Spin-charge coupled transport in van der Waals systems with random tunneling
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We study the electron and spin transport in a van der Waals system formed by one layer with
strong spin-orbit coupling and a second layer without spin-orbit coupling, in the regime when the
interlayer tunneling is random. We find that in the layer without intrinsic spin-orbit coupling spin-
charge coupled transport can be induced by two distinct mechanisms. First, the gapless diffusion
modes of the two isolated layers hybridize in the presence of tunneling, which constitutes a source
of spin-charge coupled transport in the second layer. Second, the random tunneling introduces spin-
orbit coupling in the effective disorder-averaged single-particle Hamiltonian of the second layer. This
results in non-trivial spin transport and, for sufficiently strong tunneling, in spin-charge coupling. As
an example, we consider a van der Waals system formed by a two-dimensional electron gas (2DEG)—
such as graphene— and the surface of a topological insulator (TI) and show that the proximity of
the TI induces a coupling of the spin and charge transport in the 2DEG. In addition, we show that
such coupling can be tuned by varying the doping of the TI’s surface. We then obtain, for a simple
geometry, the current-induced non-equilibrium spin accumulation (Edelstein effect) caused in the

2DEG by the coupling of charge and spin transport.

I. INTRODUCTION

In recent years experimentalists have been able to
make very novel and high quality heterostructures that
allow the realization of new effects and states of great
fundamental and technological interest [1]. Recently sim-
ple heterostructures formed by two graphene layers with
a relative twist angle [2-5] have shown a phase dia-
gram [6, 7] that is remarkably reminiscent of the phase
diagram of high temperature superconductors. These are
just some of the most striking examples that heterostruc-
tures can be used to realize novel effects that are not
present in the single constituents. Applications of het-
erostructure engineering [8] can be found in tunnel junc-
tions [9], plasmonic [10], photoresponsive [11], spintronics
[12-14] and valleytronic [15] devices.

One of the essential elements to realize non-trivial
topological states and spin-dependent transport phenom-
ena is the presence of spin-orbit coupling (SOC). How-
ever, often the presence of spin-orbit coupling is not ac-
companied by other desirable properties such as high mo-
bility, or superconducting pairing. For this reason het-
erostructures that combine one constituent with signif-
icant SOC and one constituent with no SOC but other
distinct properties are very interesting both for funda-
mental reasons and for their potential for technologi-
cal applications. So far, the theoretical studies of van
der Waals heterostructures have focused on the regime
when the tunneling is not random and a strong hybridiza-
tion between the electronic states of the isolated systems
can be achieved, see for example the case of graphene—
topological-insulator systems [16-26]. However, in many
situations we can expect the tunneling between the sys-
tems forming the heterostructure to be random, due for

example to the incommensurate nature of the stacking
configuration and/or the presence of surface roughness.

In this work we focus on this situation, and study the
electron and spin transport in a two-dimensional van der
Waals systems comprised of one component (layer) with
strong SOC and one with no, or negligible, SOC, when
the interlayer tunneling is random. Due to the random
nature of the tunneling in most experimental situations
the transport will be diffusive even in the absence of dis-
order. For this reason we consider only the diffusive
regime, in which specific details of the system consid-
ered (like the value of the mean free path) do not affect
the general expression of the transport equations that,
therefore, have a somewhat universal character. We find
that in general, if the diffusive transport in the layer with
SOC exhibit spin-charge coupling [27-29] such coupling
will be present also in the layer without SOC, i.e., in
the most common experimental situation. To exemplify
this general result we consider the case of a van der Waals
system formed by a two-dimensional electron gas (2DEG)
placed on the surface of a strong three dimensional topo-
logical insulator (TI) [30-32]. Graphene and the sur-
face of TIs in the tetradymite family such as BisSes have
almost commensurate lattices and as a consequence in
many graphene-T1I heterostructures the K, K’ points of
the graphene’s BZ are folded close to the TT’s T point [19].
This fact, combined with the random and finite-range na-
ture of the interlayer tunneling, implies that the results
that we obtain for a 2DEG-TT van der Waals system are
directly relevant to graphene-TI heterostructures. Be-
sides graphene, other 2D systems with low energy states
around the I' point could be candidates for hosting the
2DEG [33-35].

We obtain the diffusive transport equations in the
2DEG layer and show that they describe a transport in



which the charge and the spin degrees of freedom are
coupled. Finally, we show how the diffusive equations
give rise to spin-dependent transport effects, analogous
to the ones obtained for a 2DEG with Rashba SOC [27]
and an isolated TT’s surface [28], that are tunable by sim-
ply varying the doping of the TI, and that can be used
for possible spintronics applications.

The rest of this work has the following organization.
In section II, we define the heterostructure Hamiltonian,
the disorder and tunneling potentials, and calculate the
relevant response function. In section III, we derive the
spin-charge coupled transport equations. In section IV,
we solve the diffusion equations for a particular exper-
imental setup and compare the results with those for a
2DEG with spin-orbit coupling and a TT alone. Finally,
in section V we present our conclusions.

II. MICROSCOPIC APPROACH

In this section, we introduce the heterostructure
Hamiltonian along with the impurity and random tun-
neling potentials. Then, we calculate the self-energies
and relevant response function, including vertex correc-
tions. Finally, from the response function, we extract the
inverse diffuson. .

The Hamiltonian H for the heterostructure can be
written as

H=> [H+V]+T, (1)
1=1,2

where [ is the layer index, f]l is the Hamiltonian for
layer [ in the clean limit, V; is the term due to dis-
order located in layer [, and T is the term describ-
ing interlayer tunneling. For the 2DEG lAayer we have
H = Hyu(k) = Yyuw ¥ s Hoass (K)aa s where,
1&;1 ks (1h2q.xs) is the creation (annihilation) operator for
an electron with momentum k and spin s. Without loss of
generality we can linearize the 2DEG dispersion around
the Fermi surface and assume Hoq(k) = (vaqlk| — p2d)o0
with voq the Fermi velocity, psq the chemical poten-
tial, and oo the 2 X 2 identity Pauli matrix in spin
space. For the TTI’s surface we have H; = Hy; =
D ksst ¢:}‘I,ksHTISS’(k)'(/)TI,ks’ where wjn,ks ('(/}:r[‘Lks) cre-
ates (annihilates) a surface Dirac fermion with spin s
and momentum k, Hri(k) = —vrr(k x o), — pr1, vt
being the Fermi velocity on the TT’s surface, pry the TT's
surface chemical potential, and o;, i = z,y the Pauli

matrices in spin space.

For the disorder potential in layer I, Vl(D)(q), we have
<VI(D)(r1)Vl(D)(r2)> = WP(r1 — ra), where the angle
brackets denote average over disorder realizations, and
WP (r1 — r2) is the disorder-averaged spatial correla-
tion. In momentum space we have W/ (q) = nl, |U(q)|?
where nfmp is the impurity density in layer [, and U;(q)

the Fourier transform of the potential profile U;(r) of

a single impurity. Without loss of generality we can
set <VI(D)(I‘)> = 0. Assuming the tunneling to be spin-
conserving we have

T= Z (todq + T(a)) ¥, Wncrqs + hoc., (2)

kqgs

where [ # I, and to and T(q) are the spatially-uniform
and random components of the tunneling amplitude re-
spectively. We consider the limit where the uniform com-
ponent is negligible and the remaining random compo-
nent can be characterized by the spatial average of the
tunneling matrix element (T'(r1)T(r2’)) = Wi(ry — ra).
This regime could arise, for example, due to random
variations in the interlayer distance or in the alignment
of orbitals on the surface. In the remainder we as-
sume both the intralayer disorder and interlayer tun-
neling to be short-range so that U;(q) = const = U,
Wt(q) = const = ¢2.

Let Gg’A(k, €) = (¢ — Hi(k) £07) " be the bare re-
tarded (advanced) real-time Green’s function for layer [.
The total self-energy for layer I, ¥;, has contributions
from scattering with impurities, X9, and random tunnel-
ing events Xf. We have

S0k, ¢) = nby, / @Gk - a6, (3)

where [ = [d?q/(27)?. In the self-consistent Born ap-
proximation, G is the disorder-dressed Green’s function
for layer [. For the 2DEG, apart from an overall unim-
portant real constant, we have ng = fifgdag /2, where
U9, = 1/79; = 2mpeanid U3, and pog is the density
of states (DOS) at the Fermi energy. For the TI’s sur-
face, due to the fact that the electrons behave as mass-
less Dirac fermions, for Uri(q) = const, we have that
the integral in the expression for E? has an ultraviolet
divergence [36]. After properly regularizing such diver-
gence [37] one finds that the intralayer disorder, in addi-
tion to generating an imaginary part of the self-energy,
—ilYy00, with Ty = 1/79; = wpring, ,Uf; and prr, the
TI’s DOS at the Fermi energy, causes a renormalization
of the Fermi velocity that we incorporate in the defini-
tion of vr;. The same ultraviolet divergence appears for
the self-energy correction for the 2DEG due to tunnel-
ing events into the TI, 3%,. The proper renormalization
of such divergence, consistent with the Ward identities,
causes X, to have a non-trivial real part so that

ha(k,e) = —ilhq00/2 + (£2/(4mvdy)) (k x o), . (4)

where ng = 1/T§d = mwpprt2. This result shows that
even when the interlayer tunneling processes are random,
a spin-orbit coupling term is induced in the 2DEG due
to TI’s surface proximity. This term of the self energy
qualitatively affects the diffusive transport in the 2DEG,
but it is not necessary to induce spin-charge transport
in the 2DEG as we will show below. The self-energy
correction for the TI due to tunneling events into the
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FIG. 1. (a) Illustration of the self-consistency equation for
the diffuson, Eq. (7). Solid and dashed lines symbolize re-
tarded and advanced Green’s functions, respectively. Dotted
lines with black circles represent tunneling processes. (b) The
Bethe-Salpeter equation for the auxiliary diffuson, Eq. (8).
The dotted lines with crosses represent disorder scattering.
(¢) The diffuson D; can be used to calculate the dynamical
part of the response function X?y ™ as shown.

2DEG, Y%, does not require any special care and simply
results in an additional broadening of the quasiparticles:
Yhi(k,€) = —il%00/2 with Tk = 1/74; = 21 paat?.

With the self-energy contributions, the dressed 2D sys-
tem Green’s functions take the form

(e 1il2q/2 — ex)oo — [t?/(4mvm)] (k X o),

R/A o
Gode ) = i — a? — A/ Amom) TR
(5)
R/A . (eiiFTI/Q)O'Of’UTI(kXO')Z
GTI,e (k) - (6 + iFTI/Q)Z — U%IkQ ) (6)

where I'oq =9, + by, Ty = Ty + Ty

In the diffusive regime, to leading order in 1/(epT),
the retarded dynamical part of the spin-density response
function for layer [, X?yn is obtained by summing all lad-
der vertex corrections to the bare spin-density response.
In our case we have two types of ladder diagrams: the
ones due to random interlayer tunneling and the ones
due to intralayer disorder. In most experimentally rele-
vant situations we expect the scattering time due to in-
tralayer disorder to be much smaller than the relaxation
time due to the interlayer random tunneling processes.
For this reason in the remainder we assume I'* < T'°. The
main building block for the calculation of ngn is the dif-
fuson Daq, which includes both interlayer tunneling and
intralayer ladder diagrams. It satisfies the self-consistent
equation [38, 39]

Dog = 752(1 + /i'DQdJQEIﬁTIJ%?DQd~ (7)

In this equation, the auxiliary intralayer diffuson for
layer I, D; (I = (2d,TI)) is obtained by taking into ac-
count only intralyer disorder and the junctions J de-
scribe the transition between the layers. The constant x
collects disorder-dependent normalizations with ! =
n?ﬁlpnnggdU%I. The self-consistency equation (7) is
shown diagrammatically in Fig. 1(a).

Mathematically, the auxiliary diffuson D; satisfies the
Bethe-Salpeter equation (see Fig. 1(b))

@l(qu OJ) = nirnp[]l2 (00 Qo9 — B(q7 w))_l‘ (8)

Here, the quantum probability P, is defined as
Paw) =l UF [ Gl (0@ Gl uk=a). (9)

The junctions jll/ = Pjt?Py account for the tunneling
processes. The expressions of Poq and Prp are given in
appendix A.

For the purpose of finding X?yn, it is convenient to
solve Eq. (7) in the spin-charge representation. To this
end the diffusons, as well as the junctions, are contracted
with the Pauli matrices as Dgf = 300, Doy %ol
where a, 8 = (0,z,y,z) correspond to the charge and
x,y,z components of the spin, respectively. With the
knowledge of Dy, the dynamical part of the spin-density
response function can be found by introducing charge and
spin vertices as illustrated in Fig. 1(c). The full response
function is then obtained by adding the static part, x; =
X5t + X?yn, where Xft’o‘ﬁ & pi0qp. For systems with con-
served particle number, the density response function x%°
must satisfy the condition lim,, o (limq—0 x*°(q,w)) = 0.
In the problem under consideration, electrons can move
from one layer to the other. Therefore, a complete de-
scription of the time evolution of the charge and spin
densities must include the mixed response function x;
with [ #£ ') i.e. the response of densities in layer [ to
perturbations in layer I’. x;; can be found in analogy to

Xi-

III. DIFFUSION EQUATIONS

In section, we derive the charge and spin coupled diffu-
sion equations and discuss the main general implications.

In the 2DEG, the charge and spin response to external
perturbations in the form of electric potentials or Zeeman
fields may be conveniently cast in the form of coupled
transport equations. In the diffusive limit, we find

Oynza =DV?iizq + Tnslr1(2 x V)824 — 10y (Vaa — V1)
(10)
Oys2a = (D2aV? —T'hy) S2a + alhglri(2 X V) X 82q
+Thlr1(2 x V) [I11(V X 824) + Ti2a/2] (11)
where the effective charge diffusion constant

It D1+ Tk Dag
Thq + Ty

_ 1
D= —

==, (12)

)

S

is a weighted average of the diffusion constants Dog =
v379,/2, and Dy = v34;7%; in the 2DEG and TI, respec-
tively. Moreover, IT1 = UTIT%I is the TI mean free path.
The spin-charge coupling in the 2DEG is characterized
by T'ns = 2I5, T4 /(Thy + T%y). The term containing
the dimensionless constant o = EFng /(27%vr1 D11) orig-
inates from the induced spin-orbit coupling in the 2DEG.
The charge and spin densities n and § appearing on the
right hand side of the diffusion equations include exter-
nal driving potentials for the charge, Vaq, and spin, hag,



respectively, as Nag = Naog +2p2qVaq and § = s —2paqhag.
The last term in Eq. (10) accounts for a potential loss of
electrons in the 2DEG for a dynamically driven system,
with coefficient v = 2poql'h /(Thy + Thyp)-

Equations (10)-(12) are the main result of this work.
They show that in a 2DEG-TI system charge trans-
port and spin transport are coupled even when the
tunneling between the two systems is random. Notice
that Eqgs. (10)-(12) were obtained in the limit in which
I'/TY < 1, and wr < 1, 7 being the longest relaxation
time: 7 = max(74y, 7). Egs. (10)-(12) can only describe
transport over time scales much larger than 7 and there-
fore are not valid in the limit ¢ = 0 for which 7 — co. For
t = 0 the two systems are decoupled and for the 2DEG
the diffusive transport of charge and spin are independent
with Dog = v%dng/Q.

It is instructive to note that there are two mechanisms
responsible for the spin-charge and spin-spin coupling
in Egs. (10) and (11). The term with coefficient « in
Eq. (11) results from the real part of the self-energy in
Eq. (4), i.e. from the tunneling-induced spin-orbit cou-
pling in the effective single-particle Hamiltonian of the
2DEG. This term couples in-plane and out-of-plane spin
components. The spin-charge coupling in Egs. (10) and
Egs. (11) has a different origin. The surface of the TI
hosts a single gapless diffusion mode in the absence of
tunneling, as can be seen by diagonalizing the diffuson
[28, 38, 39]. For finite q, this mode has a non-trivial spin
structure. By means of the random tunneling, this mode
and the gapless modes in the 2DEG hybridize. The hy-
bridization gives rise to spin-charge coupling via the term
with coefficient T',s in Eq. (10) and the final term in
Eq. (11), as well as to anisotropic spin-diffusion encoded
in the first term of the second line in Eq. (11). To lead-
ing order in tunneling, the two described mechanisms for
spin-charge coupling are independent of each other. As
follows from Ref. [27], spin-orbit coupling eventually also
leads to spin-charge coupled transport at higher orders
in the coupling strength. A separate consequence of the
tunneling in Eq. (11) is that, since spin is not conserved
in the coupled system, a gap of size 'y, opens for the
spin diffusion modes.

Equations (10), (11) show that the strength of the
coupling between charge transport and spin transport,
and the spin-diffusion anisotropy, are proportional to
the ratio I't,/T9,. Given that T, = t?pr/m, and
that ppy scales linearly with ppy, we see that both in
the 2DEG both the spin-charge coupling and the spin-
diffusion anisotropy can be tuned simply by changing the
doping of the TT’s surface.

IV. APPLICATIONS

We now study the solution of Egs. (10), (11) for a
simple setup, as in Refs. 27 and 28, to highlight some of
the transports effects due to the coupling between spin
and charge transport described by Egs. (10), (11), and

to highlight some of the main similarities and differences
between a 2DEG-TT system, a TT’s surface, and a 2DEG
with Rashba SOC.

We consider a system of size L along z, —L/2 < x <
L/2, and in which all the quantities are uniform along
y. In the stationary limit, due to the uniformity along
y, Egs. (10), (11) separate in two independent sets of
equations: one set describing the coupled transport of n
and sY, one set describing the coupled transport of s* and
s*. Given that we are interested in the coupling between
charge and spin transport, we focus on the first set. Due
to the assumption that all the quantities are homogenous
along y, the coupled equations for n and s for a 2DEG-
TI, a TI, and a 2DEG with Rashba SOC have the same
structure:

D,0%n + 2B3,0,5Y = 0; (13)
Yy

D,32sY — 2+ B,8,n = 0. (14)
Ts

where D,,, Dy, B,, and B, are constants whose expression
in terms of the parameters characterizing the system are
given in Table I for a 2DEG-TI, a TI, and a 2DEG with
Rashba SOC. From charge conservation, using Eq. (10),
we find that the charge current takes the form

J = —DVngd - FnslTI(Sng — Sgdi'), (15)

and for the simple case described by Eq. (13), J = JZ,
J = —Dpdn/dx+28ssY, with D,, and S given in Table I.
Similarly from Eq. (14) we can obtain an expression for
the current of s¥. This expression has the term 3,0.n,
however, as pointed out before [40-44], such term de-
scribes an equilibrium spin current and therefore should
not be included in the definition of an externally driven
spin current. Knowing the expression of J and of the
spin current allows us to write the boundary conditions
for Egs. (13), (14), corresponding to the situation when
a charge current I is injected at x = —L/2 via a ferro-
magnetic electrode so that the incoming electrons have a
net spin polarization ¢ along s¥:
le::l:é = £7 Dsaxsyu:,L = _@7 Dsazsy‘mzé = 07
2 e 2 e 2
(16)
Recalling that the voltage drop AV (x) [45] at position
x is given by AV (z) = —(1/2ep) ffL/z dx'(dn/dx"), and
solving Egs. (13), (14) with the boundary conditions (16)
we find

oo Idlocosh((x —L/2)/l.) 128,10
S@ = . T s @) ep,p. 7

and the voltage drop between the leads

1 (B[, Bul
AV =5a,m, ( D, [d)_ Dn} +L)' (18)

In Egs. (17), (18) I;2 = 1/(14Ds) + 2B,8s/(DyDs). Us-
ing the expressions given in Table I for D,, D,, 75,



2D+TI TI Rashba
D, D VAT /2 vE TR /2
D || Daq +Th4l3y| 3D, /2 D,
ﬁn %F;leI UT1/2 —)\()\kprﬂ)z
Bs ilnslm vr1/2 20n
Ts T mrr |27R/(2NkrTR)?

TABLE I. Diffusion coefficients for a TI, Rashba 2DEG, and
2D4TI. X is the SOC strength in the Rashba 2DEG, and 75
the Rashba scattering time.

Bn, and Bs, Eqgs. (17) and (18) for a 2D-TI system be-
come, to leading order in the tunneling amplitude (with

l* ~ \/D2d7’§d)
_ I¢ls cosh[(z — L/2)/l] Il
~eDyq  sinh(L/l,) 2eD’

Ft
= _(L+2 TI) 20
2¢2poq D ( T”brgd + Tk, (20)

s¥(x) (19)

The second term on the r.h.s. of Eq. (19) shows that,
as in the case of 2DEG with Rashba SOC [27] and a
TT [28], an Edelstein [46] effect is present, i.e., a constant
nonequilibrium spin polarization generated by a charge
current I. This effect is present due to the “mirroring”
into the 2DEG of the TI’s gapless diffusion mode char-
acterized by the coupling of charge and spin. It is inter-
esting to notice that for a 2DEG-TI system such term,
as long as 74y > 79, to remain in the regime of valid-
ity of the diffusion equations (10), (11), is independent
of the interlayer tunneling strength. This is due to the
fact that in the 2DEG-TT van der Waals structure, in
the 2DEG layer, both the spin relaxation rate, 1/7,, and
the spin-charge coupling 3, in Eq. (14) scale as t2. As
a consequence we expect that even in the limit of very
small ¢ a significant Edelstein effect should be present in
a metallic 2D layer placed in proximity of a system with
significant SOC such as a TIT’s surface. In addition, we
see that for a 2DEG-TI system, contrary to a TI, the
strength of the Edelstein effect can be tuned by varying
the doping, and therefore pry, of the TI’s surface. The
other important result is that the decay length of s¥ is [*
that can also be tuned by varying the doping in the TI,
and that can be very long in the weak tunneling regime,
for wich 73, > 79,. The last term on the r.h.s. of Eq. (20)
is a magnetoresistance contribution to the voltage drop
due to the coupling of the charge and spin transport. For
a 2DEG-TT system this term is therefore dependent on
the relative strength of the disorder in the TI and 2DEG.

V. CONCLUSIONS

In conclusion, we have studied the electron and spin
transport in a van der Waals system formed by one layer
with strong spin-orbit coupling and a second layer with-
out spin-orbit coupling, in the regime when the inter-

layer tunneling is random, and shown that in the layer
without intrinsic spin-orbit coupling spin-charge coupled
transport can be induced by the hybridization of the dif-
fusion modes of the two isolated layers. To exemplify
the mechanism we have studied a van der Waals system
formed by a 2DEG and TT’s surface and shown how the
coupling of the spin and charge transport in the TT is
“mirrored” into the 2DEG. In addition, for the specific
case of a 2DEG-TI van der Waals system, we show that a
spin-orbit coupling term is induced into the 2DEG, and
that the induced coupling of spin and charge transport
in the 2DEG can be tuned by varying the TIT’s doping.
Finally we showed how the coupled spin-charge trans-
port described by the diffusive equations that we obtain
for the 2DEG leads to a current-induced non-equilibrium
spin accumulation and a magnetoresistance effect that
are also tunable by changing the TI’s doping.

VI. ACKNOWLEDGMENTS

We thank Ton Garate and Anton Burkov for useful dis-
cussions. This work was supported in part by the US-
Israel Binational Science Foundation grants No. 2014345
(M.R-V.), the NSF CAREER grant DMR-1350663 (M.R-
V.), the NSF Materials Research Science and Engineering
Center Grant No. DMR-1720595 (M.R-V.), the College
of Arts and Sciences at the University of Alabama (G.S.),
and the National Science Foundation under Grant No.
DMR-1742752 (G.S.). ER acknowledges support from
NSF CAREER grant No. DMR-1455233, ONR, grant
No. N00014-16-1-3158, and ARO grant No. W911NF-
18-1-0290. E.R. and M.R-V. thank the Aspen Center for
Physics, which is supported by National Science Founda-
tion grant PHY-1607611, for its hospitality while part of
this work was performed.

Appendix A: Quantum probabilities

Here, it is convenient to define 7, = 1/T'; for I}, =
I'? + T and to display formulas for P, = (r°/7)P,. In
the limit ' /T'Y < 1 and I'{/er < 1, to leading order in
w/T'Y and vrq/TY we find:

Poa(q,w) =ii2a(q, )0° ® 0° + b (q, w)o” © 0

+ Ga(q,w)o" @ 0”, (A1)

IBTI(CLW) =dri(q,w)o’ ® o’ + B%‘I(CLW) (00 ® o+

o ®o’) + d%(q,w)o @ o’ . (A2)

For the 2DEG:
Goa(q, w) ~ 1 + iwTpq — T2aDaaq? (A3)
b5q(q,w) ~ OZTZdFéd[TIQy/4 = —C3q(q,w) (A4)
byy(a,w) ~ —amealhylrige /4 = —&y(a,w)  (A5)

where ng = U%dTQd/2 and lgd = V2d72d-



For the TI’s surface [28]

ary = (1 — mriDrig® + iWTTI) /2, (A6)
by = —ilrigy/4, by = ilt1g./4, (A7)
oz — (1 — rrr Do + 3¢2)/2 + inTI> /4, (A8)
Cz%z{ = (1 - TTIDTI(?)(]?E + qi)/2 + ioJTTI) /4, (A9)
di = difi = TriD11gqy /4, (A10)

b ) [
where Dpy = v4,711/2 and lr1 = vr7TI.

Appendix B: Spin-charge diffusion equation for TI’s
surface

To facilitate the comparison between the results that
we obtain in the main text for a 2DEG-TI system and
an isolated TT’s surface we report here the diffusion equa-
tions for a TI’s surface, first derived in Ref. 28:

o1 = DriVinrr + (2 x V) - 811 (B1)
. Duy. 3Dm,.
OisT1 = e 62 sTr + TTI@§ST1 - DTI@iysym
5 v
- %I - (B2)
TP1 2
3D D
Opsipy = o2y Stp+ 2TI dysiy — D110z, sty
- STI + lea NI, (B3)
TTI

where nty is the carrier density on the TI’s surface,
and St; = (s%y, s%;). Notice that the spin densities are

damped by scattering with non-magnetic impurities due
to spin-orbit coupling. Due to a typo in Ref. 28 the
terms with mix derivatives have opposite sign compared
to Egs. (B2), (B2). We can see that the negative sign in
front of the terms 92, s%, 07, s in Eqs. (B2), (B2) is cor-
rect by considering that when nry is uniform in time and
space so that Eq. (B1) implies 9,s%; = 9,s%, Egs. (B2)
and (B3) lead to 0;s%; = ((1/2)D11V? — 1/79;)s%, the
expected spin-diffusion equation in this simple limit.

Appendix C: Diffusion equations for two coupled
2DEGs

In this appendix, we review the density diffusion equa-
tion of a 2DEG-2DEG heterostructure. The effect of the
coupling in the quantum interference has been studied
before. [49] Each layer [ posses its own diffusion con-
stant D; and density of states p;, where [ = T, B labels
the top and bottom 2DEG layer respectively. We obtain

&gn(T) = VQn(T)

where we have defined

_ TLDp+TYLDr

D = thl

e, o o (O
The renormalized diffusion constant contains corrections
proportional to the diffusion constant in the bottom
layer. The leading corrections to the diffusion constant is
given by a term proportional the ratio of the DOS in each
layer. Given that there is no spin-orbit coupling, the spin
follow analogous diffusion equations in each direction.
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