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PROJECTION-BASED EMBEDDING THEORY FOR SOLVING
KOHN-SHAM DENSITY FUNCTIONAL THEORY™

LIN LINT AND LEONARDO ZEPEDA-NUNEZ#

Abstract. Quantum embedding theories are playing an increasingly important role in bridging
different levels of approximation to the many-body Schrodinger equation in physics, chemistry, and
materials science. In this paper, we present a linear algebra perspective of the recently developed
projection-based embedding theory (PET) [Manby et al., J. Chem. Theory Comput., 8 (2012), pp.
2564-2268], restricted to the context of Kohn—Sham density functional theory. By partitioning the
global degrees of freedom into a “system” part and a “bath” part and by choosing a proper projector
from the bath, PET is an in principle exact formulation to confine the calculation to the system part
only and hence can be performed with reduced computational cost. Viewed from the perspective of
domain decomposition methods, one particularly interesting feature of PET is that it does not enforce
a boundary condition explicitly, and it remains applicable even when the discretized Hamiltonian
matrix is dense, such as in the context of the planewave discretization. In practice, the accuracy of
PET depends on the accuracy of the bath projector. Based on the linear algebra reformulation, we
develop a first-order perturbation correction to the projector from the bath to improve its accuracy.
Numerical results for real chemical systems indicate that with a proper choice of reference system
used to compute the bath projector, the perturbatively corrected PET can be sufficiently accurate
even when strong perturbation is applied to very small systems, such as the computation of the
ground state energy of a SiH3F molecule, using a SiH4 molecule as the reference system.
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1. Introduction. Multiphysics simulation usually involves two or more physical
scales. In the context of electronic structure theory, even though everything on the
scale of electrons and molecules is described by the many-body Schrodinger equation,
the concept behind multiphysics simulation remains valid. The direct solution to the
many-body Schrodinger equation itself is prohibitively expensive, except for systems
with a handful of electrons. This has led to the development of various theoretical
tools in both quantum physics and quantum chemistry to find approximate solutions
to the Schrodinger equation. These theories can be effectively treated as “different
levels of physics” providing different levels of accuracy. However, depending on the
accuracy required, the computational cost associated with such approximate theories
can still be very high. So if a large quantum system can be partitioned into a “system”
part containing the degrees of freedom that are of interest that need to be treated
using a relatively accurate theory and a “bath” part containing the rest of the degrees
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of freedom that can be treated using a less accurate theory, it becomes naturally
desirable to have a numerical method that can bridge the two levels of theories. In
quantum physics, such “multiscale” methods have been actively developed in the past
few decades and are often called “quantum embedding theories” (see, e.g., [3, 37, 8,
20, 14, 16, 12, 5, 35, 19, 38, 18, 30, 6, 25] and [33] for a recent brief review).

The projection-based embedding theory (PET) [28] is a recently developed quan-
tum embedding theory, which is a versatile method that can be used to couple a num-
ber of quantum theories together in a seamless fashion (also see recent works [26, 7]).
This paper is a first step toward a mathematical understanding of PET. To make
the discussions concrete, we assume that the system part is described by the widely
used Kohn—Sham density functional theory (KSDFT) [15, 23] and that the bath part
is also described by KSDFT but solved only approximately. Although this setup is
simpler than the one presented in [28], it is already interesting from the perspective
of approximate solution of large-scale eigenvalue problems, as will be detailed below.

After proper discretization, KSDFT can be written as the following nonlinear
eigenvalue problem:

(1.1) H[P]¥ = WA, P =WU*

where the Hamiltonian H[P] € CV*¥ is a Hermitian matrix and the diagonal matrix
A € RNexNe encodes the algebraically lowest N, eigenvalues (N > N,). N is the
number of degrees of freedom of the Hamiltonian operator after discretization, and
N, is the number of electrons in the system (spin degrees of freedom omitted). The
eigenvectors associated with A are denoted by ¥ = [t1,...,%x.] € CN*Ne and ¥
satisfies the orthonormality condition V*W = Iy_, where I, is the identity of size
N.. The matrix P is a spectral projector, usually called the density matriz. The
Hamiltonian H[P] depends on the density matrix P in a nonlinear fashion, and (1.1)
needs to be solved self-consistently.

Without loss of generality, the system part can be defined as the degrees of free-
dom associated with a set of indices Z; and the bath part with a set of indices Z
so that Z, UZ, = {1,...,N}. Usually, |Zy| > |Zs|. We are mostly interested in the
accurate computation of physical observables associated with the system part, i.e., the
matrix block of the density matrix Pr, z,. Since the eigenvalue problem (1.1) couples
all degrees of freedom together, this task still requires a relatively accurate description
of the rest of the density matrix.

In a nutshell, PET assumes the following decomposition of the density matrix:

(1.2) P =P, + Py,

where P; is the density matrix corresponding to the system part whose block corre-
sponding to the bath part, (Ps)z, z,, approximately vanishes. Similarly, Py}, called
the bath projector, is the density matrix from the bath part whose block correspond-
ing to the system part, (Pyp)z. 7., approximately vanishes. The decomposition of
the system and bath part is performed using projectors, thus leading to the name of
PET. Such a decomposition can be in principle exact. The subscript 0 indicates that
Py, is computed from a reference system and thus is only obtained approximately.
Furthermore, Ps is constrained by P according to the orthogonality condition

(1.3) Py P, = 0.

The condition (1.3) acts as a soft “boundary condition” for a modified Kohn—-Sham
problem, of which the number of eigenvectors to be computed can be much smaller
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than N.. Hence, PET reduces the computational cost compared to solving (1.1) by
reducing the number of eigenvectors and eigenvalues to compute.

Related works:

From a practical perspective, PET can be seamlessly integrated into many elec-
tronic structure software packages, given its alluring matrix-free nature; i.e., PET
only requires matrix-vector multiplication operation of the form Ht. Thus, it can be
applicable even when H is a dense matrix, such as in the planewave discretization, or
when explicit access to H is not readily available.

This is in contrast to, e.g., the widely used Green’s function embedding methods
(see, e.g., [3, 37,35, 19, 25]), where explicit access to H is usually required to compute
Green’s functions of the form G(z) := (¢ — H)~!. In addition, when a large basis
set such as a planewave discretization is used, even storing the Green’s functions can
be challenging. However, when a small basis set is used and H is a sparse matrix,
Green’s function embedding methods can be combined with fast algorithms [25] to
yield a lower computational complexity than that of PET. It may also perform better
for systems with small gaps.

Contribution:

The contribution of this paper is two fold. First, we provide a mathematical un-
derstanding of PET from a linear algebra perspective, which can be concisely stated
as an energy minimization problem with extra orthogonality constraints. The corre-
sponding Euler-Lagrange equation from the energy minimization problem gives rise
to a modified Kohn—-Sham problem, and the original PET formulation can be under-
stood as a penalty method for implementing the extra orthogonality constraint (1.3).
We then extend the formalism to the nonlinear case as in KSDFT.

Second, we found that the standard perturbation analysis cannot be applied di-
rectly to PET. However, through a proper choice of the basis set, it is possible to
reformulate PET in a form suitable for such analysis, which allows us to compute a
perturbative correction. In addition, we show that such correction only contributes
to the bath part.t

Our numerical results for real chemical systems confirm the effectiveness of the
method. In particular, we find that the method can reach below the chemical accuracy
(1 kcal/mol, or 0.0016 au) even when applied to very small systems, such as the
computation of the ground state energy of a SiHsF molecule from the reference of a
SiH4 molecule. We also demonstrate the accuracy of the energy and the atomic force
for the PET and the perturbatively corrected PET using other molecules, such as
benzene and anthracene.

Organization:

This paper is organized as follows. We derive PET for linear problems in section 2
and introduce the first-order perturbative correction to PET in section 3. We then
generalize the discussion to nonlinear problems in section 4. We discuss the strategy
to evaluate the bath projector using localization methods in section 5. We then
present the numerical results in section 6, followed by the conclusion and discussion
in section 7.

2. PET for linear problems. We first introduce PET in the context of solving
a linear eigenvalue problem. Let H € CV*¥ be a Hermitian matrix, whose eigenvalues
are ordered nondecreasingly as A\; < Ao < -+ < Ay, < An,41 < --- < Ay. Here we
assume that there is a positive energy gap Ay = An,+1 — An,-

I'We refer readers to the main text (in particular, section 3) for the formula of the aforementioned
perturbation.
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Consider the following energy minimization problem:

(2.1) E= inf E[P],
P?=PP* =P
TrP = N,

where E is called the energy and the energy functional E[P] is defined as
(2.2) E[P] := Tr[HP).

Note that the condition P = P? requires P to be a projector, with eigenvalues being
either 0 or 1. The trace condition ensures that there are precisely N, eigenvalues
that are equal to 1. Proposition 1 states that the minimizer is attained by solving a
linear eigenvalue problem. This is a well-known result in linear algebra; nonetheless,
we provide its proof here in order to motivate the derivation for PET later.

PROPOSITION 1. Let H € CV*V be a Hermitian matriz, and assume that there is
a positive gap between the N th and (N, + 1)th eigenvalue of H. Then the variational
problem (2.1) has a unique minimizer, denoted by P, which is given by the solution
to the following linear eigenvalue problem:

(2.3) HU = UA, P =0y
Here (U, A) are the lowest N, eigenpairs of H.

Proof. Since H is a Hermitian matrix, it can be diagonalized as
(2.4) H = WAU*.

Here A = diag[A1, ..., Ay] € RVXN is a diagonal matrix containing all the eigenvalues
of H ordered nondecreasingly, and ¥ € CN¥*¥ is a unitary matrix with its first N,
columns given by W. Then

(2.5)  E[P] = Tr[HP] = Te[FAV* P] = Tr[AT* PU] = Tr[AP] = i \iPy; =: E[P),

where P = U* PV is the density matrix with respect to the basis given by 0. Thus,
(2.1) is equivalent to

(2.6) E= _ inf  £[P)]

P2=p p*=p
TrP = N,
Since An,+1 — An, > 0, the minimizer is achieved by setting
- 1, if ¢ < N,
27) B _{ 0, ifi> N..

The last step in our proof is to show that P is a diagonal matrix, with ones and
zeros at the main diagonal, i.e.,

~ )1, ifi=jand i < N,
(2:8) P _{ 0, otherwise,

and that it is the unique minimizer. Consider the optimization problem

(2.9) max v*Pv.
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The first-order optimality condition implies that any maximizer v must be an eigen-
vector of P. Let e; be the ith column of the identity matrix of size N. Since an
eigenvalue of P can be only 0 or 1 and 15“ =e; Pei = 1, we find that e; is a maximizer
of (2.9) and thus is an eigenvector of P associated to the eigenvalue 1.

We can repeat the same argument for {ei}fvzel showing that they are all eigen-
vectors of P. We can use the same argument but using a min instead of a max in
(2.9) to show that {ei}f\LNeH are eigenvectors of P associated with the eigenvalue 0.
Therefore, P is diagonalized by the identity matrix, and its diagonal entries are given
by the eigenvalues as in (2.7).

Hence, by construction, P of the form (2.8) is the unique minimizer of (2.6). Then

(2.10) P =VUPy*" = 0u*
is the unique minimizer of (2.1), where ¥ is given by the first N, columns of U. O

When N and N, are large, the solution of the linear eigenvalue problem (2.3) can
be expensive. However, suppose that we have already solved the eigenvalue problem
for a reference matrix Hy and we would like to solve the eigenvalue problem for
another matrix H such that H — Hy is approximately zero outside the matrix block
given by the index set Zs. In such a case, PET aims at reducing the computational
cost by solving a modified eigenvalue problem that involves a much smaller number
of eigenvectors.

More specifically, for a reference system Hy € CV*N _ let Py be the minimizer of
the following problem:

P?=PpPP*=P
TrP = N?

We split the minimizer as
(2.12) Py=FPyp+ Py s.

Here Py, and Py s are called system and bath projector, respectively, and are projec-
tors themselves, i.e.,

(2.13) Py =Pop, Pi,=Ps.

)

The rank of P, ; is denoted by N;, := TrF, ;. Here we use the symbol IV, instead of Ny
to emphasize that the rank of the bath projector P, remains the same before and after
the perturbation, as will be seen in the discussion later. We assume that N, ~ N2,
and hence the rank of P, s is much smaller than N,. The splitting procedure (2.12)
is by no means unique; we will discuss one possible method based on localization
techniques to choose ¥y ; in section 5.

Together with P = Py, we have

(2.14) Py = (Poy+ Pos)’ = Piy+ P5 s+ PoyPos + PosPos = Poy+ Pos.
Using (2.13), we have Py, Py s + Po,sPo, = 0. Then
Py v Po,sPo,s + Po,sPopFPo,s = PopPos(I+ Pos)=0.

Since I + Py s is invertible, we arrive at the orthogonality condition PPy s = 0. It
is also convenient to write

(2.15) Poy= VoW, W5,y = In,.
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By proper rotation? of the ¥y , matrix, without loss of generality we may assume that
(216) \IJEK)’bHO\IJ(],b = A()_’b

is a diagonal matrix. We define By := span{W¥ ;} with its orthogonal complement
denoted by By
The main ansatz in PET is that the density matrix P can be split as

(2.17) P =P+ P,

where P? = P; is also a projector and Py, is a bath projector as in (2.12). Similar to
the discussion above, we arrive at the orthogonality condition (1.3). Since the rank
of Py is already Np, the rank of P; is thus equal to N := N, — N}, and we expect
that Ny < Np. Note that the dimension of Hy and H must be the same, but NB
and N, can be different. Thus, the ranks of Py s and P, can also be different. This
is necessary in the context of KSDFT, where the system part can involve different
numbers and/or types of atoms from that in the reference system.

With the bath projector fixed, PET solves the following constrained minimization
problem only with respect to Ps:

(2.18) EFPET — inf Tr[H(Ps + Poy)]-
P2 =P, P} =P,
Py pPs =0, TrPs = Ng

Compared to (2.1), we find that PET restrains the feasibility set of density matrices to
those satisfying the ansatz (2.17). Hence, by the variational principle EFET provides
an upper bound of the energy, i.e., EVET > E. Parallel to Proposition 1, the minimizer
of (2.18) is uniquely obtained by a modified linear eigenvalue problem. This is given
in Proposition 2.

PROPOSITION 2 (projection-based embedding). Let H|gs be the restriction of

H to the subspace By, and assume that there is a positive gap between the Nyth and
(Ns+1)th eigenvalue of H|gs. Then the variational problem (2.18) has a unique min-
imizer, denoted by Ps, which is given by the solution to the following linear eigenvalue
problem:

(2.19) Hlgs W, = WA, P, =W,

Here (Ug, Ag) are the lowest Ny eigenpairs of H|BOL.

Proof. First, the orthogonality condition P ,Ps = 0 implies that all columns of
P, should be in the subspace By . Using the relation

Tr[(I — Pop)H(I — Poy)Ps]| = Te[HPy — HPy . Ps — Poy HPs + Py, H Py, Ps],
[HP, — HPy, P — HP, Py, + HPy , Ps Py 1),

Tr
Tr[H Ps],

we find that (2.18) is equivalent to the following minimization problem:

(2.20) EPET _ inf Tr[(I — Pop)H(I — Pyp)Ps] + Tr[H Py p).
P2 =P,, P’ =P,
PypPs =0, TrPs = Ng

2This can be achieved by solving the eigenvalue problem (¥ ,HoWo,p)Cy = CpAg p and redefining
\IIO,b to be \I/O,be.
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Given that Tr[HP;;] is a constant, we only need to focus on the first term
Tr[(I — Pop)H(I — Pop)Ps). The matrix (I — Pyp)H(I — Pyyp), sometimes called
the Huzinaga operator in the quantum chemistry literature [17], is Hermitian and is
identical to H when restricted to the subspace Bi. With some abuse of notation,
H|p: can be diagonalized as

(2.21) H|gy = VA"

Since the dimension of B& is N — Nj, A = diag[Ay, ..., Ay_n,] € RIV-Ne)X(N=Nb) jg 4
diagonal matrix containing all the eigenvalues of H| BE ordered nondecreasingly, and

U e CNX(N=Nb) jg given by orthogonal columns of an unitary matrix in the subspace
By. Then

Tr[(I — Pyy)H(I — Pyy)Ps] = Te[WAT* P,] = Tr[AT* P, T]

Here P, is the matrix representation of P with respect to the basis U of the subspace
Bi.

Thus, similar to the proof of Proposition 1, we arrive at the minimization problem

(2.22) EPET — inf Tr[AP,] + Tr[H Py ),
P2 =B, Pr = P,

L}

TrPs = N,

whose minimizer is given by

- | 1, ifi=jandi < N,
(2.23) (Pe)is _{ 0, otherwise,
and
(2.24) P, = UP 0™ = 0,07,

Here W, are the first N, columns of U corresponding to the lowest Ny eigenvalues. O

We note that, even if Hy and H have a positive energy gap, it may not be
necessarily the case for H| Bt Therefore, we need to explicitly make this assumption
in the proposition.

Furthermore, we point out that {S\i}, the eigenvalues of H | Bk are not, in general,

PET
, E

a subset of {\;}, the eigenvalues of H. Nonetheless, according to (2.22) can

be computed in terms of the trace

=

EPET — Te[H (P + Poy)] =Y A + Tr[H Py ),
1

%

which yields an upper bound to the energy E.
In addition, when computing ¥, all the vectors Wg, lie in the null space of
(I — Pop)H(I — Fop) and do not belong to the range of H|z.; thus, they should be

avoided in the computation. This issue becomes noticeable when 5\Ns > 0, and it
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would be incorrect to simply select the first N, eigenpairs of (I — Py )H (I — Py ).
One practical way to get around this problem is to add a negative shift ¢ so that all
the first Ny eigenvalues of the matrix (I — Pyp)(H + cI)(I — FPyp) become negative.

This issue can also be automatically taken care of by applying the projector
I — Py to the computed eigenvectors in an iterative solver so that the computation
is restricted to the subspace of interest By

Remark 3. The original formulation of PET [28] can be understood as a penalty
formulation to implement the orthogonality constraint, i.e.,

(2.25) EPELr — inf Tr[H(Ps + Pop)] + pTr[ Py Ps).
P2 =P, P} = P,
TrP, = N,

This advantage of the penalty formulation is that the domain of Ps has the same form
as that in Proposition 1 but with a modified energy functional. The corresponding
Euler-Lagrange equation is given by the eigenvalue problem for the matrix H + uFy p,
and P; is the density matrix corresponding to the first N, eigenpairs. Therefore, by
selecting the penalty p to be sufficiently large (in practice it is set to 10% or larger),
the orthogonality condition is approximately enforced.

3. Perturbative correction to PET for linear problems. In the following,
we define

(3.1) 0H = H — H,
and the PET projector
(3.2) PPPT = P, + Py,

where P is given by the solution of (2.19).

3.1. Consistency. First, we would like to verify that PET is a consistent theory:
when H = Hp and N, = N?, for any choice of the bath projector Py 5, the minimiz-
ers from (2.1) and (2.18) should yield the same density matrix. This is ensured by
Proposition 4.

PROPOSITION 4 (consistency of PET). When H = Hy and N, = N?, the solution
to PET satisfies Ps = Py .

Proof. By the Courant—Fischer min-max theorem,

*
R u H|30LU . uw*Hu
AN.41 =  max min ——— < max m = AN, +1-
: dim(S)=N-Ne u€S\{0}  u*u dim(S)=N—-N, ueS\{0} u*u
ScBg

Furthermore, when H = Hy, all eigenvectors of H corresponding to eigenvalues Ay, 41
and above are in the subspace Bé‘, and hence An,+1 > An,41. Therefore,

5\NS+1 = AN, +1-
Again using the Courant—Fischer min-max theorem, we have
(3.3) An, < An..

Hence, the gap condition of H, i.e., Anx,+1 — Ay, > 0, implies that the gap condition
for Proposition 2 holds, i.e., R .
)‘Ns+1 — )‘Ns > 0.
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Since the minimizer of PET is obtained from a constrained domain of the density
matrix, we have

(34) E = inf TI'[H()P] < inf TI[H()(PS + PO,b)]7
P?2=PpP P =P P2 =P, P’ =P,
TrP = N. Po.py Py =0,TrPs = N,

where P, = Py s already achieves the minimum. By the uniqueness of the minimizer
in Proposition 2, we have Py = F ;. 0

Remark 5. The proof of Proposition 4 is not entirely straightforward. This is
mainly due to the fact that Fy; is obtained through some linear combination of
eigenvectors of H corresponding to the lowest N, eigenvalues. Hence, H and Py
generally do not commute even when H = H,. Nonetheless, the consistency of PET
implies that PET is an in principle exact theory, given the proper choice of the
reference projector Py p.

Remark 6. Assume N, = N?; then we have that

|P— PPV < ||P— Py+ Py — BY¥T + PYFT — pPET,
<||P = Poll + | By — BY¥T| + | BT — PPET
<||P = Pol| + | BFFT - PPET,

Here we used Py = P}FT by Proposition 4, and ||| means the operator norm. In
addition, given that Hy has a positive energy gap and ||§H]|| is sufficiently small, we
have, by continuity, that

1P — Poll ~ O([[6H|)-

By the proof of Proposition 4, H|Bé also has a positive gap. Using (3.2), we have
that
[Py EF — PPEY|| = || Py — Pos|l ~ O(I6H]),

thus resulting in
(3.5) |17 — PPET| ~ O(||0H ).

In addition, Proposition 4 states that when d H = 0, there is zeroth-order consistency
for the energy E = EPPT. Then we can use a standard perturbative argument coupled
with the computation above and the fact that PPET lies in the feasible set to obtain

|E — EPFT] ~ O(||sH|?).

3.2. Perturbation. In the following discussion, we derive a perturbative cor-
rection to the density matrix when H = Hy. Unfortunately, standard perturbation
analysis for eigenvalue problems does not apply directly given that PET depends on
the solution of two separate eigenvalue problems: one from Hy, to determine the
projector Py p, and other from H| B, to compute P.

In order to bypass this difficulty, through a proper choice of the basis set, the two
eigenvalue problems can be formally combined into one. In this rotated basis, we use
standard perturbative analysis to compute a perturbative correction. The results are
then rotated back to the original basis.

Let us split the set of vectors ¥ from the eigendecomposition (2.21) as

U= [\1157 \Ilu]a
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where W, corresponds the projector Ps according to Proposition 2 and W, denotes
the rest of the vectors. Here the subscript u stands for unoccupied orbitals following
the terminology of KSDFT. Correspondingly, the diagonal matrix A is split into a
block diagonal form as

A— {AS 0 } .

0 Ay
We combine ¥ and ¥y, from (2.16) to form a unitary N x N matrix
(36) W = [\PO,b> \Ifs, \I/u]a

and the matrix representation of H with respect to the basis W, denoted by Hy, can
be written as

(s HUoy, U5, HY, U5 HU,]
Hy =W*HW = | U*HU,, W'HV, U'HY, |,
| WIHW,, WIHU, WIHU,
(s HVoy U5, HY, W5 HY,]
— | UTH,, A, 0
| ULH, 0 A

In the second equality, we have used the fact that all columns of ¥, ¥,, belong to
By and consist of eigenvectors of H| e associated with different sets of eigenvalues.
Hence, the inner product W*HWV, vanishes. Again we note that not all off-diagonal
matrix blocks vanish even when H = Hj.

From this perspective, we find that PET makes two approximations: First, it
discards the off-diagonal matrix blocks so that

Uy, Ho, 0 0
Hy ~ 0 AS 01,
0 0 A,

and, second, it replaces the block corresponding to the interactions within the bath
by W§ ,HoWo,p, which is equal to Ao following (2.16). The resulting matrix,

Aoy, O 0
HFET =10 A, 0],
0 0 A,

is already diagonalized in the W-basis. Assume that the first N, eigenvalues of HEFT
include all the diagonal entries of Aoy (according to Proposition 4, this is at least
valid when H = Hy and N, = NS); we find that the density matrix in the W-basis
takes the block diagonal form

In, 0 0
PFET =10 Iy 0
0 0 0

When rotated back to the standard basis, the density matrix becomes
PPET = WPRFTW* = W, U5, + U, Uk = P + Py,

which is the PET solution.
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One advantage of the representation in the W-basis is that the density matrix
PVP},ET can be concisely written using the Cauchy contour integral formula as

1 _
(3.7) PLET = 5 fé(zl — HEFY) N de.

Here C is a contour in the complex plane surrounding only the lowest N, eigenvalues
of HEET,
The first-order perturbative correction to PET is then given by the neglected
off-diagonal matrix blocks W;H W, and ¥; H¥q;, and the diagonal term involving
37b(H — Hy)Ug . The formula for the first-order perturbation is given in Proposi-
tion 7.

PROPOSITION 7 (first-order perturbation). The first-order perturbation to the
density matrixz from PET is given by

(3.8) oP = 5\1’011,\1/6’1, + h.c.,
where 0%q p € CNXNo satisfies the equation
(3.9) Q (Niopd — H) Qotbi0p = Q(HYi0p),  Q6%i0p = 640

Here the projector Q@ = I — (Ps + Pop) = W, % Niop is the ith diagonal element of
Aoy, and ;0,010 are the ith column of Wy, 0V, respectively, and h.c. stands
for the Hermitian conjugate of the first term.

Remark 8. Following the previous notation, we may define the subspace B :=
span{¥, ¥g,}, and Q is the projector on the orthogonal complement subspace B+.
Since Ay p is separated from the spectrum of HlBé_, (3.9) has a unique solution in B+.
Equation (3.8) suggests that the first-order correction to the system part Py vanishes,
and the correction only comes from the bath part Py;. Furthermore, the correction
is traceless due to the condition ‘1/87,)(5\1/071, = 0. This means that the density matrix
after the first-order correction preserves the trace of the projector, which is N.. In the
context of KSDFT, this means that the first-order correction preserves the number of
electrons in the system.

Remark 9. From (3.9), it may appear that the correction does not vanish even
when H = H,. However, note that Ho0p € B := span{¥,, ¥y}, we have
QHopYi0p = 0, and hence the first-order correction indeed vanishes. This is con-
sistent with Proposition 4.

Remark 10. The perturbative correction requires the solution of N, linear equa-
tions to correct the projector from the bath. It seems that this diminishes the purpose
of PET, which reduces the number of eigenpairs to be computed from N, to N, from
a practical perspective. Hence, the advantage of the perturbative correction becomes
more apparent in the nonlinear setup in section 4, where the perturbation only needs
to be applied once after the self-consistency is achieved.

Remark 11. We point out that (3.9) shares some similarities with the Sternheimer
equation used in density functional perturbation theory [1]. The perturbative correc-
tion lies in the subspace orthogonal to the range of Ps + Fy;. However, unlike the
Sternheimer equation, in our case A; 4 is not necessarily an eigenvalue of H.

Proof. Our strategy is to derive the first-order perturbation in the W-basis, de-
noted by § Py, and then obtain § P according to 0P = WPy W*.
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Let us first denote by
Vo, 0H Yo, W5, HV Vo, HY,

SHyFT = | U*HU,, 0 0
UEHD, 0 0

the neglected off-diagonal matrix blocks in PET; § HFET may not be small even when
H = Hj, but its contribution to the density matrix must vanish according to Propo-
sition 4 and hence can be formally treated perturbatively.

Let Py = PEFT 4+ 6Pw. Setting Gw(z) = (2 — Hw) ! and G(2)iFT =
(z — HiFT)~1, we have the Dyson equation

Gw(2) = Gyt (2) + Gt ()6 Hy G (2).
Thus, using the Cauchy integral formulation, we have that
§Pyw = Py — PEFT,
1

21 I

1
74 GVET (2)0 HEFT Gy (2) dz,
C

2m

Gw(z) — Gyl (2)dz,

(21 — HEFEOY 1 sHEFT (21 — Hy ) 7' d2.

2m C

By setting Hy ~ HEET, the first-order correction is

1
Py = — %(z[ — HEFO) TV HEET (21 — HEFT) 71 d=.
27 I

Since HEET is a diagonal matrix, § Py should have the same matrix sparsity pattern
as SHEFT ie.,

6Pw)op (0Pw)bs (0Pw)bu

dPw = | (6Pw)sp 0 0
(6PW)u,b 0 0

First we compute

1
(6Pw)ps = =— @ (21 — Aop) P05, HU (21 — A,) "t dz.
’ 2m Je ’ ’

Note that for any diagonal elements A; 05, Aj;s from Agp, Ag, respectively, they are
both enclosed in the contour C.
On the one hand, if ;04 7# Ajis, then
1 _ _ 1 (2= Xiop) P — (2= Njs) 7t
- _)\ 1 _A 1d - %Y, J3S d
5 C(Z i0) (2 = Ajs) T de = o g Mo — s ?
1-1

== .
)\i;(),b - >\j;s

On the other hand, if A0, = Aj;s, then we would obtain an integral of the form

1
— —Mo) 2d
21 C(Z z,O,b) Z,

which vanishes since the residue for the integrand is zero.
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For the term

1
(6PW)b,b = T (ZI — Ao7b)71\1167b5H\I/07b(2’I — AO,b)71 dz,

T Jc

an analogous argument can be used to show that it vanishes.
This means that the matrix blocks (§Pw )p,s, (0Pw )s,b, and (6 Py )p,p vanish, and
the only nonzero matrix blocks are (6 Pw ), and its conjugate. Moreover,

1 . _
(5PW)u,b = 2—7.” %(ZI — Au) I\I’uH\I/07b(ZI - AO,b) 1 dZ,
C

= Z()‘i;o,b = A) TN Heiop.

Back to the standard basis,

OP =0, > (Niop — M)~ W5 Hebio 50 + hic.

= (Z wi;o,bw;mb) +h.c.

Here
5Vi0b = Vo (Niop — Au) T 0 Hebio
Using the projector @ = ¥, V%, we find that 1,05 satisfies (3.9), and we prove the

u’

proposition. 0

We summarize the perturbatively corrected PET in Algorithm 3.1.

Algorithm 3.1 Perturbatively corrected PET for linear eigenvalue problems.

Input: H, Hy, Woy, Vs.

Output: 0Woy, 6P.

Compute diagonal matrix Agp = W§ , HoVop.

Obtain the PET density matrix PPPT = Wo U5, + WU

Compute the right-hand side R = (I — PPET)H ¥ ;.

Compute 0¥ 5 by solving (3.9).

Obtain the perturbation to the density matrix 6P = %o, Vg, + ‘Ifo7b5‘1’87b~

3.3. Comparison of PET with the Rayleigh—Schrédinger perturbation
theory. Let us now have a more detailed comparison between the results from Propo-
sition 7 with those from the standard Rayleigh—Schrédinger (RS) perturbation theory.
For simplicity we consider the computation of the lowest, nondegenerate eigenpair
(A, %) corresponding to H. The perturbation is computed with respect to the lowest,
nondegenerate eigenpair (Ao, %) corresponding to the reference matrix Hy. We have

Xo = Yo Hotg = Tr[Ho Py,

where the reference density matrix is Py = 1ot§. The first-order correction to the
eigenvalue is

NY = x5 Hapo := Tr[6H Py,
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and the first-order correction to the lowest eigenfunction can be computed as

(3.10) 6™ = Qo(ho — Ho) "1 Qo(6H o),

where Qo = I — P projects to the subspace orthogonal to the range of Py. This also
gives the first-order correction of the density matrix as

§PW = 5y My + o (5 M)"
From (3.10), we have that 6¢)(!) is orthogonal to 1; thus, we can write
PN Py = gy

In addition, the first-order correction of the eigenfunction allows us to compute the
second-order correction to the eigenvalue as

A = s HopM = Tr[Pyd HSPW].
Let us then define
PW .= Py+6PM, AW = Xy + AV = Te[H Py],
and

A2 = N+ AD) 4503
= Tr[PyH| + Tr[Pyd HSPW)],
= Tv[PoHPy) + Tr[PyHSPW],
= Tr[PyHPW].

(3.11)

Here we have used Tr[PyHodP™M)] = 0.
To summarize, the RS perturbation theory states that

(312) \=AW|~ O([6H|?), |P—PW | ~ O(I8H|?), and [A=12| ~ O(|6H]*).

It is worth remarking that |[P — PM| ~ O(||6H||?) does not imply [ — A?)| ~
O(||SH||*). This is because the perturbed density matrix P() satisfies the symmetry
and trace condition but not the idempotency condition as in the feasible set of the
optimization problem (2.1). Therefore, the standard squared relation between the
error of the eigenvalue and the error of the eigenfunction does not hold. In fact,
(3.11) suggests that the eigenvalue computed to the correct order is not equal to
Tr[HP™M] but to Tr[PyHPW].

Motivated from (3.11), we may define the perturbed energy in the PET formula-
tion as

(313) Epert . ’]:‘I.[PPET]{F)pert]7
where
(3_14) ppert . pPET + 6P

However, the perturbation theory used in Proposition 7 differs form the RS per-
turbation theory in the sense that the perturbation is performed with respect to
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SHEEY = Hy — HEET rather than 6H. In particular, HEFT may not vanish even
when H = Hj unless

(3.15) Wi, HoWo s = 0.

In fact, (3.15) will be satisfied if the columns of ¥y are eigenvectors of Hp. In such
a case, the results of the perturbation theory of PET agree with those from the RS
perturbation theory:

|P — PPt ~ O(|ISH|?),  |E — EP| ~ O(|l6H|]*).

This will be confirmed by the numerical results.

However, when (3.15) is violated, ||§H§T|| may not be small even when ||§H ||
is small, and the perturbation theory developed in Proposition 7 holds only formally.
In such a case, the perturbation theory of PET does not improve the asymptotic
convergence rate, and we have

[P — PPt ~ O(|6H]),  |E — EP"*| ~ O([|I6H||?).

Interestingly, our numerical results indicate that even when the perturbative correc-
tion is formal, the preconstant can be much reduced after the perturbation correction.

4. PET for nonlinear problems. In this section, we generalize PET and the
perturbative expansion to the nonlinear case as in KSDFT. First, define the energy
functional

(4.1) E[P] = Tr[PHL] + Enxc[P],

where Hy, is the linear part of the Hamiltonian and is a given matrix derived from the
discretized Laplacian operator and the electron-nuclei interaction potential. Epyc[P]
consists of the Hartree, and exchange correlation energy; it is a nonlinear functional of
the density matrix P. Moreover, all the information of the quantum system, including
the atomic types and positions, is given by the electron-nuclei interaction in Hp.
The ground state energy of KSDFT can be obtained from the following variational
problem:

(4.2) E= inf E[P].
P?=PP* =P
TrP = N,

Analogous to Proposition 1, the corresponding Euler-Lagrange equation is
(4.3) H[P)V = (Hp + Vi [P])¥ = WA, P =0V

where (U, A) are the lowest N, eigenpairs of the nonlinear Hamiltonian H[P] and the
functional derivative Vipx[P] = 5151373;[131 is called the exchange correlation potential.
This is precisely (1.1). However, we remark that the procedure of taking the lowest
N, eigenpairs, which is called the aufbau principle in electronic structure theories, is
not always valid. The aufbau principle has been found to be violated for certain model
energy functionals [27], but numerical experience indicates that it generally holds in
the context of KSDFT calculations for real materials. In the discussion below, we
always assume the counterpart to Proposition 1 holds for the nonlinear problems
under consideration.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/20/19 to 129.16.69.49. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

PET FOR SOLVING KOHN-SHAM DFT 1289

According to the discussion in section 2, the key ansatz of the PET is that for
some reference system with a different linear part of the Hamiltonian Hy, r, we have
evaluated the density matrix and computed the projector Py ;. Then for the system
of interest, PET evaluates the modified variational problem by restricting the feasible
set of the density matrix as

(4.4) EPET — inf E[Ps + Pyy).
P2 =P, P =P,

s

PobPs =0, TrP, = N,

Analogous to Proposition 2, by assuming the corresponding aeufbau principle, PET
can be solved by the following nonlinear eigenvalue problem:

(4.5) HIP|gs Uy = W,A,, Py=W,05, P=P+ Ry,

Here (¥, A,) are the lowest N, eigenpairs of the self-consistent Hamiltonian H[P][z..
The first-order perturbative correction to PET is entirely analogous to Proposi-

tion 7. According to Remark 10, the effectiveness of the perturbative approach mainly

lies in the fact that it only needs to be applied once after (4.5) reaches self-consistency.
Once PP is obtained, we define the energy as

(4.6) Erert .= EPET 4 Ty pPET [ pPET] prert;

i.e., our correction of the energy is only at the linear level. We point out that (4.6) is
only correct in the spinless or spin-unrestricted case. For spin-restricted calculations,
a factor 1/2 needs to the included in the correction.

In addition, we note that we can compute the atomic forces for the PET solu-
tion using the Hellmann—Feynman formula, which is due to the fact that the solution
satisfies a variational principle. However, for the perturbation, the resulting approx-
imation does not satisfy any variational principle; thus, we use an expensive finite
difference approach to compute the forces. For the sake of consistency, we use a stan-
dard second-order finite difference scheme to approximate the force for both PET and
the corrected approximation.

Remark 12. In [28], the Euler-Lagrange equation takes a slightly different form
from (4.5). The connection with the present formulation can be established by noting
that the energy functional satisfies the identity

g[Ps + ]D[),b] = g[Ps} + (g[Ps + -P(],b] - g[PS]) .
Then the Euler-Lagrange equation gives the Hamiltonian
HL + VHXC[PS] + (VHXC[PS + PO,b] - VHXC[PS])

restricted to the subspace Bé‘. The term in the parentheses, Vemb(Ps) := (Viaxc[Ps +
Po ] — Viaxe|Ps]), is called the “embedding potential,” which can be interpreted as
an external potential imposed onto the system part from the bath. For instance,
in the absence of the exchange correlation, Vix. = Vg is a linear mapping. Then
Vemb = Vi[Po p] is the Coulomb interaction solely due to the projector from the bath.

5. Evaluation of the bath projector. The success of PET relies on a proper
choice of the reference projector Py ;. The suggestion from [28] is to compute a set of
localized functions within the subspace span{ ¥y} to evaluate Py ;. For simplicity, we
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use the notation from the linear problem, but the procedure can be directly generalized
to the nonlinear setup as well.

Simply speaking, for a class of matrices H satisfying the gap condition, we may
expect that the matrix elements of the density matrix P decays rapidly along the off-
diagonal direction. In the physics literature, this is referred to as the “nearsightedness”
principle [22, 31], and there is a rich literature studying the validity of such decay
property (see, e.g., [4, 2]). We further expect that there exists a unitary matrix
U € CNexNe| called a gauge matrix, so that each column of the rotated matrix
® = WU is localized; i.e., it concentrates on a small number of elements compared
to the size of the vector N. We point out that efficient numerical algorithms have
been developed to compute such gauge and the corresponding localized functions (see,
e.g., [11, 29, 9]). Once the localized functions are obtained, we may find localized
functions associated with the index set for the bath 7, denoted by ¥g ;. To make the
discussion self-contained, we briefly introduce the recently developed selected columns
of the density matrix (SCDM) method [9] below as a simple and robust localization
method to generate Py . Other localization techniques can certainly be used as well.

The main idea of the SCDM procedure is that the localized function ® is ob-
tained directly from columns of the density matrix P = YW*. However, picking N,
random columns of P may result in a poorly conditioned basis. In order to choose
a well-conditioned set of columns, denoted C = {c1,¢a,...,cn. }, we may use a QR
factorization with column pivoting (QRCP) procedure [13]. More specifically, we
compute

(5.1) UM =U[R1 Ry,

where II is a permutation matrix so that R; is a well-conditioned matrix. The set
C is given by the union of the nonzero row indices of the first N. columns of the
permutation matrix II. The unitary matrix U is the desired gauge matrix [9, 10], and
® = VU is a localized matrix. It can be seen that (5.1) directly leads to a QRCP
factorization of P as

PIl = UW*II = (PU) [R; Ry,

where WU is a matrix with orthogonal columns.

Let us apply the SCDM procedure to Hy and its eigenfunctions ¥y. With some
abuse of notation, from a predefined bath index set Z;, C {1, ..., N}, we may associate
the ith column of ®( to the bath degrees of freedom if the ith element of C is in 7.
These selected vectors, denoted by ®¢; form the bath projector F;. Finally, the
condition (2.16) can be satisfied by solving the eigenvalue problem

(5.2) 5, Ho®0,5Cop = CopMo b,

and then ¥y, = @4 ,Chp. We summarize the procedure for computing the W, in
Algorithm 5.1.

Remark 13. We point out that after performing the localization in Algorithm 5.1,
the vectors in the resulting bath orbitals, ¥, are not eigenvalues of Hy. Thus, as
shown in the following, the perturbative correction does not improve the asymptotic
convergence rate; however, the preconstants are greatly reduced. In fact, as it will
be shown in the numerical experiments, when the perturbation is relatively large, the
perturbative correction associated with the rotated vectors Wg; has a considerably
smaller error than the one associated to the eigenvectors of Hy.
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Algorithm 5.1 Using the SCDM algorithm for constructing the bath projector.

Input: Hy, ¥o, Z,, NO.
Output: Wg4.

1: Perform QRCP for ¥§: UGl = U [Rl Rg] . The set C is given by the union of
the nonzero row indices of the first N? columns of the permutation matrix II.

2: Compute @y = ¥oU. Form a submatrix g := [¢s0]c,ez,, Where ¢, is the ith
column of ®g.

3: Solve the eigenvalue problem (5.2), and compute g, = $gCop.

6. Numerical examples. We present several examples to demonstrate the ef-
fectiveness of the PET method and the perturbation scheme. The numerical tests
were coded in MATLAB 2017b. For the solution of KSDFT in the nonlinear case,
PET and the perturbative correction are implemented within the KSSOLV [36] soft-
ware package. All calculations are performed in a dual socket server with Intel Xeon
E5-2670 CPUs and 386 Gb of RAM.

6.1. Linear case. We first consider a simple Hamiltonian in one dimension with
zero Dirichlet boundary conditions:

3
+Wo(z), Volz):= Z —40e 1007 g e [-1,1].

=1

1 d?
(6.1) Hy = 5 72
Here the centers of the Gaussians & = (—0.5,0,0.5)7. The resulting potential is shown
in Figure 6.1. The one-dimensional Laplacian is discretized with a standard 3-point
stencil finite difference scheme with 512 grid points.

For the reference problem, we evaluate the 3 eigenfunctions corresponding to
the lowest 3 eigenvalues. As shown in Figure 6.2, the eigenvectors ¥, are indeed
delocalized across the entire interval [—1,1]. After applying the SCDM algorithm
(see Algorithm 5.1), the resulting orbitals ®¢ become much more localized, as shown
in Figure 6.2.

We define the new Hamiltonian by changing the height of the last Gaussian func-
tion as

2
(62) H=—--—+V(z), V(z):=) —40e 107" _q0pe~1000-52)%,
=1

F1c. 6.1. Potential for both Hy and H.
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Fic. 6.2. (a) First 3 delocalized orbitals (columns of Wq); (b) first 3 localized orbitals (columns
of ®o).

x1 %107
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Fi1G. 6.3. (a) Ezact density matriz; (b) PET density matriz.

We observe that two columns in ® are localized far from the modified Gaussian,
and we consider them as the bath orbitals. We set Z,, = {1,...,340}; this ensures
that ®gp = [Po[:, 1], Po[:, 2]]. We then compute the linear PET problem to obtain Wy,
and we build the PET density matrix as shown in Figure 6.3, which is accurate up to
3 digits in relative error. Furthermore, the error is mostly localized around the third
Gaussian function as one would expect. The relative error of the energy is 1.42 x 1073,
We find it remarkable that for such a small system, the solution from PET is already
very accurate despite the strong overlap of the system and bath orbitals.

Finally, we use Algorithm 3.1 to compute the perturbed density matrix, PP,
which is more accurate than the PET density matrix without the perturbation, PPET,
as depicted in Figure 6.4. We can observe how the perturbation decreases the error in
the density matrix by taking a look at the electron density, p = diag(P), in Figure 6.5.
In addition, the accuracy of the energy is improved, with its relative error reduced
from 1.42 x 1073 to 1.01 x 10~%. If we increase the bath size from 1 to 2, the accuracy
of the energy is improved further to 7.15 x 107® and 2.12 x 10~°, without and with
the perturbative correction, respectively.

In order to showcase the asymptotic convergence of PET and the first-order per-
turbation discussed at the end of section 3, we introduce a family of perturbed Hamil-
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Fic. 6.4. Error of the density matriz with respect to the reference answer: (a) PET density
matriz; (b) PET density matriz plus the first-order perturbative correction.

x107° ‘

\
15k —diag(P — PPET)
—diag(P — Prt)

1k i

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

FiG. 6.5. Relative error of the electron density using PET density matrixz and the perturbed
PET density matriz.

tonians as

1 d?

2
(63) He=—5-—+Ve(a), Vilr):= 3 —40e7100E@=T)T (40 4 ¢)e100(@T)",
=1

Then, in an analogous fashion as above, we compute the PET approximation and
the associated perturbative correction for each Hamiltonian as ¢ — 0. Figure 6.6(a)
shows the error of approximation of the density matrix and the energy as the € tends
to zero. As discussed in section 3, our first-order perturbation is computed with
respect to SHEET | which can remain to be of O(1) even if dH = 0.

On the one hand, when we use localized orbitals to define the system and bath
orbitals, (3.15) is not satisfied. In this case, the decay of the error of the PET density
and energy is O(€) and O(e?), respectively, as shown by Figure 6.6(a). Although the
asymptotic convergence after first-order correction remains unchanged, the precon-
stants are significantly reduced by one to two orders of magnitude compared to the
results of the PET.
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........... s 108k /" - ||P — PPET |3
[P — PP 4 [P — Prer|
[P — Prer|| |- - ~|E — EPFT|
10710 ¢ ~|E— EPET| |1 107 vl |E — Erert]
i 4
‘E _ Epertl //,, _ _ggeg)
--0(e) : 5o €
10-12 X R 0(62) , 10-12 E //,/ ___0(63)
107" 10° 10" 1( 107" 10° 10 102
€ €

F1G. 6.6. Error of the approrimate density matriz and energy, with bath orbitals defined using
(a) localized orbitals and (b) delocalized eigenfunctions.

On the other hand, when we use the delocalized eigenfunctions to define the
system and bath orbitals, (3.15) is satisfied. In such a case, Figure 6.6(b) shows
that the error of the approximate density matrix and energy after the perturbation
correction decay is O(€?) and O(e3), which agrees with results from the standard RS
perturbation theory. However, the preconstants are larger than those in Figure 6.6(a).
In particular, we can observe from Figure 6.6 that when the perturbation is relatively
large, partitioning the system with spatially localized orbitals indeed improves the
accuracy of PET, especially when the perturbative correction is used.

6.2. Nonlinear case. For KSDFT calculations, we modified the KSSOLV soft-
ware package [36] to solve the PET equations (4.5) and to obtain the perturbation
correction. KSSOLV uses a pseudospectral discretization with the plane wave set. All
the operators, including Hamiltonian and projection operators, are efficiently imple-
mented in a matrix-free fashion. Within each self-consistent field iteration, we use
the locally optimal block preconditioned conjugate gradient method [21] to solve the
linear eigenvalue problems. For the perturbative correction, we use the generalized
minimal residual algorithm [32] method with a preconditioner [34] implemented via
fast Fourier transforms (FFTs).

6.2.1. Silane. We first consider a simple molecule, silane (SiHy4), whose electron
density is shown in Figure 6.7, and we performed three different numerical experiments
to showcase the accuracy of the method. Our reference system is the silane molecule
from an equilibrium configuration. The bath-system partition is shown in Figure
6.7, in which we can observe that we fixed three orbitals as the bath, induced by
7y, and the system part, composed by the fourth orbital induced by Z, (delimited
by the segmented red line). We performed three different modifications to the atom
associated with the fourth orbital:

e We elongate one hydrogen bond by 25%.
e We replace a hydrogen atom by a chlorine atom (Cl).
e We replace a hydrogen atom by a fluorine atom (F).
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F1G. 6.7. (a) Electron density of the silane molecule, (b) electron density of the SiHs molecule
with one hydrogen bond elongated, (c) electron density of SiHs Cl, and, (d) electron density of SiH3 F.

Note that in the last two examples, the number of valence orbitals in the reference
system is 4, while the number of valence orbitals in the perturbed systems are both 7.
Hence, the perturbation introduced by the atom substitution is very large, especially
compared to the small size of the molecule under study here.

We compare the results from PET and the perturbed PET against a reference
solution obtained directly by solving the system in KSSOLV. In particular, we examine
the relative error of the density matrices, the relative error of the electron density,
the absolute error of the energy, and the absolute error of the atomic force at the
modified location. All results are reported in atomic units. In particular, the unit of
the energy is hartree, and the unit of the atomic force is hartree / bohr. In this case,
the energy for PET was computed using the functional in (4.4). For the perturbed
solution, we used (4.6). We used a second-order finite difference scheme to compute
the forces at the perturbed atom.

The results for each of the experiments are shown in Tables 6.1 and 6.2. We
can observe that the perturbation effectively reduces the error of the density matrix,
the electron density, the energy, and atomic force. The only exception is the force
of SiH3F, which becomes coincidentally accurate for the PET, but the error after
applying the perturbation theory is still around 1072 au. Even for such a small
system, after applying the perturbation formula, the error of the energy and force
already reaches chemical accuracy.

6.2.2. Benzene. In this example, we show the performance of the method for a
benzene molecule (CgHg) whose electron density is shown in Figure 6.8(a). We substi-
tute one of the hydrogen atoms by a fluorine atom whose electron density is shown in
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TABLE 6.1
Errors of the density matrices and electron densities for the different perturbation of the SiHy
molecule.
: |[P—PPET|| [ | p—pPPETE|| T || ,PET g [1oPFE —p|
Experiment [Pl [Pl [oll [ell
Elongated | 6.03 x 1072 | 1.40 x 10~2 | 1.24 x 10~2 | 8.00 x 10~3
SiH3Cl 770 x 1072 | 1.74 x 1072 | 1.51 x 1072 | 6.71 x 103
SiH3F 9.12x 1072 | 209 x 1072 | 6.64 x 1073 | 4.72 x 10~3
TABLE 6.2
Errors for the different perturbation of the SiHy molecule.
Experiment | E — EFPET E — Epert F — FPET F — ppert
Elongated | 5.98 x 1073 | 229 x 10~% | 1.51 x 10~2 | 1.33 x 10~3
SiH3Cl 1.84 x 1072 | 1.94x 1073 | 1.89 x 1072 | 2.72 x 10~3
SiH3F 1.66 x 1072 | 1.33x 1073 | 9.29 x 107° | 1.13 x 103
0.9 0.9
0.8 ) 8 0.8
0.7 0.7
06 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 - . . . 0.1 . - - -
0.2 0.4 06 0.8 0.2 0.4 0.6 0.8
(a) (b)

F1c. 6.8. (a) Electron density for the benzene molecule and (b) the benzene molecule with an
hydrogen atom replace by a fluorine.

Figure 6.8(b). The benzene molecule has a total of 15 valence orbitals. To determine
the partitions, we created a sphere centered at the replaced atom, and we performed
the localization using Algorithm 5.1, where we labeled the different localized orbitals
depending on the position of their associated pivots (from Algorithm 5.1). In partic-
ular, we labeled the orbitals whose pivots were within the sphere as system orbitals
and the rest as bath orbitals. Tables 6.3 and 6.4 were generated by incrementally
increasing the radius of the sphere until obtaining N, system orbitals. The different
partitions are depicted in Figure 6.8, for Ny, = 1,4 and 6, in which the segmented
red line indicates the boundary between the bath and system partitions. Tables 6.3
and 6.4 show the errors of the density matrix and the electron density as well as the
energy and the atomic force. We can observe a systematic decrease on the errors as
the bath size decreases; i.e., Ny, the system size increases. When the system size is
7, the error of the energy and force after perturbative correction is already below the
chemical accuracy and is as small as 1.02 x 10™% and 4.17 x 10~% au, respectively.
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Errors of the density matriz and electron density for the benzene molecule for different bath

(and system) sizes.

N. | LP=PPET| [ | p—pPert) [ pPET_p) ) ,Pert_p)
s [[PI] [[PI] [l [loll
1 [ 941x102 | 565x10~2 | 1.36 x 102 | 2.04 x 102
3 | 6.32x1072 | 1.93x 1072 | 556 x 1073 | 6.70 x 103
5 | 6.46x 1072 | 1.61 x 1072 | 4.41 x 1073 | 3.27x 1073
7 | 5.04x1072 | 1.13x 1072 | 293 x 1073 | 1.72x 1073
9 298 x 1072 | 4.12x 1072 | 1.56 x 1073 | 1.32x 1073
TABLE 6.4

Errors of the energy and forces for the benzene molecule for different bath (and system) sizes.

N, E — EPET E — Epcrt F— FPET F— chrt
1 4.05%x1072 | 1.33x 1072 | 269 x10~2 | 3.16 x 102
3 1.87x 1072 | 3.42x 1073 | 1.73x 1072 | 9.98 x 103
5 1.20 x 1072 | 1.78 x 1073 | 4.24 x 10~3 | 6.78 x 10~3
7 | 7.89%x 1073 | 1.02x107% | 3.73x 1073 | 4.17 x 104
9 | 3.02x1073 | 316 x 107° | 4.05x 1073 | 3.31 x 10~*
11 | 281 x 1073 | 6.71x 1075 | 3.68 x 1073 | 3.50 x 10—%

0.8

0.7

0.6f

0.5¢

0.4rf

0.31

0.2 '

0.2 : :

Fic. 6.9. (a) Electron density for the anthracene molecule and (b) the anthracene molecule with
an hydrogen atom replaced by a fluorine.

6.2.3. Anthracene. Finally, we test our algorithm with the anthracene mole-
cule (C14Hjg), which is composed of 3 benzene rings positioned longitudinally. Fol-
lowing the same procedure as with the benzene molecule, we compute the solution
to the Kohn—Sham equations, whose electron density is shown in Figure 6.9, and we
replace one hydrogen atom in one of the extremal rings by a fluorine atom (Figure
6.9(b)). From the total 33 orbitals for the anthracene, we define the bath orbitals and
systems orbitals following the same procedure as for the benzene molecule. The par-
titions for Ny = 1,4, and 6 are depicted in Figure 6.9, where the different segmented
red lines indicate the boundary between the two partitions, in which they are denoted
Ty and Z; for the bath and for the system, respectively.
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TABLE 6.5
Errors for the anthracene molecule for different bath (and system) sizes.

[LP— PPET|| 1= PPETE| TP BTl [ (1P ]

[[P]] [[P]] [pll Lell
8.65x 1072 | 485 x10~2 | 1.59 x 10~ 2 | 1.50 x 102

1
3 | 6.10x1072 | 207 x 1072 | 547 x 1073 | 7.18 x 103
5 | 5.01x1072 | 3.33x1072 | 3.24x 1073 | 3.25 x 103
7 442 %1072 | 1.61 x 1072 | 247 x 1073 | 1.91 x 1073
9 | 331x1072 | 6.33x1073 | 1.13x 1073 | 9.75 x 10~*
11 | 2.88x 1072 | 6.31x1073 | 1.12x 1073 | 9.04 x 104
13 | 2.86x 1072 | 6.63x 1073 | 1.03x 1073 | 7.90 x 10~
15 | 1.83x 1072 | 440x 1073 | 6.73x10~% | 5.68 x 10~4
19 | 1.73x 1072 | 3.12x 1073 | 523 x107% | 4.13 x 10~%

TABLE 6.6
Errors of the energy and forces for the anthracene molecule for different bath (and system) sizes.

E— EPET E— Epcrt F— FPET F— chrt
4.06x 1072 | 1.33x1072 | 269 x10~2 | 3.16 x 102
1.87x 1072 | 3.42x 1073 | 1.73x 1072 | 9.98 x 103
1.10x 1072 | 1.97 x 1073 | 7.72x 1073 | 6.78 x 103
8.18 x 1073 | 2.02x10~%* | 3.73x 1073 | 9.79 x 10~*
4.02x 1073 | 3.16 x 107° | 4.05 x 1073 | 3.31 x 10~
274 x 1073 | 253 x107° | 442 x 1073 | 2.64 x 10~*
13 | 2.26x 1073 | 6.35 x 107° | 4.563x 1073 | 2.15 x 10~4
15 | 9.70x 10~% | 1.15x 1075 | 1.84 x 1073 | 2.83 x 10~4
19 | 7.34x107% | 516 x 1076 | 1.62x 1073 | 1.02 x 10~%

:@qmwyg

We compute the PET approximation and its perturbative correction for several
different bath sizes, as shown in Tables 6.5 and 6.6. From Tables 6.5 and 6.6, we can
clearly observe that the errors of all quantities decrease systematically with respect
to the increase of the system size, and the perturbation method significantly increases
the accuracy over the PET results. In particular, when the system size is 7, chemical
accuracy is achieved after the perturbative correction is applied.

7. Conclusion. We have studied the recently developed PET from a mathemat-
ical perspective. Viewed as a method to approximately solve eigenvalue problems,
PET solves a deflated eigenvalue problem by taking into account the knowledge from
a related reference system. This deflated eigenvalue problem can be derived from the
Euler-Lagrange equation of a standard energy minimization procedure with respect
to the density matrices, with a non-standard constraint on the feasible set. From this
perspective, the original formulation of PET can be seen as a penalty method for
imposing the constraint. Numerical examples for linear problems as well as nonlinear
problems from Kohn—Sham density functional theory calculations indicate that PET
can yield accurate approximation to the density matrix, energy, and atomic forces. In
order to further improve the accuracy of PET, we developed a first-order perturbation
formula. We find that with the help of the perturbative treatment, PET can achieve
chemical accuracy even for systems of relatively small sizes.

There are several immediate directions for future work. First, we have studied
PET when the system and bath are treated using the same level of theory. From
a physics perspective, it is more attractive to consider the case when the system
part is treated with a more accurate theory than KSDFT with semilocal exchange
correlation functionals. In particular, it would be interesting to understand PET when
the system part is treated using KSDFT with nonlocal functionals, such as hybrid
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functionals, or wavefunction theories, such as the coupled cluster method. It is also
interesting to explore the PET in the context of solving time-dependent problems.
Second, PET provides a size-consistent alternative for many methods in quantum
physics and chemistry to be applied to solid-state systems. Some directions have
already been pursued recently for using PET in the context of periodic systems [7, 26].
Third, the computation of the atomic force in PET is currently performed using
the finite difference formula, which is expensive in practice. It would be desirable
to develop a method with cost comparable to the Hellmann—Feynman method but
without significant sacrifice of the accuracy. We note that there has been recent
progress in this direction [24]. Finally, we believe that the asymptotic convergence
property of PET is still dictated by the nearsightedness principle for systems satisfying
the gap condition, but numerical results indicate that PET already achieves high
accuracy even for system sizes that are well below the prediction from localization
theories. Therefore, it is worthwhile to further study the convergence properties of
PET as well as to perform further comparison with linear scaling—type methods.
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