
OS-Augmented Oversubscription of Opportunistic Memory with
a User-Assisted OOM Killer

Wei Chen, Aidi Pi, Shaoqi Wang, and Xiaobo Zhou

University of Colorado, Colorado Springs, CO, USA

Abstract
Exploiting opportunistic memory by oversubscription is an appeal-

ing approach to improving cluster utilization and throughput. In

this paper, we find the efficacy of memory oversubscription de-

pends on whether or not the oversubscribed tasks can be killed by

an OutOfMemory (OOM) killer in a timely manner to avoid signifi-

cant memory thrashing upon memory pressure. However, current

approaches in modern cluster schedulers are actually unable to

unleash the power of opportunistic memory because their user

space OOM killers are unable to timely deliver a task killing signal

to terminate the oversubscribed tasks. Our experiments observe

that a user space OOM killer fails to do that because of lacking the

memory pressure knowledge from OS while the kernel space Linux

OOM killer is too conservative to relieve memory pressure.

In this paper, we design a user-assisted OOM killer (namely UA

killer) in kernel space, an OS augmentation for accurate thrashing

detection and agile task killing. To identify a thrashing task, UA

killer features a novel mechanism, constraint thrashing. Upon UA

killer, we develop Charon, a cluster scheduler for oversubscrip-

tion of opportunistic memory in an on-demand manner. We im-

plement Charon upon Mercury, a state-of-the-art opportunistic

cluster scheduler. Extensive experiments with a Google trace in a

26-node cluster show that Charon can: (1) achieve agile task killing,

(2) improve the best-effort job throughput by 3.5X over Mercury

while prioritizing the production jobs, and (3) improve the 90
th

job

completion time of production jobs over Kubernetes opportunistic

scheduler by 62%.

CCS Concepts • Computer systems organization → Cloud
computing; Availability; • Software and its engineering→Op-
erating systems; Memory management; Cloud computing.

Keywords memory management, resource sharing, Linux system,

cloud computing, distributed system

ACM Reference Format:
Wei Chen, Aidi Pi, Shaoqi Wang, and Xiaobo Zhou . 2019. OS-Augmented

Oversubscription of Opportunistic Memory with a User-Assisted OOM

Killer. In Middleware ’19: Middleware ’19: 20th International Middleware
Conference, December 8–13, 2019, Davis, CA, USA. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3361525.3361534

1 Introduction
Modern cluster schedulers [27, 36, 37] provision a mix of diverse

workloads, such as business critical jobs, customer facing services,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or

a fee. Request permissions from permissions@acm.org.

Middleware ’19, December 8–13, 2019, Davis, CA, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7009-7/19/12. . . $15.00

https://doi.org/10.1145/3361525.3361534

exploratory analytics and testing jobs. To efficiently allocate mem-

ory resource and improve cluster utilization, memory oversubscrip-

tion is an appealing approach that commonly reserves exclusive

memory for production jobs (e.g., long running jobs or services with

strict QoS restriction) and provisions the leftover transient memory

to best-effort jobs (e.g., ad-hoc exploratory queries, jobs for debug-

ging purpose). Accordingly, cluster scheduler Yarn [36] recently

introduces opportunistic container to oversubscribe opportunistic

memory. Tasks of best-effort jobs are assigned with opportunis-

tic containers and are scheduled to run as soon as opportunistic

memory is available. Yarn relies on static memory partition when

allocating memory for a container. As a result, the memory size of

an allocated container cannot be changed during task execution

regardless of its dynamic memory demands. Kubernetes [3] intro-

duces burstable class which is similar to opportunistic containers

of Yarn, and allows the oversubscription of opportunistic memory

in a dynamic manner. Both Yarn and Kubernetes share a common

design where the core is a per-node opportunistic scheduler.

By their design, the production jobs are scheduled by a central-

ized scheduler with guaranteed resources to enforce the QoS while

the best-effort jobs are scheduled by opportunistic schedulers to

oversubscribe transient opportunistic memory. Therefore, tasks

from best-effort jobs are aggressively scheduled to oversubscribe

opportunistic memory in an on-demand manner when the oppor-

tunistic scheduler detects free memory. When the production jobs

require more resources due to load fluctuations [14, 25, 30, 32] or

newly submitted jobs, containers of opportunistic resources are pre-

empted by killing their corresponding tasks. To maximize the clus-

ter memory utilization, we consider a realistic situation [6, 26, 37]

where there is a continuous and dynamic stream of opportunistic

jobs to keep the cluster memory usage at a high load.

The core of the opportunistic scheduler is an OutOfMemory (OOM)

monitor and a user space OOM killer. The OOM monitor inspects

the memory availability via OS interface /proc/meminfo and in-

forms the user space OOM killer to terminate overcommitted tasks

accordingly upon memory pressure. The effectiveness of memory

oversubscription highly depends on whether the tasks holding the

oversubscribed memory can be timely killed so as to release mem-

ory before memory thrashing and attain high memory utilization.

However, we find that existing opportunistic schedulers with

a user space OOM killer are unable to unleash the power of op-

portunistic memory. They cause significant memory thrashing,

leading to system unresponsiveness and suboptimal application

performance. There are three major reasons. First, the Linux kernel

is unable to report a metric that precisely indicates the amount of

available memory. To oversubscribe the opportunistic memory for

best-effort jobs without harming performance of production jobs,

an opportunistic scheduler has to perform container allocation and

killing based on instantaneous memory availability and memory

demands. Because of the inaccurate available memory reported

by OS, the task killing by the OOM killer often cannot alleviate

memory thrashing. Second, due to the inaccurate report of system

28

https://doi.org/10.1145/3361525.3361534
https://doi.org/10.1145/3361525.3361534

available memory, a user space OOM killer relies on the cluster con-

figuration of per-node memory limit to throttle the upper limit of

per-node memory usage. The OOM killer is activated once the host

memory usage is beyond the limit. However, configuring a proper

per-node memory limit is tedious, and it likely causes problems

due to its dependencies on runtime environments, especially in a

heterogeneous cluster. Misconfiguration either leads to memory

thrashing or low memory utilization. Third, it is not ensured that

SIGKILL from user space can be timely delivered to kernel space

under memory pressure. The delayed SIGKILL results in significant

memory thrashing and undesirable unresponsiveness of the system.

The intuition of addressing the issues of the user space OOM

killer is to use kernel space OOM killer since (1) the killing signal

can be quickly deliveredwithout any interference, and (2) the killing

decision can be made precisely with fine-grained metrics regarding

to memory thrashing from kernel space. However, the existing

Linux OOM killer still runs into severe memory thrashing because

it is too conservative in order to minimize the lost of processes.

In this paper, we propose a user-assisted OOM killer in kernel

space, namely UA killer. UA killer leverages the existing OOM

killing primitives but with a careful consideration of the timing

of task killing in order to avoid significant memory thrashing. UA

killer features two improvements: (1) it is integrated within the

kernel memory reclaimer, so that it ensures timely delivery of the

killing signal, and (2) it detects both anonymous page thrashing

and file page thrashing, so that it accurately identifies a thrashing

condition. The core idea of UA killer is constraint thrashing, where
tasks are allowed to thrash for a tolerant amount of time before a
victim task is chosen to be killed. This novel mechanism allows

UA killer to accurately detect both anonymous page thrashing

and file page thrashing within the constraint thrashing period

so that the killing decision can be made informatively. By this

design, opportunistic memory can be efficiently used while memory

trashing on production jobs is mitigated.

Built upon UA killer, we develop Charon, a cluster scheduler that

aims to efficiently oversubscribe opportunistic memory in an on-

demand manner. Charon leverages UA killer for agile task killing

and accurate thrashing detection.

We implement Charon upon the state-of-the-art opportunistic

scheduler Mercury [27]. Experiments with Google trace [34] on a

26-node cluster shows that, (1) by UA killer, OOM killing latency

is short and guaranteed (<20ms), (2) when using Spark batch jobs

as production jobs, Charon improves the throughput of best-effort

jobs over Mercury by 3.5x, and it improves the 90
th

job comple-

tion time (JCT) of production jobs over Kubernetes opportunistic

scheduler by 62%, (3) when using Cassandra as the production ser-

vice, Charon achieves the best throughput among all approaches

because UA killer can detect file page thrashing accurately and kill

the containers timely, and (4) Charon protects the performance

of production jobs from memory thrashing. Finally, we conduct

extensive simulations of a production cluster using Google trace.

It shows that unexploited opportunistic memory is prevalent in a

production cluster. Charon improves the throughput of best-effort

jobs over Mercury and Kubernetes by 59% and 26%, respectively.

Overall, we make the following contributions in this paper.

• We find a user space implementation of OOM killer by Ku-

bernetes causes significant thrashing in oversubscribing op-

portunistic memory.

0 2 4 6 8 10 12 14 16 18

 Time (100s)

0

10

20

30

40

50

60

70

M
e
m

o
ry

 U
s
a
g
e
 (

G
B

)

(a) Executor Memory

0 5 10 15 20 25 30 35 40

Time (100s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
e
m

o
ry

 U
s
a
g
e
 (

%
)

(b) Cluster Memory
allocated

used

allocated, not used

Figure 1. Memory usage of production jobs of Spark workloads.

(a) physical memory usage of a single container. (b) allocated and

physical memory usages of all containers.

• We design a user-assisted OOM killer in kernel space, called

UA killer, that enables accurate thrashing detection and

timely task killing.

• We develop Charon, an opportunistic cluster scheduler built

upon UA killer. We implement Charon into popular cluster

schedulerMercury and experiments demonstrate its superior

performance over Mercury and Kubernetes.

2 Motivation
2.1 Opportunistic memory
Recent progress [10, 27, 33, 37] in cluster scheduling allows best-

effort jobs to utilize the opportunistic memory. However, we iden-

tify two issues that prevent opportunistic memory from being effi-

ciently exploited. First, static resource partition, which was built on

the assumption that the actual used memory of a container should

be close to its allocated memory, does not consider the nature of

fluctuating task memory usage. We show the memory utilization

of production jobs by replaying a Google trace [34] in a 26-node

cluster (§-5.1 has the cluster setup). Fig 1-(a)shows that the physical

memory usage for a single container from Spark Pagerank fluc-

tuates during the task execution. It only reaches the maximum

memory limit 64GB (limited by the maximum JVM heap size) at

a few moments [14, 25, 30, 32, 38]. Fig 1-(b) shows the aggregated

memory usage of all containers at runtime. It demonstrates that al-

though the allocated memory usage (reported by Yarn) approaches

the cluster limit, the amount of physical memory usage remains

low. Indeed, nearly 40% of the cluster memory is idle and inef-

fectively utilized by application jobs. To utilize the opportunistic

memory, Kubernetes introduces burstable class by which newly
requested memory is dynamically allocated from the idle memory

of production jobs.

Second, the cluster per-node memory limit, which is used to

prevent the application memory usage from overwhelming a node,

is difficult to be properly configured. For example, Yarn uses thresh-

old yarn.nodemanaдer .resource .memory to statically cap the max-

imum physical memory usage on each node. In Kubernetes, a node

inspects its available memory (node .capacity − node .workinдset)
and kills tasks from the burstable class if the available memory is

less than a thresholdmem.threshold . The threshold is utilized to

prevent excessive memory usage from causing thrashing. However,

in practice, these parameters highly depend on hardware archi-

tecture, workload types and OS kernel. It causes memory waste

if configured conservatively, or memory thrashing if otherwise.

Given the fact that modern clusters consist of heterogeneous nodes

with different memory capacities and host diverse applications,

identifying a one-size-fits-all memory limit is almost impossible.

29

Memory Allocator

ACTIVE_FILE

INACTIVE_FILE

ACTIVE_AVON
INACTIVE_AVON

Memory Reclaimer
Direct/Indirect

Memory Cgroups

scan Invoke

Linux
OOM Killer

UA Killer

Invoke

Invoke

Figure 2. The Architecture of the Linux memory reclaimer and

OOM killer. We also show the architectural difference between the

Linux OOM killer and UA killer. The Linux OOM killer is imple-

mented in memory allocator while UA killer is implemented in

memory reclaimer.

2.2 Linux Memory Reclaimer
In Linux, by default, each process belongs to a memory cgroup

and each memory cgroup manages memory pages for all of its

processes. In this paper, an individual task or a service runs in an

OS container that is managed by a memory cgroup. As shown in

Figure 2, the memory pages of a memory cgroup belong to one

of four LRU lists [7]: active_file, inactive_file, active_anon and

inactive_anon. File pages (active_file and inactive_file) track the

I/O related pages in the page cache. Anonymous pages (active_anon

and inactive_anon) track the pages allocated by malloc() function.
For both file and anonymous pages, the most recent accessed pages

are first put in the active lists and might be then moved to the

inactive lists. Conversely, a page in the inactive lists will be moved

back to the active lists if the page is accessed again.

Upon memory pressure, the memory reclaimer chooses pages

from the inactive list and reclaims them. For file pages, the un-

modified pages are directly reclaimed, while the modified pages

are firstly written back to the disk and then get reclaimed. Anony-

mous pages are required to be written back to the swap partition

before released. There are two types of page reclaim. The direct

reclaim is executed when a memory allocation request fails because

of memory insufficiency. The indirect reclaim is executed by the

kernel thread kswapd on each NUMA node. The memory reclaimer

is invoked when the available memory on NUMA nodes is below

the low watermark defined by the system. During both direct and

indirect page reclaims, the reclaimer first calculates the number

of pages to be scanned for each process (or each cgroup). It then

performs scanning to examine if each page is qualified for page-out

(e.g., an inactively accessed and clean page). In this step, the re-

claimer equally treats all running processes. Thus, pages from each

process have the same opportunities to be reclaimed. Finally, the

selected pages placed at the tail of the inactive list, following an I/O

write request to evict the pages to disks. To prevent the pages in ac-

tive_file list from increasing too fast under intensive I/O workloads,

the reclaimer moves the pages from active_file list to inactive_file

list so as to balance the length of both lists. In consequence, the

actively accessed file pages may be falsely reclaimed. After reclaim,

memory thrashing happens when a process is accessing its working

set, part of which has been swapped out to disks due to memory

reclaim, resulting in constant paging and page faults.

In the worst case when the memory pressure cannot be alleviated

by reclaiming memory pages, for instance when the swap partition

is used up, to satisfy a memory allocation request the Linux OOM

killer is invoked to terminate a process and release its memory.

0% 5% 10% 15%
. (%)

101

102

103

104

105

T
im

e
 (

m
s
)

(a)

Kmeans Pagerank CassandraWordcount
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
z
e
d
 p

e
rf

o
rm

a
n
c
e (b)

Figure 3. (a) Killing delay under differentmem.threshold to show

the delayed killing signal by user space OOM killer. The four hori-

zontal lines from top to bottom shows the max, mean, median and

min values of killing delay, respectively. The width of shade repre-

sents the percentage of specific delays. It causes significant memory

thrashing and system unresponsiveness when mem.threshold is

less than 10%. (b) Normalized performance of production jobs to

performance running in isolation (the larger the better). We set

mem.threshold as 10% to avoid swapping state (anonymous page

thrashing), but still observe file page thrashing. We measure job

completion time (JCT) for Spark applications, and throughput for

Cassandra.

2.3 Drawbacks of User Space OOM Killer
We implement a prototype of Kubernetes burstable class on Yarn

in order to assess its user space OOM killer. We augment an OOM

monitor on Yarn’s per-node NodeManager. It frequently (per 1ms)

reads parameter MemAvailable from /proc/meminfo as the node’s
available memory, which is compared with the requested mem-

ory from a new task. The difference is compared with the thresh-

oldmem.threshold . If the difference is positive, the NodeManager

launches a task. Otherwise, to free up memory, the OOM killer

terminates running tasks by sending SIGKILL signals to OS.

We choose Spark Kmeans, Spark Wordcount and Cassandra ta-

ble scanning [1] as production jobs. We submit Spark-SQL as the

best-effort jobs one per second to quickly saturate the cluster nodes.

Production jobs and best-effort jobs run in different CPUSETs to

isolate CPU interference. To avoid slow response of NodeMan-

ager, we run NodeManager in an isolated container with parameter

swappiness setting to zero to avoid being swapped and with a

dedicated CPU core to void CPU interference from other processes.

Based on the experimental results, we identify two fundamental

vulnerabilities of the user space OOM killer as follows.

(1) Delayed SIGKILL Signal We assess if the user space OOM

killer is able to terminate best-effort tasks fast enough to avoid

significant memory thrashing. To examine how excessive the op-

portunistic memory can be oversubscribed without causing thrash-

ing, we increase thresholdmem.threshold starting from 0. The user

space OOM killer causes significant memory thrashing and system

unresponsiveness ifmem.threshold is too small. It is non-trivial to

find amem.threshold value by which the system does not run into

unresponsive state until we increase it to 10% of node memory.

To diagnose the root cause, we measure the killing delay as the

period from the moment when a SIGKILL signal is issued to the

moment when the task is killed and its resources released. As shown

in Figure 3-(a), even if we increase the mem.threshold to 10% of

machine capacity, the long-tailed killing delay with a lot variance

is still not mitigated (as high as 2.7s). Because of the lengthy killing

delay, the node is likely to gradually fall into memory thrashing

when the memory of killed task is not yet released while the new

30

task has been launched. Setting a large mem.threshold helps to

reduce memory thrashing, but it also causes memory waste.

The first reason of the lengthy killing delay is that it is difficult

to deliver SIGKILL signal to kernel space from user space under

memory pressure. Under thrashing, most of CPU time is spent on

the kernel mode to reclaim memory. For example, if the kernel fails

to find enough memory pages, a process that is requesting memory

might be blocked and ended up in sleep state waiting for memory

reclaim. If the process is NodeManager itself, it is de-scheduled of

CPU access, which results in delayed OOM monitoring even if we

have pin the NodeManager to a dedicated CPU core.

The second reason is due to the Garbage Collection (GC) of

languages with automatic memory management (Java for Yarn and

Go for Kubernetes) [16, 17]. In the extreme case, the long-tailed stop-

the-world GC pauses NodeManager for as long as a few hundreds of

milliseconds since the multi-threaded GC is not working efficiently

when most of CPU cores are dominated by the kernel mode. Thus,

the GC pause delays the delivery of SIGKILL signals. Unfortunately,
both the aggressive memory reclaim of the kernel and the GC are

not predictable. SIGKILL signals delivery from user space, though

could be sped up by techniques like jitter-reduction and CPU cores

affinity (like we already used CPU cores affinity), are not always

guaranteed to be timely delivered. For example, as far as we observe,

a full GC can pause the NodeManager as far as 1280ms when the

system is suffering from memory pressure. If there is a SIGKILL
pending at this moment, it is anyway delayed at least 1280ms. This

also explains the high variance of the killing delay we measure.

(2) Inaccurate Estimation ofAvailableMemory in Linux Linux
reports MemAvailable as a coarse-grained estimation of the avail-

able memory that is enough for starting a new application without

swapping. It calculates the available memory as the sum of the

free memory (free memory pages residing on the buddy system

excluding the pages under the low watermark) and a proportion of

file pages (memory pages in page cache).

However, the estimation of the available memory is often inac-

curate because it is almost impossible to decide what proportion

of the file pages should be accounted as the reclaimable memory

(the default is 50%). On one hand, reclaiming a frequently accessed

file page causes disk thrashing. We run an experiment by setting

mem.threshold as 10% to avoid anonymous page thrashing. As

shown in Figure 3-(b), Spark-Kmeans, Spark-Pagerank and Cas-

sandra suffer 20%, 22% and 40% performance penalty, respectively,

when they are consolidated with best-effort jobs. The reason is that

the file pages of Kmeans, Pagerank and Cassandra in the page cache

are frequently reclaimed when sharing with the best-effort Spark-

SQL jobs. For Spark Kmeans, the output of one stage is shuffled to

the disk and it is immediately used in the subsequent stages due to

its iterative nature [42]. For Cassandra, the data that is recently ac-

cessed is automatically cached by the OS page cache, thus file page

reclaim hurts the performance of the read-intensive table scanning

workload. On the other hand, reclaim of a merely accessed page

causes almost no side effect. Thus, Spark-Wordcount still achieves

an identical performance with or without isolation since almost all

of its data reads in the map stage are never used in the reduce stage

and can be safely reclaimed by OS.

Motivated by our user space prototype and experiments, we

propose to move the OOM killer from user space to kernel space

for reasons: (1) The kernel can detect the memory pressure and kill

tasks immediately, and (2) The implementation in the kernel OOM

killer can leverage more fine-grained metrics for accurate detection

of both anonymous pages and file pages.

2.4 Conservative Linux OOM Killer
Intuitively, as user space OOM killing is slow and inaccurate, kernel

space OOM killer should be used. However, the Linux OOM killer

is too conservative to relieve memory pressure in a timely manner.

First, the Linux OOM killer [2] is implemented inside the memory

allocator as the last resort to free up memory when the memory

allocator fails to find free memory pages after trying all the other

possible means (such as memory swapping). This implies that the

Linux OOM killer will not kill any process until both physical

memory and swap partitions are critically low. Though this design

delays the task killing to the last moment as the Linux OOM killer

prioritizes the consequence of losing execution progress over the

consequence of losing performance, it incurs unaffordable swapping

overhead. Thus, applying the Linux OOM killer to oversubscribe

opportunistic memory is not practical.

Second, the Linux OOM killer is unable to alleviate memory

thrashing. By default, the Linux OOM killer is invoked only if

the swap partition is almost used up, under which the system has

already been suffering from significant memory thrashing. An intu-

itive but not recommendedway to avoid anonymous page thrashing

is to unmount the swap partition to prohibit any anonymous page

from being swapped out. Though anonymous page thrashing is

avoided, the file page thrashing is still not mitigated. The reason

is that the task killing of the Linux OOM killer has to defer to the

moment when the memory allocator fails to find free pages by

releasing file pages from page cache, during which it causes signif-

icant file page thrashing. Thus, it inflicts serious overhead to I/O

intensive applications. We further find that the memory thrashing

activities are the interplay of the memory allocator, the memory

reclaimer and the OOM killer. In particular, the Linux OOM killer is

conservatively coupled with the memory allocator to ensure a suc-

cess of memory allocation in the worst situation. Since the indirect

memory reclaimer is asynchronously decoupled from the memory

allocator, the Linux OOM killer inside the memory allocator is thus

unable to detect memory thrashing.

There are also approaches relying on working set size estima-

tion [13, 44, 45] to inform the OOM killer in advance whether the

memory will thrash. However, this approach also has problems.

First, the application memory usage is highly dynamic and unpre-

dictable. For example, garbage collection that is used by JVM to

reclaim unused memory causes a sudden decrease of anonymous

page usage. This event is difficult to be predicted by the estimator.

Second, the online prediction method may not be a good fit for

kernel space implementation because of its overhead.

The analysis of inefficiency of the Linux OOM killer further

reveals that a direct employment of the Linux OOM Killer still

causes significant memory thrashing. The reason is that the goal

of the Linux OOM killer is to minimize task killing, which is not

applicable to the use case of opportunistic memory where memory

is allocated and deallocated memory in a timely manner. We list

the comparison of the discussed OOM killer approaches in table 1.

3 OS-Augmented UA Killer
We then present the design and implementation of UA killer, our

kernel implementation of OOM killer uses existing kernel space

31

Table 1. Comparison of OOM Killer Approaches.

Approaches Implementation Fast killing Thrashing detection Degree of thrashing Programmability
User space OOM killer User space × × Strong ✓
The Linux OOM killer Kernel space ✓ × Strong ✓
UA Killer Kernel space ✓ ✓ Constrained ✓

0 5 10 15 20 25 30 35 40 45

 Time (s)

0

10

20

30

40

 #
 o

f
re

c
o
rd

s
 (

1
0

0
0

0
)

(a) Anonymous Pages
page eviction major page fault

0 10 20 30 40 50

 Time (s)

0

50

100

150

200

 #
 o

f
re

c
o
rd

s
 (

1
0

0
0

0
)

(b) File Pages
page eviction major page fault

Figure 4. (a) Major page fault is constantly increasing when anony-

mous pages are thrashing. (b) Page eviction is constantly increasing

when file pages are thrashing.

OOM killer primitives but with a careful consideration of the timing

of task killing. UA killer features constraint thrashing, a mechanism

that allows thrashing to take place within a limited amount of time

so as to obtain key metrics for accurate thrashing detection and

fast killing. UA killer is composed of a thrashing detector and a UA

OOM killer. Note, UA OOM killer is a component of UA killer. The

thrashing detector identifies whether a container is suffering from

memory thrashing. If such a container is found, the OOM killer

chooses a container to kill according to either the OOM score or

our newly proposed OOM indicator.

3.1 UA Killer Design
Constraint Thrashing As it is difficult to avoid memory thrash-

ing or predict it prior to its occurrence, UA killer features constraint

thrashing to achieve fast and accurate thrashing detection. Specif-

ically, constraint thrashing is to answer when a overcommitted

best-effort task should be chosen to kill. We introduce a kernel

parameter cgth_time as thrashing tolerance that is the period

when a container is experiencing thrashing. For example, if we

set cgth_time to three seconds, UA killer will not kill any con-

tainers until there is at least a container detected as thrashing for

three seconds. Within this period of trashing tolerance, UA killer

inspects both anonymous page thrashing and file page thrashing

for accurate thrashing detection. UA killer has a command for users

to configure the parameter of thrashing tolerance. Note that we

evaluate its impact on job performance in §-5.2.

Thrashing Detector To identify a thrashing container, the thrash-

ing detector inspects both anonymous page thrashing and file page

thrashing. It samples two metrics for each container:

• major page fault: The major page fault occurs when the

page fault handler tries to access a page that was previously

swapped out (in swap partitions or in regular files mapped

by mmap)., incurring disk I/Os.

• page eviction: Page eviction records the activation and evic-
tion in the inactive file list. Specifically, it captures the file

page fault of an evicted page.

Thus, an increasing number of major page faults (page evictions)

indicates the thrashing of anonymous pages (file pages). To assess

the effectiveness of the metrics, we run a set of background work-

loads to generate memory pressure, and then launch two micro-

benchmarks with Docker containers to force memory thrashing.

The first benchmark spawns ten threads. Each thread randomly

touches an one GB memory array. The second benchmark also

spawns ten threads. Each thread randomly accesses an one GB file.

As shown in Figure 4-(a), it is obvious that the number of the major

page faults (page evictions) of a container continuously increases

when its anonymous pages (or file pages) are thrashing.

Figure 4-(b) shows that the number of page evictions starts in-

creasing from 500,000 (instead of zero) because the first round of

I/O accesses that creates the file LRU list leads to the page eviction.

However, the increase of page eviction caused by regular I/O is

transient, and does not interfere with thrashing detection. If the

benchmarks run without any memory pressure, the memory access

will be served by anonymous pages and will not cause any major

page faults. Similarly, the I/O accesses can be served by the page

cache and will not cause actual I/Os. Thus, major page fault and

page eviction can be used as metrics to identify whether a container

is under anonymous page thrashing or file page thrashing.

We build two circular buffers to keep the sampled metric values

for each cgroup. Each sampled value is bound with a timestamp.

For a series of sampled values, the thrashing detector firstly decides

whether it increases over time, and secondly decides if the series is

longer than cgth_time, which is done by a cheap one-pass scan of

the circular buffer since performance is crucial in kernel space.

Unlike the Linux OOM killer which is coupled with memory al-

locator, the thrashing detector of UA killer is implemented inside of

the main routine of the memory reclaimer (shown in Figure 2). As

the memory reclaimer is only invoked when the available memory

on each NUMA node is below the low watermark, the thrashing

detector is only invoked when the memory reclaimer invoked with

memory shortage. This design has two benefits, (1) UA killer is able

to detect memory thrashing immediately as soon as the system

is experiencing memory pressure, which ensures a fast detection,

and (2) UA killer remains inactive when the system has sufficient

memory. In this case, it causes no over-killing and overhead for all

kinds of jobs. Note that there might be multiple memory reclaimer

instances running in parallel because (1) The kernel swap demon

kswapds on each NUMA node run in parallel and (2) processes

trapped into memory reclaim run in parallel. To avoid a race condi-

tion, a spinlock for each cgroup is required to protect the shared

circular buffer from being concurrent accessed.

UA OOM killer After the thrashing detector identifies a thrashing
container, UA OOM killer is called to choose a container to kill. UA

OOM killer needs to distinguish containers of production jobs from

containers of best-effort jobs in kernel space. By default, the Linux

OOM killer allows users to set an OOM score (oom_adj_score) for
individual processes to give hints to the kernel when it chooses a

process to kill. The larger the value of a process, the more likely

the process is to be killed. However, production containers could

32

still be mistakenly killed by the Linux OOM killer even if we set

a production container with the minimum OOM score (-2,000) be-

cause the Linux OOM killer ranks a process by both its memory

footprint and its OOM score. To address this issue, UA OOM killer

only kills containers whose OOM scores are larger than zero so

that all containers of production tasks and critical processes (e.g.,

NodeManager) are excluded from being killed by setting an OOM

score less than zero. Note that best-effort containers are required

to configure an OOM score larger than zero.

Intuitively, there are two techniques that can be used to guide UA

OOMkiller. First, UAOOMkiller should choose a container with the

largest memory footprint to release the most memory by a single

kill. Second, UA OOM killer should choose a container with the

least execution time to keep the most execution progress. UA OOM

killer leverages both techniques and uses a new OOM indicator

memory/execution_time to choose the container with the latest

launch time and the largest memory footprint. Besides the OOM

indicator, we also notice that Linux OOM score (oom_adj_score)
offers the flexibility that a user space cluster scheduler can leverage

to couple with cluster-wide policies. Thus, UA OOM killer also

offers an optional configuration allowing that killing decision is

only based on the OOM score.

Unlike the Linux OOM killer that chooses a single process to kill,

UA OOM killer targets a container. This design choice is desirable

for the existing OS container based cluster schedulers [23, 27, 37],

where a single task or service runs in a container. Thus, if a con-

tainer is chosen to be killed, UA OOM killer terminates all processes

belong to the container. After that, UA OOM killer clears the sam-

pled major page faults and page evictions for all containers to

ensure only one container is killed in each interval (cgth_time).
This is necessary to avoid over-killing because (1) There are mul-

tiple thrashing containers. Killing them all is a waste. (2) Even

though there is enough memory after a container is killed, major

page fault and page eviction of a container will still increase when

the container reads back its swapped-out working set. The increas-

ing period, though is much shorter than the thrashing tolerance,

interferes with the thrashing detector and thus cause over-killing.

3.2 Bypass Swapping
By default, each container has an equal opportunity to be swapped

by Linux. For each container, Linux uses parameter swappiness
to calculate the proportion of pages to scan for the file list and the

anonymous list, respectively. For instance, if swappiness is set to
0, all scanning and reclaiming will focus on file pages, resulting in

no anonymous page thrashing but significant file page thrashing.

However, most critical processes (or services) cannot afford the cost

of any kinds of thrashing by which the performance and the relia-

bility are severely harmed. For example, if the Spark driver is stuck

into thrashing, it may lose response and fail to communicate with

the cluster scheduler, causing significant performance degradation

or even application failure.

To address this issue, we make a simple yet effective technique.

The idea is that we bypass scanning and reclaiming of memory

pages for containers whose swappiness equals to zero. Therefore,

CPU-intensive page scanning and IO-intensive page reclaiming

will not interfere with these containers. Note, bypass swapping

is only allowed for certain components, such as the job manager

(Spark driver for Spark and ApplicationMaster for MapReduce) as

these components involves latency-critical services (such as task

Algorithm 1 UA killer decision making heuristic.

1: for eachmem_cдroup inmem_cдroup_l ist do
2: if cдroup_thrash_threshold (mem_cдroup) then
3: select_cдroup_kill ();
4: clear_memcд_thrash();
5: break ;
6: end if
7: end for
8: function cдroup_thrash_threshold (mem_cдroup);
9: memcд_thrash = to_cдthrash(mem_cдroup);
10: /* if the # of page evictions has been increasing for cgth_time */

11: pдev_inc = check_increase(memcд_thrash .pдev);
12: /* if the # of major page faults has been increasing for cgth_time */
13: pдmj_inc = check_increase(memcд_thrash .pдmj);
14: return pдev_inc | |pдmj_inc
15: end function
16: function select_cдroup_kill ;
17: cдroups = choose_best_ef f or t_cдroups()
18: if score_only() then
19: kill (argmaxcдroup (cдroup .mem_ad j_score));
20: else
21: kill (argmaxcдroup (

cдroup .mem
cдroup .exe_t ime));

22: end if
23: end function

scheduling, RPC and resource monitoring), causing the job failure

if these services are delayed [11].

3.3 Implementation
Algorithm 1 illustrates UA killer’s decision making heuristic. Each

container is associated with a memory cgroup. In line 1, the thrash

detector iterates the cgroup list and checks if a container is thrash-

ing long enough to be killed. Lines 16 to 23 implement UA killer.

Line 18 allows users to configure which heuristic to use. This al-

gorithm is implemented in function void shrink_node_memcg()
that is called by both indirect and direct memory reclaim. In the

function, UA killer is called before the reclaimer iteratively searches

for pages to be reclaimed. Therefore, once a container is killed by

UA killer, expensive memory reclaim can be immediately avoided.

We augment a data structure struct mem_cgroup_thrash to

hold two circular buffers and embed it into struct mem_group. We

implement bypass swapping in function void get_scan_count().
This function is used to calculate the number of pages to be scanned

in each memory cgroup. In this function, we set both numbers of

the file pages and anonymous pages to be scanned to zero once we

found a container whose swappiness is zero.

[Summary] UA killer allows memory thrashing to some extent,

but thrashing is strictly limited by user tolerance. UA killer detects

both anonymous page thrashing and file page thrashing. It exploits

parameters swappiness and oom_adj_score to make itself infor-

mative of the user space cluster scheduler, and also make itself

programmable. The implementation of UA killer consists of about

200 LOC based on Linux 4.12.8. Thus, UA killer supports all kinds

of workloads regardless of their language runtime.

4 Charon
4.1 Overview
Upon UA killer, we develop Charon, a cluster scheduler designed

for best-effort jobs to oversubscribe opportunistic memory. Charon

33

Local

scheduler

Queuing Running

Monitor

Launcher

OS Kernel UA Killer

Local

scheduler

Queuing Running

Monitor

Launcher

OS Kernel UA Killer

...

Distributed global

scheduler

Figure 5. The Architecture of Charon.

aims to leverage UA killer to enable accurate thrashing detection

and timely eviction of overcommitted opportunistic tasks. As shown

in Figure 5, Charon is composed of a set of distributed global sched-

ulers and per-node local schedulers. A global scheduler assigns

best-effort tasks to nodes while a per-node local scheduler per-

forms scheduling of containers corresponding to tasks. Charon

uses UA killer to terminate overcommitted opportunistic tasks. As

UA killer terminates tasks based on memory thrashing, one benefit

is that it removes the need to identifying the per-node memory

limit of each node (mem.threshold) that used to be tedious and

ineffective by a user-space OOM killer.

Charon is implemented upon Mercury [27] with queue manage-

ment [33]. Mercury is a state-of-art opportunistic scheduler that

has been merged to the latest Apache Yarn [36]. In Yarn, Resource-

Manager is a centralized component, which manages the cluster

resources and schedules jobs. NodeManager manages each node

and its tasks. AppMaster is a per-job orchestrator that manages

all tasks of the job. For production jobs, we use the centralized

Capacity Scheduler which is the default scheduler in Yarn.

System Components Charon uses the same distributed global

scheduler as Mercury [27, 33] but implements a novel per-node

local scheduler to interact with UA killer. For placing a task, this

policy prioritizes the node with the least load. The design of the per-

node local scheduler is our major contribution. A local scheduler

has two major components: a node monitor and a task launcher.

The node monitor inspects memory availability MemAvailable
via proc file exposed by OS, which is similar to a user space imple-

mentation. However, we remove the task killing functionality from

user space, and use UA killer in kernel space instead. In addition, the

node monitor also inspects the memory usage for each container.

This information is used to construct the task memory profile that

will be used to tackle the task over-killing issue.

The task launcher launches both best-effort tasks and production

tasks. For a best-effort task, it launches the task if the node has

enough memory. Otherwise, it queues the task and waits until the

memory is available. For a guaranteed task, since it has a higher

priority, the task launcher always immediately launches it. When

the number of queued containers reaches the queue size limit, a

newly allocated container will be rejected by the task launcher and

returned the task as a failure to AppMaster. AppMaster uses its

container retry policy to decide if it resubmits the container request

or fails the application. Note that we keep the queuing mechanism

on each NodeManager the same as that in work [33].

In order to facilitate UA killer, the task launcher configures each

Docker container to inform UA killer with task information. To

avoid CPU interference, the task launcher splits the CPU cores on

each node into two CPUSETs and assign them to best-effort jobs

and production jobs, respectively.

Table 2. Parameter setting for UA killer.

Task Type oom_adj_score swappiness

Task (best-efforts jobs) 1000 60

AppMaster (best-efforts jobs) -1000 0

Task (production jobs) -1000 60

AppMaster (production jobs) -1000 0

Kernel parametersCharon configures parameters oom_ajd_score
and swappiness for each task depending on the application type.

Table 2 shows the configuration of each parameter.

• For a best-effort task, we set swappiness to the default value
and oom_adj_score to 1000 (>0) such that UA killer is able

to kill the task when facing memory shortage.

• For a production task, to avoid being killed by UA killer, we

set oom_adj_score to -1,000.We use the default swappiness
(60) for production tasks to allow constraint thrashing since

UA killer is able to release memory fast enough before mem-

ory thrashing degrades performance.

• AppMaster is vulnerable to thrashing and killing. We con-

figure AppMaster with an oom_adj_score of -1,000 and a

swappiness of zero to avoid being killed or thrashing.

Recall that UA killer can be configured to terminate tasks accord-

ing to the OOM score only. For each best-effort task, we explore to

configure the OOM score to its application_id since Yarn assigns

the id for each application in an increasing manner. Hence, upon

memory pressure, UA killer kills the latest task by choosing the

task with the largest OOM score, expecting that the most execution

progress can be preserved. More sophisticated killing policies can

be implemented depending on the scheduling objectives. For exam-

ple, Charon can support two groups of best-effort jobs. One group

is superior than the other by setting two different OOM scores.

4.2 Task Over-killing
Wefind that launching opportunistic containers according to param-

eter MemAvailable can cause significant task over-kills due to the

delayed resource charging. For example, assuming MemAvailable
reports 10GB free memory in a node and there are ten tasks in

the queue, the local scheduler decides the number of opportunistic

containers could be launched. By default, it launches all tasks at

once since the starting memory usage of each task is small and they

could all fit into the node. However, their memory usage gradually

increases and exceeds the node memory limit. Thus, OS cannot im-

mediately tell the peak memory usage of a task. If the peak memory

usage of each task is 4GB, only two tasks can complete but eight

will be killed, causing significant task over-killing.

To tackle task over-killing, we develop two techniques: memory

snapshot and delayed launch. Memory snapshot keeps a snapshot of

of MemAvailable as SnapMem. SnapMem is immediately charged

by the estimation of future memory usage of running containers.

For each best-effort task, its estimation of future memory usage is

calculated per the profiled peakmemory of its job. The task launcher

launches best-effort containers based on SnapMem. SnapMem is

synchronized with MemAvailable after a predefined period (e.g.,

five seconds). When memory snapshot is applied to the example

above, after two best-effort tasks are launched, SnapMem drops to

2GB and there is not enough memory for launching more tasks.

34

For delayed launch, once a task is killed by UA killer and this

event is detected by Charon, it delays the launch for the next best-

effort task to be scheduled for an extra predefined period of time

until the memory pressure is more alleviated. As a result, the newly

launched task has a better chance to survive. Note that since jobs

are recurring, using the historical information as an estimation is

practical and it has been widely adopted [6, 12, 33, 43].

Charon relies on OS to report available memory to launch new

opportunistic task. However, unlike user space OOM killer which

kills tasks by relying on OS-reported available memory, Charon re-

lies on UA killer for accurate thrashing detection to avoid memory

overwhelming. As it is challenging to tell the exact amount of free

memory from OS, Charon addresses this issues in an indirect but

novel manner, that is to inspect memory thrashing as an indicator

for memory availability. In such a way, no matter how many op-

portunistic tasks are launched in user space, UA killer guarantees

that the oversubscribed memory is still able to be fast released

when necessary. As a result, the memory utilization can be maxi-

mized and can be allocated on-demand without worrying about the

performance negative impacts due to memory overcommitment.

5 Evaluation
5.1 Experimental Setup
The implementation of Charon consists of 1,500 LOC. The project

is open-source at Github https://github.com/yncxcw/charon.
We evaluate Charon to answer the following questions:

• Is UA killer in Charon fast enough to kill best-effort tasks to

avoid significant memory thrashing?

• Is Charon able to protect the performance of production

jobs/service from memory thrashing?

• Is Charon able to improve the performance of best-effort

jobs in terms of throughput and job completion time?

Physical Cluster Setup We evaluate Charon in a 26-node clus-

ter. Each node has two 8-core Intel Xeon E5-2640 processors with

hyper- threading enabled, 132GB of RAM, and 5x1-TB hard drivers

configured as RAID-5. The nodes are inter-connected by 10 Gbps

Ethernet. UA killer is implemented on Linux-4.12.8 and Charon is

implemented on Hadoop-3.0.0. We use the same version of Linux

kernel and Hadoop for comparison.We use Spark-2.1.0 for Spark ap-

plications. Docker-1.12.1 is used to create OS containers. The image

is downloaded from the online Docker hub sequenceiq/hadoop-

docker. We limit the queue length on each node to five.

Workloads For production batch jobs, we use Spark benchmarks

Kmeans, Pagerank, Bayes, Wordcount and Sort from HiBench [24].

We empirically tune the optimal heap size for each application. This

tuning process ensures that the performance is not affected by a

suboptimal heap size while avoiding memory over-provision. For

production interactive service, We use Cassandra that is a NoSQL

database with data persistence.

For best-effort jobs, we use TPC-H benchmark on Spark-SQL, and

MapReduce benchmarks Wordcount, Sort, Grep, and Read. Spark-

SQL is a popular query engine built on Spark for fast and in-memory

processing. We use it to simulate the exploratory data queries.

The input data size for Spark-SQL is 10GB. We use MapReduce

benchmarks to evaluate large scale batch jobs. The input data size

of each MapReduce application is 5TB. For Spark-SQL workloads,

we use the default retry policy in which each container is allowed

to fail twice. For MapReduce workloads, we allow each container

to fail up to 40 times to resist massive task killing because each job

spawns a very large number of containers.

Approaches We adopt Capacity Scheduler [41] to schedule pro-

duction jobs and service. In the following experiments, we compare

the following approaches in scheduling best-effort jobs.

• Alone Best-effort jobs run alone in the cluster without mem-

ory pressure from production jobs.

• Mercury The state-of-art opportunistic scheduler built on

Apache Yarn. For oversubscription, we empirically set the

per-node memory limit to 90% of node memory capacity.

• Kuber The implementation of Kubernetes burstable class

upon Yarn. Kubernetes considers one container request a

time during scheduling. For oversubscription, we empirically

setmemory.theshold to 10% of the node memory capacity.

• CharonCharon opportunistic scheduler built uponUAkiller.

There are fundamental differences between Charon and the other

approaches. Mercury uses a static resource partition mechanism. As

a result, the unused memory from a production container cannot be

exploited by best-effort jobs. Both Kuber and Charon allow the best-

effort jobs to utilize the opportunistic memory to the maximum

extent before the OOM killer kicks in. However, Kuber and Mercury

use a user space OOM killer while Charon uses a kernel space OOM

killer (UA killer).

Metrics We use the job completion time (JCT) to evaluate the

performance of production batch jobs, and use the tail latency and

throughput to evaluate performance of production service. For best-

effort jobs, we use the JCT to evaluate the job performance and use

the job completion rate (JCR) to evaluate the throughput. JCR is

the ratio of the number of completed jobs to that of the submitted

jobs. Note that the objective of memory oversubscription aims to

protect the performance of production jobs/service when they are

consolidated with best-effort jobs, and improve the performance of

best-effort jobs as much as possible.

Simulation To simulate a production cluster, we build a simula-

tor Charon-SLS based on the Yarn scheduler load simulator (SLS).

Its implementation consists of 1,000 LOC. The input specification

includes the job description, task description and memory usage

description. We build a tool to generate the input specification by

parsing a Google production trace [34]. By doing so, we want to

understand the amount of opportunistic memory that Charon can

oversubscribe in a production cluster. We use MapReduce bench-

marks to generate all production and best-effort jobs. We simulate

a 100-node production cluster with 32 cores and 128GB memory

per node. We limit the queue length on each node to ten.

5.2 Killing Delay and Thrashing Tolerance
First, we study the killing delay of UA killer and evaluate Charon

with different configurations of thrashing tolerance. We run Spark

Pagerank jobs as the production jobs. We then submit Spark-SQL

TPC-H queries as the best-effort jobs.

Figure 6-(a) shows that the killing delay of UA killer is much

lower (more than 100x) than its user space counterpart. It is less

than 20ms with low variance. As its execution in kernel space

cannot be preempted, it suffers from no interference.

The trashing tolerance (cgth_time) in UA killer represents how

sensitive OS is to memory thrashing. We study its impact on the

performance of the best-effort jobs. Figure 6-(b) depicts the JCT

of Spark-SQL best-effort jobs when the thrashing tolerance varies

35

user killer UA killer
101

102

103

104

105

T
im

e
 (

m
s
)

(a) Killing delay

200 300 400 500

 Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) JCT

1

3

5

10

20

0 25 50 75 100 125 150

 Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(c) Container launch time

1

3

5

10

20

1 3 5 10 20

cgth_time (s)

20

40

60

80

100

%
(d) JCR

Figure 6. (a) shows comparison of the killing delay between the user space killer and UA killer (kernel space); (b)-(d) show the JCT, container

launch time, and JCR for Spark-SQL best-effort jobs under various thrashing tolerance cgth_time.

Mercury Kuber Charon Default
0

1

2

3

4

N
o
rm

a
li
z
e
d
 J
C

T

(a) X1
50th 90th

Mercury Kuber Charon Default
0

1

2

3

4
(b) X2

50th 90th

Mercury Kuber Charon Default
0

1

2

3

4

5
(c) X3

50th 90th

Figure 7. Normalized 50
th

and 90
th

JCT for production jobs.

from one to 20 seconds. It shows that the jobs achieve the worst

JCT when the thrashing tolerance is set to one second. This is the

result of excessive task killings when the thrashing tolerance is

too small, such that UA killer is extremely sensitive to memory

thrashing. We also find the JCT presents a long-tailed latency with

a large thrashing tolerance. In particular, the tailed JCT is as high

as 441 seconds when the thrashing tolerance is set to 20 seconds.

After carefully examining each piece of the latency, we fine the

degraded JCT is caused by the increased container launch time.

We measure the container launch delay as the period from the

moment when NodeManager issues the container launch command

to the moment when the newly launched container is detected

by NodeManager. During container launch and JVM launch in

the container, the JVM requests memory from OS to set up its

heap. When tasks are conservatively killed due to a large thrashing

tolerance, memory shortage cannot be immediately resolved by task

killing. OS needs a long time to lock enough memory associated

with each memory request. Thus, the JVM suffers a long time to

obtain memory from OS. Figure 6-(c) depicts container launch

delay when the thrashing tolerance varies from 1 to 20 seconds.

A thrashing tolerance of 1 also causes a long container launch

time because the launched containers are killed before the task

inside is detected. Figure 6-(d) shows the JCR of the best-effort jobs

under different thrashing tolerances. The JCR stabilizes when the

thrashing tolerance is equal to or greater than 3 seconds.

[Summary] Thus, we empirically set cgth_time to 3 seconds as it
achieves the best JCT and good JCR (72 out of 77 jobs completed).

5.3 Oversubscription - Production Jobs
We now evaluate the effectiveness of Charon in memory oversub-

scription with production jobs and best-effort jobs. We replay a

subset of Google trace [34] by submitting jobs according to their

timestamps in the trace. Note that the replayed jobs may not strictly

reflect the memory usage recorded in the trace since it is difficult to

generate exactly the same memory footprints. The trace contains 39

Spark HiBench production jobs and 703 Spark-SQL best-effort jobs.

The memory usage of the production jobs is shown in Figure 1-(b).

To increase the load of best-effort jobs, we replicate each best-effort

job in the trace file by 2 times and 3 times, which are denoted as

scenarios X2 and X3, respectively. Note that in all three scenarios

the load of production jobs stays the same.

Performance of production jobs Figure 7 (a)-(c) show the nor-

malized 50
th

and 90
th

JCT of the production jobs. Note that Default

means the experiment runs without best-effort jobs. The JCT of

production jobs is normalized to that when each job runs in iso-

lation. Charon achieves almost identical performance to Default,

which demonstrates that Charon is able to protect the performance

of production jobs from memory thrashing.

We also find that Kuber leads to theworst JCT. In specific, Charon

outperforms Kuber by 19%, 38% and 62% for the 90
th

JCT under

various loads X1, X2 and X3, respectively. It is due to that the falsely

reclaimed file pages result in the performance penalty to production

jobs because of the inaccurate estimation of available memory in

Kuber. Charon protects the active file pages of the production jobs

from being reclaimed by aggressively killing best-effort tasks when

file thrashing on the production jobs is detected. Furthermore, the

heuristic of UA killer will not result in over-killing for workloads

without large refaulted file pages (e.g., Wordcount).

Performance of Spark-SQL best-effort jobs As shown in Fig-

ure 8 (a)-(c), Charon achieves the best JCT under various loads X1,

X2 and X3. In particular, Charon improves the 95
th

JCT over Mer-

cury by 8.8X, 4.8X and 1.8X under loads X1, X2, X3, respectively.

Mercury suffers from long-tailed performance because of its static

memory partition. From the log files of NodeManager, we find that

the best-effort tasks are significantly queued at each node, not able

to be executed until at least one long running production task on

the same node completes and releases its resource. The inflexibility

impedes the opportunistic memory from being fully exploited. As

a result, the queuing delay by Mercury is pronounced even under a

light load (X1). In contrast, both Charon and Kuber schedule tasks

according to the instantaneously available memory of each node.

The aggressive task launching not only avoids the lengthy task

queuing delay but also increases the chance of a task being killed.

However, the fail-and-reschedule strategy increases the opportu-

nity of a killed task to be placed on a node with a relatively lighter

load, compensating the overhead caused by task killing.

Under a high load (X3), performance of Charon and Kuber is

degraded because of massive task killing. The best-effort tasks

overwhelm the node memory so that OOM killer has to kill en

masse to avoid swapping. In addition, we observe that Kuber causes

a higher variance of JCT than Charon. Though the median JCT and

the 90
th

JCT are similar for Kuber and Charon, the 99
th

JCT of

Kuber is up to 1.8x higher than that of Charon. The reason is that

36

0 500 1000 1500 2000 2500

JCT (s)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

(a) X1 load

Alone

Mercury

Charon

Kuber

0 500 1000 1500 2000 2500 3000

JCT (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) X2 load

Alone

Mercury

Charon

Kuber

0 500 1000 1500 2000 2500 3000

JCT (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(c) X3 load

Alone

Mercury

Charon

Kuber

X1 X2 X3

20

40

60

80

100

%

(d) JCR
Mercury

Kuber

Charon

Alone

Figure 8. Performance of Spark-SQL best-effort jobs. (a)-(c) show the JCT under various loads. (d) shows the JCR.

wordcount sort grep io-read
0

1

2

3

4

5

6

7

8

9

N
o
rm

a
li
z
e
d
 T

im
e

MapReduce best-effort jobs
Mercury

Kuber

Charon

Figure 9. The normalized JCT of individual MapReduce jobs.

Kuber relies on a user space OOM killer, which introduces a high

variance to the container launch time because of its varying killing

delay, causing a significant increase of the tailed JCT.

Figure 8-(d) shows the JCR by different approaches. For low and

moderate loads (X1 and X2), Charon yields no job failure because

the opportunistic memory is sufficient for best-effort tasks. How-

ever, 12% of the best-efforts jobs fail with Mercury even under the

low load (X1) because of its static memory partition. As a result,

the queue on each node soon reaches its limit and tasks are imme-

diately rejected and failed. Under a high load (X3), Charon is able

to complete 76% of the submitted jobs while Mercury only com-

pletes 23%, which implies that Charon improves the throughput

of the best-effort jobs by 3.1x over Mercury. Charon achieves 23%

higher throughput than Kuber under a high load (X3), suggesting

that Charon is able to exploit more opportunistic memory than

Kuber does, because (1) Charon does not rely on the static per-node

memory limit configuration, and (2) UA killer is faster than the

user space killer, avoiding the situation of running into continuous

memory pressure. Charon and Kuber achieve a similar JCR under

loads X1 and X2, suggesting the user space killer performs under

low and moderate loads.

Performance of MapReduce best-effort jobs We run MapRe-

duce applications as the best-effort jobs and show the normalized

JCT in Figure 9. Charon improves over Mercury by about 25% to

48% for different types of jobs. Kuber and Charon achieve simi-

lar performance. Unlike Spark-SQL that is usually dominated by

CPU [32], MapReduce applications are dominated by file read in

map phase and data shuffling in reduce phase. The intensive I/Os

of MapReduce create substantial file pages that generate memory

thrashing to the production jobs. Consequently, UA killer detects

file page thrashing and kills best-effort tasks aggressively. As a

result, less opportunistic memory can be exploited in this situation

compare to that when Spark-SQL is used as the best-effort jobs.

[Summary] Compared to Mercury, Charon significantly improves

the performance of best-effort jobs by aggressively exploiting op-

portunistic memory. Through its accurate trashing detection and

timely task killing, Charon avoids significant memory thrashing

that is common in Kuber.

5.4 Oversubscription - Production Service
Low-latency interactive services, such as NoSQL database, have be-

come popular in BigData processing. As a trend that these services

are sharing the infrastructure of a multi-tenant cluster, it is impor-

tant to protect their performance in a consolidated environment. In

this experiment, we run Cassandra as an online interactive service

for the production service and use Spark-SQL for the best-effort

jobs. By default, to serve a read request, Cassandra tries to locate

the requested data in RowCache, an in-memory data cache. If it is

a hit, the request is immediately satisfied from the memory. Other-

wise, the request is served from the disk by reading the data from

on-disk SSTable. For read intensive workloads, due to the limited

size of RowCache, most of the requests may fall on the disk.

We deploy Cassandra in the cluster and configure each Cassandra

slave daemonwith an 8G heap size. We use workloads-B from YCSB,

a read-mostly workloads, as the benchmark to evaluate whether UA

killer is able to throttle the file page thrashing in a timely manner.

We configure the YCSB client with 32 threads. We use the same 703

Spark-SQL best-effort jobs as in §-5.3. Note that CPUSET is used to

isolate CPU interference in this experiment.

As shown in 10(a), the throughput of Cassandra drastically de-

creases with both Mercury and Kuber due to significant file page

thrashing. The reason is that both Mercury and Kuber simply rely

on MemAvailable to decide whether to launch or to kill tasks, ignor-
ing file page reclaims. Thus, they are not aware that the file pages

of Cassandra are aggressively reclaimed. As OS tends to prioritize

the reclaim of read-only pages to reduce the I/O traffic, many of the

file pages of Cassandra are reclaimed. Charon kills best-effort tasks

when thrashing on Cassandra production service is detected, thus

it improves its throughput over Kuber by 11.1%, 40.4%, and 41.4%

under loads X1, X2 and X3, respectively. As shown in 10(d), Charon

achieves the worst JCR, because its UA killer acts more aggressively

than the user space OOM killer in killing best-effort tasks so as to

protect the file pages of Cassandra from being thrashed. Recall that

Cassandra production service has the priority in workload consoli-

dation. Charon attains up to 94% of the throughput of Cassandra if

there is no consolidation. Note that without consolidation, there is

no throughput of best-effort jobs at all.

Figure 10(b)-(c) shows the median and the 99
th

latency of Cas-

sandra service by different approaches under various loads. Charon

achieves similar median latency as if there is no consolidation. It

also shows that all approaches incur a significantly increased 99
th

tail latency, though Charon outperforms Mercury and Kuber under

X3 load. The possible reasons include: (1) UA killer allows a con-

straint thrashing before killing a task, but parameter cgth_time of

3 seconds might be too long to protect the tail latency, and (2) there

are more network congestion and disk accesses when admitting

37

X1 X2 X3
40

45

50

55

60

65

70

75

80

T
h
ro

u
g
h
p
u
t

K
o
p
s
/s

(a) Throughput
Mercury

Kuber

Charon

No-consolidation

X1 X2 X3
1

2

3

4

5

6

L
a
te

n
c
y
 (

m
s
)

(c) Median latency
Mercury

Kuber

Charon

No-consolidation

X1 X2 X3
5

10

15

20

25

L
a
te

n
c
y
 (

m
s
)

(b) 99th latency
Mercury

Kuber

Charon

No-consolidation

X1 X2 X3

20

40

60

80

100

%

(d) JCR
Mercury

Kuber

Charon

Figure 10. (a)-(c) Throughput, the median and the 99
th

latency of Cassandra under different loads. (d) JCR of best-effort jobs.

more best-effort jobs. It is non-trivial to address the tailed latency

of production service, which will be our future work.

[Summary] Charon is able to protect the performance of produc-

tion interactive service at large while maximizing opportunistic

memory usage, because its UA killer can detect the file page thrash-

ing and killing tasks timely.

5.5 Production Trace Simulation
We run Charon-SLS using a subset of Google trace to conduct the

production simulation on a simulated 100-node cluster. The subset

contains 754 production jobs and 3,074 best-effort jobs. We derive

the job profiles from Google datacenter trace. The profile includes

the type of a job (i.e. best-effort or production), the task execution

time, the job launch timestamp, the number of tasks in a job and

the memory usage of each task. As done in §-5.3, we repeat best-

effort job submissions to increase the overall load to X2, X3, and X4.

Figure 11-(a) shows the allocated memory and the actually used

memory for production jobs. It shows that the production jobs

leaves nearly 30% of the allocated memory unexploited. It indicates

that unexploited opportunistic memory is prevalent in a production

cluster, advocating the need of memory oversubscription.

Figure 11 (b)-(c) shows that the tail latency of best-effort jobs

suffers 20X-25X slowdown by Mercury. Due to its head-of-line

blocking policy, tasks of best-effort jobs wait for memory to be re-

leased. Thus, only 51% of the best-effort jobs can be completed even

under low load X1, suggesting that the static memory partition is

not practical for large scale memory oversubscription deployment.

Kuber and Charon address this issue by oversubscribing instan-

taneously available memory in an aggressive manner. Moreover,

Charon improves the JCR over Kuber by 26% under heavy load

X4, indicating that Charon is able to exploit more opportunistic

memory in a production cluster.

Finally, we evaluate the two techniques of Charon in addressing

task over-killing, i.e., memory snapshot and delayed launch. Fig-

ure 11 (e) shows the JCR of the best-effort jobs with the techniques

enabled and disabled. It shows that the enabled techniques are able

to improve the JCR by about 15%.

[Summary] The simulation by using the production trace reveals

that unexploited opportunistic memory is prevalent in clusters.

Charon with UA killer outperforms start-of-the-art approaches

Mercury and Kuber in memory oversubscription.

5.6 Discussions
Overhead The overhead of Charon is due to the constraint thrash-

ing, which only incurs under memory pressure. Production jobs

suffer from thrashing overhead only during the constraint thrashing

period. Our experiment shows the overhead caused by thrashing is

negligible for throughput-oriented production workloads, such as

machine learning workloads. We still observe increased tail latency

for latency-critical production workloads. We will address this issue

in our future work. When the cluster nodes run without memory

pressure, UA killer causes no side effect as memory reclaimer re-

mains sleep state. As demonstrated in §-5.2, there is a trade-off

between the job performance and the thrashing tolerance: by re-

ducing cgth_time, memory thrashing is reduced and performance

of production jobs is improved, but the chances of best-effort tasks

being killed are increased.

Swappiness Charon sets parameter swappiness to the default

value (60) for both best-effort tasks and production tasks. A critical

question remains unanswered: why do not set swappiness to zero

for production tasks to bypass memory reclaim? In such a way,

production tasks will not suffer from any page thrashing. The an-

swer is to avoid task over-killing when I/O intensive production

tasks create massive file pages which are not actively used. To val-

idate this, we run a Spark Wordcount as the production job in a

single-node cluster and submit Spark-SQL as the best-effort job.

We measure the file page size of the Wordcount containers and the

number of concurrent Spark-SQL tasks.

As shown in Figure 12-(a), when the parameter swappiness is
set to 0, the file pages which belong to the production job are not

allowed to be reclaimed by OS. As a result, when the production job

is populating more file pages during the execution, Figure 12-(b)

shows that many concurrent best-effort tasks running with oppor-

tunistic memory are killed by UA killer. In contrast, if memory

reclaim on the production job is allowed when swappiness is set
to 60, memory reclaim on the file pages will not cause over-killing

to the best-effort tasks because the reclaimed file pages of the pro-

duction job are not actively used and will not refault into memory.

Thus, these pages are safe to be released without causing thrash-

ing to the production job. The experiment demonstrates that UA

killer is able to distinguish the memory reclaim activities that are

detrimental to production jobs and allow others to reclaim so as to

minimize task killing to best-effort job.

Per-node memory limit During the experimentation, we find it

is painful to set an appropriate per-node memory limit for a user

space OOM killer. First, the setting should reserve somememory for

OS and control blobs (e.g. NodeManager for Yarn and DataNode for

HDFS), whose usage is hard to profile. Second, it is highly related

to the OS kernel and hardware architecture, e.g., by increasing the

RAM capacity of cluster nodes, the setting needs to be updated.

Last but not least, it should take application characteristics into

account. However, applications have diverse memory demands. It

takes us many rounds of tuning to find the best per-node memory

limit for Mercury and Kuber. UA killer overcomes this issue by

implementing OOM killer in kernel space where the resolution of

memory pressure is self-contained.

38

0 5 10 15 20 25

Time (1000s)

0

20

40

60

80

100

120

M
e
m

o
ry

 U
s
a
g
e
 (

%
) (a) Cluster Memory

allocated

used

Mercury Kuber Charon
0

5

10

15

20

N
o
rm

a
li
z
e
d
 J
C

T

(b) X1

Mercury Kuber Charon
0

5

10

15

20

25

30

N
o
rm

a
li
z
e
d
 J
C

T

(c) X4

X1 X4
0

20

40

60

80

100

120

JC
R

 (
%

)

(d) X1&X4
Mercury

Kuber

Charon

Enabled Disabled
0

20

40

60

80

100

120

JC
R

 (
%

)

(e) Task overkill

Figure 11. (a)-(d) show the production trace evaluation, and (e) show the JCR of best-effort jobs under task over-killing.

0.1 0.2 0.4 0.6 0.8 1.0

Normalized JCT

0

20

40

60

80

100

120

F
il
e
 p

a
g
e
 s

iz
 (

G
B

)

(a) File page
swapiness-0 swappiness-60

0.1 0.2 0.4 0.6 0.8 1.0

Normalized JCT

0

5

10

15

20

25

30

#
 o

f
ta

s
k
s

(b) Concurrent opp tasks
swapiness-0 swappiness-60

Figure 12. Illustration of the reason to set swappiness to 60 for

production job: avoid over-killing to the best-effort job.

Application characteristics Our experimentation recommends

to allocate opportunistic memory to tiny and short tasks, such as

data queries on a small or a medium data set, so as to reduce the

chance of a task being evicted. This intuition is two folds. First, the

availability of opportunistic memory is highly dynamic and is hard

to be accurately characterized. Second, the OOM indicator from UA

killer favors tasks with large memory usage.

We notice an extreme case: when all opportunistic memory is

fully allocated and the queue on each node is full, incoming tasks

are immediately rejected. Thus, Charon can only schedule and

execute a single large-scale MapReduce job at a time in our cluster.

To address the issue, the local scheduler should be implemented

with fair-share policies (FIFO by default).

Best-effort jobs rely on the failover mechanism to relaunch the

failed tasks. For each task, the mechanism defines a maximum retry

number. We find a large retry number does not improve the JCR of

best-effort jobs when the opportunistic memory on each node is

fully loaded because an additional retry is rejected immediately.

6 Related Work
Cluster Scheduling Yarn [36] and Mesos [23] are two widely

used open-source centralized schedulers. Sparrow [31] is a fully

distributed scheduler based on random sampling. Hawk [12] and

Mercury [27] both implement a hybrid scheduler to avoid inferior

scheduling decisions as a trade-off of scheduling quality and scala-

bility. CARBYNE [18] allows applications to altruistically yield their

allocated resources to achieve secondary goals. Study [29] proposes

a framework to adaptively split large job into small jobs to reduce

queuing delay. Madea [15] implements placement constraints for

scheduling long running applications. SDChecker [9] profiles and

analyzes the causes of latency in a multi-stack scheduling environ-

ment (e.g. Spark on Yarn). Most of the studies focus on the design

of new policies and mechanisms for the global scheduler. Charon,

on the other hand, focuses on the local scheduler and it can be

implemented upon those representative schedulers.

Opportunistic resourcesCluster schedulersMercury [27], Apollo [6]

and Borg [37] propose to utilize the leftover resources for sched-

uling best-effort jobs. However, they rely on the static resource

partition or set a safe margin for production jobs, thus are unable

to unleash the power of opportunistic resources. Pado [40] is an

application-level approach to utilize opportunistic resources for

machine learning jobs. CEDULe [4] proposes to leverage burstable

performance instances to accommodate bursty workloads. Mos [5]

is a workload-aware object store that enhances different tenants’

QoS by dynamic configuration tuning and fine-grained resource

allocation. Study [28] proposes a model to compute the quantity of

resources that achieves the best execution time without resource

over-commitment. BIG-C [8] is a preemptive-based framework

that improve the performance for latency-critical applications in a

shared cluster. Another group of efforts [19, 21, 22, 35] try to lever-

age opportunistic resources provided by cloud providers (e.g., spot

instance from AWS) to reduce the financial cost. They heavily rely

on the cloud provider to inform the possible eviction and the avail-

ability of opportunistic resources while our approach schedules

tasks based on instantaneous resource availability.

OS transparency Charon is similar to other work that advocates

more exposure of application information to kernel or vice versa.

Redline [39] proposes the first class support for interactive services.

It dynamically adapts to recent load, maximizing responsiveness

and system utilization. Mittos [20] designs a new OS interface for

applications to express their QoS to achieve predictable tail latency.

It adopts a fast failover mechanism that allows requests to be served

on a less busy node.

7 Conclusion
This paper presents Charon, a cluster scheduler for oversubscribing

opportunistic memory. Charon is empowered by UA killer, a kernel

space OutOfMemory (OOM) killer that enables timely and infor-

mative task eviction while avoiding thrashing on critical processes.

System implementation of Charon with extensive evaluations show

that (1) Charon achieves task killing in a timely manner and re-

moves the dependency on static resource configuration via kernel

space UA killer, and (2) Charon significantly improves the through-

put of best-effort jobs and cluster utilization, while prioritizing

production jobs. Charon equipped with UA killer is a general solu-

tion, which is applicable to many cluster schedulers.

8 Acknowledgments
We thank the anonymous reviewers and our shepherd Dilma Da

Silva for their valuable comments on our paper. This research was

supported in part by U.S. NSF grant SHF-1816859.

39

References
[1] Cassandra. http://cassandra.apache.org, 2008.

[2] Taming the oom killer. https://lwn.net/Articles/317814/, 2009.

[3] Kubernetes. https://kubernetes.io/, 2015.

[4] A. Ali, R. Pinciroli, F. Yan, and E. Smirni. Cedule: A scheduling framework for

burstable performance in cloud computing. In Proc. of IEEE ICAC, 2018.

[5] A. Anwar, Y. Cheng, A. Gupta, and A. R. Butt. Mos: Workload-aware elasticity

for cloud object stores. In Proc. ACM HPDC, 2016.

[6] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and L. Zhou.

Apollo: scalable and coordinated scheduling for cloud-scale computing. In Proc.

of USENIX OSDI, 2014.

[7] D. P. Bovet and M. Cesati. Understanding the Linux Kernel. O’Reilly Media, Inc.,

2005.

[8] W. Chen, J. Rao, and X. Zhou. Preemptive, low latency datacenter scheduling via

lightweight virtualization. In Proc. of USENIX ATC, 2017.

[9] W. Chen, A. Pi, S. Wang, and X. Zhou. Characterizing scheduling delay for

low-latency data analytics workloads. In Proc. of IEEE IPDPS, 2018.

[10] W. Chen, A. Pi, S. Wang, and X. Zhou. Pufferfish: Container-driven elastic

memory management for data-intensive applications. In Proc. of ACM SoCC,

2019.

[11] T. Dai, J. He, X. Gu, and S. Lu. Understanding real-world timeout problems in

cloud server systems. In Proc. of IEEE IC2E, 2018.

[12] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel. Hawk: Hybrid

datacenter scheduling. In Proc. of USENIX ATC, 2015.

[13] P. J. Denning. The working set model for program behavior. Communications

of the ACM, 1968.

[14] L. Fang, K. Nguyen, G. Xu, B. Demsky, and S. Lu. Interruptible tasks: Treating

memory pressure as interrupts for highly scalable data-parallel programs. In

Proc. of ACM SOSP, 2015.

[15] P. Garefalakis, K. Karanasos, P. R. Pietzuch, A. Suresh, and S. Rao. Medea:

scheduling of long running applications in shared production clusters. In Proc.

of ACM EuroSys, 2018.

[16] L. Gidra, G. Thomas, J. Sopena, M. Shapiro, and N. Nguyen. Numagic: A garbage

collector for big data on big numa machines. In Proc. of ACM ASPLOS, 2015.

[17] I. Gog, J. Giceva, M. Schwarzkopf, K. Vaswani, D. Vytiniotis, G. Ramalingam,

M. Costa, D. G. Murray, S. Hand, and M. Isard. Broom: Sweeping out garbage

collection from big data systems. In Proc. of USENIX HotOS, 2015.

[18] R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan. Altruistic

scheduling in multi-resource clusters. In Proc. of USENIX OSDI, 2016.

[19] W. Guo, K. Chen, Y. Wu, and W. Zheng. Bidding for highly available services

with low price in spot instance market. In Pro. of ACM HPDC, 2015.

[20] M. Hao, H. Li, M. H. Tong, C. Pakha, R. O. Suminto, C. A. Stuardo, A. A. Chien, and

H. S. Gunawi. Mittos: Supporting millisecond tail tolerance with fast rejecting

slo-aware os interface. In Proc. of ACM SOSP, 2017.

[21] A. Harlap, A. Tumanov, A. Chung, G. R. Ganger, and P. B. Gibbons. Proteus:

agile ml elasticity through tiered reliability in dynamic resource markets. In Proc.

ACM Eurosys, 2017.

[22] A. Harlap, A. Chung, A. Tumanov, G. R. Ganger, and P. B. Gibbons. Tributary:

spot-dancing for elastic services with latency slos. In Proc. USENIX ATC, 2018.

[23] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz,

S. Shenker, and I. Stoica. Mesos: A platform for fine-grained resource sharing in

the data center. In Proc. of USENIX NSDI, 2011.

[24] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The hibench benchmark suite:

Characterization of the mapreduce-based data analysis. In Proc. of IEEE Data

Engineering Workshops (ICDEW), 2010.

[25] C. Iorgulescu, F. Dinu, A. Raza, W. U. Hassan, and W. Zwaenepoel. Don’t cry over

spilled records: Memory elasticity of data-parallel applications and its application

to cluster scheduling. In Proc. of USENIX ATC, 2017.

[26] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tumanov, J. Yaniv,

R. Mavlyutov, Í. Goiri, S. Krishnan, J. Kulkarni, et al. Morpheus: Towards auto-

mated slos for enterprise clusters. In Proc. of USENIX OSDI, 2016.

[27] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil, G. M. Fumarola,

S. Heddaya, R. Ramakrishnan, and S. Sakalanaga. Mercury: Hybrid centralized

and distributed scheduling in large shared clusters. In Proc. of USENIX ATC,

2015.

[28] N. Kremer-Herman, B. Tovar, and D. Thain. A lightweight model for right-sizing

master-worker applications. In Proc. of IEEE SC, 2018.

[29] F. Liu and J. B. Weissman. Elastic job bundling: An adaptive resource request

strategy for large-scale parallel applications. In Proc. of IEEE SC, 2015.

[30] K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu, S. Alamian, and O. Mutlu. Yak: A

high-performance big-data-friendly garbage collector. In Proc. of USENIX OSDI,

2016.

[31] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow: distributed, low

latency scheduling. In Proc. of ACM SOSP, 2013.

[32] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, B.-G. Chun, and V. ICSI. Making

sense of performance in data analytics frameworks. In Proc. of USENIX NSDI,

2015.

[33] J. Rasley, K. Karanasos, S. Kandula, R. Fonseca, M. Vojnovic, and S. Rao. Efficient

queue management for cluster scheduling. In Proc. of ACM Eurosys, 2016.

[34] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch. Heterogeneity

and dynamicity of clouds at scale: Google trace analysis. In Proc. of ACM SoCC,

2012.

[35] P. Sharma, T. Guo, X. He, D. Irwin, and P. Shenoy. Flint: batch-interactive data-

intensive processing on transient servers. In Proc. of ACM Eurosys. ACM, 2016.

[36] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,

T. Graves, J. Lowe, H. Shah, S. Seth, et al. Apache Hadoop YARN: Yet another

resource negotiator. In Proc. of ACM SoCC, 2013.

[37] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes.

Large-scale cluster management at google with borg. In Proc. of ACM Eurosys,

2015.

[38] L. Xu, M. Li, L. Zhang, A. R. Butt, Y. Wang, and Z. Z. Hu. Memtune: Dynamic

memory management for in-memory data analytic platforms. In Proc. of IEEE

IPDPS, 2016.

[39] T. Yang, T. Liu, E. D. Berger, S. F. Kaplan, and J. E. B. Moss. Redline: First class

support for interactivity in commodity operating systems. In Proc. of USENIX

OSDI, 2008.

[40] Y. Yang, G.-W. Kim, W. W. Song, Y. Lee, A. Chung, Z. Qian, B. Cho, and B.-G.

Chun. Pado: A data processing engine for harnessing transient resources in

datacenters. In Proc. of ACM Eurosys, 2017.

[41] M. Zaharia. Job scheduling with the fair and capacity schedulers. Proc. of Hadoop

Summit, 2009.

[42] H. Zhang, B. Cho, E. Seyfe, A. Ching, and M. J. Freedman. Riffle: optimized shuffle

service for large-scale data analytics. In Proc. of ACM EuroSys, 2018.

[43] Y. Zhang, G. Prekas, G. M. Fumarola, M. Fontoura, Í. Goiri, and R. Bianchini.

History-based harvesting of spare cycles and storage in large-scale datacenters.

In Proc. of USENIX OSDI, 2016.

[44] Y. Zhong, X. Shen, and C. Ding. Program locality analysis using reuse distance.

ACM Transactions on Programming Languages and Systems (TOPLAS), 31(6):

20, 2009.

[45] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and S. Kumar. Dy-

namic tracking of page miss ratio curve for memory management. In Proc. ACM

ASPLOS, 2004.

40

	Abstract
	1 Introduction
	2 Motivation
	2.1 Opportunistic memory
	2.2 Linux Memory Reclaimer
	2.3 Drawbacks of User Space OOM Killer
	2.4 Conservative Linux OOM Killer

	3 OS-Augmented UA Killer
	3.1 UA Killer Design
	3.2 Bypass Swapping
	3.3 Implementation

	4 Charon
	4.1 Overview
	4.2 Task Over-killing

	5 Evaluation
	5.1 Experimental Setup
	5.2 Killing Delay and Thrashing Tolerance
	5.3 Oversubscription - Production Jobs
	5.4 Oversubscription - Production Service
	5.5 Production Trace Simulation
	5.6 Discussions

	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References

