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Abstract 

 Recent work examining astrocytic physiology centers on fluorescence imaging approaches, due to 

development of sensitive fluorescent indicators and observation of spatiotemporally complex calcium and 

glutamate activity. However, the field remains hindered in fully characterizing these dynamics, both 

within single cells and at the population-level, because of the insufficiency of current region-of-interest-

based approaches to describe activity that is often spatially unfixed, size-varying, and propagative. Here, 

we present an analytical framework that releases astrocyte biologists from ROI-based tools. The 

Astrocyte Quantitative Analysis (AQuA) software takes an event-based perspective to model and 

accurately quantify the complex activity in astrocyte imaging datasets. We apply AQuA to a range of ex 

vivo and in vivo imaging data, and uncover novel physiological phenomena in each. Since AQuA is data-

driven and based on machine learning principles, it can be applied across model organisms, fluorescent 

indicators, experimental modes, and imaging resolutions and speeds, enabling researchers to elucidate 

fundamental astrocyte physiology.   

 

Introduction 

 With increased prevalence of multiphoton imaging and optical probes to study the physiology of 

astrocytes1-3, many groups now have the tools to study fundamental functions that previously remained 

unclear. Recent work has focused on new ways to decipher how astrocytes respond to neurotransmitter 

and neuromodulator circuit signals4-7 and how the spatiotemporal patterns of their activity shape local 

neuronal activity8-10. Recording astrocytic dynamics with the goal of decoding their disparate roles in 

neural circuitry has largely centered on cell type-specific expression of genetically encoded probes to 

carry out intracellular calcium (Ca2+) imaging using variants of GCaMP3. In addition, many groups have 

studied astrocytic function by performing extracellular glutamate imaging using GluSnFR2, and several 

more recently developed genetically encoded fluorescent probes for neurotransmitters such as GABA11, 

norepinephrine (NE)12, ATP13, and dopamine14 are poised to expand our understanding of astrocytic 

circuit biology.  

 Compared to neuronal Ca2+ imaging, astrocytic Ca2+ imaging using GCaMP presents particular 

challenges for analysis due to their complex spatiotemporal dynamics. Thus, astrocyte-specific analysis 

software has been developed to capture these dynamics, including techniques that divide the cell into 

distinct subcellular regions corresponding to their anatomy4 or apply a watershed algorithm to identify 

regions-of-interest (ROIs)15. Likewise, GluSnFR imaging analysis techniques are based on manually or 

semi-manually selected ROIs, or by analyzing the entire imaging field together as one ROI2,6,8,16. It is 

worth noting that these and most, although not all17,18, other current techniques rely on the conceptual 

framework of ROIs for image analysis. However, astrocytic Ca2+ and GluSnFR fluorescence dynamics 
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are particularly ill-suited for ROI-based approaches, because the concept of the ROI has several inherent 

assumptions that cannot be satisfied for astrocytic activity data. Astrocytic Ca2+ signals, for example, can 

occupy regions that change size or location across time, can propagate within or across cells, and can 

spatially overlap with other Ca2+ signals that are temporally distinct. ROI-based approaches assume that 

for a given ROI, all signals have a fixed size and shape as specified by the ROI, and all locations within 

the ROI undergo the same dynamics, without propagation. Accordingly, ROI-based techniques may over- 

or under-sample these data, thus obscuring true dynamics and hindering physiological discovery in these 

cells. An ideal imaging analysis framework for astrocytes would take into account, and quantify, all of 

these dynamic features and be free of these ROI-based analytical restrictions. In addition, an ideal tool 

should be applicable to astrocyte imaging data across spatial scales, encompassing subcellular, cellular, 

and population-wide fluorescence dynamics.  

 In this work, we set out to design an image analysis toolbox that would capture the complex, wide-

ranging fluorescent signals observed in most dynamic astrocyte imaging datasets. We reasoned that a 

non-ROI-based approach would better describe the observed fluorescent dynamics, and applied 

probability theory, machine learning, and computational optimization techniques to generate an algorithm 

to do so. We name this resulting software package Astrocyte Quantitative Analysis (AQuA) and validate 

its utility by applying it to simulated datasets that reflect the specific features that make analyzing 

astrocyte data challenging. We next apply AQuA to three experimental two-photon (2P) imaging 

datasets—ex vivo Ca2+ imaging of GCaMP6 from acute cortical slices, in vivo Ca2+ imaging of GCaMP6 

in primary visual cortex (V1) of awake, head-fixed mice, and ex vivo extracellular glutamate, GABA, and 

NE imaging. In these test cases, we find that AQuA accurately detects fluorescence dynamics by 

capturing fluorescence events as they change in space and time, rather than the activity from a single 

location in space, as in ROI-based approaches. AQuA outputs a comprehensive set of biologically 

relevant parameters from these datasets, including propagation speed, propagation direction, area, shape, 

and spatial frequency. Using these detected events and associated output features, we uncover 

neurobiological phenomena that have not been previously described in astrocytes.  

 A wide variety of cellular and circuit functions have been ascribed to astrocytes, and a key question 

currently under examination in the field is whether certain types of Ca2+ activities observed in these cells 

correspond to particular neurobiological functions. However, current techniques with which to classify 

these observed dynamics remain inadequate since they do not capture many of the dynamics recorded in 

fluorescent imaging of astrocytic activity. The framework we describe here allows for a rigorous, in-depth 

dissection of astrocyte physiology across spatial and temporal imaging scales, and sets the stage for a 

comprehensive categorization of heterogeneous astrocyte activities both at baseline and after 

experimental manipulations.  
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Results 

Design principles of the AQuA algorithm 

 To move away from ROI-based analysis approaches and accurately capture heterogeneous astrocyte 

fluorescence dynamics, we set out to design an algorithm to decompose raw dynamic astrocyte imaging 

data into a set of quantifiable events (Fig 1a, Supp. Movie 1, Supp. Fig. 1–3). Here, we define an event as 

a cycle of a signal increase and decrease that coherently occurs in a spatially connected region, but this 

region is defined by the fluorescence dynamics, not a priori by the user or the cell morphology. 

Algorithmically, this definition is converted to the following two rules: 1) the temporal trajectory for an 

event contains only one peak (single-cycle rule, Fig. 1b) and 2) adjacent locations in the same event have 

similar trajectories (smoothness rule, Fig. 1b). The task of the AQuA algorithm is to detect all events, 

and, for each event, to identify the temporal trajectory, the spatial footprint, and how the signal propagates 

within the footprint. Briefly, our strategy of event-detection is to a) explore the single-cycle rule to find 

peaks, which are used to specify the time window and temporal trajectory, b) explore the smoothness rule 

to group spatially adjacent peaks, whose locations specify the footprint, c) apply machine learning and 

optimization techniques to iteratively refine the spatial and temporal properties of the event to best fit the 

data, and d) apply statistical theory to determine whether a detected event is true or due to noise (Fig. 1).  

 Full statistical and computational details are provided in the Methods, but we want to highlight one 

technical innovation (Graphical Time Warping [GTW])19 and one new concept (the single-source rule) 

that jointly enable a nuanced analysis of astrocyte fluorescence dynamics as shown below in application 

to experimental datasets. With GTW, we are able to consider fluorescent signal propagation as integrated 

into each modeled event. To the best of our knowledge, signal propagation has never been rigorously 

accounted for and has been considered an obstacle to analysis. With GTW, we can estimate and quantify 

propagation patterns in the data. With the introduction of the single-source rule (Fig. 1b), each event only 

contains a single initiation source and we can separate events that are initiated at different locations but 

meet in the middle. The single-source rule also allows us to divide large-scale activity that can occur 

across an entire field-of-view into individual events, each with a single initiation location.    

 The output of the event-based AQuA algorithm is a list of detected events, each associated with three 

categories of parameters: 1) the spatial map indicating where the event occurs, 2) the dynamic curve 

corresponding to fluorescence change over time (dF/F), and 3) the propagation map indicating signal 

propagation. For each event, we use the spatial map to compute the event area, diameter and shape of the 

domain it occupies (Fig 1c). Using the dynamic curve, we can calculate maximum dF/F, duration, onset-

time, rise-time and decay-time. Using the propagation map, we extract event initiation location, as well as 

propagation path, direction, and speed. In addition, AQuA computes features involving more than one 



5 

event, such as the frequency of events at a position, and the overall number of events in a specified region 

or cell. A complete list of features is in the Methods section.  

 

Validation of AQuA using simulated data 

 To validate AQuA, we designed three simulation datasets so that we know the ground truth for the 

dynamics of each event. These three datasets independently vary the three key phenomena observed in 

astrocyte imaging datasets that cause ROI-based approaches to misanalyze the data: size-variability, 

location-variability, and propagation. While these three phenomena usually co-occur in real datasets, we 

simulated each phenomenon independently to examine their individual impact and test AQuA’s 

performance relative to other fluorescence image analysis tools, including CaImAn20, Suite2P21, 

CaSCaDe15, and GECI-quant4. CaImAn and Suite2P are widely used for neuronal Ca2+ imaging analysis 

while CaSCaDe and GECI-quant were designed specifically for Ca2+ activity in astrocytes. We should 

note that although CaSCaDe uses the term "events" to describe Ca2+ transients, all four methods are ROI-

based. In our analysis of these simulated datasets, as elaborated in the Methods, we optimally tuned the 

ROI-detection for all methods for an objective comparison of the best performance of each method. We 

also systematically changed the signal-to-noise-ratio (SNR) to examine the effect of noise on each 

analysis method. 

 To evaluate the performance on all simulated datasets, we used two measures: IoU and a map of the 

event counts. IoU (intersection over union) measures the consistency between detected and the ground-

truth events, and takes into account both the spatial and temporal accuracy of detected events. IoU ranges 

from 0 to 1, where 1 indicates perfect detection and 0 indicates a complete failure in detection. The map 

of the event counts is obtained by counting the number of events at each pixel in the field, and is used to 

visually assess the accuracy of event-detection results by a comparison to the ground-truth map.  

 We first studied the impact of size-varying events (Fig. 2a), in which multiple events occurred at the 

same location and the event centers remain fixed, but sizes changed across different events. The degree of 

size change is quantified using size-change odds (see Methods) where a size-change odds of 1 indicates 

events with the same size, while an odds of 5 is the largest size change we simulated. For instance, when 

we set the odds at 5, we simulate events with sizes randomly distributed between 0.2 and 5 times the 

baseline size, with an SNR of 10dB, chosen to closely match the noise level in real experimental data. 

When there was no size change (odds=1), all methods, as expected, performed well with IoUs near 0.95 

(Fig. 2a). When the degree of size change was increased, AQuA still performed well (IoU=0.95), while 

all other methods quickly drop to 0.4–0.5. We then changed our analysis to study the impact of different 

SNRs on performance by varying SNR, but fixing the size-change odds. AQuA performed better with 

increasing SNR and achieved nearly perfect detection accuracy (IoU=1) at 20dB. In comparison, all other 
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methods had an IoU less than 0.6, even at high SNR (Fig. 2a). We also examined the results by 

visualizing event counts at each pixel (Supp. Fig. 4–5). With size change odds of 3 or 5, the map of 

ground truth event-counts did not show clear ROI boundaries, because events from the same ROI had 

various sizes, and because events from different ROIs can overlap at some spatial locations (Supp. Fig. 4). 

It is clear from these maps that AQuA reported faithfully the events under various SNRs but all other 

methods had erroneous event counts and produced artificial patterns.  

 We next focused on the impact of shifting the event locations. In these simulated datasets, event size 

was fixed but event location changed, and degree of change was represented by a location change score 

(Fig. 2b). A value of zero indicates no location change and greater values represent larger degrees of 

change. Here, results are similar to changing size, as above. AQuA models the location change well and 

its performance is not affected by degree of location change. Likewise, AQuA reached near perfect results 

when SNR was high. In contrast, all other analysis methods performed poorly with changing locations. In 

particular, the other astrocyte-specific methods (CaSCaDe and GECI-quant) missed many signals. Even 

though the overall conclusion is similar for both the size- and location-changing events, the peer methods 

had more variation of IoU performance among themselves and the event count map showed distinct 

patterns (Supp. Fig. 4).  

 In our third simulated dataset, we asked how the phenomenon of fluorescence signal propagation 

impacts the performance of AQuA compared to the other methods. Two propagation types—growing and 

moving—were simulated in this dataset (Fig. 2c), although they were also separately evaluated (Supp. Fig 

6). Propagation frame number denotes the difference between the earliest and latest onset times within a 

single event. When propagation frame number is zero, all signals within one ROI, but not necessarily 

across ROIs, are synchronized and there is no propagation. Similar results to the two scenarios discussed 

above were obtained here, with AQuA out-performing all the other methods by a large margin. These 

results indicate that AQuA can handle various types of propagation well, while the performance of other 

methods degrades rapidly when propagation is introduced.  

 In summary, when any of the three ROI-violating factors—size-variability, location-variability, and 

propagation—is introduced, other methods do not accurately capture the signal dynamics of the simulated 

data, and AQuA outperforms them by a large margin. We expect that the performance margin on real 

experimental data is larger than those quantified in the simulation studies here, since real data exhibits 

multiple ROI-violating factors and the performance of the ROI-based methods is over-estimated in our 

simulations (see Methods). However, these IoU analyses and the event count visualizations informed us 

about different types of errors observed in ROI-based methods. To focus on astrocyte-specific methods, 

CaSCaDe tends to over-segment, as it is based on watershed segmentation. GECI-quant, especially its 

soma-segmentation step, is particularly challenged by noise, causing many signals to be lost (Supp. Fig. 
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5). This accounts for the result that GECI-quant is not able to detect anything when the SNR is low (Fig. 

2b, right). We note that although all events are constrained in the same ROI in the propagation 

simulations, propagation caused ROI-based approaches to quickly decline in performance. Here, GECI-

quant was influenced by noise level, while CaSCaDe’s assumption of synchronized signals did not allow 

accurate capture of the event dynamics.  

 

AQuA enables identification of single-cell physiological heterogeneities 

 To test AQuA’s performance on real astrocyte fluorescence imaging data and ask whether AQuA 

could be used for classifying Ca2+ activities observed in single cells, we first ran AQuA’s event-detection 

on Ca2+ activity recorded from astrocytes in acute cortical slices from mouse V1 using 2P microscopy. 

We used a viral approach to express the genetically encoded Ca2+ indicator GCaMP6f3 in layer 2/3 (L2/3) 

astrocytes. Unlike ROI-based approaches, AQuA detects both propagative and non-propagative activity, 

revealing Ca2+ events with a variety of shapes and sizes (Fig. 3a, left). Further, since AQuA not only 

detects Ca2+ events' spatial footprint but also their time-course, we can apply AQuA to measure the 

propagation direction each event travels over its lifetime. Imaging single cells, we used the soma as a 

landmark, and classified events as traveling toward the soma (pink), away from the soma (purple), or 

static (blue) for the majority of its lifetime (Fig. 3a, right). We used AQuA’s automatic feature-extraction 

and combined multiple measurements (size, propagation direction, duration, and minimum proximity to 

soma) into one spatiotemporal summary plot (Fig. 3b). Since astrocytes exhibit a wide diversity of Ca2+ 

activities across subcellular compartments6,22,23, plotting the signals this way rather than standard dF/F  

transients highlights these heterogeneities, allows us to map the spatial location of the Ca2+ signals, and 

enables a quick, visual impression of a large amount of complex data (Supp. Fig. 7). We note that while 

the expression of GCaMP6 in these experiments enabled us to analyze events within single cells, some 

probes do not allow clear delineation of single cells. However, a secondary fluorophore (such as 

TdTomato) often serves the purpose of defining the morphology of single cells, and the AQuA software 

has been designed to overlay morphological masks on the dynamic fluorescence channel.  

 We next asked whether some subcellular regions of astrocytes have more dynamic activity than 

others across all analyzed cells (n=11 cells). Although we detected more static events than dynamic 

overall (Supp. Fig. 8a), we observed a higher proportion of dynamic events than static events in the soma 

(59%, Fig. 3c, Supp. Fig. 8b). We then characterized events by propagation direction and event initiation 

location (Fig. 3d). Events that begin close to the soma (≤50th percentile) and propagate away (purple) 

were on average larger than the events propagating toward the soma (pink, two-tailed t-test). Similarly, 

those events that began close to the soma (≤50th percentile) and propagated away had on average a longer 

duration than events propagating toward the soma (two-tailed t-test, Fig. 3e, Supp. Fig. 8). 
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 One of AQuA’s strengths is its ability to automatically extract a large number of features. These 

features can be used to form a comprehensive Ca2+  measurement matrix, where each row represents an 

event and each column an extracted feature, and which includes all events for each cell (Supp. Fig. 9). 

Dimensionality reduction applied to this matrix can, in turn, be used to visualize each cell’s Ca2+ signature 

(Supp. Fig. 9, white rows separate each individual cell). To do this, we applied t-distributed Stochastic 

Neighbor Embedding (t-SNE)24, followed by k-means clustering to assign the cells to groups (Supp. Fig. 

9), revealing clusters marked by cells with large differences in median frequency (Fig. 3f). Astrocytic 

Ca2+ frequency is commonly measured as the number of transients that occur over time within an ROI. 

Here, we instead define frequency from an event-based perspective in two ways: 1) for each event, the 

number of other events that overlap in time, and 2) for each event, the number of other events that overlap 

in space. We used these two measures (temporal and spatial overlap) and several other extracted measures 

(Supp. Fig. 9) to construct the matrix used for t-SNE visualization and clustering. We next tested how 

well our AQuA-specific features perform at clustering the heterogeneity among cells compared to two 

ROI-based methods (Fig. 3g), and found that the AQuA-based method outperformed the others. In fact, 

even when we only use AQuA-specific features for this analysis—area, temporal overlap, spatial overlap, 

and propagation speed—and remove all features that can be extracted from ROI-based methods, AQuA 

still significantly outperforms in clustering cells (Supp. Fig. 9g–i). AQuA-extracted features that 

correspond only to those that can be obtained by ROI-based methods—standard frequency, amplitude, 

duration—do not allow clustering significantly better than the ROI-based approaches themselves (Supp. 

Fig. 9g–i), suggesting that the AQuA-specific features are those that best capture dynamic fluorescence 

features that vary among single cells. This indicates that AQuA may be used to extract data from existing 

ex vivo Ca2+ imaging datasets to reveal previously uncovered dynamics and sort cells into functionally 

relevant clusters. 

 

In vivo astrocytic Ca2+ bursts display anatomical directionality 

 Recent interest in astrocytic activity at the mesoscale has been driven by population-level, multi-

cellular astrocytic Ca2+ imaging1,5,7,8,25-27. To test the power of AQuA-based event detection, we next 

applied it to populations of in vivo astrocyte Ca2+
 activity. Previous studies have described temporal 

details of astrocyte activation4,5,7,8,25, yet have left largely unaddressed the combined spatiotemporal 

properties of Ca2+ activity at the circuit-level, across multiple cells. Here, we explored whether AQuA can 

uncover spatial patterns within populations of cortical astrocytes in an awake animal, and carried out 

head-fixed, 2P imaging of GCaMP6f activity in V1, L2/3 astrocytes. Populations of in vivo cortical 

astrocytes exhibit both small, focal, desynchronized Ca2+
 activity25, and large, coordinated activities4,5 that 

we refer to as bursts in this context. Importantly, AQuA detected both of these classes of Ca2+ activity in 
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the same in vivo imaging datasets, suggesting that it could be a powerful tool to investigate both kinds of 

activity—and the interactions between them—even within a single dataset (Movie 2, Fig. 4a). Similar to 

previous studies, we observed many (but not all) of the bursts co-occurring with locomotion periods (Fig. 

4b, pink), and many events within these burst periods displayed propagation (Fig. 4c, top). These 

propagative events were larger in area and had greater propagation distances compared to the events that 

occurred during the inter-burst periods (Fig. 4c, bottom). Here, to test whether AQuA could help us 

understand these large bursts and discover discrete features of this phenomenon, we next focused our 

investigation on all the events occurring during the burst periods (Supp. Fig. 10).   

 To analyze the structure of these burst-period Ca2+ events, we investigated fluorescence propagation 

across multiple spatial scales: at the level of individual events, of subregions of the imaging field 

encompassing multiple events, and of the entire imaging field. At the level of individual events within a 

single burst, plotting the individual event direction within the entire field of view did not reveal a 

consistent propagation direction (Fig. 4d). However, when we divided our field-of-view into equivalently 

sized, subregional tiles (Fig. 4e), we observed more consistent propagation direction within single 

subregions (Fig. 4f). When we plot the cumulative count of the percentage of bursts with regions that 

propagate in the same direction, we indeed observe that this curve is right-shifted compared to a 

simulated random assignment of majority regional propagation direction (Fig. 4g), suggesting that there 

does exist regularity in the propagation pattern within bursts, but that this only becomes apparent at a 

spatial scale larger than individual events.  

 Since the consistency of propagation directionality increased with increasing spatial scales, we next 

explored whole imaging field dynamics during Ca2+ burst events. We noted that the percentage of the 

active field of view varied across burst periods (Fig. 4b), with a wide variability from few to hundreds of 

events (Fig. 4h). To control for number and size of events, we used the difference between each event’s 

onset time to calculate a single burst-wide propagation direction (Fig. 4h, black arrow). Doing so revealed 

a consistent posterior-medial directionality of population Ca2+ activity in L2/3 V1 astrocytes (Fig. 4i). 

Although Ca2+ bursts have been previously observed using GCaMP6 imaging in awake mice4,5, consistent 

spatial directionality with respect to the underlying anatomy has never been described. This observed 

posterior-medial directionality may be revealing anatomical and physiological underpinnings of these 

bursts, and since they have been shown to be at least partly mediated by norepinephrine5,7, they could be 

reflective of the response of groups of cortical astrocytes to incoming adrenergic axons originating in 

locus coeruleus. Regardless of burst mechanism(s), these results suggest that in vivo, astrocytic Ca2+ 

propagation dynamics differ depending on the spatial scale examined, which may explain previously 

described discrepancies in dynamics.  
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AQuA-based detection of extracellular molecular dynamics  

 We next asked whether AQuA could be used to detect astrocytic fluorescent activities with distinct 

spatiotemporal dynamics than we observe when measuring intracellular Ca2+. We decided to perform 

imaging of extracellular-facing probes, including GluSnFR2, to measure extracellular glutamate 

dynamics, since it has been widely used for glutamate imaging2,6,8 and astrocytes regulate extracellular 

glutamate concentration. In addition, GluSnFR dynamics are much faster than GCaMP dynamics, which 

causes detection to be very susceptible to low SNR. This can be an additional challenge and thus much 

previous GluSnFR analyses has relied on averaging across multiple trials. While GluSnFR has been 

expressed both in astrocytes and in neurons previously2,8,16,28, how cell type-specific expression and 

morphology—particularly relative to synaptic and extra-synaptic glutamate release—determines its 

fluorescent dynamics has not been fully explored16,28. No previously applied analytical tools have been 

reported to automatically detect GluSnFR-based glutamate events to accommodate differential event sizes 

and shapes. Here, we explored whether application of AQuA could be used to detect cell type-specific 

differences in glutamate dynamics that may be based on heterogeneous underlying morphologies and cell 

biological mechanisms. 

 We expressed GluSnFR in either astrocytes or neurons using cell type-specific viruses2 and carried 

out 2P imaging of spontaneous GluSnFR activity in acute cortical V1 slices from L2/3. Distinct 

morphological differences between astrocytic and neuronal expression of GluSnFR were evident, as has 

been observed previously8,29,30 (Fig. 5a). We applied AQuA to these datasets to detect significant 

increases in GluSnFR fluorescence, and were able to detect events that were too small and dim to detect 

by eye (Movie 3); AQuA-detected events were confirmed by post hoc ROI-based analysis. Indeed, 62% 

of astrocytic events had an area less than the size of a single astrocyte (100 μm2), and 8% of astrocytic 

and 35% of neuronal glutamate events had a small maximum dF/F (less than 0.5). Because GluSnFR 

events have previously been detected by spatially averaging within a single cell or across broader areas of 

tissue, or by manual detection, the events that AQuA detects are most likely missed by ROI-based 

methods6,8,16 (Supp. Fig. 11). Because AQuA is designed to detect events independently from shape or 

size, events of heterogeneous size and shape were revealed during this analysis (Fig. 5a–b). A large 

proportion of these spontaneous GluSnFR events changed size over the course of the event, with 42% of 

total astrocytic and 32% of total neuronal glutamate events exhibiting changes in area. On average, 

astrocytic GluSnFR events were significantly larger (274 ± 39.56 μm2) than neuronal events (172 ± 57.06 

μm2), sometimes encompassing an entire astrocyte (Supp. Fig. 11). Neuronal GluSnFR events were 

significantly more circular (Figure 5b–d), perhaps reflecting morphological differences between cell type 

somata. We also found that between cell types, GluSnFR events exhibited different size dynamics (Fig. 

5b–c). While there was no difference in the rate of increase in event size between astrocytes and neurons, 
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we did observe that the rate of size decrease of astrocytic events between frames was larger than that of 

neuronal events (Fig. 5c), which may reflect differential synaptic and extrasynaptic glutamate dynamics 

in proximity to subcellular compartments of each cell type.  

 Once we found that AQuA-based detection was effective for quantification of spontaneous GluSnFR 

events, we wanted to test its performance on more spatially and temporally precise glutamate events, 

since GluSnFR can be used to measure synaptic release of glutamate when imaged at fast frame rates2,31. 

To do this, we performed fast (~100Hz) GluSnFR imaging while photoactivating a caged glutamate 

compound (RuBi-glutamate10,32) with a second laser beam. In these experiments, we tested uncaging 

pulses at various durations (25–150ms), and applied AQuA to detect these small-scale, fast events (Fig. 

5d, right). Although we did observe an increase in detection accuracy (identification of event at the time 

and location of the laser uncaging pulse) of uncaging-defined GluSnFR events at longer uncaging 

durations, AQuA detection still showed high accuracy levels at shorter durations, with a minimum of 96% 

average accuracy across durations (Fig. 5d, right; n = 5 cells, 3 replicates/cell). These results indicate that 

AQuA works well for fluorescent event detection at fast frame rates. 

 We lastly wanted to demonstrate that AQuA can be used for other extracellular-facing probes that 

are relevant for astrocyte-neuron physiology. To do this, we imaged and analyzed two recently developed 

genetically encoded probes that sense extracellular neurotransmitters: GABASnFR11 and GRAB-NE12, 

which report GABA and NE dynamics, respectively. We expressed GABASnFR (Fig. 5e, left) in cortical 

astrocytes and GRAB-NE in cortical neurons (Fig 5f, left), and performed ex vivo 2P imaging before and 

after bath application of either NE or GABA. In both cases, we used AQuA to detect events as the 

neurotransmitter contacted the fluorescent sensors. For GABASnFR expression in individual astrocytes, 

we observed that each event increased in both fluorescence amplitude and area with cell-specific 

dynamics (Fig. 5e, right). While the widespread neuronal expression of GRAB-NE did not allow for cell-

specific analysis, it did allow us to observe waves of NE as it was bathed over the slice. Here, AQuA 

enabled detection of the dynamic spatial location, amplitude, and area of these waves as they progressed 

across the slice (Fig 5f, right), indicating that AQuA may be useful to quantify propagating wavefronts in 

other contexts. Together, results in this section suggest that AQuA-based detection can be used to 

quantify the dynamics of extracellular molecules at a range of speeds and spatial spreads, across multiple 

cell types and expression patterns.  

 

Discussion 

 With the development and application of a flexible event-based analysis tool for astrocyte imaging 

datasets, we hope to enable many research groups to accurately quantify observed fluorescence dynamics, 

including those that are un-fixed, propagative, and size varying. Here, we demonstrate that AQuA 
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performs better than many other image analysis methods—including those designed for astrocytic and 

neuronal applications—on simulated datasets, and describe fluorescent event detection in several types of 

datasets, using the genetically encoded GCaMP, GluSnFR, GABASnFR, and GRAB-NE indicators. 

Because AQuA is data-driven, it can be applied to datasets that have not been directly tested here, 

including those captured under different imaging magnifications and spatial resolutions, as well as 

confocal or wide-field imaging systems. In addition, since the AQuA algorithm functions independently 

from frame rate, datasets captured with faster or slower frame rates17,25 are also just as amenable to an 

event-based analysis with AQuA as those shown here. Further, AQuA is applicable to fluorescent 

indicators other than the ones tested here, particularly those that exhibit complex dynamics.   

 We envision the AQuA software and its underlying algorithm as enabling problem-solving for a 

wide range of astrocyte physiological questions, both because AQuA accurately captures dynamics 

exhibited by commonly used fluorescent indicators and because there are more features extracted by 

AQuA that can be analyzed than those extracted by existing methods. Since AQuA-specific features were 

able to capture heterogeneities we observed among single cells when imaging Ca2+, we posit that these 

features may be more physiologically relevant than the standard measurements (amplitude, frequency, 

duration) used to describe astrocytic physiological differences, although these standard measures are also 

features extracted by AQuA. In the current work, we use these multiple features to describe the 

spontaneous astrocyte activity in cortex, but with varying spatial scale, fluorescent probe, and 

experimental preparation. In future work, we and others can apply AQuA-based analyses to other brain 

regions and layers to describe potential functional heterogeneities among astrocytes33. Beyond baseline 

differences, we expect that AQuA will be a powerful tool to quantify physiological effects of 

pharmacological, genetic, and optogenetic manipulations, among others. These manipulations and 

subsequent analyses would allow researchers to examine both astrocyte-intrinsic and -extrinsic 

physiology, depending on whether astrocytes, neurons, or another brain cell type is being changed.  

 Significant disagreement in the field remains about basic physiological functions of astrocytes. 

Perhaps the most outstanding issue is whether astrocytes undergo vesicular release of transmitters such as 

glutamate. While we don’t address this controversial topic in the current work, we expect that the 

heterogeneous activities that we uncover using an AQuA-based analysis of GluSnFR may be key in 

determining different sources of glutamate in neural circuits under different conditions, and could help 

untangle some of the conflicting data in this arena. Our tool enabled us to identify extracellular glutamate 

changes not only by cell type, but also by event size and shape dynamics, demonstrating an in-depth 

analysis of GluSnFR data. The event-based analytical tools presented here may be particularly useful as 

next-generation GluSnFR variants become available and make multiplexed imaging experiments 

increasingly accessible31.  
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 When surveying astrocyte Ca2+ imaging data, experimental regimes can largely be grouped into two 

categories: single-cell, usually ex vivo imaging and population-wide, in vivo imaging focusing on large-

scale activity of many cells. Experimental data and neurobiological conclusions from these two groups 

can differ quite widely, or even conflict. This may be due, in part, to the large, population-wide bursts 

observed with the onset of locomotion in vivo. Many techniques used to analyze these bursting events—

all ROI-based—can under-sample events that occur between bursts by swamping out smaller or shorter 

signals. Here, we present a technique that can be used to sample small- and large-scale activity in the 

same dataset or across datasets, in order to bridge spatiotemporal scales these datasets. As such, this 

event-based analysis tool has the potential to aid researchers in resolving outstanding physiological 

problems, while also tackling new ones.  

 As demonstrated by its utility with Ca2+, glutamate, GABA, and NE datasets, AQuA also has the 

potential to be applied to many other fluorescence imaging datasets that exhibit non-static or propagative 

activity. Although we designed AQuA specifically to study dynamic astrocyte fluorescence, it is open-

source and user-tunable, and we anticipate that experimentalists will find it advantageous in other 

contexts in which neuronal or non-neuronal cells exhibit non-static or propagative fluorescence activity. 

For example, recently described Ca2+ activity in oligodendrocytes displays some similar properties to that 

in astrocytes34,35 and AQuA-based analysis may be useful. Likewise, subcellular compartments in 

neurons, such as dendrites or dendritic spines, have also been shown to exhibit propagative, wave-like 

Ca2+ signals36 and large-scale, whole-brain neuronal imaging can capture burst-like, population-wide 

events37.  

 While we predict that the potential applications are wide, it is also important to note the limitations 

of AQuA, and be clear about when it will not be the most effective approach. Since AQuA detects local 

fluorescence changes as events, it is not well suited to strictly morphological dynamics, such as those 

observed in microglia, and it does not improve on the many excellent tools built for analyzing somatic 

neuronal Ca2+ activity20,21, where ROI assumptions are well satisfied. In addition, AQuA was optimized 

for and tested on 2D datasets, as these comprise the majority of current imaging experiments in the field. 

As techniques for volumetric imaging rapidly advance, an extension to accommodate 3D imaging 

experiments will be necessary. We expect that AQuA is expandable to 3D datasets, based on the fact that 

the algorithmic design is not restricted to 2D assumptions. Although developing a full version of a 3D 

extension is beyond the scope of this paper, we have built a 3D prototype to test the feasibility of 

extending events from 2D to 3D (Supp. Fig. 12). Using a simulated 3D dataset based on published17 

astrocytes, the prototype performed well on 3D data, including detection of various event sizes and signal 

propagation rates (Supp. Fig. 12). These results suggest that a full 3D AQuA extension—including the 

optimization of computational efficiency and visualization—will work on real 3D datasets in the future. 
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In addition, the results demonstrate that AQuA is a flexible and robust platform that can accommodate 

new types of data without large changes to the underlying algorithm.  

   

Acknowledgements 

The authors acknowledge members of the Poskanzer and Yu labs for helpful discussions and comments 

on the manuscript. We thank Gregory Chin and Sae Yokoyama for excellent technical assistance. K.E.P. 

is supported by NIH R01NS099254, NIH R21DA048497, NSF 1604544, Brain Research Foundation 

Frank/Fay Seed Grant, E. Matilda Ziegler Foundation for the Blind, and the Bold & Basic grant from the 

QBI at UCSF. G.Y. is supported by NIH R01MH110504 and NSF 1750931. 

 

Author Contributions 

K.E.P and G.Y. conceived and designed the study. Y.W. and G.Y. designed and implemented the AQuA 

algorithm, software, and simulations. N.V.D. analyzed all imaging data and provided critical conceptual 

input to software design. T.V. carried out GluSnFR experiments; M.K.C. performed ex vivo Ca2+, 

GABASnFR, and GluSnFR experiments; M.R. performed in vivo Ca2+ imaging experiments; and S.P. 

performed GRAB-NE experiments. X.M. implemented the Java version of the software, and built and 

tested the 3D prototype. K.E.P supervised the experimental team. G.Y. supervised the computational 

team. Y.W., N.V.D., K.E.P, and G.Y. wrote the manuscript with input from all authors.  

 

Methods 

Viral injections and surgical procedures 

 For slice experiments, neonatal mice (Swiss Webster, P0–P4) were anesthetized by crushed ice 

anesthesia for 3 minutes and injected with 90nL total virus of AAV5-GFaABC1D.Lck-GCaMP6f, AAV5-

GFaABC1D.cyto-GCaMP6f, AAV1-GFAP-iGluSnFR, AAV1-hsyn-iGluSnFR, AAV2-GFAP-

iGABASnFR.F102G, and AAV9-hsyn-NE2.1 at a rate of 2–3nL/sec. Six injections 0.5μm apart in a 2x3 

grid pattern with 15nL/injection into assumed V1 were performed 0.2μm below pial surface using a 

UMP-3 microsyringe pump (World Precision Instruments). Mice were used for slice imaging experiments 

at P10–P23. 

 For in vivo experiments, adult mice (C57Bl/6, P50–P100) were given dexamethasone (5mg/kg) 

subcutaneously prior to surgery and then anesthetized under isoflurane. A titanium headplate was attached 

to the skull using C&B Metabond (Parkell) and a 3mm diameter craniotomy was cut over the right 

hemisphere ensuring access to visual cortex. Two 300nL injections (600nL total virus) of AAV5-

GFaABC1D.cyto-GCaMP6f were made into visual cortex (0.5–1.0mm anterior and 1.75–2.5mm lateral of 

bregma) at a depth of 0.2–0.3mm and 0.5mm from the pial surface, respectively. Virus was injected at a 
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rate of 2nL/s, with a 10min wait following each injection to allow for diffusion. Following viral injection, 

a glass cranial window was implanted to allow for chronic imaging and secured using C&B metabond38. 

Mice were given at least ten days to recover, followed by habituation for three days to head fixation on a 

circular treadmill, prior to imaging. 

  

Two-photon imaging  

All 2P imaging experiments were carried out on a microscope (Bruker Ultima IV) equipped with a 

Ti:Sa laser (MaiTai, SpectraPhysics). The laser beam was intensity-modulated using a Pockels cell 

(Conoptics) and scanned with linear or resonant galvonometers. Images were acquired with a 16x, 0.8 

N.A. (Nikon, in vivo GCaMP and ex vivo GRAB-NE) or 40x, 0.8. N.A. objective (Nikon, ex vivo 

GCaMP, GluSnFR, and GABASnFR) via a photomultiplier tube (Hamamatsu) using PrairieView 

(Bruker) software. For imaging, 950nm (GCaMP), 910nm (GluSnFR and GABASnFR), or 920nm 

(GRAB-NE) excitation and a 515/30 emission filter was used.  

 

Ex vivo imaging 

 Coronal, acute neocortical slices (400μm thick) from P10–P23 mice were cut with a vibratome (VT 

1200, Leica) in ice-cold cutting solution (in mM): 27 NaHCO3, 1.5 NaH2PO4, 222 sucrose, 2.6 KCl, 2 

MgSO4, 2 CaCl2. Slices were incubated in standard continuously aerated (95% O2/5% CO2) artificial 

cerebrospinal fluid (ACSF) containing (in mM): 123 NaCl, 26 NaHCO3, 1 NaH2PO4, 10 dextrose, 3 KCl, 

2 CaCl2, 2 MgSO4, heated to 37°C and removed from water bath immediately before introducing slices. 

Slices were held in ACSF at room temperature until imaging. Experiments were performed in 

continuously aerated, standard ACSF. 2P scanning for all probes was carried out at 512x512 pixel 

resolution. Acquisition frame rates were 1.1Hz (GCaMP), 4–100Hz (GluSnFR), 6Hz (GABASnFR), and 

1.4Hz (GRAB-NE). For GluSnFR imaging and RuBi-glutamate uncaging experiments, GluSnFR imaging 

was performed at 950nm excitation to ensure that no RuBi-glutamate was released during scanning. 

Acquisition rates were between 95–100Hz, using resonant galvonometers. 300μM RuBi-glutamate was 

added to the circulating ACSF and using a second MaiTai laser tuned to 800nm, five uncaging points 

were successively uncaged at each cell at durations indicated in the figure and at power <3mW that were 

shown in control experiments to cause no direct cell activation.  

 

In vivo GCaMP imaging 

 At least two weeks following surgery mice were head-fixed to a circular treadmill and astrocyte 

calcium activity was visualized at ~2Hz effective frame rate from layers 2/3 of visual cortex with a 
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512x512 pixel resolution at 0.8 microns/pixel. Locomotion speed was monitored using an optoswitch 

(Newark Element 14) connected to an Arduino.  

 

AQuA algorithm and event detection 

Overview of the AQuA algorithm 

 Astrocytic events are heterogeneous and varying with respect to many aspects of their properties. In 

AQuA, we extensively applied machine learning techniques to flexibly model these events, so that our 

approach is data-driven and physiologically relevant parameters are extracted from the data instead of 

imposing a priori assumptions. Probability theory and numerical optimization techniques were applied to 

optimally extract fluorescent signals from background fluctuations. Here, we delineate the eight major 

steps in AQuA (Supp. Fig. 1), discuss motivations behind the algorithm design, and describe key 

technical considerations in further detail.  

 Step 1: data normalization and preprocessing. This step removes experimental artifacts such as 

motion effects, and processes the data so that noise can be well approximated by a standard Gaussian 

distribution. Particular attention is paid to the variance stabilization, estimate of baseline fluorescence, 

and variance. Step 2: detect active voxels. Step 3: identify seeds for peak detection. Step 4: detect peaks 

and their spatiotemporal extension. These three steps work together to achieve peak detection. To detect 

peaks we start from a seed, which is modeled as a spatiotemporal local maximum. However, since 

random fluctuations due to background noise can also result in local maxima, we need to detect active 

voxels such that only the local maxima on the active voxels are considered as seeds. Here, active voxels 

are those likely to have signals. Step 5: cluster peaks to identify candidates for super-events. Temporarily 

ignoring the single-source requirement, the set of spatially-adjacent and temporally-close peaks is defined 

as a super-event. However, clustering results of spatially adjacent peaks are not super-events themselves, 

because a peak group may consist of noise voxels and temporally distant events. Step 6: estimate the 

signal propagation patterns. Step 7: Detect super-events. To get super-events from peak clusters, we 

compute the temporal closeness between spatially adjacent peaks by estimating signal propagation 

patterns. The propagation pattern for each event is also important for its own sake, by providing a new 

way to quantify activity patterns. Step 8: split super-event into individual events with different sources. A 

super-event is split into individual events by further exploiting propagation patterns. Based on 

propagation patterns within a super-event, the locations of event initiation are identified as local minima 

of the onset time map. Each initiation location serves as the event seed. Individual events are obtained by 

assigning each pixel to an event based on spatial connectivity and temporal similarity.  
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Step 1(Data normalization and preprocessing): We correct for motion artifacts in the in vivo dataset using 

standard image registration techniques39 before applying AQuA. However, AQuA does not necessarily 

require motion correction because it performs event-based analysis, which is localized temporally and 

thus less prone to motion artifacts. 

 We perform data normalization and preprocessing to approximate noise by a Gaussian distribution 

with mean=0 and standard deviation=1. For those who want to directly modify our code, pseudocode is 

available (Supp. Table 1). To achieve this normalization, we first apply a square-root transformation to 

the data to ensure that the noise variance after transformation is not related to the intensity itself, an 

operation also known as variance stabilization. Variance stabilization is important so that events with 

bright signals are not over-emphasized and events with dim signals not neglected. Next, the noise 

variance of the transformed data for each pixel is estimated as half of the median of the square of 

differences between two adjacent values in the time series at the pixel. Mathematically, denote 𝑋𝑖 the time 

series at the 𝑖th pixel, where 𝑋𝑖[𝑡] is the value of the 𝑡th time point. Then, the noise variance 𝜎𝑖
2 at the 𝑖th 

pixel is estimated as 

     𝜎𝑖
2 =

1

2
median𝑡=2,…,T {(𝑋𝑖[𝑡] − 𝑋𝑖[𝑡 − 1])2} .  

We do not use the conventional sample variance 
1

𝑇
∑ (𝑋𝑖[𝑡] − mean(𝑋𝑖))2𝑇

𝑡=1  as the estimate, which tends 

to inflate the variance when signals exist in the time series. Third, to estimate the baseline fluorescence 𝐹0 

for each pixel, we compute the minimum of the moving average of 25 time-points in a user-specified 

local time window (default=200 in our experiments). We do not use the full time series to identify the 

minimum, in order to be robust to image degradation or other long-term trends. Considering the minimum 

is a biased estimate of the baseline fluorescence, we add a pre-determined quantity to the minimum to 

serve as the estimate of 𝐹0. Here, the pre-determined quantity depends on the extent of the moving 

average and the size of the time window, and is found through simulation. Denote 𝑉𝑖[𝑡] as the value of 𝑖th 

pixel at the 𝑡th frame in the raw video data. In the following, all modeling is performed on the normalized 

data, 

       𝑍𝑖[𝑡] =
√𝑉𝑖[𝑡]−√𝐹𝑖0

𝜎𝑖
, 

where the subscript 𝑖 denotes that the baseline fluorescence and noise variance are location- and  pixel-

specific. It is worth noting that the data normalization and preprocessing is used to build an accurate 

statistical model so that signals can be reliably distinguished from noise. When we extract activity-related 

features such as rise and decay time, raw data is used. 

 

Step 2 (Detecting active voxels): A voxel is defined as a pixel of a certain frame. For example, voxel 

(𝑥, 𝑦, 𝑡) denotes the pixel at location (𝑥, 𝑦) in the 𝑡th frame in the movie. An active voxel is the voxel that 
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contains an activity signal. If a voxel is not associated with any event, it is not considered active. Since an 

event often occupies multiple pixels and extends several frames, we first apply 3D Gaussian filtering to 

smooth the data to reduce the impact of noise. Then, we calculate the z-scores for each voxel in the 

smoothed data. Here, z-score is computed as the value of the voxel divided by its standard deviation, 

which can be estimated as in the normalization procedure above, but now on the smoothed data. All 

voxels that have z-scores larger than a given threshold are considered tentative active voxels. A liberal 

threshold is used here to retain most signals, often at a z-score of 3. We next calculate the size of groups 

of connected tentative active voxels, with spatially connected tentative active belonging to the same group 

and a minimum size threshold (often 4). If a group of tentative active voxels is less than the threshold, all 

voxels in this group are removed, resulting in a final list of active voxels. Pseudocode is presented in 

Supp. Table 1. 

 Our event detection can be roughly described as finding bumps in space-time, and it could be asked 

why we don’t simply set a threshold on the ΔF data and identify all components larger than the threshold 

as events. This method is essentially equivalent to our Step 2 (Detecting active voxels), but there are 

motivations to go beyond this step. Even if simple thresholding detected individual events perfectly, 

many features of each event—such as propagation patterns—cannot be directly derived. More 

importantly, no threshold we have found can faithfully detect real events (Supp. Fig. 3). Three types of 

commonly observed complexities lead to this insufficiency in thresholding (Supp. Fig 3b). First, not all 

pixels drop below the threshold because of residual signals. Second, neighboring events occurring at 

different times can be spatiotemporally connected. Third, two events can be temporally separated when 

they appear, but meet with each other after propagation. 

 

Step 3 (Identifying seeds for peak detection): Similar to the detection of active voxels, we apply 3D 

Gaussian smoothing to the normalized data and then find all local maxima, defined as connected 

components of pixels with a constant intensity value and with all neighboring pixels having a lower value. 

Considering our time-lapse images as three-dimensional arrays (2D space plus 1D time), each single pixel 

has 26 neighbors. Although each local maximum generally occupies one pixel due to random fluctuation 

inherent in the data, this definition allows a local maximum to occupy multiple pixels of the same 

intensity value. This is helpful for the case in which some pixels have saturated values. Because pure 

random fluctuation can also lead to local maxima, we restrict the search of local maxima to active voxels 

only (see pseudocode in Supp. Table 1). The resultant local maxima are considered seeds for the purpose 

of peak detection, the subsequent step in the algorithm. We start peak detection by identifying the local 

maxima as seeds because the maxima are likely to contain the strongest signal and thus have a better SNR 
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than other points. The 3D Gaussian smoothing is used to further improve SNR, motivated by the fact that 

an event occupies multiple pixels and spans multiple time points. 

 

Step 4 (Detecting peaks and their spatiotemporal extent): We partially and temporally extend each seed 

detected above to all voxels that are potentially associated with each event. We call the collection of the 

seed and its extended voxels the super voxel. Seeds are processed one-by-one, with higher intensity seeds 

processed first. Each seed is first extended temporally, then spatially.  

 The spatiotemporal index (𝑥0, 𝑦0, 𝑡0) denotes the seed. When we temporally extend the seed 

backwards and forwards (Supp. Fig 2b, Supp. Table 2), we encounter two main scenarios. In the first, a 

voxel before (𝑥0, 𝑦0, 𝑡0) has a value close to the baseline 𝐹0, and a voxel after (𝑥0, 𝑦0, 𝑡0) also is close to 

𝐹0. If a voxel has an intensity <20% of the seed value, it is defined as close to baseline. In this scenario, 

the seed is extended temporally until it reaches these two voxels. In the second scenario, extension in at 

least one of two directions never meets a voxel with value that is considered close to the baseline before 

meeting another seed. This scenario could happen when one event begins before the previous event drops 

completely to the baseline fluorescence level. To determine whether these two seeds should be merged 

and thus belong to the same event, we denote 𝑉min the minimum value between the two seeds and 

calculate the difference between 𝑉min and value at the seed (𝑥0, 𝑦0, 𝑡0). If the difference is larger than the 

threshold Δ𝑡𝑤, which is 2𝜎0 by default for most data, the minimum is considered the end of the extension. 

Otherwise, these two seeds are merged and the extension continues. For very high peaks, this threshold is 

too low for perceptually meaningful separation. To split two adjacent high Δ𝐹 peaks, a strong decrease 

between them is needed and the threshold is changed to  Δ𝑡𝑤 = max(0.3𝛥𝐹(𝑥, 𝑦, 𝑡0), 2𝜎0).  

 Once each seed 𝑖 is temporally extended from (𝑥𝑖, 𝑦𝑖 , 𝑡𝑖) to a peak (𝑥𝑖 , 𝑦𝑖 , (𝑡𝑖 − 𝑎𝑖): (𝑡𝑖 + 𝑏𝑖)), (𝑡𝑖 −

𝑎𝑖): (𝑡𝑖 + 𝑏𝑖) denotes a time window spanning from 𝑡𝑖 − 𝑎𝑖 to 𝑡𝑖 + 𝑏𝑖. We define reference curve 𝑐𝑖 as the 

average of nine pixels around (𝑥𝑖 , 𝑦𝑖) in that time window. To spatially extend each peak to cover most 

signals-of-interest, each seed becomes a set of voxels ⋃ (𝑥𝑖𝑘 , 𝑦𝑖𝑘 , (𝑡𝑖 − 𝑎𝑖): (𝑡𝑖 + 𝑏𝑖))𝐾
𝑘=1  after extension, 

where the corresponding spatial footprint, 𝐾 pixels {(𝑥𝑖𝑘 , 𝑦𝑖𝑘), 𝑘 = 1 … 𝐾}, is spatially connected. During 

this process, each seed is associated with two sets. The first is Ω𝑖, which are pixels already associated 

with seed 𝑖. Each pixel in this set, (𝑥𝑖1, 𝑦𝑖1), e. g., corresponds to a set of voxels: (𝑥𝑖1, 𝑦𝑖1, 𝑡𝑖 − 𝑎𝑖: 𝑡𝑖 + 𝑏𝑖). 

The second set is Θ𝑖, the set of pixels to avoid. Initially, Ω𝑖 = {(𝑥𝑖, 𝑦𝑖)} and Θ𝑖 is empty. 

The spatial extension operation for each seed is repeated a maximum of 40 rounds. For each seed, 

the set Ω𝑖 is spatially dilated with a 3x3 square, thus only testing pixels adjacent to the Ω𝑖boundary. Next, 

Θ𝑖 is removed from the dilated region. We then test whether each new pixel should be added to Ω𝑖 or not. 

Because for each given new pixel and each time window we have a time series, we can calculate the 

Pearson correlation coefficient between this time series and 𝑐𝑖. The correlation coefficient is converted to 
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a z-score using the Fisher transform. If the z-score is higher than the user-defined given threshold, the 

pixel is added to Ω𝑖. Otherwise, it is added to Θ𝑖. Because all seeds are local maxima, no time alignment 

is needed here. 

During the extension process, different super voxels can meet. We want to stop the extension process 

of one super voxel only when it meets the bright part of other super voxels (50% rising to 50% decaying). 

For example, we have two peaks from two seeds: (𝑥1, 𝑦1, (𝑡1 − 𝑎1): (𝑡1 + 𝑏1)) and (𝑥2, 𝑦2, (𝑡2 −

𝑎2): (𝑡2 + 𝑏2)). Assume the first seed has already occupied pixel (𝑥3, 𝑦3). When the second seed tries to 

determine whether it should extend to (𝑥3, 𝑦3) or not, we calculate whether (𝑡1 − 𝑎1: 𝑡1 + 𝑏1) and (𝑡2 −

𝑎2: 𝑡2 + 𝑏2) sufficiently overlap. Two peaks sufficient overlap if the 50% rising to 50% decay ranges of 

the two peaks overlap. Thus, if (𝑡1 − 𝑎1: 𝑡1 + 𝑏1) and (𝑡2 − 𝑎2: 𝑡2 + 𝑏2) sufficiently overlap, seed two 

will not include pixel (𝑥3, 𝑦3) and it is added to Θ2. Otherwise, it is added to Ω2. After spatial extension is 

complete, we remove super voxels with Ω𝑖 < 4 pixels or total voxels < 8 pixels.  

 

Step 5 (Clustering peaks to identify candidates for super-events): A super-event is defined as a group of 

events connected spatially but originating from different initiation locations. This step was motivated by 

the frequent observation in real data that multiple events can be spatially connected at some time point. 

One example is a large burst in the in vivo dataset, where multiple events start at different places but 

merge as a burst at later stage. Another example is a set of two events originating from different places, 

propagating and meeting each other in the middle (Supp. Fig. 3). Thus, in a spatial direction, we may 

encounter multiple events within the super-event. However, we never encounter two or more events in the 

temporal direction, which guides the following algorithm. To identify candidates for super-events, we 

next cluster peaks, but these results are not identical to super-events, because voxels extended to be 

associated with the peak may have some errors. As discussed below, the candidate super-event must be 

purified to resolve the final super-event.  

 Since each super-voxel extends from its seed (representative peak), we also call the process of 

clustering super-voxels as clustering peaks for conceptual convenience. If two super-voxels are connected 

and their rise-time difference is less than a given threshold (as discussed below), they are considered 

neighbors. For two super-voxels, if 10% of pixels of either super-voxel is also occupied by the other, they 

are a conflicting pair. For each super-voxel, we list all its neighbors and conflicting counterparts. To 

cluster peaks/super-voxels (Supp. Fig. 2b, Supp. Table 3), we begin with the earliest occurring super-

voxel and check each of its neighbors. If a neighbor is not conflicting with that super-voxel, it is 

combined with the super-voxel. This process is repeated until no new super-voxel can be added. Then we 

move to the next earliest super-voxel that is not added to any others, and repeat this process. An iterative 

approach prioritizes events that are close to each other. Supposing the largest rising time difference for 
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super-voxels that is allowed to be neighbors is 10, we start the procedure with the allowed difference as 0 

and merge the super voxels. Then we increment the allowed difference by 1 and repeat the step above, 

until the rising time difference allowed reaches 10.  

 

Step 6 (Estimating signal propagation patterns): For each spatial location/pixel, an associated time series 

indicates the signal dynamics. Estimation of propagation patterns is formulated as a mathematical 

problem of time alignment between the time series at each location and a representative/reference time 

series. Time alignment results directly relay the delay of a given pixel at a time frame with respect to the 

representative dynamics. Conventionally, time alignment is accomplished by dynamic time warping 

(DTW)40. However, DTW is notoriously prone to noise, which leads to unreliable propagation estimation. 

Since two adjacent pixels have more similar propagation patterns than two distant pixels, we impose a 

smoothness constraint on neighboring pixels using our recently developed mathematical model—

Graphical Time Warping (GTW)—to explicitly incorporate this constraint19. However, since we do not 

have a representative time series at the very beginning, our strategy is to guess a reference time series 

from the data and align time series at each pixel to this reference. Then, we use alignment results to obtain 

an updated reference, and iterate the process of alignment and update of reference until it converges 

(Supp. Fig. 2b, Supp. Table 3). 

 To initialize the reference time series, we search for the voxel with the largest Δ𝐹/𝐹 value and 

record that voxel’s location. The initial reference is then estimated as the average time series of the pixels 

in the 5x5 square around that location, with the square size a user-tunable parameter. The voxel with the 

largest Δ𝐹/𝐹 value is used because it has the best signal-to-noise ratio. We do not use the time series at a 

single pixel to initiate the reference because it is noisy, nor do we use the average time series over all the 

pixels, because the average would be a large distortion to the representative dynamics due to signal 

propagation. Next, we supply the neighborhood graph and the reference time series to GTW to calculate 

the time alignment between all pixels and the reference. For each pixel, we consider the 8 pixels around 

the 3x3 grid as neighbors. A GTW parameter controls the balance between fitness and smoothness of the 

alignment. We empirically found 1 to be a good value. To control computational complexity, GTW has 

another parameter corresponding to the maximum time delay allowed. In all our experiments, we found 

no time delay induced by propagation is larger than 11 frames. So, we set that parameter to 11.  

 

Step 7 (Detecting super-events): Once the time alignment between the representative dynamics and the 

time series at each pixel is obtained, we refine candidate super-events to obtain final super-events. A 

super-event is defined as detected when the representative dynamics and all voxels are associated with the 

super-event. Since each voxel is jointly specified by spatial location and time frame, we next determine 
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which pixels and time frames jointly belong to the super-event. Since representative dynamics are already 

obtained in the previous step of propagation estimation, here we focus on how to determine which pixels 

and which time frames are covered by the super-event. 

 Because each pixel corresponds to a time series, if a pixel belongs to a super-event, its time series 

should be highly correlated to the representative dynamics of the super-event. Note that the correlation is 

calculated based on the aligned time series to account for the time distortion due to signal propagation. 

Thus, we first obtain a new time series for each pixel based on the time alignment obtained previously. 

Then, we calculate the Pearson correlation between each new time series and the representative dynamics, 

leading to a correlation map. We further convert the Pearson correlation to z-score using Fisher’s 

transform. Here, we do not use a threshold for each z-score to determine whether that pixel is statistically 

significantly associated with the super-event because that ignores the neighborhood information in the 

correlation map and is less statistically powerful. Instead, incorporating the information from the 

neighboring pixels, we apply our recently developed order-statistics-based region-growing method to 

determine which pixels should be associated with the super-event (Supp. Fig. 2b, Supp. Table 3)41.  

 To determine which time frames are associated with the super-event, we now examine the 

representative time series, calculating the maximum intensity along the curve and considering all time 

frames with intensity >10% of the maximum to be associated with the super-event. Different pixels may 

have different time frames associated with the super-event. We use the time alignment results above to 

identify the time frames associated with the super-event for each pixel. A time frame at a given pixel is 

associated with the super-event as long as its corresponding time frame in the representative curve is 

associated with the super-event.  

 

Step 8 (Splitting super-events into individual events with different sources): For each super-event, we 

have a 2D map of rise-time for each pixel by re-aligning the super-event using GTW. The local minima in 

this map are potential originating locations for events in this super-event. However, noise may produce 

random local minima, which do not correspond to true originating locations and are removed by merging 

with spatially adjacent local minima. We use rise-time to determine whether two local minima should be 

merged. This idea can be illustrated with the following 1D example: [1 2 4 2 2]. The two local minima are 

the first and the last pixel (pixel 𝑖 and 𝑗, respectively), occurring at time 1 (𝑡0) and 2 (𝑡1), respectively. To 

determine whether they should be merged, we find all paths connecting them. In this example, there is 

only one path and the pixel with the latest rise-time in this path is the third pixel (rise-time=4 (𝑡𝑚)). The 

distance between pixel 𝑖 and pixel 𝑗 induced by this path is therefore defined as max (𝑡𝑚 − 𝑡0, 𝑡𝑚 − 𝑡1). If 

the distance induced by any path is less than the given threshold, these two local minima are merged. 
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We next separate super-events into individual events by simultaneously extending all remaining 

local minima. Each remaining local minimum corresponds to one event. Pixels attached to a local 

minimum are defined as growing. With each iteration, we add the earliest-occurring pixel to a growing 

event. If the pixel under examination is adjacent to a growing event, it is done, and then we find the next 

earliest occurring pixels. Otherwise, we add it to the waitlist and continue with the next earliest occurring 

one. Each time a pixel is successfully added to a growing event, pixels in the waitlist are checked as to 

whether they can be added to growing events. When the growing process ends, all individual events are 

obtained. (see pseudocode in Supp. Table 3). 

 

Run-time analysis of AQuA algorithm: In our implementation, ~ 60–70% of the total running time is spent 

on propagation estimation, and super-event detection and splitting. The super voxel detection step takes 

about 15% of the total time. Another 7% extracts features from each detected event. The event cleaning 

and post-processing takes ~6% of the total time, while it takes <1% of the time to load the data and <2% 

in the active voxel step, which finds baseline, estimates noise, and gets seeds. Tested on a desktop 

computer with Intel Xeon E5-2630 CPU and 128 GB memory using Windows and MATLAB version 

R2018b, the total running time ranges from several minutes to 1.5 hours, depending on file size and data 

complexity (Supp. Table 4).  

 

  

Generation of simulation data sets 

Spatial footprint templates: We built a set of templates for event footprints from real ex vivo data which 

serve as the basis for the ROI maps in the subsequent step. Footprints are processed by morphology 

closing, hole filling, and morphology opening to clean boundaries, with 1683 templates generated total. 

 

ROI maps: 2D ROI maps generated from spatial footprint are used to generate events in subsequent steps. 

Different simulation types have a different preference for the size of the ROIs. Maximum number of ROIs 

is set at 100; ROIs are randomly chosen and placed onto a 2D map <5 pixels from existing ROIs.  

 

Simulation dataset 1 (size-varying events): To simulate event size changes, we generate events for each 

ROI and then alter them to have different sizes so that each ROI in the 2D map will be related to multiple 

events whose centers are inside that ROI, but whose sizes are different. The degree of size change is 

characterized by the odds ratio (maximum = 5) between the maximum and the minimum allowable sizes 

of the events associated with that ROI. For example, with an odds ratio of 2, the size of the event will 

range from 50–200% of the ROI area. The chances for the event size to be larger or smaller than the area 
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of the ROI are the same. To achieve this, we generate a random number between 1 and 2, then randomly 

assign whether to enlarge size by multiplying or shrink by dividing by this factor. Event duration is four 

frames.  

To determine the frames at which the event occurs, we first put the event 10–30 frames (randomly) 

after the ROI occurs. Spatial distance of this event from others must be ≥3 pixels and temporal distance 

≥4 frames. Part of the event may be inside the spatial footprint of other ROIs, as long as its 

spatiotemporal distance to other events is larger than the threshold set above. Events are generated for 

each ROI; on average, we simulate 250 frames with 800 events on 90 ROIs.  

 

Simulation dataset 2 (location-changing events): To simulate event location changes, we generate events 

with the same size for each ROI and shift them to nearby locations. Thus, each ROI (450–550 pixel size) 

is related to multiple events near to that ROI. Denote 𝑑𝑖𝑠𝑡 the distance between the event center and the 

ROI center. Denote 𝑑𝑖𝑎𝑚 the diameter of the ROI. The degree of location change is quantified by the 

ratio between 𝑑𝑖𝑠𝑡 and 𝑑𝑖𝑎𝑚. For example, if we set 0.5 as the maximum degree of location change, the 

distance of the center of a new event to the ROI will be 0–0.5 times the diameter of the ROI. If the ratio is 

0, we simulate a pure ROI dataset. The new event may be located any direction from the ROI, randomly 

picked from 0–2π. Shapes of new events are randomly picked from the templates, so may be different 

from the ROI while size is constant. Event duration is four frames, and the remaining steps are the same 

as above. On average, we simulate 250 frames with 800 events on 90 ROIs. 

 

Simulation dataset 3 (propagating events): We simulated two types of propagation: growing and moving, 

leading to three types of synthetic datasets: growing only, moving only, and mixed. These three types are 

generated similarly. The ROI map is generated as above, and ROI sizes are 4,000–10,000 pixels, with 

events generated inside each ROI. In comparison, events in the size-change and location-change 

simulations can be (fully or partially) outside their corresponding ROIs. We simulate only one seed 

(starting propagation point) in each ROI. For each event, we generate a rise-time map (for each pixel in 

the ROI) and construct event-propagation based on the map. We obtain this map by simulating a growing 

process starting from the seed pixel, with the seed pixel active at the first time-point. At the next time 

point, its neighboring pixels are active with a variable success probability. Growth continues until ≥90% 

of pixels in the ROI are included in the event. Based on the rise-time map, we identify frames at which 

pixels become active in the event. To determine when the event ends, we treat growing and moving 

propagation differently. In growing propagation, all pixels are inactive simultaneously 2 frames after the 

last pixel becomes active. For moving propagation, the duration is 5 frames. Typically, we generate 

approximately 140 events in 14 ROIs for each synthetic dataset. 
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Simulate various SNRs: Gaussian noise is added to the synthetic data to achieve various SNRs. We define 

the signal intensity as the average of all active pixels in all frames. SNR is defined as 

20 × log10
average signal intensity

noise standard deviation
.  

When we change the degree of location change, size change, and propagation duration, we add noise with 

10 dB SNR. To study the impact of SNR on size changes, size-change degree is 3. For location changes, 

distance-change ratio is 0.5 while varying SNRs. For propagation, propagation duration is 5 frames. 

Seven SNRs are tested: 0, 2.5, 5, 7.5, 10, 15, 20 (all in dB). 

 

Post-processing simulated data: We set the average signal intensity at 0.2, with a range from 0–1. 

Synthetic data is spatially filtered to mimic blurred boundaries in real data. The smoothing is performed 

with a Gaussian filter with a standard deviation of 1. Signals with intensity <0.05 after smoothing are 

removed. Remaining signals are temporally filtered with a kernel with a decay τ of 0.6 frames. The rising 

kernel is linear. For propagation simulation, data is down-sampled by five. Next, we perform a cleaning 

step. For each pixel in each event, we find the highest intensity (x_peak) across frames. For that pixel, we 

set signals that are <0.2 times of x_peak to 0. Finally, a uniform background intensity of 0.2 is added 

(except for GECI-quant, where no background is added; see below). 

 

Application of AQuA and peer methods on the simulation data sets 

 Based on our knowledge about simulated datasets, we apply specific considerations for each 

analytical method in order to set optimal parameters for each. In this way, we aim to assess the 

methodological limit of each method, rather than suboptimal performance due to inadequate parameter-

setting. We expect that the performance of the peer methods on simulation data is an overestimate of their 

performance on real experimental data, because here we take advantage of the ground-truth knowledge, 

which is not available for experimental astrocyte data.  

 

Event detection using peer methods: AQuA and CaSCaDe report detected events, while other methods 

report detected ROIs. For a consistent comparison, we detect events from those methods that use ROIs. 

Once ROIs are detected, we calculate the average dF/F curve for each ROI, as follows: The curve is 

temporally smoothed with a time-window of 20. The minimum value in the smoothed curve is considered 

baseline. Assume the minimum value occurs at time 𝑡𝑏𝑎𝑠𝑒. The baseline is then subtracted to obtain the 

dF curve. The noise standard deviation σ is estimated using 40 frames around 𝑡𝑏𝑎𝑠𝑒. We then obtain a z-

score curve as dF/σ. A large z-score indicates an event; we use a z-score threshold of 𝑧0. The value 𝑧0 is 

set according to ground-truth knowledge, so that the smallest-size event in the simulation data is detected 
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by this threshold. Denote 𝑥0 and 𝑠0 the peak intensity and the size for the smallest event in the ground 

truth. We also denote the ground truth noise level as 𝜎0. Then, the threshold is calculated as, 

    𝑧0 = min (
0.9𝑥0√𝑠0

𝜎0
, 10).  

 We clip the score to 10 to avoid setting large values for high SNR. For CaSCaDe, we supply this 

value as the peak intensity threshold parameter. 

 Using the z-score curves and threshold, we detect events from ROIs for CaImAn, Suite2P, and 

GECI-quant. For each z-score curve, we find all frames with values >𝑧0. Each frame is a seed for an 

event. Assume the z-score for that frame is 𝑧1 and we search before and after that frame. If the intensity 

of the frame is ≥ 0.2𝑧1, the frame is associated with the event. If we meet frames with intensities <

0.2𝑧1, we stop searching that direction. Once finished, we obtain all frames associated with the event. We 

continue with another seed frame to find another event. Note that if a frame is considered part of an event, 

we do not consider it as a seed for another event, even if it is >𝑧0. The spatial footprint is fixed for all 

frames in an event, based on the ROI detected. Combining spatial footprint and frames, we obtain events 

for each ROI and identify all voxels belonging to an event. 

  

Parameter setting for AQuA: The parameters of AQuA are based on the ex-vivo-GCaMP-cyto preset with 

the following modifications: For different noise levels, we apply different smoothness levels. The 

smoothing is performed only spatially and values are empirically chosen. The smoothness parameter is 

the standard deviation of the Gaussian smoothing kernel used. 

SNR (dB) 0 2.5 5 7.5 10 15 20 

Smoothness 1 0.9 0.8 0.7 0.6 0.5 0.1 

 

We do not simulate motion of the field-of-view, so we do not discard any boundary pixels, and we set 

regMaskGap = 0. We do not simulate Poisson Gaussian noise; we use additional Gaussian noise only, so 

PG = 0. Event sizes in the simulation are >200 pixels, so we set the minimum event size to be a value 

much smaller: minSize = 16. An event may not have more than one peak, so we set cOver = 0. We do not 

simulate temporally adjacent events, so we set thrTWScl = 4. We do not use proofreading, so we choose a 

more stringent z-score of events: zThr = 5. 

 

Specific considerations for CaSCaDe: We use the following parameters for CaSCaDe: According to the 

duration and temporal distances of the simulated events, we can safely set peak distance 

p.min_peak_dist_ed = 3 and minimum peak length p.min_peak_length = 2. We set the spatial smoothing 

filter size in the 3D smoothing function (bpass3d_v1) according to the size of the event, so we set p.hb 
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equal to 2x median of the radius of the spatial footprint of all events. We use this setting because the 

default settings could not detect larger events on the simulation data sets. For temporal smoothing, we set 

p.zhb=21. We do not need to correct background, so we set p.int_correct= 0. The minimum peak intensity 

is p.peak_int_ed = z0, as discussed above. Minimum event intensity is p.min_int_ed = min(2, 

p.peak_int_ed *0.2). We modified the low-frequency part of the watershed segmentation step to allow 

larger events to be detected, by changing the function bpassW inside the function domain_segment. We 

replaced the noise estimator in CaSCaDe (function estibkg) with the more robust one used by AQuA. 

 CaSCaDe uses a supervised approach to classify detected events. Instead of manually labeling a 

large number of events and training many SVM models, we directly use ground truth to perform training. 

For example, for each event detected by CaSCaDe, we check the ground-truth data to test whether it is 

(part of) a true event. If so, it is retained; otherwise, it is discarded. 

  

Specific considerations for GECI-quant: GECI-quant requires user input at each step. Here, we describe 

how to automate these steps by taking advantage of ground-truth information. This allows us to test many 

conditions and repeat many times. 

 First, we do not add background signals to the synthetic data, so background subtraction is ignored. 

The domain- and the soma-detection steps require manual thresholding. We estimate the best threshold 

using the ground-truth data for each simulation. To do so, we scan 255 thresholds and use the one that 

leads to the best correlation between binarized data and ground truth. We next cleaned the binarized 

signals with sizes <4 pixels. The data here is also smoothed as it is in GECI-quant (3x3 spatial averaging). 

Events with spatial footprints < 1,000 pixels are treated as domains and others are treated as somas. The 

soma segmentation step also uses a threshold. We first process the data as in GECI-quant: for every three 

frames, a standard-deviation map is calculated so that each voxel in ground-truth data is associated with a 

standard deviation value. The average of all standard deviations from the ground-truth data is used as the 

threshold.  

 We next made the entire analysis pipeline automatic. Fiji is called from the command line in each 

step and parameters are passed as well. The final ROIs from Fiji are brought back into MATLAB. ROIs 

are > 15 pixels in area. All other parameters are unchanged, including those for the particle detector. Note 

that this modification cannot be used as an automated version of GECI-quant for real applications since it 

relies on ground-truth information.  

 

Specific considerations for CaImAn: We experimented with different parameters for CaImAn and found 

the following set of parameters performed best on simulation data. As event size can be large, we enlarge 

the patch size, so patch_size = [128,128] and overlap = [32,32]. Components to be found is set to K = 50. 
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The standard deviation of the Gaussian kernel (half size of a neuron) is enlarged to tau = 16. Maximum 

size is 5,000 and the minimum size is 25. Decay time is 0.5. Other parameters are based on default 

settings. No spatial or temporal down-sampling is used. Adjusting these parameters dis not impact results 

on our simulated data. We used the 5/5/2018 version downloaded from 

https://github.com/flatironinstitute/CaImAn-MATLAB. 

 

Specific consideration for Suite2P: The most critical parameter for Suite2P is neuron size. We set 

db.diameter equal to the minimum between 50 and the median of the radius of the spatial footprint of all 

events. Setting the diameter too large leads to an out-of-memory issue. We bypass the registration step. 

We used the 6/4/18 version downloaded from https://github.com/cortex-lab/Suite2P. 

 

Performance evaluation on the simulated data 

To evaluate the accuracy of detected events, we quantify the intersection over the union (IoU). We 

consider all event voxels, not only pixels as in ROI-based methods. For each detected event 𝑖, we find all 

the ground-truth events that have common voxels with event 𝑖. For each such ground-truth event, e.g., 

event 𝑗, we calculate an IoU score (also known as Jaccard index) between this pair of events as the 

following, 

𝐼𝑜𝑈𝑖,𝑗 =
Number(Voxels in event 𝑖 ∩ Voxels in event 𝑗)

Number(Voxels in event 𝑖 ∪ Voxels in event 𝑗)
. 

When a detected event can be perfectly matched with a ground-truth event, its IoU score is 1. A score of 0 

indicates this pair of events has nothing in common. For each detected event 𝑖, we find the maximum IoU 

score among all pairs between this event and a ground-truth event. We denote this maximum score as 

𝐼𝑜𝑈𝑖.  Similarly, we can compute a score 𝐼𝑜𝑈𝑗  for the ground truth event 𝑗. The final IoU score is 

obtained by averaging over all events, including detected and ground-truth events. Supposing we have I 

detected events and 𝐽 ground truth events, where 𝐼 and 𝐽 are not necessarily equal, we compute the final 

score as the following, 

𝐼𝑜𝑈 =
∑ 𝐼𝑜𝑈𝑖

𝐼
𝑖=1   +  ∑ 𝐼𝑜𝑈𝑗

𝐽
𝑗=1

𝐼+𝐽
. 

All simulation is performed on a workstation with 16 cores, 128 GB RAM and 6TB hard drive. We 

use MATLAB 2018a on Windows 10 Enterprise Edition. GECI-quant is run on Fiji with ImageJ version 

1.52h. Each simulation is repeated 10 times. The mean and 95% confidence interval (CI) of IoU score is 

calculated and plotted. The CI is calculated as [𝜇𝑠𝑖𝑚 − 2𝜎𝑠𝑖𝑚, 𝜇𝑠𝑖𝑚 + 2𝜎𝑠𝑖𝑚], where 𝜇𝑠𝑖𝑚 is the 

estimated mean and 𝜎𝑠𝑖𝑚 is the estimated standard deviation (𝜎𝑠𝑖𝑚) based on 10 repetitive runs. 

 

Open-source software for analyzing and visualizing dynamic fluorescent signals in astrocytes.  

https://github.com/cortex-lab/Suite2P
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 Applying software engineering principles, we developed an open-source toolbox for astrocyte 

fluorescent imaging data with detailed user guidelines. The software not only implements the AQuA 

algorithm for detecting events, but also provides an integrated environment for users to see the results, 

interact with the analysis, and combine other types of data such as cell/region masks and landmarks. 

There are two versions of the software with the same functionality, based on MATLAB or Fiji. The 

software is freely available at https://github.com/yu-lab-vt/aqua where detailed documents and example 

applications can be found. A list of extracted features is shown in Supp. Table 5. Here, we highlight 

several important functions of the software.  

 First, the software implements AQuA and provides several options to export the event-detection 

results, including TIFF files with color-coded events, event features in Excel, and MATLAB or Java data 

structures to be used by other programs. Second, the software can display analysis results by adding color 

to the raw video, where color encodes the value of a user-defined extracted feature such as propagation 

speed. Users can specify which feature to be displayed, either an existing feature in AQuA or a user-

designed feature based on features provided by AQuA. We provide several pre-defined colormaps, but 

allow users to manually define colormaps as well. AQuA also provides a side-by-side view, to 

simultaneously display two features or a raw video plus one feature. Third, the software provides a 

convenient way to interactively view detected events and their associated features. By clicking on an 

event, the dF/F curve for the event is shown in a separate panel below the video, and the time-frames 

during which the event occurs are highlighted in red. The values of several other features for that event 

are also shown in another panel. The software allows multiple events to be selected simultaneously, so 

that their curves and features can be plotted together and compared. Fourth, the software provides both 

automatic and manual ways to proofread the results. For automatic proofreading, events are filtered by 

setting desired ranges for features-of-interest. Alternatively, users can choose the ‘delete/restore’ button 

and manually click an event to remove it. Fifth, the software provides flexible ways to incorporate cell 

morphology or landmark information. Users can manually supply cell morphology or regional 

information such as the cell boundary, which can assign events to individual cells. Users can also provide 

landmark information such as the location of a pipette for pharmacological application. Users can also 

load cell, region, or landmark information from other data sources, such as another fluorescence channel 

that captures cell morphology. The software can extract landmark-related features for each event, 

including the direction of propagation relative to a landmark. 
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Figures and Figure Legends 

 

 
 

Figure 1. AQuA-based event detection. (a) Individual representative frames from 5-min ex vivo 

astrocytic GCaMP imaging experiment (top, Supp. Movie 1) with AQuA-detected events shown below. 

Each color represents individual event and is chosen at random. Right column shows the average GCaMP 

fluorescence (top) and all AQuA-detected events (bottom) from the entire movie. Note that contrast is 

different between rows to highlight events. (b) Flowchart of AQuA algorithm. Raw data is visualized as a 

stack of images across time with grey level indicating signal intensity. In the detect peaks panel, five 

peaks are detected and highlighted by solid diamonds, each color denoting one peak. Based on the single-

cycle rule and spatial adjacency of the apexes (solid dots) of each peak, peaks are clustered into spatially 

disconnected groups. Based on smoothness, propagation patterns are estimated for each peak group. By 

applying the single-source rule, two events are detected for peak group 1. Three total events are detected. 

(c) Feature extraction. Based on the event-detection results, AQuA outputs four sets of features relevant 

to astrocytic activity: 1) propagation-related (path, direction, and speed); 2) source of events, indicating 
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where an event is initiated; 3) features related to the event footprint, including area and shape. Event 2 is 

plotted here; 4) features derived from the dF/F dynamics.  
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Figure 2. Performance comparison among image-analysis methods. (a–c) Schematic (top) and results 

(bottom) of performance of five image analysis methods (AQuA, GECI-quant, CaSCaDe, CaImAn, and 
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Suite2P) on simulated datasets, independently changing event size (a), location (b), and propagation 

duration (c). In results, change of independent parameter is shown in left panel, and varying SNR in right. 

For each result, the smallest value of the independent parameter corresponds to a simulation under pure 

ROI assumptions. The larger the values, the greater the violation of the ROI assumptions. IoU 

(intersection over union) measures the overlap between detected and ground-truth events. An IoU=1 is the 

best achievable performance, meaning that all detected events are ground-truth and all ground-truth 

events are detected. Error bars indicate the 95% confidence interval calculated from 10 independent 

replications of simulation, where each simulation contains hundreds of events.  
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Figure 3. AQuA features capture heterogeneities among single astrocytes. (a) Representative 

GCaMP6f ex vivo image (left) with AQuA events overlaid from 1 min of a 5 min movie. Soma marked 

with black s. (Supplemental Movie 1). Right: Representative image sequence for each propagation 

direction class (blue = static, pink = toward soma, purple = away from soma. Soma direction marked with 

s and white arrow. (b) Spatiotemporal plot of Ca2+ activity from 1 min of movie. Each event is 

represented by a polygon that is proportional to its area as it changes over its lifetime. (c) Distribution of 

dynamic and static events as a function of minimum distance from soma (chi-square test, ***p<0.001, 

n=5 slices, 11 cells). All bin widths calculated by Freedman-Diaconis’s rule. (d) Left: Propagative event 

size versus starting distance from soma, segregated by propagation direction. Dashed gray line denotes 

half the distance between the soma and the cell border. Right: Average event area for those that start 

<50% (top) and >50% (bottom) of the distance from the soma, (one-tailed paired t-test, *p<0.05). (e) 

Left: Event duration versus starting distance from soma. Right: Average event duration for those that start 

<50% (top) and >50% (bottom) of the distance from the soma (one-tailed paired t-test, *p<0.05). (f) Two 

event-based measurements of frequency: events with activity overlapping in time (left) and in space 

(right;). Left: one example event (orange) co-occurs with six other events (white) within 10s. Right: event 

colors indicate event number/min (0.2–4) at each location. Median (red) and interquartile range (gray) 

from cells in each cluster in Supp. Fig. 9 (one-tailed Wilcoxon rank sum, ***p<0.001). (g) Quantification 

of centroid distances between cells from two clusters determined by t-SNE plots of Ca2+ activity using 

features calculated from ROIs and 5x5μm tiles (top), (bottom, one-tailed paired t-test, ***p<0.001). 
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Figure 4. AQuA resolves astrocytic Ca2+ propagation directionality across scales. (a) Representative 

in vivo GCaMP6f images during a burst period (top) and inter-burst period (bottom) with overlaid AQuA-

detected events. (b) Population Ca2+ events represented as percentage of the imaging field active as a 

function of time. Burst periods (pink) are identified when Ca2+ activity exceeds more than 1% of the 

active field of view and exceeds more than 10% of the maximum number of event onsets. (c) In vivo Ca2+ 

events propagate with specific directionality. Top: representative propagative event that occurred during 

the burst period in panel a. The propagation direction (change of centroid relative to its original location) 

for each frame is overlaid on the event (right). Bottom: Total propagation distance versus event size for 

all events within bursts (n=6 mice, 66 bursts, 14,967 events). (d) Event propagation direction from all 

events over the entire field in the burst shown in e. Length of arrow indicates propagation distance. (e) To 

test consistency of subregional directionality during bursts, sixteen 96x96μm tiles are overlaid on images. 

(f) Top: All events within highlighted tile in d (red square) for five burst periods, color-coded by 

propagation direction (top). Bottom: Event propagation direction distributions (P=posterior; A=anterior; 

M=medial; L=lateral). (g) Cumulative distribution of percentage of bursts with events (within individual 

tiles/regions) propagating in the same direction in actual (solid) and simulated (dashed) data (one-tailed 

Wilcoxon rank sum, ***p<0.001) (h) Two representative maps of population burst propagation direction 

with each event color-coded by their onset time relative to the beginning of the burst period, 
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demonstrating variability of burst size. (i) Burst propagation direction calculated from onset maps in h 

(n=66 bursts). Event locations from the first 20% of the frames after burst onset are averaged together to 

determine burst origin. Event locations from 20% of the last frames after burst onset are averaged 

together and the difference between this and the origin determines burst propagation distance. Red arrow 

denotes average of all bursts. 
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Figure 5. AQuA-based detection of extracellular dynamics via astrocytic and neuronal expression 

of genetically encoded neurotransmitter sensors. (a) Representative images of ex vivo slices with 

expression of astrocytic (left) or neuronal (right) GluSnFR. Color indicates detected events. Those with 

dynamic shape are shown in magenta, and static events in cyan. (b) Examples of timecourse of astrocytic 

(left, top) and neuronal (right, top) glutamate events. Scale bar = 10μm. Raster plot of area of astrocytic 

(left, bottom) and neuronal (right, bottom) glutamate events. (c) Size dynamics (area increase [left] and 

decrease [middle] per frame) and shape (circularity index, right) of glutamate events when GluSnFR is 

expressed on astrocytes (red) or neurons (blue). (d) Left: Single astrocyte expressing GluSnFR, with 

AQuA-detected events (colors) with ~100Hz frame rate imaging and 25–150ms uncaging of RuBi-

glutamate. Uncaging locations marked with white circles. Right: Percent correct events detected by 

AQuA, depending on duration of the laser uncaging pulse. (e) Example of three AQuA-detected events at 

single timepoint (97s) after addition of 300μM GABA to slice with astrocytes expressing GABASnFR 

(left). Right: Detected events before and after addition of 300μM GABA (gray bar) to circulating bath. 

Events are plotted to display spatial position in imaging field (y-axis), event area (height), and gradually 

increasing amplitude (color) over time. (f) Left: two detected events in cortical slice expressing GRAB-

NE in neurons after addition of 10μM NE. Right: Events plotted to display spatial position (y-axis), event 

area (height), and amplitude (color) dynamics over the course of the experiment. In (e) and (f), average xy 

position at each timepoint is calculated using the following equation: (((xLoc-1)*frameSize) + 

yLoc)/frameSize.  
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Supplemental Figure 1: Eight steps in the AQuA algorithm. The eight steps can be grouped into four 

modules indicated by brackets below panels. The last three modules are further illustrated in Supp. Fig. 2.  
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Supplemental Figure 2: Schematic illustration of three major modules in AQuA algorithm. Curves 

and regions taken from a real data set. (a) AQuA flowchart, with three gray bars below indicating where 

the three major modules are located with respect to the AQuA flowchart. (b) detect and cluster peaks: 

curves in the detect peaks by curve panel are associated with the location labeled by the red diamond in 
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the seed location panel. One curve may have multiple peaks, which are detected one-by-one. Once a peak 

is detected at a seed location, the peak is spatially extended to include its neighboring pixels as in the 

grow to all pixels with signals panel. Clustering of peaks starts from the peak with the earliest onset time 

and includes its spatially adjacent peaks based on the two inclusion rules shown in the grow to all pixels 

with signals panel. Two peaks at one location are never clustered into one group. Once the greedy search 

strategy can't find more peaks to include, it stops and one peak group is formed. Then, to find another 

peak group, the greedy search restarts from the first onset in the remaining peaks. The process is repeated 

until no peaks remain. (c) Propagation estimation and super-event detection: This module is applied to 

each peak group. The five colored curves are the dynamics of the five exemplar pixels with corresponding 

colors. The dashed curve is the representative or reference curve. In the graphical time warping model 

panel, red arrows indicate how the reference curve can be warped to represent the curve at each location. 

The graphical time warping model incorporates the information that nearby locations should have more 

similar curves than distant locations. A double-headed arrow between two functions informs the model 

that these curves should be warped similarly to the reference curve. As a comparison, if there is no 

double-headed arrow between curves, dissimilar warping functions are allowed. Once the warping 

function is calculated by the graphical time warping model, onset time is computed for each pixel, 

resulting in an onset time map. Note discontinuity of onset time examples at black triangles. These pixels 

are removed to obtain the final super-event, which may contain multiple events and are subject to the next 

operation. (d) Propagation source and event detection: Local propagation sources are obtained by 

finding local minima on the onset time map. According to the rules described in Methods, some local 

sources will be combined/merged, resulting in global propagation sources. Briefly, if the path between 

two local sources does not have to go through a location with a late onset time, these two local sources are 

combined. Then, each global propagation source leads to an event. Each event is obtained by growing 

each global source to include its neighboring pixels. In the event detection from sources panel, solid dots 

are pixels already assigned to an event, white dots are unexplored pixels, and grey dots are explored but 

await a later decision to be assigned to an event.  
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Supplemental Figure 3: Limitations of thresholding-based analysis. (a) Top row: Six example frames 

of ex vivo data smoothed with a Gaussian kernel of σ=0.5 after square root transformation. Second row: 

Baseline for each pixel is estimated with a 20-frame time window, noise level is estimated as σ_noise, 

and baseline is subtracted from raw data to obtain ΔF. Third row: Standard threshold is set at 3σ_noise. 

Many individual events are erroneously detected as one very long and large spatiotemporal component, 

for reasons graphically explained in (b). Fouth row: A high threshold (10σ_noise) leads to loss of many 

true events, and many detected events are incomplete. Each color indicates an event. Fifth row: AQuA-

detection avoids the pitfalls in threshold-setting and identifies each individual event. (b) Two events are 

incorrectly connected after thresholding (incorrect events in yellow in each sub-panel). Intensity color bar 

on right, with red indicating the threshold, refers to all panels. Top: Between multiple events in the same 
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location, even though the intensity drops a lot, not all pixels will fall below the threshold. Each event is 

shown with a gray bounding box. The super-voxel step in AQuA solves this problem by finding a time 

window for each seed, and spatially extending the windows. Middle: Neighboring events are initiated at 

distinct times, but are spatiotemporally connected at a later time. If two regions have very different onset 

times, AQuA will treat them as different events in the super-event detection step. Bottom: Two events can 

be separated when they appear, but meet after propagating. In the event detection step, AQuA 

distinguishes these events based on the single-source rule.   
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Supplemental Figure 4: AQuA detects ground truth events across three types of simulated data. 

Color represents event count for each pixel (note colors bars have different scales in each dataset). Red 

borders show ROIs detected by ROI-based methods. (AQuA does not detect ROIs.) (a) Pure ROI. (b) 

Size change odds of 5, indicating size changes 20–500% of ROI. (c) Location change ratio of 1. Average 

distance to the center of the ROI is 100% the ROI diameter. (d) Mixed propagation with 10 frames. 
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Supplemental Figure 5:  Event counts under different SNRs. Study the impact of SNR change when 

size change ratio is 3. The color shows the count of events on that pixel. All plots share the same scale. 

The red lines are the boundaries of detected ROIs. (a) Ground truth event count and the color bar for all 

plots. (b) The event count for all methods under four different SNRs. 
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Supplemental Figure 6: Peer method performance on growing and moving propagation types. 

Schematic (top) and results (bottom) of performance of five image-analysis methods (AQuA, GECI-

quant, CaSCaDe, CaImAn, and Suite2P) on simulated datasets with (a) growing propagation and (b) 

moving propagation. Change of the propagation frame number is shown in the bottom left panel, and 

varying SNR in the bottom right. When the number of propagation frames (not the event duration) is 0, 

the simulation is under pure ROI assumptions. IoU (intersection over union) measures the overlap 

between detected and ground-truth events. An IoU of 1 is the best performance achievable by any 

method, meaning that all detected events are ground-truth and all ground-truth events are detected. The 

bars on each curve indicate the 95% confidence interval calculated from 10 independent replications of 

simulation, where each simulation contains hundreds of events.  
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Supplemental Figure 7: AQuA features enable detailed Ca2+ activity plots. (a) Spatiotemporal plot of 

Ca2+ activity from a five minute movie (the first minute of which is shown in Fig. 3b). Each event is 

represented by a polygon that is proportional to the area of the event as it changes over its lifetime, and 

color-coded by propagation direction. (b) Example time series illustrating how propagation direction is 

determined (left). A propagation direction score is calculated for each event by multiplying the Euclidian 

distance between the event pixels’ proximity to the soma at each frame by each pixel’s intensity. The 

overall score is the summation of this weighted pixel intensity distance over the lifetime of the event. 

Therefore, if more pixels with higher intensity move toward the soma it will be classified as such (top). 

While some events appear in the plot as moving toward the soma, they are actually calculated as moving 

away from the soma (middle) since we are only displaying the minimum event proximity to the soma in 

the spatiotemporal plot, but calculate each pixel’s proximity to the soma when generating propagation 
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score (see Supplemental Movie 4). Further, pixel intensity is first thresholded at 0.3dF/F. Therefore, 

events that move toward or away from the soma yet have pixel intensities below threshold (bottom) 

appear to have a propagation direction when plotted, yet have a zero propagation direction score when 

calculated. (c) Additional events plotted for each propagation direction category to demonstrate range of 

detected/plotted events. Scale is not equivalent to events shown in b, but is equivalent within entire group 

shown here.  
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Supplemental Figure 8: Distribution of Ca2+ event features. (a) Left: total number of Ca2+ events that 

are dynamic (gray, propagation direction score > 0) and static (blue, propagation direction score = 0) 

within the 2D imaging plane, ***p < 0.001, n=11 cells, chi-square test for independence. Middle: 

distribution of Ca2+ event area for dynamic and static events, ***p < 0.001, one-tailed Wilcoxon rank sum 

test. Right: distribution of Ca2+ event duration for dynamic and static events, ***p < 0.001, one-tailed 

Wilcoxon rank sum test (right). (b) Distribution, average area, and average duration of  events 

propagating toward soma (pink), away from soma (purple), and static events (blue) compared to starting 

distance from soma (top row), ending distance from soma (middle row), and minimum distance from 

soma (bottom row). Bin widths calculated by Freedman-Diaconis’s rule.  
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Supplemental Figure 9: Cluster analysis on features generated from three spatial footprint 

methods. (a) Heatmap of z-scores for eight AQuA features (x-axis) describing each event. White boxes 

demarcate events and features from individual cells. (b–c) Top: heatmaps of z-scores for three features 

describing the Ca2+ activity at each ROI (b) or tile (c) location. ROIs detected using average projection 

image with a 5μm square filter applied (for ROIs) or 5x5μm tiles, based on fluorescence intensity and 

size. Ca2+ events with signals > 0.03dF/F and two times the noise of each individual trace were selected. 

Pixels within each ROI or tile were averaged and dF/F was calculated by dividing each value by the mean 

values from the previous 25 seconds. (d–f) t-SNE visualizations of each cell’s Ca2+ activity using features 

calculated using AQuA (d), ROIs (e), and tiles (f). High dimensional data (a–c) are reduced are displayed 

in two dimensions. Points that are clustered closer together can be interpreted as having more similar Ca2+ 

activity features. k-means clustering boundary denoted as dashed line. (g–h) t-SNE plots using only 

subsets of AQuA-calculated features from (a) and (d). (g) t-SNE plot of only the features specific to 

AQuA and not shared with ROI or tile analysis. (h) Plot using only AQuA-extracted features that 

correspond to those in ROI- or tile-based analyses. (i) Comparison of difference between two clusters 

generated from the t-SNE analysis followed by k-means clustering. Note increased separation using 

AQuA-specific features compared to others. (One-tailed paired t-test, ***p<0.001) 
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Supplemental Figure 10: (a) Population Ca2+ events represented as two temporal traces: percentage of 

imaging field active (top) and number of AQuA event onsets (middle). Burst periods (pink) are defined 

from the top trace as periods when Ca2+ activity exceeds 1% of the active field of view (red dashed line, 

top), and exceeds 10% of the maximum number of event onsets (red dashed line, middle). Burst periods 

correlate with wheel velocity of the treadmill (bottom). (b) Burst onset is defined as the first frame in 

which 10% of the peak is exceeded and burst offset is defined as the last frame exceeding 10% of the 

peak. (c) The relationship between all interburst events’ total propagation distance and size, similar to the 

burst events plotted in Fig 4c.  
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Supplemental Figure 11: Comparison of AQuA and Caltracer for event detection of astrocytic 

GluSnFR signals. (a) Applied to the same data sets, AQuA detects 157 events, while Caltracer2,9, using a 

rising faces algorithm, detects 76 events with manually defined single-cell ROIs. (b) ROI example (left) 

and temporal trace with detected events marked by black circle using Caltracer software. Scale bar = 

50μm. (c) AQuA-detected events from the same cell as in (b), and corresponding temporal traces (black 

dot, specific events shown above each trace). Scale bar = 10μm.  
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Supplemental Figure 12: AQuA performance on simulated 3D datasets. (a) The 3D model used for 

performance testing the 3D AQuA extension was extracted from real imaging data17. (b) Example of 

simulated data in which event size varies; each column represents a different event radius. (c) Examples 

of simulated events with slow (top row, growth rate 2) and fast (bottom row, growth rate 10) growing 

propagation rates. (d–e) Results of AQuA performance on simulated datasets with respect to varying SNR 

under independently varying event (d) size and (e) growing propagation rates. IoU (intersection over 

union) measures the overlap between detected and ground-truth events. An IoU of 1 is the best 

performance achievable, indicating that all detected events are ground-truth and all ground-truth events 

are detected. The bars on each curve indicate the 95% confidence interval calculated from 5 independent 

replications of simulation, where each simulation contains 10–20 events.  
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Supplemental Table 1: Pseudocode for preprocessing, detecting active voxels, and identifying seeds 

for super voxels. In the pseudocode, the operator colon is used. For example,  𝐴(: ) means all the 

elements in 𝐴, 𝐴(𝑗: 𝑘)  means the elements [𝐴(𝑗), 𝐴(𝑗 + 1), … , 𝐴(𝑘)], 𝐴(𝑗: 𝑒𝑛𝑑) means the elements 
[𝐴(𝑗), 𝐴(𝑗 + 1), … , 𝐴(𝑛)] if 𝐴 ∈ 𝑅𝑛, and 𝐴(: , : ) means all the elements in 2D matrix.  

 

 
Algorithm: Preprocess, detect active voxels, and identify seeds for super voxels 

1 
Require: The original data 𝑑𝑎𝑡𝑂𝑟𝑔 ∈ 𝑅𝐻×𝑊×𝑇;  the spatial Gaussian filter parameter 𝑠𝑚𝑜𝑋𝑌; 
the threshold scale 𝑡ℎ𝑟𝐴𝑅𝑆𝑐𝑙; the region minimum size 𝑚𝑖𝑛𝑆𝑖𝑧𝑒. 

2 procedure ACTTOP(𝑑𝑎𝑡𝑂𝑟𝑔, 𝑠𝑚𝑜𝑋𝑌, 𝑡ℎ𝑟𝐴𝑅𝑆𝑐𝑙, 𝑚𝑖𝑛𝑆𝑖𝑧𝑒). 

3 
Calculate the squared difference of value of adjacent time points for each pixel,  

𝑥𝑥(: , : ) = (𝑑𝑎𝑡𝑂𝑟𝑔(: , : ,2: 𝑒𝑛𝑑) − 𝑑𝑎𝑡𝑂𝑟𝑔(: , : ,1: 𝑒𝑛𝑑 − 1))
2

, 𝑥𝑥 ∈ 𝑅𝐻×𝑊. 

4 Get the square root of median in 𝑥𝑥, 𝑠𝑡𝑑𝑀𝑎𝑝(: , : ) = √
median(𝑥𝑥)

0.9133
, 𝑠𝑡𝑑𝑀𝑎𝑝 ∈ 𝑅𝐻×𝑊. 

5 Do spatial Gaussian filter on s𝑡𝑑𝑀𝑎𝑝. 

6 Define and store the noise standard variance of raw data 𝑠𝑡𝑑𝐸𝑠𝑡 =  median(𝑠𝑡𝑑𝑀𝑎𝑝). 

7 
Define and store Gaussian blur matrix 𝑑𝑎𝑡 ∈ 𝑅𝐻×𝑊×𝑇 by applying spatial Gaussian filter 

on each frame of 𝑑𝑎𝑡𝑂𝑟𝑔 with parameter 𝑠𝑚𝑜𝑋𝑌. 

8 
Get the background matrix  𝐹0 ∈ 𝑅𝐻×𝑊×𝑇 by calculating the minimum of moving 

average of 𝑑𝑎𝑡. 

9 Calculate the dynamic matrix 𝑑𝐹 ∈ 𝑅𝐻×𝑊×𝑇 by subtracting 𝐹0 from 𝑑𝑎𝑡. 

10 Construct a boolean matrix 𝑑𝐴𝑐𝑡𝑉𝑜𝑥 ∈ 𝑅𝐻×𝑊×𝑇, initialize all elements to false. 

11 for x = 1:W do 

12 for y = 1:H do 

13 for t = 1:T do 

14 if 𝑑𝐹(𝑥, 𝑦, 𝑡) >  𝑠𝑡𝑑𝐸𝑠𝑡 × 𝑡ℎ𝑟𝐴𝑅𝑆𝑐𝑙 then 

15  𝑑𝐴𝑐𝑡𝑉𝑜𝑥(𝑥, 𝑦, 𝑧) = 𝑡𝑟𝑢𝑒. 

16 end if 

17 end for 

18 end for 

19 end for 

20 
Get the 3D connected components of 𝑑𝐴𝑐𝑡𝑉𝑜𝑥, remove the components whose 2D 

projection size less than 𝑚𝑖𝑛𝑆𝑖𝑧𝑒, and set these components’ voxels in 𝑑𝐴𝑐𝑡𝑉𝑜𝑥 as false. 

21 
Get all the local maxima located in the components according to value in 𝑑𝑎𝑡. Store 

these maxima as 𝑙𝑚𝐿𝑜𝑐. 

22 Sort the 𝑙𝑚𝐿𝑜𝑐 in descending order according to the values in 𝑑𝑎𝑡.  

23 return  𝑑𝑎𝑡, 𝑑𝐹, 𝑑𝐴𝑐𝑡𝑉𝑜𝑥, 𝑙𝑚𝐿𝑜𝑐, 𝑠𝑡𝑑𝐸𝑠𝑡 

24 end procedure 
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Supplemental Table 2: Pseudocode for peak detection and extension 

 

 
Algorithm: Peak detection and extension 

1 

Require: The smoothed data 𝑑𝑎𝑡 ∈ 𝑅𝐻×𝑊×𝑇; the dynamic matrix 𝑑𝐹 ∈ 𝑅𝐻×𝑊×𝑇; the seeds of 
super voxels 𝑙𝑚𝐿𝑜𝑐; the temporal cut threshold scale 𝑡ℎ𝑟𝑇𝑊𝑆𝑐𝑙; the seed growing threshold 
𝑡ℎ𝑟𝐸𝑥𝑡𝑍; the super voxel significance 𝑡ℎ𝑟𝑆𝑣𝑆𝑖𝑔; the standard variance of noise 𝑠𝑡𝑑𝐸𝑠𝑡. 

2 procedure SPTOP(𝑑𝑎𝑡, 𝑑𝐹, 𝑙𝑚𝐿𝑜𝑐, 𝑡ℎ𝑟𝑇𝑊𝑆𝑐𝑙, 𝑡ℎ𝑟𝐸𝑥𝑡𝑍, 𝑡ℎ𝑟𝑆𝑣𝑆𝑖𝑔, 𝑠𝑡𝑑𝐸𝑠𝑡) 

3 Construct label matrix 𝑙𝑏𝑙𝑀𝑎𝑝 ∈ 𝑅𝐻×𝑊×𝑇, initialize all values in it to zero. 

4 Define 𝑛𝐿𝑚 as the number of seeds contained in 𝑙𝑚𝐿𝑜𝑐. 

5 for i = 1: 𝑛𝐿𝑚 do 

6 
Calculate the 𝑑𝑎𝑡 mean curve and 𝑑𝐹 mean curve of neighbor pixels (including 

seed) of the seed 𝑙𝑚𝐿𝑜𝑐(𝑖). 

7 

Get the time window of the curves calculated above around the peak with 
parameter 𝑡ℎ𝑟𝑇𝑊𝑆𝑐𝑙, record the start time 𝑡0(𝑖) , the peak time 𝑡peak(𝑖) and the end time 

𝑡1(𝑖) of this peak.  

8 
Initialize the 2D projection set belong to the super voxel of seed 𝑙𝑚𝐿𝑜𝑐(𝑖) as 𝑆𝑖 =

{𝑙𝑚𝐿𝑜𝑐(𝑖)}. 

9 end for 

10 for k = 1:40 do 

11 for i = 1: 𝑛𝐿𝑚 do 

12 Find the pixels which are neighbor pixels of 𝑆𝑖. Store these pixels in set 𝑉𝑖. 

13 for pixel 𝑥0 in 𝑉𝑖 do 

14 Get the curve of 𝑥0 in data as 𝑐0. Get the 2D location of 𝑥0 as 𝑖ℎ, 𝑖𝑤. 

15 if  
min (𝑐0(𝑡peak(𝑖))−c0(𝑡0(𝑖)),   𝑐0(𝑡peak(𝑖))−c0(𝑡1(𝑖)))

𝑠𝑡𝑑𝐸𝑠𝑡
≥ 𝑡ℎ𝑟𝐸𝑥𝑡𝑍 then 

16 Update 𝑆𝑖 = 𝑆𝑖 ∪ {𝑥0}. 

17 

For the 2D location (𝑖ℎ, 𝑖𝑤), from 𝑡peak(𝑖), search the time point 𝑡 

forward and backward until 𝑙𝑏𝑙𝑀𝑎𝑝(𝑖ℎ, 𝑖𝑤, 𝑡) ≠ 0 or 𝑡 reaches 𝑡0(𝑖) or 𝑡1(𝑖). Label all visited 
time points of this 2D location in 𝑙𝑏𝑙𝑀𝑎𝑝 as 𝑖. 

18 end if 

19 end for 

20 end for 

21 end for 

22 for i = 1: 𝑛𝐿𝑚 do 

23 Fill hole of the 3D component whose voxels labeled with 𝑖 in 𝑙𝑏𝑙𝑀𝑎𝑝.  

24 Store the voxels labeled 𝑖 in updated 𝑙𝑏𝑙𝑀𝑎𝑝 as 𝑠𝑣𝐿𝑠𝑡𝑖. 

25 
Get the 2D projection of this 3D component, the number of pixels in it denoted as 

𝑛2𝑑 .  

26 Calculate the 𝑑𝑎𝑡 mean curve of whole 3D component (do average spatially) as 𝑐1.  
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27 if  
min (𝑐1(𝑡peak(𝑖))−c0(𝑡0(𝑖)),   𝑐1(𝑡peak(𝑖))−c0(𝑡1(𝑖)))

𝑠𝑡𝑑𝐸𝑠𝑡
𝑛2𝑑 < 𝑡ℎ𝑟𝑆𝑣𝑆𝑖𝑔 then 

28 Set the 𝑠𝑣𝐿𝑠𝑡𝑖 as ∅. 

29 else 

30 Calculate the rising time for 𝑖𝑡ℎ super voxel, store the rising time as 𝑟𝑖𝑠𝑒𝑋(𝑖). 

31 end if 

32 end for 

33 return 𝑠𝑣𝐿𝑠𝑡, 𝑟𝑖𝑠𝑒𝑋 

34 end procedure 
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Supplemental Table 3: Pseudocode for estimating signal propagation, detecting super-events, and 

splitting super-events into individual events.  

 

 Algorithm: Estimate signal propagation, detect and split super-events. 

1 
Require: The smoothed data 𝑑𝑎𝑡 ∈ 𝑅𝐻×𝑊×𝑇; the dynamic matrix 𝑑𝐹 ∈ 𝑅𝐻×𝑊×𝑇; the super 
voxels set 𝑠𝑣𝐿𝑠𝑡; the rising time 𝑟𝑖𝑠𝑒𝑋; the slowest propagation 𝑐𝐷𝑒𝑙𝑎𝑦; the rising phase 
uncertainty 𝑐𝑅𝑖𝑠𝑒; the GTW smoothness parameter 𝑔𝑡𝑤𝑆𝑚𝑜. 

2 procedure EVTTOP(𝑑𝑎𝑡, 𝑑𝐹, 𝑠𝑣𝐿𝑠𝑡, 𝑟𝑖𝑠𝑒𝑋, 𝑐𝐷𝑒𝑙𝑎𝑦, 𝑐𝑅𝑖𝑠𝑒, 𝑔𝑡𝑤𝑆𝑚𝑜) 

3 
Merge the super voxels: if two super voxels are adjacent and the difference of their rising 

time is small, merge them together as one super-event. Store the super-events as 𝑠𝑒𝐿𝑠𝑡. 
4 Construct a 3D matrix 𝑙𝑎𝑏𝑒𝑙𝑀𝑎𝑝 ∈ 𝑅𝐻×𝑊×𝑇 and initialize all elements to zero. 
5 for super-event 𝑠𝑒0 in 𝑠𝑒𝐿𝑠𝑡 do 

6 Get 2D projection 𝑖ℎ𝑤 of the super-event 𝑠𝑒0, where 𝑖ℎ𝑤 is a list of pixels . 
7 Calculate super pixels of this projection through super-pixel segmentation algorithm. 

8 
Align the curve of each super pixel using GTW algorithm of Y. Wang et al.(2016) with 

parameter 𝑔𝑡𝑤𝑆𝑚𝑜. 

9 
Calculate the rising time of the normalized 𝑑𝐹 curve of each super pixel. Construct a 

2D matrix 𝑑𝑙𝑦𝑀𝑎𝑝 ∈ 𝑅𝐻×𝑊, assign the rising time to the corresponding locations in 𝑑𝑙𝑦𝑀𝑎𝑝. 

10 
Construct a 2D matrix 𝑒𝑣𝑡𝑀𝑎𝑝 ∈ 𝑅𝐻×𝑊 to respresent the spatial distribution of 

events in 𝑠𝑒0, initialize all values in 𝑒𝑣𝑡𝑀𝑎𝑝 to 0, 𝑛𝑆𝑒𝑒𝑑 = 1. 

11 
Split the 𝑑𝑙𝑦𝑀𝑎𝑝 into several parts according to parameter 𝑐𝐷𝑒𝑙𝑎𝑦, where the rising 

time in each part is smooth enough. Denote these parts as a list 𝑒𝑣𝑡𝐺𝑟𝑜𝑢𝑝. 
12 for each part 𝑖ℎ𝑤0 in 𝑒𝑣𝑡𝐺𝑟𝑜𝑢𝑝 do 

13 
Get the local minima of 𝑖ℎ𝑤0 according to 𝑑𝑙𝑦𝑀𝑎𝑝 as the potential event seeds. 

Store them in a list 𝑠𝑒𝑒𝑑𝐿𝑚. 
14 Sort the 𝑠𝑒𝑒𝑑𝐿𝑚 in descending order according to their rising time. 
15 for seed 𝑠𝑒𝑒𝑑0 in 𝑠𝑒𝑒𝑑𝐿𝑚 do 

16 
Find all seeds in 𝑠𝑒𝑒𝑑𝐿𝑚 whose rising time less than 𝑟𝑖𝑠𝑒𝑠𝑒𝑒𝑑 + 𝑐𝑅𝑖𝑠𝑒, store 

them as a list  𝑚𝑒𝑚𝐶𝑎𝑛𝑑. 
17 for seed 𝑚𝑒𝑚 in 𝑚𝑒𝑚𝐶𝑎𝑛𝑑 do 

18 if 𝑚𝑒𝑚 and 𝑠𝑒𝑒𝑑0 are connected in 𝑑𝑙𝑦𝑀𝑎𝑝 then 

19 
Merge 𝑚𝑒𝑚 and 𝑠𝑒𝑒𝑑0. 𝑠𝑒𝑒𝑑0 = 𝑠𝑒𝑒𝑑0 ∪ {𝑚𝑒𝑚}. Remove 𝑚𝑒𝑚 

in 𝑠𝑒𝑒𝑑𝐿𝑚. 
20 end if 
21 end for 
22 Update 𝑒𝑣𝑡𝑀𝑎𝑝(𝑠𝑒𝑒𝑑0) = 𝑛𝑆𝑒𝑒𝑑, 𝑛𝑆𝑒𝑒𝑑 = 𝑛𝑆𝑒𝑒𝑑 + 1. 
23 end for 

24 
Sort the remaining pixels in 𝑖ℎ𝑤0 (the pixels which are not local minima) in 

ascending order according to their rising time. Store as a list 𝑝𝑖𝑥𝑒𝑙𝑠. 
25 Initialize 𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 = ∅. 
26 for pixel 𝑝0 in 𝑝𝑖𝑥𝑒𝑙𝑠do 

27 if 𝑝0 is adjacent to a growing event in 𝑖ℎ𝑤0 then 

28 Set 𝑒𝑣𝑡𝑀𝑎𝑝(𝑝0) to the label of the adjacent event. 

29 
Check the 𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡, if the pixel in 𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 is adjacent to an event in 

𝑖ℎ𝑤0, remove the pixel in 𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 and just to line 28.  
30 Else 

31 Update 𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 =  𝑤𝑎𝑖𝑡𝑙𝑖𝑠𝑡 ∪ {𝑝0}. 
32 end if 
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33 end for 
 end for 

34 
Update the 𝑙𝑎𝑏𝑒𝑙𝑀𝑎𝑝. Label the 𝑙𝑎𝑏𝑒𝑙𝑀𝑎𝑝 according to the 2D distribution 𝑒𝑣𝑡𝑀𝑎𝑝 

of 𝑠𝑒0. 
35 end for 
36 Store the event set as 𝑒𝑣𝑡𝐿𝑖𝑠𝑡. 
37 Calculate the basic features of each event as 𝑓𝑡𝑠𝐿𝑠𝑡. 
38 Return 𝑒𝑣𝑡𝐿𝑖𝑠𝑡, 𝑓𝑡𝑠𝐿𝑠𝑡. 
39 end procedure 
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Supplemental Table 4: AQuA running time. We ran AQuA on different datasets tested on a desktop 

computer with Intel Xeon E5-2630 CPU and 128 GB memory using MATLAB version R2018b and 

running on Microsoft Windows 10. The tests used the default parameter setting. All datasets are 512 x 

512 pixels. Note that some datasets are stored as 32-bit files, so file size can be larger than those stored 

with 16 or 8 bits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ID type frames  file size event number total running time (s) 

1 in vivo Ca2+ 1090 545 MB 3,873 2,440 

2 in vivo Ca2+ 1614 1.58 GB 31,829 5,678 

3 in vivo Ca2+ 1614 1.54 GB 12,065 3,110 

4 ex vivo Ca2+ 281 281 MB 3,824 2,020 

5 ex vivo Ca2+ 281 281 MB 3,471 2,076 

6 ex vivo Ca2+ 281 281 MB 4,158 1,800 

7 GluSnFR 910 459 MB 6 140 

8 GluSnFR 458 230 MB 55 355 

9 GluSnFR 306 154 MB 33 182 



59 

Supplemental Table 5: AQuA-extracted features 
Category Name of feature Unit Description 

Basic 

properties 

Area μm2 Spatial area of each event 

Volume μm3 Spatial-temporal volume of each event 

Perimeter μm Perimeter of each event 

Circularity  Closeness to a circle for the shape of each event 

Trace 

P Value on max dF/F 
 

Significance value of max dF/F for each event, which is 

related to the noise level in each trace 

Max dF/F  Peak of the dF/F curve for each event 

Duration 50% to 50% s Duration between 50% onset time to 50% offset time 

Duration 10% to 10% s Duration between 10% onset time to 10% offset time 

Onset duration 10% to 90% s Time taken for dF/F to rise from 10% to 90% 

Offset duration 90% to 10% s Time taken for dF/F to drop from 90% to 10% 

Decay time constant 𝜏 
s 

Decay time constant by fitting exponential curve on 

dF/F 

Propagation, 

onset 

Overall 
μm 

Single event overall onset propagation score, which is 

the sum of such scores in four directions 

Anterior 
μm 

Single event onset propagation distance in anterior 

direction 

Posterior 
μm 

Single event onset propagation distance in posterior 

direction 

Left μm Single event onset propagation distance in left direction 

Right 
μm 

Single event onset propagation distance in right 

direction 

Anterior ratio 
μm 

Single event onset propagation distances in anterior 

direction, normalized by the sum of four directions 

Posterior ratio 
μm 

Single event onset propagation distances in posterior 

direction, normalized by the sum of four directions 

Left ratio 
μm 

Single event onset propagation distances in left 

direction, normalized by the sum of four directions 

Right ratio 
μm 

Single event onset propagation distances in right 

direction, normalized by the sum of four directions 

Propagation, 

offset 

Overall 
μm 

Single event offset propagation score, which is the sum 

of such score in four directions 

Anterior 
μm 

Single event offset propagation distances in anterior 

direction 
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Posterior 
μm 

Single event offset propagation distances in posterior 

direction 

Left 
μm 

Single event offset propagation distances in left 

direction 

Right 
μm 

Single event offset propagation distances in right 

direction 

Anterior ratio 
μm 

Single event propagation offset distances in anterior 

direction, normalized by the sum of four directions 

Posterior ratio 
μm 

Single event propagation offset distances in posterior 

direction, normalized by the sum of four directions 

Left ratio 
μm 

Single event propagation offset distances in left 

direction, normalized by the sum of four directions 

Right ratio 
μm 

Single event propagation offset distances in right 

direction, normalized by the sum of four directions 

Landmark 

Event average distance μm Average distance of an event centroid to each landmark 

Event minimum distance 
μm 

Minimum distance of an event centroid to each 

landmark 

Event toward landmark  Score for propagating toward each landmark 

Event away from landmark μm3 Score for propagating away from each landmark 

Event toward landmark before 

reaching 
μm3 

Score for propagating toward each landmark before it 

reaches the landmark 

Event away from landmark after 

reaching 
μm3 

Score for propagating away from each landmark after it 

reaches the landmark 

Region/Cell 

Event centroid distance to border 
μm 

Distance from event centroid to the boundary of the 

region/cell 

Event centroid distance to border - 

normalized by region radius 
 

Divide the distance to region boundary by the radius of 

the region 

Network/ 

Interaction 

Temporal density 
 

Number of events that share spatial footprint with 

current event (including itself) 

Temporal density with similar size 

only  

Number of events that share spatial footprint with 

current event and have similar size with it (50% to 

200%) 

Spatial density  Number of events co-occurred with current event 

 
 
 
 



61 

References 

 
1. Srinivasan, R. et al. New Transgenic Mouse Lines for Selectively Targeting Astrocytes 

and Studying Calcium Signals in Astrocyte Processes In Situ and In Vivo. Neuron 92, 

1181–1195 (2016). 

2. Marvin, J. S. et al. An optimized fluorescent probe for visualizing glutamate 

neurotransmission. Nat. Methods 10, 162–170 (2013). 

3. Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. 

Nature 499, 295–300 (2013). 

4. Srinivasan, R. et al. Ca(2+) signaling in astrocytes from Ip3r2(-/-) mice in brain slices and 

during startle responses in vivo. Nat. Neurosci. 18, 708–717 (2015). 

5. Paukert, M. et al. Norepinephrine controls astroglial responsiveness to local circuit 

activity. Neuron 82, 1263–1270 (2014). 

6. Haustein, M. D. et al. Conditions and constraints for astrocyte calcium signaling in the 

hippocampal mossy fiber pathway. Neuron 82, 413–429 (2014). 

7. Ding, F. et al. α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical 

astrocytes in awake, behaving mice. Cell Calcium 54, 387–394 (2013). 

8. Poskanzer, K. E. & Yuste, R. Astrocytes regulate cortical state switching in vivo. Proc. 

Natl. Acad. Sci. U.S.A. 201520759 (2016). doi:10.1073/pnas.1520759113 

9. Ma, Z., Stork, T., Bergles, D. E. & Freeman, M. R. Neuromodulators signal through 

astrocytes to alter neural circuit activity and behaviour. Nature 539, 428–432 (2016). 

10. Poskanzer, K. E. & Yuste, R. Astrocytic regulation of cortical UP states. Proc. Natl. Acad. 

Sci. U.S.A. 108, 18453–18458 (2011). 

11. Looger, L. L. A genetically encoded fluorescent sensor for in vivo imaging of GABA. 

bioRxiv 322578 (2018). doi:10.1101/322578 

12. Feng, J. et al. A Genetically Encoded Fluorescent Sensor for Rapid and Specific In Vivo 

Detection of Norepinephrine. Neuron (2019). doi:10.1016/j.neuron.2019.02.037 

13. Lobas, M. A. et al. A genetically encoded single-wavelength sensor for imaging cytosolic 

and cell surface ATP. Nature Communications 10, 711 (2019). 

14. Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed 

genetically encoded sensors. Science 360, eaat4422 (2018). 

15. Agarwal, A. et al. Transient Opening of the Mitochondrial Permeability Transition Pore 

Induces Microdomain Calcium Transients in Astrocyte Processes. Neuron 93, 587–605.e7 

(2017). 

16. Armbruster, M., Hanson, E. & Dulla, C. G. Glutamate Clearance Is Locally Modulated by 

Presynaptic Neuronal Activity in the Cerebral Cortex. J. Neurosci. 36, 10404–10415 

(2016). 

17. Bindocci, E. et al. Three-dimensional Ca(2+) imaging advances understanding of 

astrocyte biology. Science 356, eaai8185 (2017). 

18. Wu, Y.-W. et al. Spatiotemporal calcium dynamics in single astrocytes and its modulation 

by neuronal activity. Cell Calcium 55, 119–129 (2014). 

19. Wang, Y. et al. Graphical Time Warping for Joint Alignment of Multiple Curves. Neural 

Information Processing Systems 3648–3656 (2016). 

20. Giovannucci, A. et al. CaImAn: An open source tool for scalable Calcium Imaging data 

Analysis. bioRxiv 339564 (2018). doi:10.1101/339564 

21. Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon 

microscopy. (2016). doi:10.1101/061507 



62 

22. Poskanzer, K. E. & Molofsky, A. V. Dynamism of an Astrocyte In Vivo: Perspectives on 

Identity and Function. Annu. Rev. Physiol. 80, 143–157 (2018). 

23. Shigetomi, E. et al. Imaging calcium microdomains within entire astrocyte territories and 

endfeet with GCaMPs expressed using adeno-associated viruses. J. Gen. Physiol. 141, 

633–647 (2013). 

24. van der Maaten, L. & Hinton, G. Visualizing Data using t-SNE. Journal of Machine 

Learning Research 9, 2579–2605 (2008). 

25. Stobart, J. L. et al. Cortical Circuit Activity Evokes Rapid Astrocyte Calcium Signals on a 

Similar Timescale to Neurons. Neuron 98, 726–735.e4 (2018). 

26. Kanemaru, K. et al. In vivo visualization of subtle, transient, and local activity of 

astrocytes using an ultrasensitive Ca(2+) indicator. Cell Rep 8, 311–318 (2014). 

27. Nimmerjahn, A., Mukamel, E. A. & Schnitzer, M. J. Motor behavior activates Bergmann 

glial networks. Neuron 62, 400–412 (2009). 

28. Parsons, M. P. et al. Real-time imaging of glutamate clearance reveals normal striatal 

uptake in Huntington disease mouse models. Nature Communications 7, 11251 (2016). 

29. Jiang, R., Diaz-Castro, B., Looger, L. L. & Khakh, B. S. Dysfunctional Calcium and 

Glutamate Signaling in Striatal Astrocytes from Huntington's Disease Model Mice. J. 

Neurosci. 36, 3453–3470 (2016). 

30. Hefendehl, J. K. et al. Mapping synaptic glutamate transporter dysfunction in vivo to 

regions surrounding Aβ plaques by iGluSnFR two-photon imaging. Nature 

Communications 7, 13441 (2016). 

31. Marvin, J. S. et al. Stability, affinity, and chromatic variants of the glutamate sensor 

iGluSnFR. Nat. Methods 15, 936–939 (2018). 

32. Fino, E. et al. RuBi-Glutamate: Two-Photon and Visible-Light Photoactivation of 

Neurons and Dendritic spines. Front Neural Circuits 3, 2 (2009). 

33. Chai, H. et al. Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, 

Morphological, and Functional Evidence. Neuron 95, 531–549.e9 (2017). 

34. Baraban, M., Koudelka, S. & Lyons, D. A. Ca 2+ activity signatures of myelin sheath 

formation and growth in vivo. Nat. Neurosci. 19, 190 (2017). 

35. Krasnow, A. M., Ford, M. C., Valdivia, L. E., Wilson, S. W. & Attwell, D. Regulation of 

developing myelin sheath elongation by oligodendrocyte calcium transients in vivo. Nat. 

Neurosci. 93, 9887 (2017). 

36. Higley, M. J. & Sabatini, B. L. Calcium signaling in dendritic spines. Cold Spring Harb 

Perspect Biol 4, a005686–a005686 (2012). 

37. Keller, P. J. & Ahrens, M. B. Visualizing whole-brain activity and development at the 

single-cell level using light-sheet microscopy. Neuron 85, 462–483 (2015). 

38. Goldey, G. J. et al. Removable cranial windows for long-term imaging in awake mice. Nat 

Protoc 9, 2515–2538 (2014). 

39. Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: An online algorithm for piecewise 

rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017). 

40. Müller, M. Information Retrieval for Music and Motion. (Springer Science & Business 

Media, 2007). doi:10.1007/978-3-540-74048-3 

41. Wang, Y. et al. Automated Functional Analysis of Astrocytes from Chronic Time-Lapse 

Calcium Imaging Data. Front Neuroinform 11, 48 (2017). 

 


