sense, the precise form of these functionals is
still under development and somewhat debated in the literature. For
instance, the self-consistently screened hybrid functional (Brawand,
Vörös, Govoni and Galli 2016) was only developed in recent years, and
there is as yet no consensus on the formulation of self-consistent rung-
5 functionals. In particular, rung-5 functionals are closely related to
Green’s function methods such as those in the many-body perturba-
tion theory (MBPT) (Hedin 1965, Onida, Reining and Rubio 2002),
which are often treated as post-DFT methods. For strongly correlated
systems, novel exchange-correlation functionals such as those based
on the strictly correlated electron (SCE) limit (Seidl, Gori-Giorgi and
Savin 2007, Malet and Gori-Giorgi 2012) offer new perspectives on the
design of exchange-correlation functionals, though they have yet to be
shown to be effective for practically relevant chemical systems.

(4) Self-consistent field iterations. For large-scale heterogeneous systems
with a small or zero energy gap, the SCF iteration often converges
slowly, or fails to converge at all. This is particularly problematic
for geometry optimization and molecular dynamics simulation, where
a large number of iterations need to be performed at each step. It
remains challenging to design efficient and robust approaches for self-
consistency for large-scale systems. From this perspective, optimiza-
tion based algorithms with guaranteed reduction of energy at each step
could be more effective and robust.

(5) Numerical analysis. Due to the nonlinearity of the exchange-correlation
functional, numerical analysis of Kohn–Sham DFT can be very challen-
ging. Much progress has been made for simplified models such as the
Thomas–Fermi-type models and reduced Hartree–Fock models (see e.g.
Cancès, Deleurence and Lewin 2008, Cancès and Lewin 2010, Cancès
and Mourad 2014). Even so, there are still many basic questions from
numerical analysis that remain to be answered, such as the convergence
analysis of self-consistent field iterations beyond the linear response re-
gime.

Finally, we would like to emphasize again the fact that although ‘Kohn–
Sham DFT’ has become synonymous with ‘electronic structure theory’ in
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many contexts, it is only one of the many branches of electronic structure
theories. We have not touched upon most of the wavefunction methods
in the quantum chemistry literature, nor the methods for excited states or
time-dependent problems. The fact that Kohn–Sham DFT has become so
widely used today is because it strikes the right balance between efficiency,
accuracy and general applicability so far. This balance has been constantly
reshaped together with the development of many other theories, and will
continue to be further reshaped in the future. Let us mention two possibil-
ities.

Recently, there has been rapid surge of interest in applying machine learn-
ing tools to electronic structure theories. In the past few years there has
been considerable progress in building inter-atomic potentials, for which the
quality can be comparable to a first-principles simulation (see e.g. Bartók,
Payne and Csányi 2010, Zhang et al. 2018). Although machine learning
based methods will still require electronic structure calculations to generate
the training data, it is possible that in future we will not need to perform
a monolithic, long-time first-principles molecular dynamics simulation for a
large system. Instead it may be efficient enough to perform long molecular
dynamics calculations for many small- to medium-sized systems in parallel,
or for large systems but at many discontinuous snapshots. This may enable
DFT calculations on a massively parallel scale, and many large systems
beyond reach today might then become feasible. It may also be possible
to use machine learning tools to build better density functionals or to more
efficiently solve DFT. The interaction between physical modelling, data and
numerical algorithms promises to further improve the predictive power of
electronic structure theories for materials and chemical systems.

Another possibility is the fusion of DFT methods with other physical the-
ories. In the quantum physics and chemistry literature, such multiscale-like
theories are called ‘quantum embedding theories’. Kohn–Sham DFT can be
combined with more coarse-grained theories such as molecular mechanics
to simulate large-scale systems such as biological systems. These ‘quantum
mechanics / molecular mechanics’ (QM/MM) methods began in the 1970s
(Warshel and Levitt 1976) and were recognized by the Nobel Prize in Chem-
istry in 2013. Kohn–Sham DFT can also be combined with more accurate
post-DFT methods, such as coupled cluster methods, density matrix renor-
malization group methods, quantum Monte Carlo methods and exact di-
agonalization methods (Sun and Chan 2016, Georges, Kotliar, Krauth and
Rozenberg 1996, Kotliar et al. 2006, Knizia and Chan 2012, Manby, Stella,
Goodpaster and Miller III 2012) to solve strongly correlated systems. As
of today, these methods certainly still lack the ease of use and general ap-
plicability compared to Kohn–Sham DFT. There are challenges as well as
opportunities for applied mathematicians to make contributions.
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Notation

General conventions

i imaginary unit
z∗ complex conjugate of the complex number z
N number of electrons
M number of nuclei
β inverse temperature∮
C dλ contour integral
〈ψ|, |ψ〉, 〈ψ|ϕ〉 bra vector, ket vector and bra–ket in Dirac notation

Coordinates

r, rα single electron spatial coordinate and its Cartesian
components, α = x, y, z or 1, 2, 3

p, pα single electron momentum coordinate and its
Cartesian components

xi = (ri, σi) space-spin coordinates of the ith electron
ZI charge of the Ith nuclei
RI spatial coordinate of the Ith nuclei

DFT-related

Ψ or |Ψ〉 N -electron wavefunction
P single-particle density matrix
ρ(r) electron density
ψi(r) or ϕi(r) ith single electron spatial orbital
εi eigenvalue of the ith orbital
fi occupation number for the ith orbital
i, j occupied eigenvalue index
a, b unoccupied eigenvalue index
µ chemical potential
V (r) single-particle potential
Vext(r) external potential
VH, Vx, Vc, Vxc, VHxc Hartree, exchange, correlation, exchange-correla-

tion and Hartree-exchange-correlation potentials
FKS[V ] Kohn–Sham map from potential to density

Notation for matrix representation

A> transpose of A
A∗ or A† Hermitian transpose / adjoint of A
Ng number of grid points / degrees of freedom
Nb number of basis functions

Continued on next page
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Continued from previous page
Ψ = [ψ1, . . . , ψN ] a matrix collecting N single-particle orbitals
Φ = [φ1, . . . , φNb ] a matrix collecting Nb basis functions, usually of

size Ng ×Nb

H,S discretized Hamiltonian and overlap matrices
G discretized Green’s function
I identity matrix

Other quantities

1(−∞,0) indicator function
fβ finite temperature Fermi–Dirac function
f∞ zero temperature Fermi–Dirac function, the same

as an indicator function
η a small positive quantity approaching 0
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tra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser,
P. Umari, N. Vast, X. Wu and S. Baroni (2017), ‘Advanced capabilities for

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000047
Downloaded from https://www.cambridge.org/core. Access paid by the UC Berkeley Library, on 15 Jun 2019 at 01:21:41, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000047
https://www.cambridge.org/core


528 L. Lin, J. Lu and L. Ying

materials modelling with QUANTUM ESPRESSO’, J. Phys. Condens. Mat-
ter 29, 465901.
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D. Sánchez-Portal (2002), ‘The SIESTA method for ab initio order-N mater-
ials simulation’, J. Phys. Condens. Matter 14, 2745–2779.

I. Souza, N. Marzari and D. Vanderbilt (2001), ‘Maximally localized Wannier func-
tions for entangled energy bands’, Phys. Rev. B 65, 035109.

V. N. Staroverov, G. E. Scuseria, J. Tao and J. P. Perdew (2003), ‘Comparative as-
sessment of a new nonempirical density functional: Molecules and hydrogen-
bonded complexes’, J. Chem. Phys. 119, 12129–12137.

E. M. Stoudenmire and S. R. White (2017), ‘Sliced basis density matrix renormal-
ization group for electronic structure’, Phys. Rev. Lett. 119, 046401.

J. Sun, A. Ruzsinszky and J. P. Perdew (2015), ‘Strongly constrained and appro-
priately normed semilocal density functional’, Phys. Rev. Lett. 115, 036402.

Q. Sun and G. K.-L. Chan (2016), ‘Quantum embedding theories’, Acc. Chem.
Res. 49, 2705–2712.

Q. Sun, T. C. Berkelbach, J. D. McClain and G. Chan (2017), ‘Gaussian and
plane-wave mixed density fitting for periodic systems’, J. Chem. Phys. 147,
164119.

P. Suryanarayana, V. Gavani, T. Blesgen, K. Bhattacharya and M. Ortiz (2010),
‘Non-periodic finite-element formulation of Kohn–Sham density functional
theory’, J. Mech. Phys. Solids 58, 258–280.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492919000047
Downloaded from https://www.cambridge.org/core. Access paid by the UC Berkeley Library, on 15 Jun 2019 at 01:21:41, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492919000047
https://www.cambridge.org/core


Numerical methods for Kohn–Sham DFT 537

J. J. Sylvester (1852), ‘A demonstration of the theorem that every homogeneous
quadratic polynomial is reducible by real orthogonal substitutions to the form
of a sum of positive and negative squares’, Philos. Mag. 4, 138–142.

A. Szabo and N. Ostlund (1989), Modern Quantum Chemistry: Introduction to
Advanced Electronic Structure Theory, McGraw-Hill.

M. Teter, M. Payne and D. Allan (1989), ‘Solution of Schrödinger’s equation for
large systems’, Phys. Rev. B 40, 12255–12263.

B. Thaller (1992), The Dirac Equation, Springer.

L. H. Thomas (1927), ‘The calculation of atomic fields’, Proc. Camb. Phil. Soc.
23, 542–548.

L. N. Trefethen (2008), ‘Is Gauss quadrature better than Clenshaw–Curtis?’, SIAM
Rev. 50, 67–87.

N. Troullier and J. L. Martins (1991), ‘Efficient pseudopotentials for plane-wave
calculations’, Phys. Rev. B 43, 1993–2006.

L. A. Truflandier, R. M. Dianzinga and D. R. Bowler (2016), ‘Communication:
Generalized canonical for density matrix minimization’, J. Chem. Phys. 144,
091102.

E. Tsuchida (2007), ‘Augmented orbital minimization method for linear scaling
electronic structure calculations’, J. Phys. Soc. Japan 76, 034708.

E. Tsuchida and M. Tsukada (1995), ‘Electronic-structure calculations based on
the finite-element method’, Phys. Rev. B 52, 5573–5578.

M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J.
Van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus and W. De Jong
(2010), ‘NWChem: A comprehensive and scalable open-source solution for
large scale molecular simulations’, Comput. Phys. Commun. 181, 1477–1489.

D. Vanderbilt (1990), ‘Soft self-consistent pseudopotentials in a generalized eigen-
value formalism’, Phys. Rev. B 41, 7892–7895.

E. Vecharynski, C. Yang and J. E. Pask (2015), ‘A projected preconditioned conjug-
ate gradient algorithm for computing many extreme eigenpairs of a Hermitian
matrix’, J. Comput. Phys. 290, 73–89.
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