

Large isotopic variability at the micron-scale in ‘Shuram’ excursion carbonates from South Australia

Jon M. Husson^{a,b,*}, Benjamin J. Linzmeier^b, Kouki Kitajima^{b,c}, Akizumi Ishida^{d,c}, Adam C. Maloof^e,
Blair Schoene^e, Shanan E. Peters^b, John W. Valley^{b,c}

^a*School of Earth and Ocean Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada*

^b*Department of Geoscience, University of Wisconsin – Madison, WI, 53706, USA*

^c*NASA Astrobiology Institute, Department of Geoscience, University of Wisconsin, Madison, WI, 53706, USA*

^d*Department of Earth Science, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan*

^e*Department of Geosciences, Princeton University, Guyot Hall, Princeton, NJ 08544, USA*

Abstract

Ediacaran-aged (635–541 million years ago) marine sediments contain a large negative carbon isotope ($\delta^{13}\text{C}$) excursion, in which carbonate $\delta^{13}\text{C}$ values reach $-12\text{\textperthousand}$ (VPDB). Known as the ‘Shuram’ excursion, many workers have interpreted this $\delta^{13}\text{C}$ record as an unprecedented perturbation to the global carbon cycle, leading to speculation about a causal connection to the broadly contemporaneous rise of animal life. Others have interpreted the $\delta^{13}\text{C}$ signal as a product of diagenesis, thereby minimizing its relevance for understanding the evolution of metazoans. Here, we present SEM imaging and in-situ $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ values measured by secondary ion mass spectrometry (SIMS) to assess these competing hypotheses in the Wonoka Formation of South Australia. Our results from the minimum of the excursion show that rounded sedimentary grains of calcite have $\delta^{13}\text{C}$ values between -12.8 to $-10.6\text{\textperthousand}$ and $\delta^{18}\text{O}$ values between -17.8 to $-15.5\text{\textperthousand}$ (VPDB). Euhedral dolomite that appears to have grown unimpeded in open sedimentary pore spaces also is present. These early-stage dolomites are interpreted as early authigenic in origin and have $\delta^{13}\text{C}$ values that reach $+5\text{\textperthousand}$, requiring a formation fluid with a substantially different $\delta^{13}\text{C}$ composition from basin waters or bulk sediment. Together, these results provide little evidence for the hypothesis that a late diagenetic overprint has generated the ‘Shuram’ excursion in the Wonoka. Instead, they suggest the presence of a large carbon isotopic gradient in the surface environment, with shallow waters capable of precipitating carbonates with very low $\delta^{13}\text{C}$ (down to $-12\text{\textperthousand}$) and deeper shelf and/or marine pore waters generating carbonates with positive carbon isotope values (up to $+5\text{\textperthousand}$). Because negative isotope excursions of similar magnitude are found in widely dispersed Ediacaran basins, it is likely that this gradient was characteristic of shelf environments of this period and that a still-unknown global process led to the ‘Shuram’ excursion in shallow water carbonates.

Keywords: carbon isotopes | SIMS | Shuram excursion | Ediacaran Earth history

*Corresponding author

Email address: jhusson@uvic.ca (Jon M. Husson)

¹ **1. Introduction**

² A fundamental goal for Earth system science is understanding the processes that led to the origin and
³ diversification of animal life. The timing of metazoan origination remains a topic of debate, but their rise to
⁴ abundance in the rock record is marked by the enigmatic ‘Ediacaran Biota’, which appeared \sim 570 million
⁵ years ago (Pu et al., 2016). Many hypotheses for the driver of animal evolution invoke a rise in atmospheric
⁶ O₂ across the Ediacaran–Cambrian transition (Lyons et al., 2014). Roughly contemporaneous with these
⁷ changes, extremely low carbon isotope values ($\delta^{13}\text{C}$) are recorded in marine carbonates from Ediacaran basins
⁸ around the world (Grotzinger et al., 2011). These isotopic profiles are coherent stratigraphically, reproducible,
⁹ and can span hundreds of meters of vertical section, decreasing from \sim +3‰ down to \sim -12‰ before rising
¹⁰ steadily back to \sim +4‰ (all $\delta^{13}\text{C}$ values are reported on the VPDB scale). Known colloquially as the ‘Shuram’
¹¹ excursion, it is the most negative excursion of $\delta^{13}\text{C}$ values known in Earth history. Whether the various
¹² ‘Shuram’ excursions are truly globally synchronous has yet to be tested independently via geochronology,
¹³ although they are stratigraphically confined to the Ediacaran Period (Grotzinger et al., 2011).

¹⁴ No consensus model exists to explain the cause of the ‘Shuram’ excursion. Many interpret the excursion as
¹⁵ a profound perturbation to the global carbon cycle and an epiphenomenon that accompanied the transition to
¹⁶ a more oxic Earth surface (Rothman et al., 2003; Fike et al., 2006). In such a scenario, rising levels of surface
¹⁷ oxidants led to the remineralization of a reservoir (or reservoirs) of organic carbon, which subsequently drove
¹⁸ global dissolved inorganic carbon (DIC) isotopically negative (Rothman et al., 2003). Models, however, note
¹⁹ the unreasonably high oxidant demands required to drive the ‘Shuram’ excursion as a global perturbation
²⁰ if it lasted for millions of years, along with its deleterious effects on climate (Bristow and Kennedy, 2008).
²¹ These considerations, along with a puzzling correlation between $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ values in ‘Shuram’ excursion
²² carbonates (Grotzinger et al., 2011), have formed the basis for models that contend that the extremely
²³ negative $\delta^{13}\text{C}$ values are diagenetic in origin (Knauth and Kennedy, 2009; Derry, 2010; Schrag et al., 2013),
²⁴ and thus disconnected from global DIC.

²⁵ Determining the cause of the ‘Shuram’ excursion has important implications both for understanding
²⁶ Earth history and the origins of animals, as well as for the general utility of carbon isotope profiles as inter-
²⁷ basin correlation tools (e.g., Halverson et al., 2005). Styles of diagenesis invoked to explain the ‘Shuram’
²⁸ include meteoric alteration (Knauth and Kennedy, 2009), burial diagenesis (Derry, 2010) and the growth of
²⁹ isotopically-depleted authigenic carbonate (CaCO₃ that grows in-situ at or near the sediment-water interface,
³⁰ Schrag et al., 2013). Each is a mixing model, wherein varying admixtures between primary and secondary
³¹ carbonate give rise to the bulk stratigraphic signal. Testing these ideas has most often relied upon developing
³² isotopic datasets and interpreting them in the context of field relationships and sedimentological arguments
³³ (e.g., Le Guerroué et al., 2006; Husson et al., 2015b). For example, in South Australia, the Ediacaran-aged
³⁴ Wonoka Formation (Fig. 1a) contains a basin-wide 17‰ excursion in $\delta^{13}\text{C}$ values, with values starting at
³⁵ -12‰ at its base and changing smoothly to +5‰ at its top (Fig. 1b and c, Husson et al., 2015b). In the
³⁶ more distal parts of the basin, the formation hosts penecontemporaneous paleocanyons that incise up to

37 1 km down into the underlying stratigraphy (Von der Borch et al., 1982), filled in part with tabular-clast
38 carbonate breccias. Within single meter-scale deposits, these redeposited clasts show the same $\delta^{13}\text{C}$ values as
39 the intact canyon-shoulder sections, requiring that the negative $\delta^{13}\text{C}$ values (and the correlation with $\delta^{18}\text{O}$)
40 were acquired in these Ediacaran carbonates *before* brecciation and redeposition as canyon-fill (Husson et al.,
41 2012). These *isotope conglomerate tests* rule out late-stage alteration for the negative carbon isotope values
42 observed from the Wonoka Formation, but diagenetic processes that occur before significant burial remain
43 allowable (Grotzinger et al., 2011).

44 The vast majority of published $\delta^{13}\text{C}$ values measured from carbonates have used conventional acid diges-
45 tion and gas-source mass spectrometry (GSMS), which produce ‘bulk’ isotopic profiles. This approach has
46 demonstrated that the ‘Shuram’ excursion signal is reproducible across certain basins (e.g., Husson et al.,
47 2015b; Le Guerroué et al., 2006), and spatially variable in others (Macdonald et al., 2013; Li et al., 2017;
48 Cui et al., 2017). Regardless, bulk sampling methodology makes it impossible to determine grain-scale geo-
49 chemical differences and prevents the identification of isotopically distinct phases of carbonate – for example,
50 sedimentary grains with a typical marine $\delta^{13}\text{C}$ value ($\sim 0\text{\textperthousand}$) mixed with diagenetic phases (e.g., void-filling
51 cements, dolomite) with negative $\delta^{13}\text{C}$ values ($\sim -20\text{\textperthousand}$). Depending upon their volumetric importance, di-
52 agenesis may have affected the bulk rock $\delta^{13}\text{C}$ value while leaving behind a detectable primary signal at the
53 grain-scale.

54 Secondary ion mass spectrometry (SIMS) allows the $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ values of multiple carbonate phases
55 within the same sample to be measured. When combined with scanning electron microscopy (SEM), SIMS
56 can quantify the isotopic composition of individual grains and crystals of carbonate phases that are identified
57 by their petrography (Śliwiński et al., 2016a,b, 2017). Measurements of $\delta^{13}\text{C}$ values by SIMS have been made
58 on ooids and two generations of calcite cements in Shuram Formation carbonates from Oman (Bergmann,
59 2013). These three populations overlap isotopically at the 1σ level (population means of each are $\approx -9\text{\textperthousand}$),
60 and these agreements were interpreted as evidence of a rock-buffered system during cementation and a
61 primary origin for the bulk isotope signature (Bergmann, 2013). The Zhongling section of the Ediacaran-
62 aged Doushantuo Formation in South China also has SIMS measurements (Cui et al., 2019), an unusual
63 locality with both a dolomitic phase ($\delta^{13}\text{C}$ values of $-1\text{\textperthousand}$ to $+6\text{\textperthousand}$) and cm-scale, calcite nodules ($\delta^{13}\text{C} =$
64 $-37\text{\textperthousand}$ to $-5\text{\textperthousand}$, Cui et al., 2017). The SIMS and SEM results have been used as evidence that these calcite
65 nodules are authigenic, formed early, and contributed to generating the ‘Shuram’ excursion (Cui et al., 2019).
66 Here, we test these competing hypotheses by extending the SIMS work from these basins to the Wonoka
67 Formation of South Australia (Fig. 1a), one of the first successions identified as containing the ‘Shuram’
68 excursion (Calver, 2000).

69 **2. Methods**

70 *2.1. Sample selection*

71 The Wonoka Formation is \sim 500 to \sim 800 meters thick, and consists of a shallowing-upward sequence of
72 mixed carbonates and siliciclastics (Fig. 1b, Husson et al., 2015b). The succession predominantly consists
73 of limestones, except for the uppermost 5–100 meters, where dolostones are present. Five samples from
74 one measured section (Fig. 1b) were selected for analysis by SIMS. The samples span the range of observed
75 bulk $\delta^{13}\text{C}$ values and depositional facies (arrows on Fig. 1c), with the sample numbers corresponding to
76 stratigraphic height in meters above datum. The lowermost sample (44.4) is from an interval of thin-bedded
77 (2–5 cm) calciturbidites. The following two (365.8 and 547.4) are from the more carbonate-rich and coarser-
78 grained portion of the stratigraphy, consisting of swaley cross-stratified grainstones. All three are limestones.
79 Sample 712.8 is a dolomite-cemented sandstone, and 828.6 is a microbialitic dolostone.

80 *2.2. In-situ carbonate $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ microanalysis by SIMS*

81 Carbon ($\delta^{13}\text{C}$) and oxygen ($\delta^{18}\text{O}$) isotope values of micrometer-scale domains were measured in-situ
82 using a CAMECA IMS 1280 large-radius multi-collector ion microprobe at the WiscSIMS Laboratory (De-
83 partment of Geoscience, University of Wisconsin-Madison). Samples cast into 25-mm diameter epoxy rounds
84 (Fig. S1) were flattened using diamond embedded pads and polished using polycrystalline diamond and alu-
85 mina suspensions. Low surface relief ($<\sim 2\mu\text{m}$) is a requirement, as sample topography is a source of mass
86 fractionation during ion sputtering that degrades both accuracy and precision (Kita et al., 2009). Samples
87 were first examined by high-resolution back-scattered electron (BSE) SEM-imaging, energy-dispersive X-ray
88 spectroscopy (EDS) and cathodoluminescence (CL) imaging under an iridium coat to identify different phases
89 of carbonate present in each sample. Mounts then were cleaned by ultrasonication in alternating baths (3
90 cycles) of ethanol and deionized water, dried overnight in a vacuum oven at 40°C and sputter-coated with a
91 layer of gold (~ 20 nm thick) to assist charge compensation during SIMS analysis.

92 Carbon measurements were performed with a primary $^{133}\text{Cs}^+$ beam with an intensity of 0.4 nA and total
93 impact energy of 20 keV, focused on 6 μm -diameter spot-sizes on the sample surface. Spot-sizes of 10 μm -
94 diameter were used for oxygen, using a 1.0 nA $^{133}\text{Cs}^+$ beam with total impact energy of 20 keV. Boring depths
95 for each are 1–2 μm . An electron gun was used to provide charge compensation. Instrument configurations
96 have been described in detail previously (Valley and Kita, 2009; Śliwiński et al., 2016a,b, 2018). For $\delta^{13}\text{C}$
97 and $\delta^{18}\text{O}$, precision on an individual value is 0.4–1.0‰ (2 σ) and 0.2–0.4‰ (2 σ), respectively. Here, precision
98 is defined by replicate measurements ($n = 8$) of drift monitors UWC-3 (calcite, Kozdon et al., 2009) and
99 UW6220 (dolomite, Śliwiński et al., 2016a,b) which bracketed each set of approximately 10 sample analyses
100 (analytical accuracy is addressed separately further below).

101 After SIMS, the major cation chemistry of the analyzed domains (Ca, Mg, Fe, Mn and Sr abundances) was
102 characterized by electron probe microanalysis (EPMA) by a CAMECA SX-51 (Cameron Electron Microprobe
103 Laboratory, Department of Geoscience, University of Wisconsin-Madison). This step is required to correct

104 for instrument bias caused by the chemical composition of an analyzed phase. Several different suites of
105 carbonate reference materials (RMs) were measured at the beginning of the analytical session (Fig. S2),
106 so that the magnitude of the $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ biases (i.e., the matrix-effects) could be calibrated to cation
107 composition. The RMs measured include the dolomite-ankerite series (Śliwiński et al., 2016a,b) and two
108 calcite standards with differing minor-element (Mg, Fe, Mn, Sr) composition: UWC-3 (Kozdon et al., 2009)
109 and UWC-4 (Turnier et al., 2020), a Fe- and Mn-bearing calcite (Tables S1–S4).

110 The cation compositions of the analyzed unknowns and reference materials are shown in Figs. 2 and S3.
111 For both $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$, the composition and measured mass bias of each RM was plotted in 3-D space (XCa,
112 X(Fe+Mn), SIMS mass bias) and a surface model (thin-plate spline fit) was applied so that a bias correction
113 factor for each sample measurement could be interpolated based on its EPMA-measured chemistry. The bias
114 calibration models are shown as contoured ternary plots in Fig. 2. Variability (2σ) in the $\delta^{13}\text{C}$ bias correction
115 factors applied to sample unknowns is $\pm 0.5\text{\textperthousand}$ for calcites and $\pm 0.9\text{\textperthousand}$ for dolomites. For $\delta^{18}\text{O}$ corrections,
116 variability is $\pm 0.5\text{\textperthousand}$ (calcite) and $\pm 2.6\text{\textperthousand}$ (dolomite), with the larger spread in the latter due primarily to
117 variability in Fe-Mn content (Fig. 2b). A comparison of measured RM $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ values against those
118 predicted by the surface model (Tables S5 and S6) indicates SIMS measurement accuracy of $0.5\text{\textperthousand}$ for both
119 $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ values, in relation to the certified reference material NIST-19. Further details about these
120 data reduction methodologies can be found in Valley and Kita (2009) and Śliwiński et al. (2016a,b, 2018).

121 The SIMS dataset includes 151 $\delta^{13}\text{C}$ values (from all five samples, Fig. 1c) and 71 $\delta^{18}\text{O}$ values (from
122 samples 44.4 and 828.6). These totals include 42 paired analyses - i.e., carbonate grains/crystals on which
123 both measurements were made. Producing paired data for the full dataset is not possible, because some
124 domains are too small to accommodate two spots (lengthscale $\leq 15 \mu\text{m}$). Imagery from BSE was integrated
125 with SIMS and EPMA data using QGIS (Linzmeier et al., 2018). Images of all SIMS pits are provided in
126 Figs. S4–S16, and all data (including uncorrected and corrected SIMS values) are provided in a supplementary
127 Excel file. The sample mounts are stored at the University of Wisconsin Geology Museum with these
128 identifiers: 44.4 = UWGMG 4989, 365.8 = UWGMG 4990, 547.4 = UWGMG 4991, 712.8 = UWGMG 4992,
129 828.6 = UWGMG 4993.

130 3. Results

131 3.1. Petrography and elemental geochemistry

132 Understanding the Wonoka SIMS results requires considering them in a petrographic context. Sample
133 44.4 includes an erosive contact (dashed red line in Fig. 3a) between a more carbonate-rich layer (lower,
134 brighter region) and more siliciclastic-rich layer (upper, darker region). These regions also are apparent on
135 BSE imagery, in which brightness correlates with the average atomic number of an imaged phase. Thus
136 generally, silicates are dark and carbonate minerals are brighter (Fig. 3b). The carbonate portion can be
137 further delineated into four distinct phases (Fig. 3c, d and e). The most abundant phases by volume are
138 two types of calcite (darker and lighter grey on Fig. 3e), where the brightness contrast is controlled by

139 Mn content. Most dark calcite spots ($n = 13$) have no measurable amount of Mn (EPMA detection limit
140 ≈ 200 ppm), and the remainder have Mn levels between 740 and 5,600 ppm ($n = 7$). The three highest
141 Mn measurements (6,500 to 12,500 ppm) are from spots on the bright calcite phases identified under BSE
142 (Fig. 3e and supplementary Excel file).

143 Dolomites also are present, but are rarer than calcite and unevenly distributed throughout the sample.
144 Within the siliciclastic-rich layer, dolomites constitute 19% of the total carbonate fraction, as measured by
145 351 points counted from a 3 mm² portion of the sample mount. Within the carbonate-rich layer, dolomites
146 represent only 3% of total carbonate. Each dolomite observed under BSE has a darker core mantled by a
147 brighter rim (Fig. 4). These differences are controlled by cation chemistry, namely: (a) the rims are more
148 Ca-rich compared to the cores (mean Ca/Mg molar ratio of 1.32 vs. 1.12) and (b) the concentration of
149 Fe+Mn, with rims containing an average of 2.20% end-member (Fe+Mn)CO₃ and cores with an average of
150 0.54% (molar percentages). Thus, dolomite rims have higher average atomic weights than cores. While many
151 cores have planar edges with angular corners (Fig. 4b–f), others have more irregular, anhedral boundaries
152 (Fig. 4g–k). Some grains are combinations: planar where the darker dolomite defines a grain edge, and
153 irregular where mantled by the lighter dolomite (Fig. 4a). Based on 238 observed dolomites, 45% have
154 anhedral cores.

155 Dolomite is absent from the next two limestone samples, 365.8 and 547.4, which consist entirely of
156 calcite and siliciclastics (Fig. 5a and b). Sample 547.4 has less siliciclastic material than either 365.8 or
157 44.4, consistent with the overall stratigraphic trend of increasing carbonate content upwards (Fig. 1b). The
158 carbonate component in each consists of interlocking grains of angular calcite. Both samples also lack clear
159 compositional differences within the calcite fraction – unlike sample 44.4, which showed darker, Mn-poor
160 calcite and brighter, Mn-rich calcite under BSE (Fig. 3e). Petrographic heterogeneity returns with the first
161 appearance of pervasive dolomitization in the Wonoka with sample 712.8, a dolomite-cemented sandstone
162 (Fig. 1b). Under BSE, darker rims of dolomite are shown mantling generally lighter, structureless dolomite
163 (Fig. 5c). Similar to the dolomites in sample 44.4, these BSE brightness differences are controlled by Fe+Mn
164 content, with the darker rims containing an average of 0.87% (Fe+Mn)CO₃, compared to 1.35% in the
165 brighter dolomite. The uppermost sample analyzed (828.6) is a microbialitic dolostone that also contains
166 two generations of dolomite identifiable under BSE: a more coarsely crystalline phase with clear zonation
167 (upper left of Fig. 5d) and a finer-grained dolomite that is darker generally (bottom half of Fig. 5d).

168 *3.2. SIMS carbon isotope geochemistry*

169 Each type of carbonate described above was measured by SIMS. Unless otherwise stated, all isotopic
170 values discussed below were obtained by SIMS. On Fig. 3c–e and on Fig. 5, each oval is the size, shape and
171 location of a SIMS analysis, color-coded by its $\delta^{13}\text{C}$ value. Both the GSMS and the SIMS values are shown
172 together on Fig. 6a, with the latter displayed as kernel density estimates (KDEs). Summarized in this way,
173 there are two types of results. One set has unimodal, tight distributions of $\delta^{13}\text{C}$ values (365.8, 547.4 and
174 828.6; 2σ of each distribution is 1.0, 1.4, and 1.2‰, respectively). Each distribution is centered on or within

175 $\sim 1\%$ of the GSMS $\delta^{13}\text{C}$ value. The other samples (44.4 and 712.8) are much more complex. Sample 712.8
176 roughly is bimodal, with one mode centered on -1.3% and the other on $+3.8\%$ (range is -2.3 to $+5.3\%$).
177 Sample 44.4 has the highest variance, with a dominant mode that straddles the GSMS $\delta^{13}\text{C}$ value of -11.2%
178 and a long tail of more positive values that reaches $+7\%$.

179 When $\delta^{13}\text{C}$ values are parsed by mineralogy, clear patterns emerge. In Fig. 6b–f, $\delta^{13}\text{C}$ values are binned
180 by the different carbonate phases described above. In sample 44.4 (Fig. 6f), both Mn-poor (<1000 ppm
181 Mn, as measured by EPMA) and Mn-rich calcite have values close to the GSMS $\delta^{13}\text{C}$ value of -11.2%
182 (population mean $\pm 2\sigma$: $-11.8 \pm 1.1\%$ and $-10.7 \pm 1.1\%$, respectively). The dolomite rims have a higher
183 mean $\delta^{13}\text{C}$ value than the calcite populations ($-10.0 \pm 1.1\%$). Dolomite cores have the highest $\delta^{13}\text{C}$ values,
184 which range from -5.0 to $+4.9\%$. The one exception is a single calcite measurement (analysis 993), which
185 is the most positive $\delta^{13}\text{C}$ value ($+6.7\%$) measured in sample 44.4. It is far outside the distributions of the
186 other calcite spots ($-11.4 \pm 1.4\%$, Fig. 6f).

187 To investigate whether this measurement is real or an analytical artifact, we analyzed 3 spots surrounding
188 this anomalous value on the same calcite grain (Fig. S4). The isotopic values of the three companion spots
189 are -11.3% , -11.3% and -11.0% , and thus overlap within analytical uncertainty ($\sim 0.7\%$) and with the
190 overall calcite $\delta^{13}\text{C}$ distribution from this sample (Fig. 6f). These observations suggest that analysis 993 is
191 an anomalous outlier of currently unknown origin. While SEM images do not show any irregularities in pit
192 morphology (Fig. S4), it remains possible that this analysis hit a crack or cavity below the sample surface,
193 leading to anomalous beam behavior caused by surface roughness (Kita et al., 2009). Given that all other
194 $\delta^{13}\text{C}$ values in sample 44.4 are well organized by mineralogy (i.e., calcite vs. dolomite) and major cation
195 chemistry (i.e., dolomite rims vs. dolomite cores), we find an 18% isotopic gradient within a single grain of
196 otherwise homogenous calcite (Fig. S4) to be unlikely.

197 The next two up-section samples (365.8 and 547.4, both limestones) have populations of $\delta^{13}\text{C}$ values
198 with much lower variance in (Fig. 6a, d, e). The distribution from sample 365.8 ($-5.4 \pm 1.0\%$) is unimodal,
199 but offset by $\sim 1\%$ from its bulk value (-6.3%). Analyses from sample 547.4 also form a single population
200 ($-6.0 \pm 1.4\%$), but its mean is closer to the bulk value (-6.3%). Such tight distributions are consistent
201 with compositional homogeneity as indicated by BSE (Fig. 5a,b). High variance returns with the first
202 appearance of pervasive dolomitization in the Wonoka with sample 712.8 (Fig. 1b), a dolomite-cemented
203 sandstone. Values range from -2.3 to $+5.3\%$, with the darker, dolomite rims being more tightly clustered
204 (-1.6 to $+0.9\%$) and occupying the more negative end of the full distribution (Fig. 6c). Within each type of
205 dolomite, the observed variability (range of 7% in the lighter dolomite, 2.5% in the rims) does not correlate
206 with any coherent compositional patterns seen under BSE (Fig. 5c). This finding contrasts with samples
207 365.8 and 547.4, which show both compositional homogeneity and low variance in distributions of $\delta^{13}\text{C}$
208 values. The uppermost sample analyzed (828.6) has a unimodal $\delta^{13}\text{C}$ distribution ($+6.3 \pm 1.2\%$), centered
209 close to its GSMS value of $+5.7\%$, with no difference in $\delta^{13}\text{C}$ values between the zoned ($+6.3 \pm 1.0\%$) and
210 finer-grained dolomite ($+6.2 \pm 1.3\%$).

211 *3.3. SIMS oxygen isotope geochemistry*

212 Values of $\delta^{18}\text{O}$ (reported here on the VPDB scale) were acquired by SIMS on the four types of carbonate
213 present in sample 44.4 (calcite, Mn-rich calcite, dolomite rims and dolomite cores, Fig. 7a) and the two
214 present in sample 828.6 (fine-grained and zoned dolomite, Fig. 7b). In sample 44.4, $\delta^{18}\text{O}$ values of calcite
215 and Mn-calcite are similar to one another. Population means ($\pm 2\sigma$) are $-17.1 \pm 1.5\text{\textperthousand}$ and $-16.4 \pm 1.6\text{\textperthousand}$,
216 respectively, with the latter excluding one outlier which may be a mixed analysis between calcite and silicate
217 (Fig. S7). These populations means are more negative than the GSMS $\delta^{18}\text{O}$ value for sample 44.4 ($-15.5\text{\textperthousand}$).
218 Values from dolomite rims and cores are much more dispersed ($-10.6 \pm 4.8\text{\textperthousand}$ and $-9.4 \pm 5.5\text{\textperthousand}$, respectively),
219 with population means more positive than the GSMS value (Fig. 7a). In sample 828.6, the population of
220 $\delta^{18}\text{O}$ values from fine grained dolomite ($-11.1 \pm 2.3\text{\textperthousand}$) is centered near the GSMS value ($-10.6\text{\textperthousand}$), whereas
221 zoned dolomites have a population mean more negative than the bulk composition ($-12.3 \pm 2.0\text{\textperthousand}$).

222 **4. Discussion**

223 *4.1. Values of $\delta^{13}\text{C}$ and petrographic patterns in carbonates of the Wonoka Formation*

224 Given the precision of an individual $\delta^{13}\text{C}$ analysis (0.4–1.0‰) and the accuracy of SIMS results (within
225 0.5‰), the results from samples 365.8, 547.4 and 828.6 agree remarkably well with their gas-source values
226 (Fig. 6). In general, BSE homogeneity of a sample predicts low variance in distributions of $\delta^{13}\text{C}$ values
227 (although compositionally-similar phases from sample 712.8 show a large spread in $\delta^{13}\text{C}$ values). The large
228 variability in datasets from samples 44.4 and 712.8, by contrast, is well beyond measurement uncertainty. The
229 dominant process controlling $\delta^{13}\text{C}$ values in 712.8 likely is diagenesis. This sample is a dolomite-cemented
230 sandstone, located at the top of a 50 m thick interval of siliciclastics (Fig. 1b). The positive mode in its $\delta^{13}\text{C}$
231 distribution ($\sim +4\text{\textperthousand}$, Fig. 6) overlaps with the bulk carbon isotopic compositions of the directly overlying
232 dolomitic stromatolite-microbialite unit (+1.7 to +6.6‰; Fig. 1b and c). This agreement suggests that at
233 least some of the cement in sample 712.8 could have derived from fluids percolating downward, variably
234 affecting the most permeable upper horizons, such as sandstones.

235 In sample 44.4, its complex $\delta^{13}\text{C}$ distribution is related to its complex petrography. Imaging via BSE
236 shows that the darker, Mn-poor calcite of this sample has ovate to spherical shapes, suggestive of the rounding
237 expected for detrital grains of transported carbonate (Fig. 3e). The interpretation of detrital calcite also
238 is supported by the morphology of grains in cathodoluminescence (CL) images (Fig. S17). These grains
239 are ringed by halos of calcite that are brighter under BSE, caused by Mn enrichment. This relationship
240 suggests an alteration front, with recrystallization progressing inward from grain boundaries. The brighter
241 calcite also appears to fill interstitial spaces between sedimentary grains (Fig. 3e), suggesting lithification
242 by calcite cement richer in Mn. Importantly, however, these secondary alteration and cementation processes
243 did not lower the $\delta^{13}\text{C}$ value of the bulk rock (Fig. 6). The $\delta^{13}\text{C}$ values of Mn-poor, detrital calcite overlaps
244 isotopically with the population from Mn-rich calcite cements, $-11.8 \pm 1.1\text{\textperthousand}$ vs. $-10.7 \pm 1.1\text{\textperthousand}$ (Fig. 6f).
245 A cross-plot between Mn and $\delta^{13}\text{C}$ values shows a positive correlation (rank order correlation $\rho = 0.66$,

246 $P = 0.05$, Fig. S18), contrary to predictions that Mn-enrichment is associated with lower $\delta^{13}\text{C}$ values in
247 carbonates (Brand and Veizer, 1981).

248 The large variability in $\delta^{13}\text{C}$ values from sample 44.4 is caused by measurements from dolomite – specific-
249 ally, from dolomite cores ($\delta^{13}\text{C}$ range of -5.0 to $+4.9\text{\textperthousand}$), as dolomite rims have values very similar to calcite
250 ($-10.0 \pm 1.1\text{\textperthousand}$). We interpret the presence of both euhedral (Fig. 4a–f) and anhedral (Fig. 4g–k) dolomite
251 cores as a result of partial dissolution of some cores before formation of overgrowth rims. This process has
252 been invoked to explain similarly irregularly-shaped dolomite cortices encased by euhedral dolomite rims in
253 Tertiary dolomites from the Cayman Islands (e.g., Fig. 7 of Jones, 2005). In sample 44.4, dolomite rims all
254 have planar, regular edges and rhombohedral shapes (Figs. 3c, d and 4), although partial dissolution features
255 are present on some grain boundaries (e.g., Figs. 3c and 4a, b, and e). To account for such regular forms,
256 we interpret these crystals (as large as $35\text{ }\mu\text{m}$) to have grown unhindered in unoccluded sedimentary pore
257 space before significant compaction or lithification had occurred.

258 *4.2. Values of $\delta^{18}\text{O}$ and C-O covariation*

259 Given the uniformity of $\delta^{13}\text{C}$ values in samples 365.8 and 547.3 and the interpreted dominance of diage-
260 netic processes in sample 712.8, $\delta^{18}\text{O}$ values were measured for samples 44.4 and 828.6. These samples also
261 span the GSMS $\delta^{13}\text{C}$ - $\delta^{18}\text{O}$ range observed in this measured section (black symbols in Fig. 8). In sample
262 828.6, patterns in $\delta^{18}\text{O}$ values are similar to those in $\delta^{13}\text{C}$ (Figs. 6b and 7b). Distribution of values from
263 both zoned and fine-grained dolomite overlap both with each other ($-11.1 \pm 2.3\text{\textperthousand}$ and $-12.3 \pm 2.0\text{\textperthousand}$) and
264 with the GSMS value for this sample ($-10.6\text{\textperthousand}$). Using the equation for dolomite-water fractionation from
265 Horita (2014), these values ($\delta^{18}\text{O} = -9$ to $-14\text{\textperthousand}$) correspond to equilibration temperatures of 70 – 110° with
266 ice-free ocean waters ($\delta^{18}\text{O} = -1\text{\textperthousand}$ VSMOW). These are reasonable burial temperatures for this sample,
267 based on the minimum estimated thickness of sedimentary overburden at the section locality (2.0–2.5 km)
268 and a typical geothermal gradient of 25 – $30^\circ/\text{km}$. If the Ediacaran oceans were $\sim 5\text{\textperthousand}$ more negative in $\delta^{18}\text{O}$
269 value than the modern (Galili et al., 2019), the calculated temperature range shifts to 45 – 80°C .

270 In sample 44.4, the distributions of $\delta^{18}\text{O}$ values from dolomite rims and dolomite cores ($-10.6 \pm 4.8\text{\textperthousand}$
271 and $-9.4 \pm 5.5\text{\textperthousand}$, respectively) overlap with values from 828.6 (Fig. 7a), although the distributions are more
272 scattered. Calcite in this sample has tighter and more negative $\delta^{18}\text{O}$ distributions (Fig. 7a), with Mn-poor
273 calcite grains having the lowest $\delta^{18}\text{O}$ value observed (down to $-17.8\text{\textperthousand}$). Of the 71 $\delta^{18}\text{O}$ values acquired
274 by SIMS, 42 can be paired with a $\delta^{13}\text{C}$ value (Figs. S4–S10 and S15–S16). In a cross-plot (Fig. 8), SIMS
275 results overlap with bulk GSMS values, and values from sample 44.4 show $\delta^{13}\text{C}$ - $\delta^{18}\text{O}$ covariation along two
276 different arrays: between calcite and dolomite rims (Pearson $r^2 = 0.67$), and another between calcite and
277 dolomite cores ($r^2 = 0.79$). Correlation is much weaker if all data from 44.4 is considered ($r^2 = 0.29$), and
278 disappears if calcite data are excluded ($r^2 = 0.06$). A similar pattern is seen in the GSMS data from the
279 Wonoka Formation (Fig. 8), where correlation is strongest when limestones and dolostones are considered
280 together ($r^2 = 0.48$), weaker if only limestones are included ($r^2 = 0.32$) and non-existent when restricted to
281 dolostones only ($r^2 = 0.01$). At equilibrium, dolomite is predicted to be more positive in both $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$

282 than calcite, although the difference is temperature-dependent (Figs. 8 and 9 in Horita, 2014) and cannot
283 explain fully the observed correlations.

284 Although these data cannot offer a conclusive explanation for C-O covariation in ‘Shuram’ excursion
285 carbonates, they do yield two important insights. First, the most negative $\delta^{13}\text{C}$ (Fig. 6f) and $\delta^{18}\text{O}$ values
286 (Fig. 7a) were measured in sample 44.4 from the interior of rounded, detrital grains of calcite (Figs. 3e and
287 S17). All secondary carbonate phases within this sample (Mn-rich calcite cement and dolomite) have more
288 positive $\delta^{18}\text{O}$ values. If dolomite $\delta^{18}\text{O}$ values in sample 44.4 represent resetting at a range of burial depths
289 and temperatures, then it is difficult to explain the observed calcite values of $-17.8\text{\textperthousand}$ as a product of that
290 same diagenetic history. Second, the small-scale gradients we see in $\delta^{18}\text{O}$ values are impressive - in sample
291 44.4, the range is $12\text{\textperthousand}$ across 0.2 mm^2 of analyzed surface (Fig. S1). Such variability is hard to reconcile with
292 traditional models of carbonate diagenesis, wherein $\delta^{18}\text{O}$ values becomes quickly fluid-buffered (e.g., Ahm
293 et al., 2018). These SIMS data (Fig. 7a) imply that either sample 44.4 experienced very low water/rock ratios
294 during its diagenetic history (at least after dolomite formation ceased), or that assumptions with regards to
295 $\delta^{18}\text{O}$ resetting need to be revisited.

296 *4.3. Implications for the Ediacaran carbon cycle*

297 Given these observations, we propose the following depositional and diagenetic history for sample 44.4.
298 Both detrital calcite and siliciclastic material were deposited in a turbidity current flowing downslope
299 (Fig. 9a), consistent with petrographic observations (Fig. 3) and the interpreted depositional setting (Von der
300 Borch et al., 1982; Husson et al., 2015b). The $\delta^{13}\text{C}$ values of these rounded calcite grains were very negative
301 ($-11.8 \pm 1.1\text{\textperthousand}$). Once deposited, fluids infiltrated the sediment column before lithification (Fig. 9b), from
302 which new carbonate was added as dolomite (Fig. 9c). The $\delta^{13}\text{C}$ values of these phases require that dolomite
303 growth was protracted – i.e., long enough to allow pore fluids to evolve from $+5\text{\textperthousand}$ to $-5\text{\textperthousand}$, assuming this
304 dolomite growth tracks the evolution of sedimentary pore fluids towards a rock-buffered state. This diage-
305 netic dolomite was then mantled with a second generation of dolomite growth (Fig. 9d), distinct under BSE
306 as overgrowths richer in Ca, Mn and Fe (darker cores and brighter rims in Figs. 3c and 4). When considering
307 the $\sim 2\text{\textperthousand}$ difference in fractionation factor between dolomite and calcite for temperatures $<100^\circ$ (Horita,
308 2014), the dolomite rims ($-10.0 \pm 1.1\text{\textperthousand}$) have $\delta^{13}\text{C}$ values equilibrated with the detrital calcite population
309 and formed from a rock-buffered fluid. Likewise, the formation of Mn-rich calcite cement in the remaining
310 interstitial spaces between grains was also rock buffered (Fig. 9d) and did not lower the $\delta^{13}\text{C}$ value of the
311 bulk rock (Figs. 6f and S17).

312 The observation that a detrital calcite phase carries the most negative $\delta^{13}\text{C}$ values still allows the pos-
313 sibility of early diagenesis. Carbonate might have been altered isotopically up-slope, and then mobilized
314 and redeposited as sedimentary beds. However, the bulk chemostratigraphic signal (Fig. 1c) is preserved
315 with remarkable consistency across $\sim 12,000\text{ km}^2$ in South Australia (i.e., section-to-section differences in
316 $\delta^{13}\text{C}$ values are less than 1\textperthousand , Husson et al., 2015b). This observation would demand identical degrees of
317 carbonate diagenesis across the entire basin before transport. Thus, the most conservative explanation is

318 that the low carbon isotope values originated in the water column in which these grains formed, before being
319 transported downslope (Fig. 9a).

320 The dolomite cores of sample 44.4 (Fig. 4), however, complicate the meaning of these very low $\delta^{13}\text{C}$
321 values. Interpreted to be authigenic, these phases record a fluid(s) with an extremely different isotopic
322 composition (up to $+5\text{\textperthousand}$, or greater) from the detrital calcite population. While dolostones exist in the
323 uppermost Wonoka with $\delta^{13}\text{C}$ values of $+5\text{\textperthousand}$ (Fig. 1c), fluids from these horizons are not a likely source for
324 the 44.4 dolomite cores. Even if pore-space could remain unoccluded in carbonate strata after ~ 800 meters
325 (post-compacted) of burial (most pore space in Bahamian carbonate strata, by contrast, is closed after ~ 50
326 meters of burial, Melim et al., 2002), it is implausible for a fluid to remain $+5\text{\textperthousand}$ after flowing downward
327 through 100's of meters of carbonate strata with an average $\delta^{13}\text{C}$ value of $-8\text{\textperthousand}$ (Fig. 1c). The dolomites
328 also are not likely to be organogenic (e.g., dolomite nodules of the Monterey Formation Isaacs et al., 1987),
329 as the Wonoka Formation is lean, with a total organic carbon average of 0.3% from unweathered drill core
330 (Calver, 2000).

331 To explain these dolomites, the likeliest explanation is that distinct DIC pools, with both very positive
332 and very negative $\delta^{13}\text{C}$ values, were contemporaneous, with large lateral and/or vertical $\delta^{13}\text{C}$ gradients
333 in the surface environment. Detrital calcite grains formed in the negative pool before being transported
334 downslope (Fig. 9a), and the dolomites sampled the positive pool during early marine diagenesis (Fig. 9b,c).
335 These data are not the first to suggest large spatial heterogeneity in Ediacaran basin waters, and has
336 been proposed previously to explain $\delta^{13}\text{C}$ values in the Wonoka (Calver, 2000). In northwestern Canada,
337 the nadir of stratigraphically-correlative negative $\delta^{13}\text{C}$ excursions ranges from $-8.5\text{\textperthousand}$ to $-2\text{\textperthousand}$ across the
338 Mackenzie Mountains (Macdonald et al., 2013). In South China, the ‘Shuram’ excursion is not apparent
339 in the most proximal sections of the Doushantuo Formation, and only reaches a minimum of $\sim -6\text{\textperthousand}$ in the
340 most distal sections (Li et al., 2017). The challenges of correlating Precambrian strata, given the absence
341 of biostratigraphy and the paucity of absolute age tie points, make the implications of these stratigraphic
342 discrepancies ambiguous.

343 In the modern environment, the $\delta^{13}\text{C}$ value of shallow-water DIC often diverges from the deep ocean
344 average value. Near coastal waters can be affected by freshwater discharge from the continents carrying
345 respired organic matter, as in the Florida Bay ($\delta^{13}\text{C}$ of $-7\text{\textperthousand}$, Patterson and Walter, 1994). Carbon cycling
346 in bank-top waters in the The Bahamas leads to $\delta^{13}\text{C}$ values of up to $+2.3\text{\textperthousand}$ (Geyman and Maloof, 2019;
347 Swart et al., 2009), yielding carbonate mud of $+5\text{\textperthousand}$ owing to the equilibrium fractionation factor between
348 aragonite and bicarbonate (Romanek et al., 1992). In pans of evaporating seawater in Israel, highly pro-
349 ductive microbial mats can maintain DIC concentrations in disequilibrium with the atmosphere, leading to
350 invasion of CO_2 and a drop in $\delta^{13}\text{C}$ value of DIC from $+4$ to $-9\text{\textperthousand}$ (Lazar and Erez, 1992). The mechanism
351 proposed to explain this isotopic change in the brine was a kinetic isotope effect related to $^{12}\text{CO}_2$ vs. $^{13}\text{CO}_2$
352 hydration (McConaughey, 1989). While 70% of initial seawater alkalinity precipitated as CaCO_3 , the $\delta^{13}\text{C}$
353 values of this carbonate were not measured (Lazar and Erez, 1992). This mechanism also is intriguing be-

cause it might result in carbonate with low $\delta^{18}\text{O}$ values, thereby helping explain the correlation between $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ (Fig. 8). Whether disequilibrium processes, coupled with daily bursts of CaCO_3 precipitation (Geyman and Maloof, 2019), could lead to large volumes of isotopically negative carbonate sediment remains to be tested quantitatively.

We interpret the SIMS dataset of sample 44.4 as a result of large surface gradients in the $\delta^{13}\text{C}$ values DIC. The detrital calcite grain population sampled near-coastal waters that were affected by local processes (e.g., organic matter recycling, CO_2 disequilibria). Early diagenetic dolomites sampled a DIC pool that remained positive in $\delta^{13}\text{C}$, which is consistent with the majority of Ediacaran carbonates (Halverson et al., 2005). The potential importance of local processes in governing carbon isotopic composition is consistent with $\delta^{44/40}\text{Ca}$ values (Husson et al., 2015a). Large and stratigraphically coherent changes in $\delta^{44/40}\text{Ca}$ are seen across the basin, with the highest values ($-0.7\text{\textperthousand}$, referenced to modern seawater) at the base, the lowest values ($-1.8\text{\textperthousand}$) in the middle part of the stratigraphy, and a return to high values again at the top of the Wonoka ($-0.7\text{\textperthousand}$, Husson et al., 2015a). Considering also strong correlations with Sr, Husson et al. (2015a) argued for carbonate mineralogical control on $\delta^{44/40}\text{Ca}$ variability, as aragonite is depleted in ^{44}Ca relative to calcite by $\sim 0.6\text{--}0.9\text{\textperthousand}$ (Gussone et al., 2005), and dolomitization tends to increase $\delta^{44/40}\text{Ca}$ values (Ahm et al., 2018). The $\delta^{44/40}\text{Ca}$ value and Sr concentration of sample 44.4 are consistent with calcite as the original carbonate polymorph (Sr = 149 ppm, $\delta^{44/40}\text{Ca} = -0.9\text{\textperthousand}$); by contrast, original aragonite is indicated for samples 365.8 (Sr = 4400 ppm, $\delta^{44/40}\text{Ca} = -1.9\text{\textperthousand}$) and 547.3 (Sr = 2900 ppm, $\delta^{44/40}\text{Ca} = -1.6\text{\textperthousand}$). Owing to the metastability of aragonite (McIntyre, 1965), early neomorphism into calcite would have occluded available pore space in these samples, thus precluding the growth of early diagenetic dolomite, as in sample 44.4.

This pattern of calcium isotope variability means that $\delta^{44/40}\text{Ca}$ and $\delta^{13}\text{C}$ values strongly covary – negatively correlated for the lower half of the formation, and positively correlated for the upper half (Husson et al., 2015a). Strong correlations are not expected if both profiles record global seawater, given the order-of-magnitude difference between the residence times of carbon and calcium in the modern ocean (~ 0.1 Myr. and ~ 1 Myr., respectively, Holmden et al., 2012). Why local carbonate mineralogy should also correlate with $\delta^{13}\text{C}$, however, remains unclear.

These SIMS results (Fig. 10a) also demand a refinement of the isotope conglomerate tests (see section 1, Fig. 10b). To explain the large range in $\delta^{13}\text{C}$ values observed in basal breccia units of Wonoka canyon-fill (-11 to $+5.5\text{\textperthousand}$, Fig. 10b), Husson et al. (2012) invoked the erosion and redeposition of carbonates from the Wonoka canyon-shoulder (range of -12 to $+8\text{\textperthousand}$, Fig. 10c). In this interpretation, canyon-filling must have occurred after the majority of the canyon-shoulder had been deposited (Husson et al., 2012, 2015b). If basal canyon-fill sampled all horizons within the eroded interval with equal probability, the expectation is that the distribution of $\delta^{13}\text{C}$ values in breccia clasts should be similar to the distribution of $\delta^{13}\text{C}$ values from sampled canyon-shoulder sections (Fig. 10c). In the latter, values of $\delta^{13}\text{C}$ from limestones appear normally distributed ($-6.7 \pm 2.4\text{\textperthousand}$, 1σ) with a prominent mode at $\sim -7\text{\textperthousand}$, and dolostones are restricted generally

390 to be greater than 0‰ (Fig. 10c). In the breccia clasts, by contrast, the distribution of limestones has a
391 mean $\delta^{13}\text{C}$ value of $-9.7\text{\textperthousand}$ (± 0.9) and no peak at $-7\text{\textperthousand}$. Dolostone clasts are distributed uniformly between
392 -10.3 and $+5.5\text{\textperthousand}$ (Fig. 10b), and additionally have completely distinct $\delta^{26}\text{Mg}$ values from canyon-shoulder
393 dolostones (Fig. 9 from Husson et al., 2015a).

394 This pattern of carbon isotope variability – dolostones that are rare and widely dispersed in $\delta^{13}\text{C}$ values,
395 limestones with a comparatively tight $\delta^{13}\text{C}$ distribution – is similar to the SIMS data from dolomite and
396 calcite phases (Fig. 10a). Thus, it is most parsimonious to interpret the isotope conglomerate tests as a result
397 of similar processes (e.g., Fig. 9). Eroded canyon-shoulder provided limestone clasts with very negative $\delta^{13}\text{C}$
398 values (between -11 and $-8\text{\textperthousand}$). Canyon filling could have occurred after ~ 100 meters of canyon-shoulder
399 deposition, coincident with a prominent erosional surface within the canyon-shoulder stratigraphy (Fig. 1b)
400 that is responsible for some of the cut-fill sequences within the Wonoka (Haines, 1987; Husson et al., 2015b).
401 Before being redeposited, some portion of this sampled canyon-shoulder population (dashed curve in Fig. 10b)
402 was dolomitized by a fluid with positive $\delta^{13}\text{C}$ values, resulting in dolostone clasts with carbon isotopic values
403 of up to $+5\text{\textperthousand}$ (Fig. 10b). This dolomitization process is observed in-situ with SIMS in sample 44.4 (Fig. 3).
404 As with the SIMS results, this re-interpretation of the isotope conglomerate tests reinforces the need for very
405 large $\delta^{13}\text{C}$ gradients in the surface environment.

406 5. Conclusions

407 Coupled with a basin-wide view of the carbon isotope excursion (Husson et al., 2012, 2015b,a), these
408 SIMS results reveal no significant role for post-depositional diagenesis in developing the observed negative
409 excursion in $\delta^{13}\text{C}$ in the Wonoka Formation. Local water DIC in this South Australian Ediacaran basin is
410 the most probable origin for the signal. However, early diagenetic dolomites with $\delta^{13}\text{C}$ values as high as $+5\text{\textperthousand}$
411 co-occur with $-12\text{\textperthousand}$ calcite detrital grains, which complicates interpretation of the excursion. We infer that
412 isotopically-negative carbonate precipitation mainly occurred in shallow-water, platformal environments,
413 with average deeper-water DIC not decreasing to $-12\text{\textperthousand}$. Assessing the possibility of large surface gradients
414 in $\delta^{13}\text{C}$ values of DIC is hampered by the dearth of independent correlation tie points within the Ediacaran
415 Period, such as those provided by biostratigraphy or geochronology. Thus, carbonate units correlative with
416 ‘Shuram’ excursion sections would not be recognized as such if they do not have low $\delta^{13}\text{C}$ values. It is
417 notable, however, that at least 11 other Ediacaran basins distributed on 7 paleocontinents record carbon
418 isotope excursions that are similar, pointing towards a global driver (Grotzinger et al., 2011). Developing
419 a viable model that satisfies both the geological and geochemical observations remains an important and
420 vexing problem for Neoproterozoic Earth history.

421 **6. Acknowledgments**

422 Fieldwork and sample collection were supported by NSF grant EAR-1121034 to ACM and BS. Lab work
423 was partially supported by NSF ICER 1440312 to SEP and the Department of Geoscience at the University of
424 Wisconsin-Madison. WiscSIMS is supported by the National Science Foundation (EAR-1355590, -1658823)
425 and the University of Wisconsin-Madison. KK and AI were supported by the National Aeronautics and
426 Space Administration under Grant NNA13AA94A issued through the Science Mission Directorate. JWV
427 was supported by US Department of Energy Office of Science, Office of Basic Energy Sciences, Chemical
428 Sciences, Geosciences, and Biosciences Division under award number DE-FG02-93ER14389. We thank Brian
429 Hess for sample preparation and John Fournelle and Bil Schneider for SEM imaging and EPMA. Mike
430 Spicuzza calibrated calcite and dolomite standards by acid digestion and GSMS. We thank Clara Blättler
431 and Anne-Sofie Ahm, who provided comments on a pre-draft of this manuscript. We thank 4 anonymous
432 reviewers and Editor Lou Derry for their help and comments in making this work a better manuscript. We
433 are grateful to the owners of Beltana Station for access to their land during fieldwork in South Australia.

434 **References**

435 Ahm, A.S.C., Bjerrum, C.J., Blättler, C.L., Swart, P.K., Higgins, J.A., 2018. Quantifying early marine
436 diagenesis in shallow-water carbonate sediments. *Geochimica et Cosmochimica Acta* 236, 140–159.

437 Bergmann, K., 2013. Constraints on the carbon cycle and climate during the early evolution of animals
438 (Chapter 2). Ph.D. thesis. California Institute of Technology.

439 Von der Borch, C., Smit, R., Grady, A., 1982. Late Proterozoic submarine canyons of Adelaide Geosyncline,
440 South Australia. *AAPG Bulletin* 66, 332–347.

441 Brand, U., Veizer, J., 1981. Chemical diagenesis of a multicomponent carbonate system - 1: stable isotopes.
442 *Journal of Sedimentary Petrology* 51, 987–997.

443 Bristow, T., Kennedy, M., 2008. Carbon isotope excursions and the oxidant budget of the Ediacaran
444 atmosphere and ocean. *Geology* 36, 863–866.

445 Calver, C., 2000. Isotope stratigraphy of the Ediacaran (Neoproterozoic III) of the Adelaide Rift Complex,
446 Australia, and the overprint of water column stratification. *Precambrian Research* 100, 121–150.

447 Cui, H., Kaufman, A.J., Xiao, S., Zhou, C., Liu, X.M., 2017. Was the Ediacaran Shuram Excursion a
448 globally synchronized early diagenetic event? Insights from methane-derived authigenic carbonates in the
449 uppermost Doushantuo Formation, South China. *Chemical Geology* 450, 59–80.

450 Cui, H., Orland, I., Kitajima, K., Xiao, S., Kaufman, A., Fournelle, J., Baele, J., Goderis, S., Claeys, P.,
451 Valley, J., 2019. Probing an Atypical Shuram Excursion by SIMS. *Geological Society of America Abstracts
452 with Programs* 51.

453 Derry, L.A., 2010. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly.
454 *Earth and Planetary Science Letters* 294, 152–162.

455 Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez,
456 E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., Alsdorf,
457 D., 2007. The shuttle radar topography mission. *Reviews of Geophysics* 45. RG2004.

458 Fike, D., Grotzinger, J., Pratt, L., Summons, R., 2006. Oxidation of the Ediacaran ocean. *Nature* 444,
459 744–747.

460 Galili, N., Shemesh, A., Yam, R., Brailovsky, I., Sela-Adler, M., Schuster, E.M., Collom, C., Bekker, A.,
461 Planavsky, N., Macdonald, F.A., et al., 2019. The geologic history of seawater oxygen isotopes from marine
462 iron oxides. *Science* 365, 469–473.

463 Geyman, E.C., Maloof, A.C., 2019. A diurnal carbon engine explains ^{13}C -enriched carbonates without
464 increasing the global production of oxygen. *Proceedings of the National Academy of Sciences* 116, 24433–
465 24439.

466 Grotzinger, J., Fike, D., Fischer, W., 2011. Enigmatic origin of the largest-known carbon isotope excursion
467 in Earth’s history. *Nature Geoscience* 4, 285–292.

468 Gussone, N., Böhm, F., Eisenhauer, A., Dietzel, M., Heuser, A., Teichert, B., Reitner, J., Wörheide, G.,
469 Dullo, W., 2005. Calcium isotope fractionation in calcite and aragonite. *Geochimica et Cosmochimica
470 Acta* 69, 4485–4494.

471 Haines, P., 1987. Carbonate shelf and basin sedimentation, late Proterozoic Wonoka Formation, South
472 Australia. Ph.D. thesis. University of Adelaide.

473 Halverson, G., Hoffman, P., Maloof, A., Schrag, D., Rice, A.H.N., Bowring, S., Dudas, F., 2005. Toward a
474 Neoproterozoic composite carbon-isotope record. *Geological Society of America Bulletin* 117, 1181–1207.

475 Holmden, C., Panchuk, K., Finney, S., 2012. Tightly coupled records of Ca and C isotope changes during
476 the Hirnantian glaciation event in an epeiric sea setting. *Geochimica et Cosmochimica Acta* 98, 94–106.

477 Horita, J., 2014. Oxygen and carbon isotope fractionation in the system dolomite–water– CO_2 to elevated
478 temperatures. *Geochimica et Cosmochimica Acta* 129, 111 – 124.

479 Husson, J.M., Higgins, J.A., Maloof, A.C., Schoene, B., 2015a. Ca and Mg isotope constraints on the origin
480 of Earth’s deepest $\delta^{13}\text{C}$ excursion. *Geochimica et Cosmochimica Acta* 160, 243–266.

481 Husson, J.M., Maloof, A.C., Schoene, B., 2012. A syn-depositional age for Earth’s deepest $\delta^{13}\text{C}$ excursion
482 required by isotope conglomerate tests. *Terra Nova* 24, 318–325.

483 Husson, J.M., Maloof, A.C., Schoene, B., Chen, C.Y., Higgins, J.A., 2015b. Stratigraphic expression of
484 Earth's deepest $\delta^{13}\text{C}$ excursion in the Wonoka Formation of South Australia. American Journal of Science
485 315, 1–45.

486 Isaacs, C.M., Petersen, N.F., Hein, J., 1987. Petroleum in the Miocene Monterey Formation, California, in:
487 Siliceous sedimentary rock-hosted ores and petroleum: Evolution of ore fields. Van Nostrand Reinhold,
488 pp. 83–116.

489 Jones, B., 2005. Dolomite crystal architecture: genetic implications for the origin of the Tertiary dolostones
490 of the Cayman Islands. Journal of Sedimentary Research 75, 177–189.

491 Kita, N.T., Ushikubo, T., Fu, B., Valley, J.W., 2009. High precision SIMS oxygen isotope analysis and the
492 effect of sample topography. Chemical Geology 264, 43–57.

493 Knauth, L.P., Kennedy, M.J., 2009. The late Precambrian greening of the Earth. Nature 460, 728–732.

494 Kozdon, R., Ushikubo, T., Kita, N., Spicuzza, M., Valley, J., 2009. Intratest oxygen isotope variability in
495 the planktonic foraminifer *N. pachyderma*: Real vs. apparent vital effects by ion microprobe. Chemical
496 Geology 258, 327–337.

497 Lazar, B., Erez, J., 1992. Carbon geochemistry of marine-derived brines: I. $\delta^{13}\text{C}$ depletions due to intense
498 photosynthesis. Geochimica et Cosmochimica Acta 56, 335–345.

499 Le Guerroué, E., Allen, P., Cozzi, A., 2006. Chemostratigraphic and sedimentological framework of the
500 largest negative carbon isotopic excursion in Earth history: The Neoproterozoic Shuram Formation (Nafun
501 Group, Oman). Precambrian Research 146, 68–92.

502 Li, C., Hardisty, D.S., Luo, G., Huang, J., Algeo, T.J., Cheng, M., Shi, W., An, Z., Tong, J., Xie, S., et al.,
503 2017. Uncovering the spatial heterogeneity of Ediacaran carbon cycling. Geobiology 15, 211–224.

504 Linzmeier, B.J., Kitajima, K., Denny, A.C., Cammack, J.N., 2018. Making maps on a micrometer scale. Eos
505 99.

506 Lyons, T.W., Reinhard, C.T., Planavsky, N.J., 2014. The rise of oxygen in Earth's early ocean and atmo-
507 sphere. Nature 506, 307–315.

508 Macdonald, F.A., Strauss, J.V., Sperling, E.A., Halverson, G.P., Narbonne, G.M., Johnston, D.T., Kunz-
509 mann, M., Schrag, D.P., Higgins, J.A., 2013. The stratigraphic relationship between the Shuram carbon
510 isotope excursion, the oxygenation of Neoproterozoic oceans, and the first appearance of the Ediacara
511 biota and bilaterian trace fossils in northwestern Canada. Chemical Geology 362, 250–272.

512 McConaughey, T., 1989. ^{13}C and ^{18}O isotopic disequilibrium in biological carbonates: I. Patterns. Geochim-
513 ica et Cosmochimica Acta 53, 151–162.

514 McIntyre, W., 1965. The temperature variation of the solubility product of CaC₀₃ in sea water. Canada
515 Fisheries Research Board, Manuscript Report 200, 153.

516 Melim, L., Westphal, H., Swart, P., Eberli, G., Munnecke, A., 2002. Questioning carbonate diagenetic
517 paradigms: evidence from the Neogene of the Bahamas. *Marine Geology* 185, 27–53.

518 Patterson, W.P., Walter, L.M., 1994. Depletion of ¹³C in seawater CO₂ on modern carbonate platforms:
519 Significance for the carbon isotopic record of carbonates. *Geology* 22, 885–888.

520 Peters, S.E., Husson, J.M., Czaplewski, J., 2018. Macrostrat: a platform for geological data integration and
521 deep-time earth crust research. *Geochemistry, Geophysics, Geosystems* 19, 1393–1409.

522 Pu, J.P., Bowring, S.A., Ramezani, J., Myrow, P., Raub, T.D., Landing, E., Mills, A., Hodgin, E., Macdon-
523 ald, F.A., 2016. Dodging snowballs: Geochronology of the Gaskiers glaciation and the first appearance of
524 the Ediacaran biota. *Geology* 44, 955–958.

525 Raymond, O., Liu, S., Gallagher, R., Hight, L., Zhang, W., 2012. Surface Geology of Australia, 1:1 000 000
526 scale, 2012 edition [Digital Dataset]. Technical Report. Geoscience Australia. Commonwealth of Australia,
527 Canberra.

528 Romanek, C., Grossman, E., Morse, J., 1992. Carbon isotopic fractionation in synthetic aragonite and
529 calcite: effects of temperature and precipitation rate. *Geochimica et Cosmochimica Acta* 56, 419–430.

530 Rothman, D., Hayes, J., Summons, R., 2003. Dynamics of the Neoproterozoic carbon cycle. *Proceedings of
531 the National Academy of Sciences* 100, 8124–8129.

532 Schrag, D.P., Higgins, J.A., Macdonald, F.A., Johnston, D.T., 2013. Authigenic carbonate and the history
533 of the global carbon cycle. *Science* 339, 540–543.

534 Śliwiński, M.G., Kitajima, K., Kozdon, R., Spicuzza, M.J., Denny, A., Valley, J.W., 2017. In situ $\delta^{13}\text{C}$
535 and $\delta^{18}\text{O}$ microanalysis by SIMS: A method for characterizing the carbonate components of natural and
536 engineered CO₂-reservoirs. *International Journal of Greenhouse Gas Control* 57, 116 – 133.

537 Śliwiński, M.G., Kitajima, K., Kozdon, R., Spicuzza, M.J., Fournelle, J.H., Denny, A., Valley, J.W., 2016a.
538 Secondary Ion Mass Spectrometry Bias on Isotope Ratios in Dolomite–Ankerite, Part I: $\delta^{18}\text{O}$ Matrix
539 Effects. *Geostandards and Geoanalytical Research* 40, 157–172.

540 Śliwiński, M.G., Kitajima, K., Kozdon, R., Spicuzza, M.J., Fournelle, J.H., Denny, A., Valley, J.W., 2016b.
541 Secondary ion mass spectrometry bias on isotope ratios in dolomite–ankerite, part II: $\delta^{13}\text{C}$ matrix effects.
542 *Geostandards and Geoanalytical Research* 40, 173–184.

543 Śliwiński, M.G., Kitajima, K., Spicuzza, M.J., Orland, I.J., Ishida, A., Fournelle, J.H., Valley, J.W., 2018.
544 SIMS bias on isotope ratios in Ca-Mg-Fe carbonates (Part III): $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ matrix effects along the
545 magnesite–siderite solid-solution series. *Geostandards and Geoanalytical Research* 42, 49–76.

546 Swart, P.K., Reijmer, J.J., Otto, R., 2009. A reevaluation of facies on Great Bahama Bank II: Variations in
547 the $\delta^{13}\text{C}$, $\delta^{18}\text{O}$ and mineralogy of surface sediments. *Int. Assoc. Sedimentol. Spec. Publ* 41, 47–59.

548 Turnier, R.B., Katzir, Y., Kitajima, K., Orland, I.J., Spicuzza, M.J., Valley, J.W., 2020. Calibration of
549 oxygen isotope fractionation and calcite-corundum thermometry in emery at Naxos, Greece. *Journal of*
550 *Metamorphic Geology* 38, 53–70.

551 Valley, J.W., Kita, N.T., 2009. In situ oxygen isotope geochemistry by ion microprobe. *MAC Short Course*
552 41, 19–63.

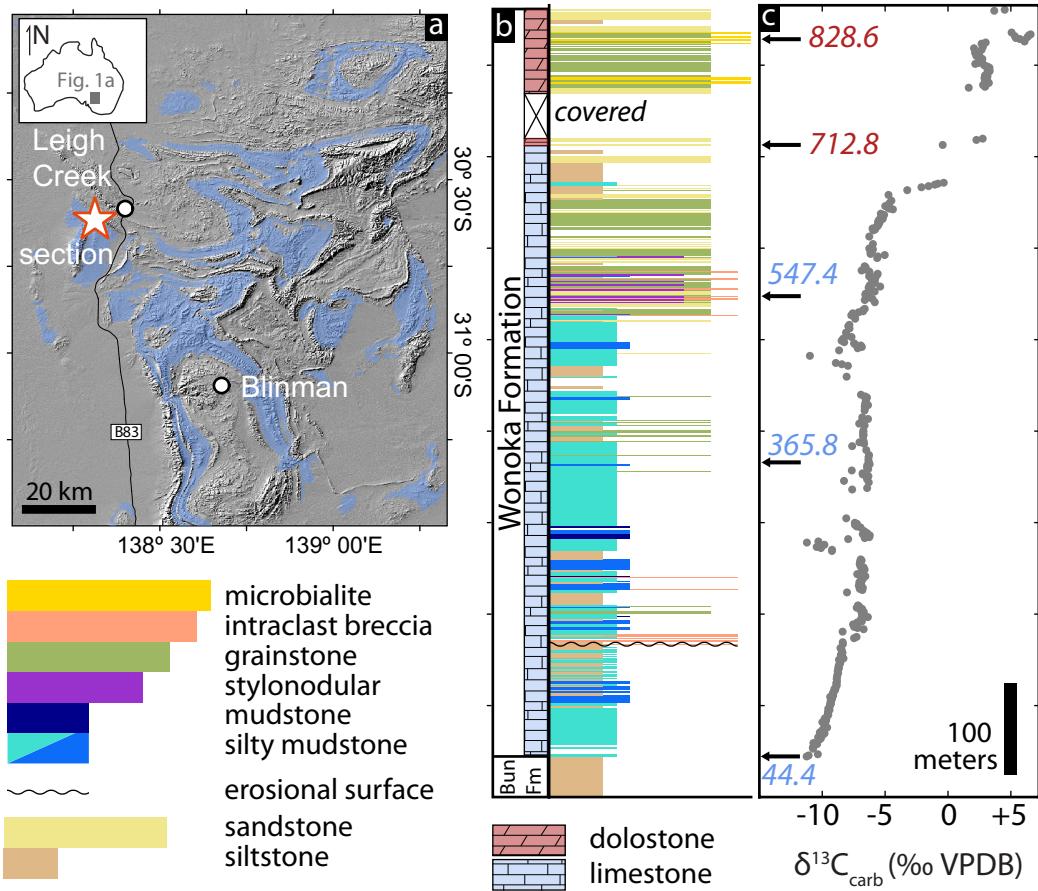


Figure 1: (a) Geologic map of the Wilpena Group, which includes the Wonoka Formation. The map was created via the Macrostrat API (Peters et al., 2018) using data from Geoscience Australia (Raymond et al., 2012) and the Shuttle Radar Topography Mission (Farr et al., 2007). The study locality (measured section 9 from Husson et al., 2015b) is marked with a star. Base of section located at $30^{\circ} 36.964'\text{S}$, $138^{\circ} 18.762'\text{E}$ (WGS84). The physical stratigraphy (b) and carbon isotope (c) chemostratigraphies of the uppermost Bunyeroo (abbreviated 'Bun. Fm.') and Wonoka formations are modified from Husson et al. (2015b). On panel (c), small arrows and colored numbers indicate the horizons analyzed by SIMS (blue numbers are limestones, red are dolostones).

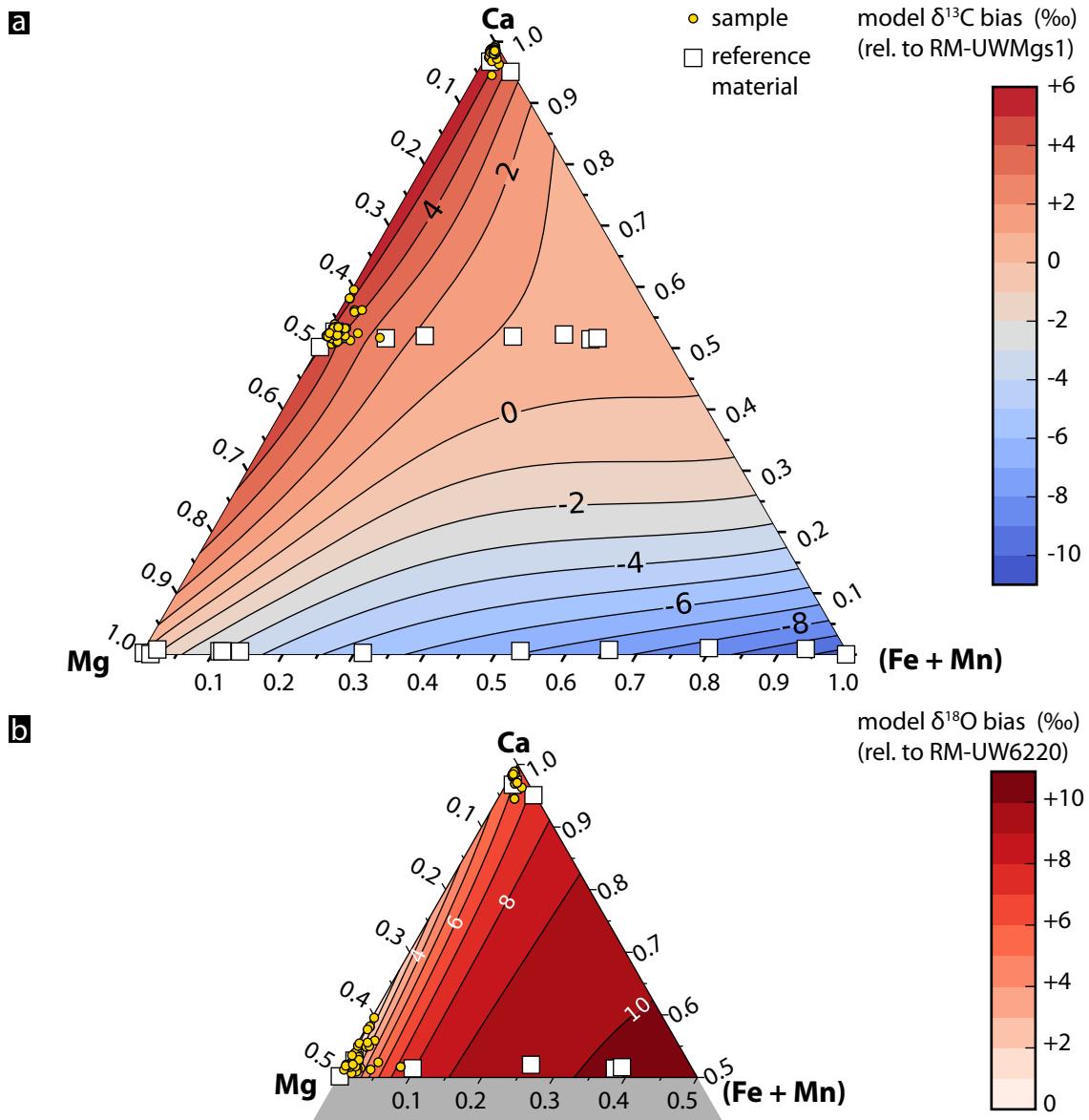


Figure 2: Carbonate ternary diagram [Ca-Mg-(Fe+Mn)] showing modeled SIMS $\delta^{13}\text{C}$ (a) and $\delta^{18}\text{O}$ bias contours (Śliwiński et al., 2018). RMs are plotted as white squares, and samples as yellow dots. The $\delta^{13}\text{C}$ bias magnitude is expressed relative to that of end-member magnesite (UWMgs1, Table S5), and the $\delta^{18}\text{O}$ magnitude is expressed relative to dolomite standard UW6220 (Table S6).

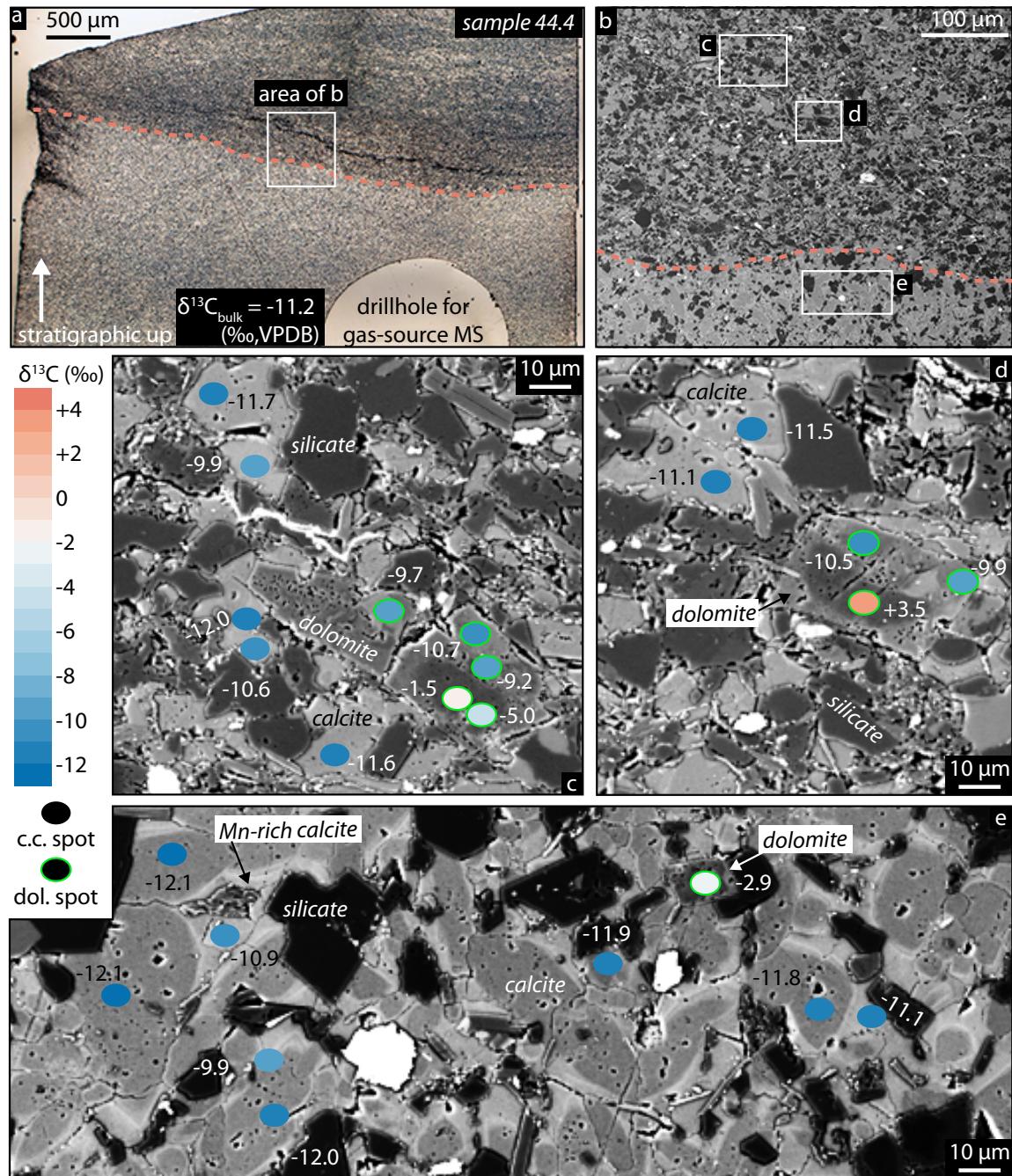


Figure 3: Reflected light (a) and BSE images (b) showing an overview of sample 44.4. (c-e) BSE images with the size, shape and location of each oval corresponding to a $6 \mu\text{m}$ wide $\delta^{13}\text{C}$ SIMS pit. Each is color-coded and labeled according to its $\delta^{13}\text{C}$ value. Dots with green outlines are on dolomite (“dol. spots” in the legend), whereas dots with no outlines are calcite (“c.c. spots”).

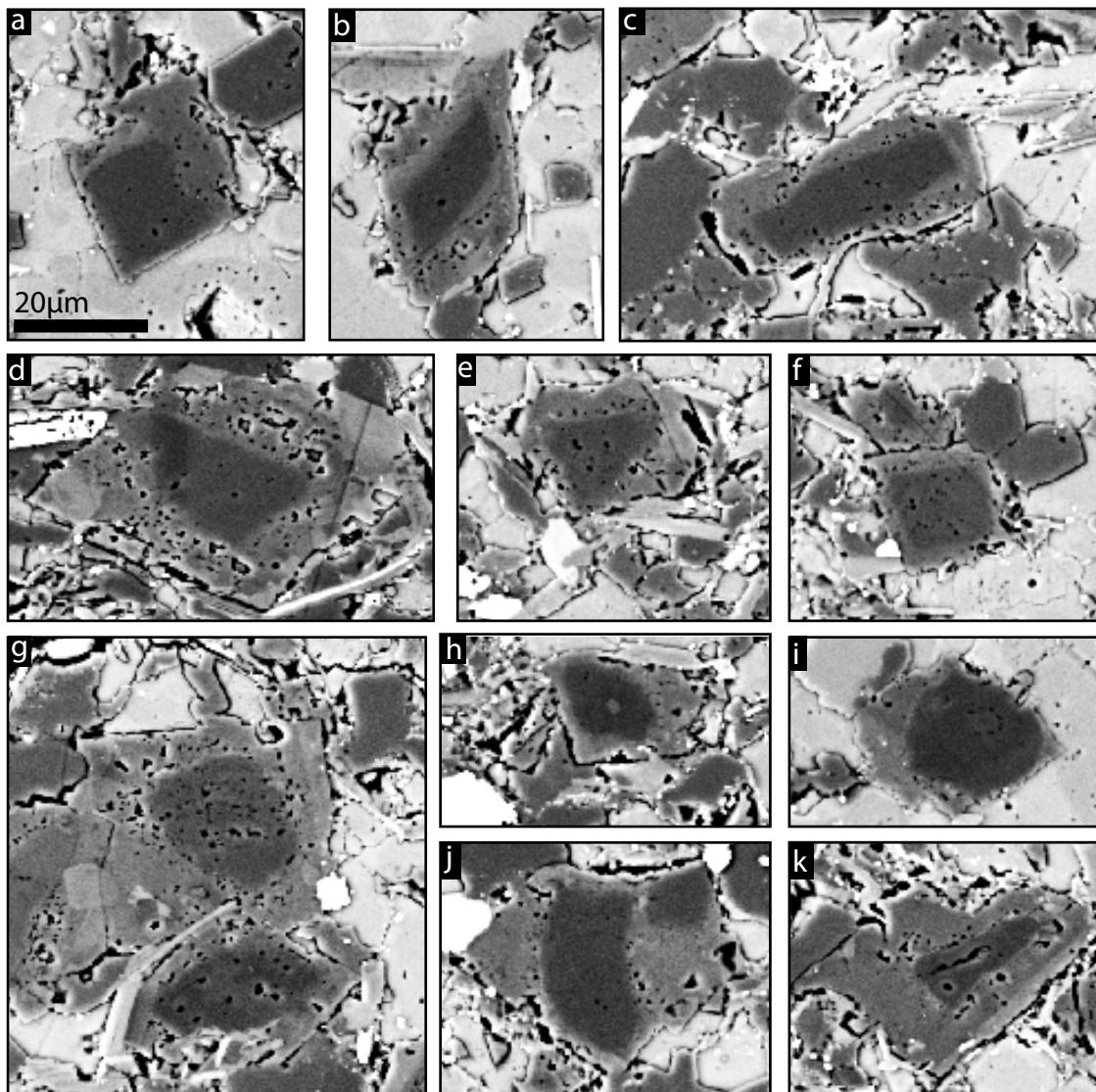


Figure 4: BSE images of dolomites from sample 44.4, each exhibiting a dark core and lighter rim (controlled by higher Ca, Fe and Mn content in the rims). Some cores have angular edges (a–f) while others are more irregular (g–k).

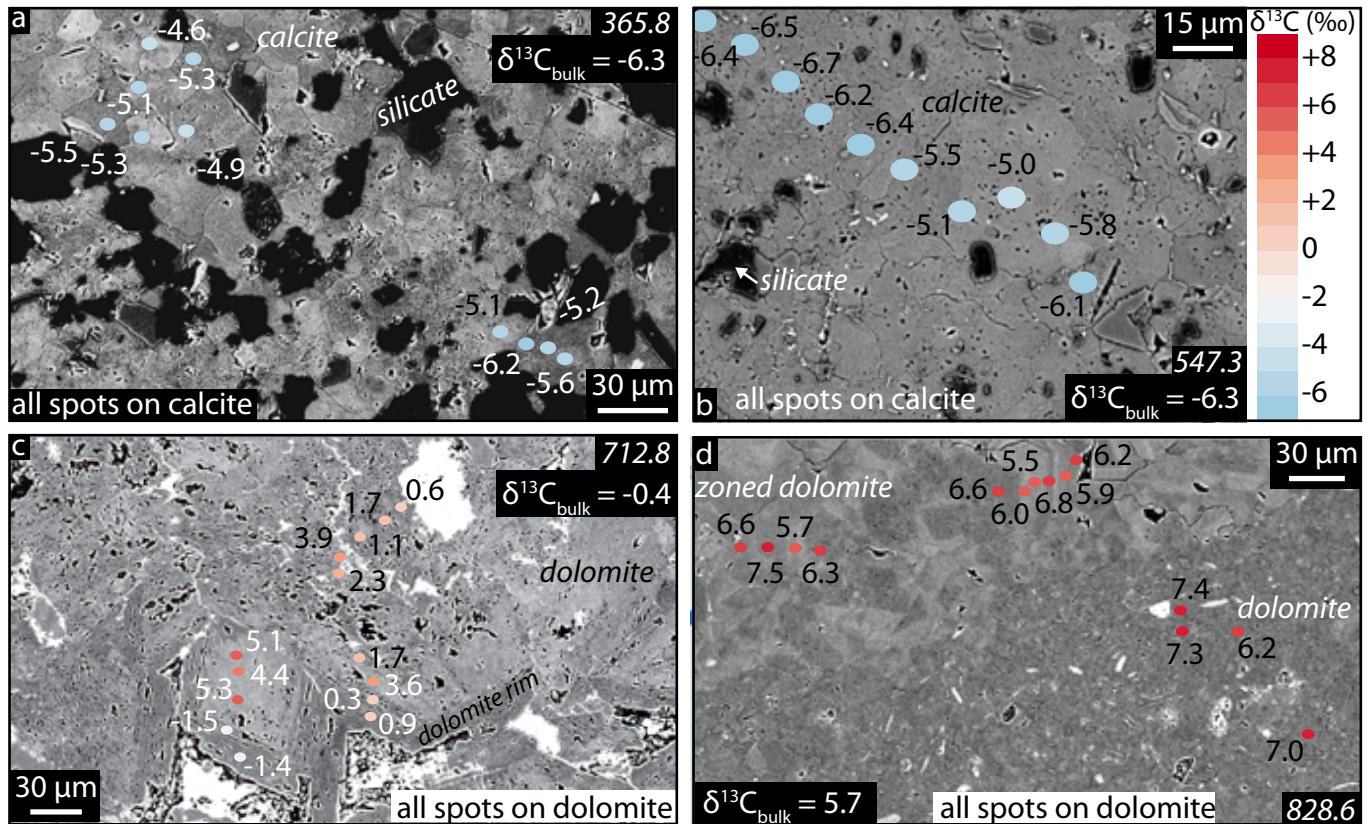


Figure 5: BSE images of samples 365.8 (a), 547.3 (b), 712.8 (c) and 828.6 (d) showing regions with SIMS measurements of $\delta^{13}\text{C}$ values, with the size, shape and location of each oval corresponding to a 6 μm wide SIMS pit. Each is color-coded and labeled according to its $\delta^{13}\text{C}$ value.

Figure 6: (a) Summary results of both bulk-GSMS and SIMS microanalyses of $\delta^{13}\text{C}$ values in the Wonoka Formation. Grey dots are GSMS measurements (Husson et al., 2015b) and black curves are kernel density estimates (KDEs) of the SIMS results from the five labeled horizons (blue numbers are limestones, red are dolostones), and stratigraphic lithofacies log is simplified from Fig. 1b. While the base of each KDE aligns with its corresponding stratigraphic position, the heights of the peaks are arbitrary with respect to the y-axis. Small arrows to the left of each KDE also points to each sample's stratigraphic height. (b–f) Histograms of the SIMS results, organized by stratigraphic height. Different box colors and fill patterns correspond to different phases/types of carbonate from a given sample. Here, Mn-rich calcite is defined as having $[\text{Mn}]>1000$ ppm as measured by EPMA, as opposed to BSE image interpretation (see also Fig. S18 for a cross-plot between $[\text{Mn}]$ and $\delta^{13}\text{C}$ in sample 44.4).

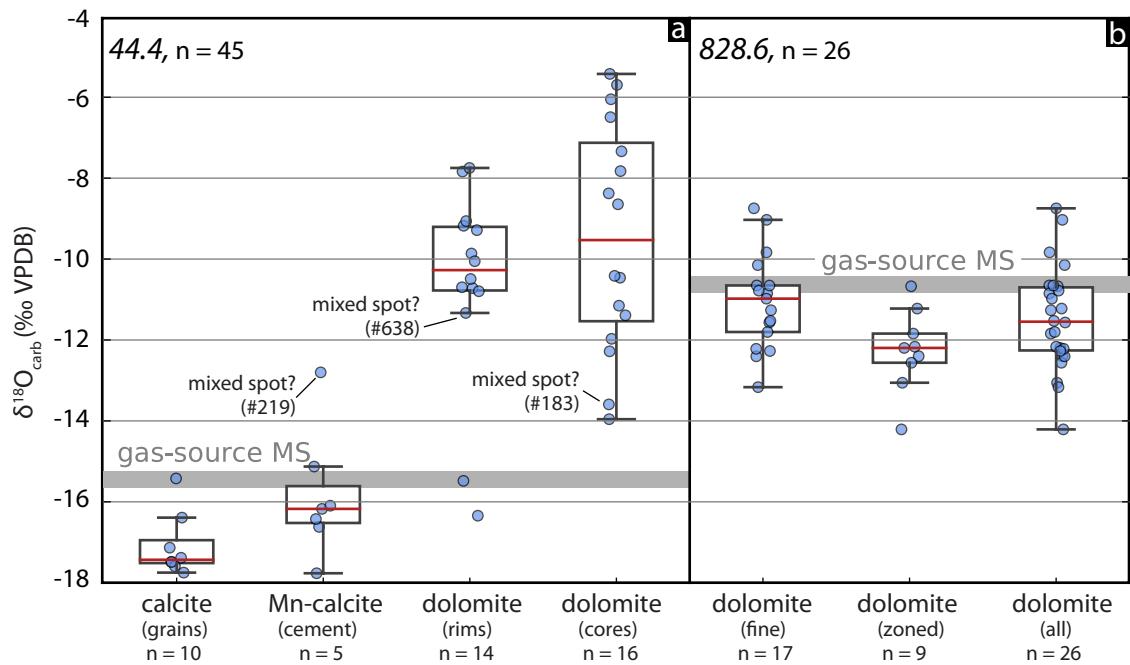


Figure 7: Box-whisker plots of SIMS microanalyses of $\delta^{18}\text{O}$ values in samples 44.4 and 828.6, organized by different phases/types of carbonates as in Fig. 6b-f. Based on BSE images, the three labeled data are from spots that may be mixtures between dolomite core and dolomite rim (analysis number 183, Fig. S7) and carbonate and silicate (analyses 219 and 638, Fig. S5 and S8). Note that the GSMS data are from powders that homogenized all carbonates and thus reflect the mineral mode, while SIMS data are compositions of specific generations of carbonate and are not intended to represent the average for the rock. Thus the SIMS data are verified by conventional GSMS analyses and show the true variability within a sample.

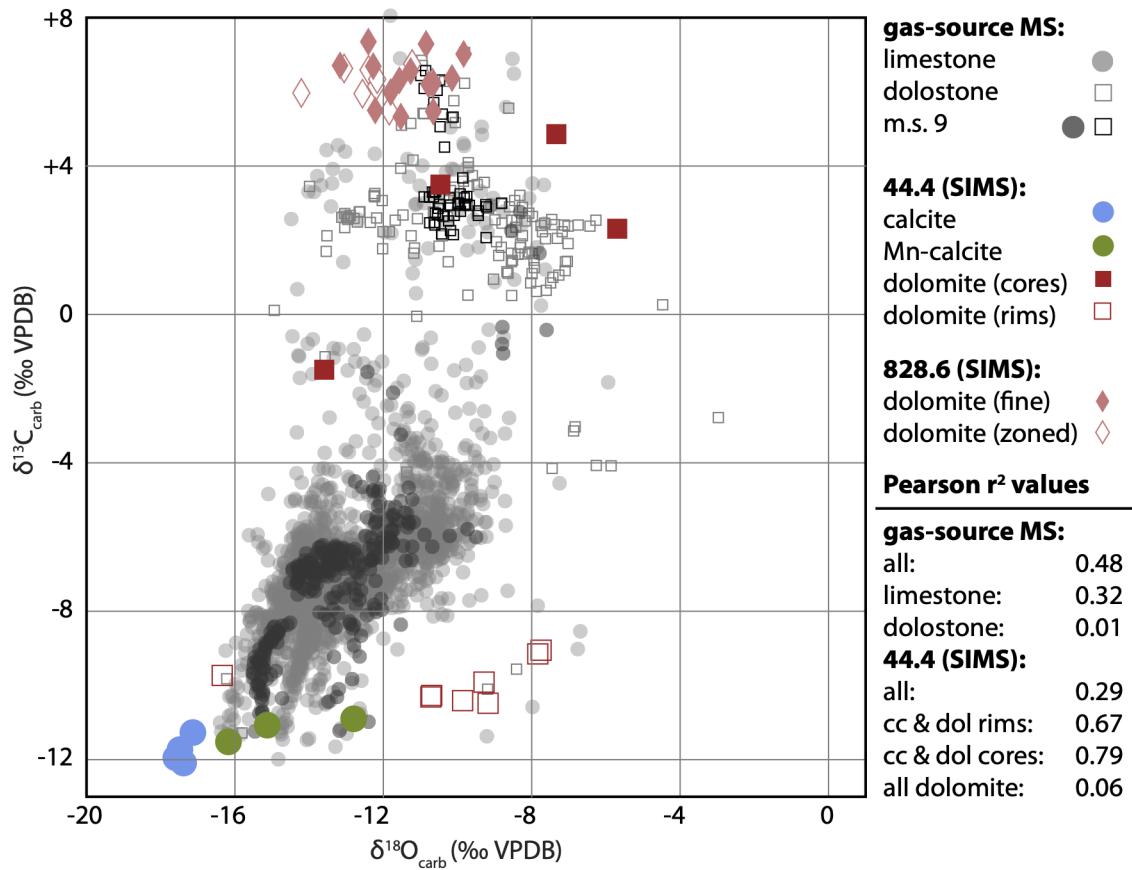


Figure 8: Cross-plot of SIMS $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ values, coded by sample number (44.4 and 828.6) and carbonate phase. For reference, GSMS values from 12 measured sections of the Wonoka Formation (sections 1–12 of Husson et al., 2015b) are plotted also for comparison, coded as either limestone or dolostone. Measured section 9, from which the 5 SIMS samples were taken (Fig. 1b), is plotted as black, whereas the remaining GSMS data are grey.

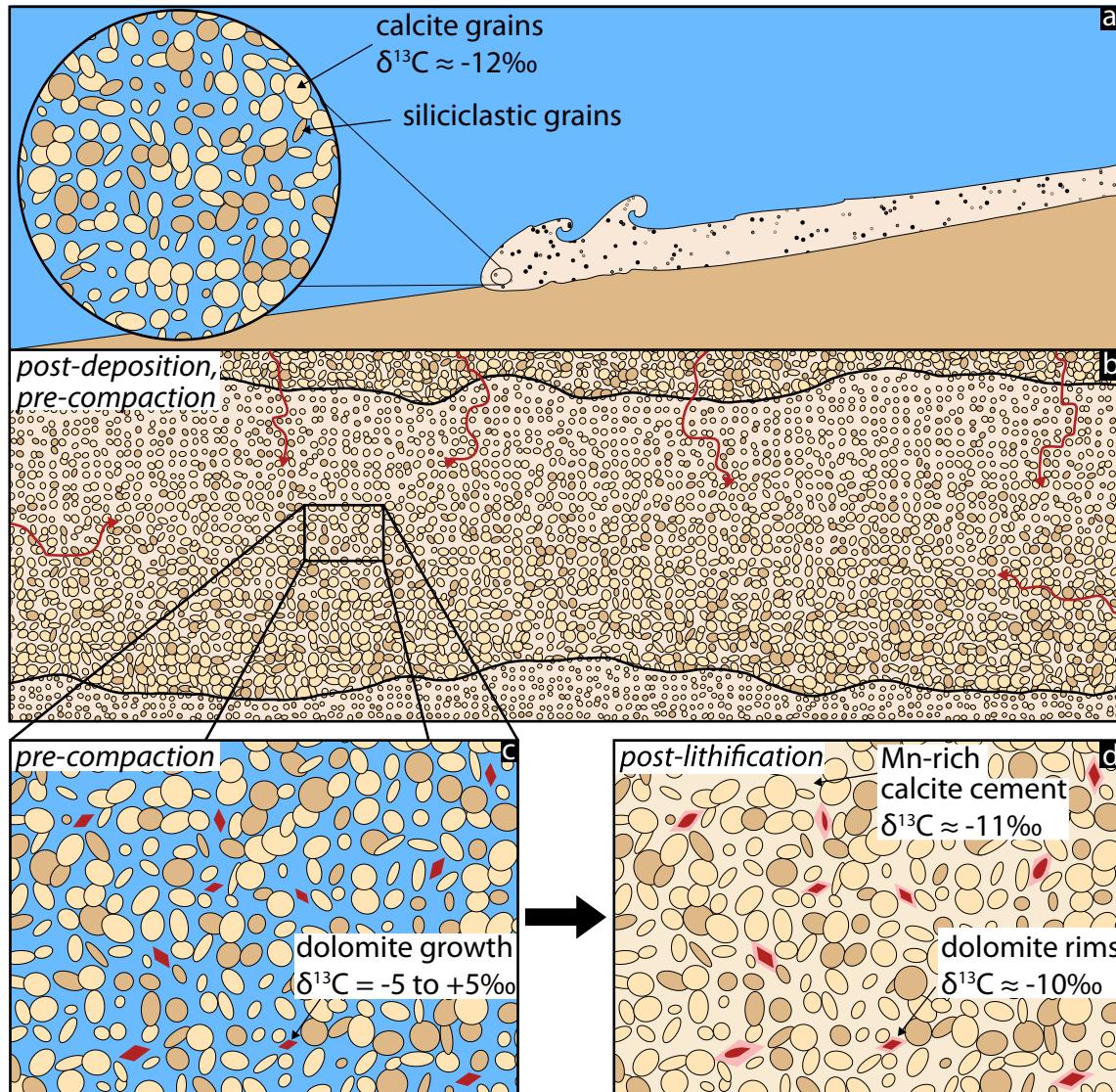


Figure 9: Cartoon depicting the interpreted depositional and diagenetic events recorded in the basal Wonoka Formation. (A) Turbidity current carries both detrital siliciclastic and calcite material downslope, with calcite grains having $\delta^{13}\text{C}$ values of $\sim -12\text{\textperthousand}$. (B) After deposition as a fining-upwards event bed, dolomite-forming fluids infiltrate the uncompacted strata. (C) New carbonate grows as dolomite in unoccluded pore space. (D) Initial dolomite growths are mantled by rims, and remaining porosity is filled with Mn-rich calcite.

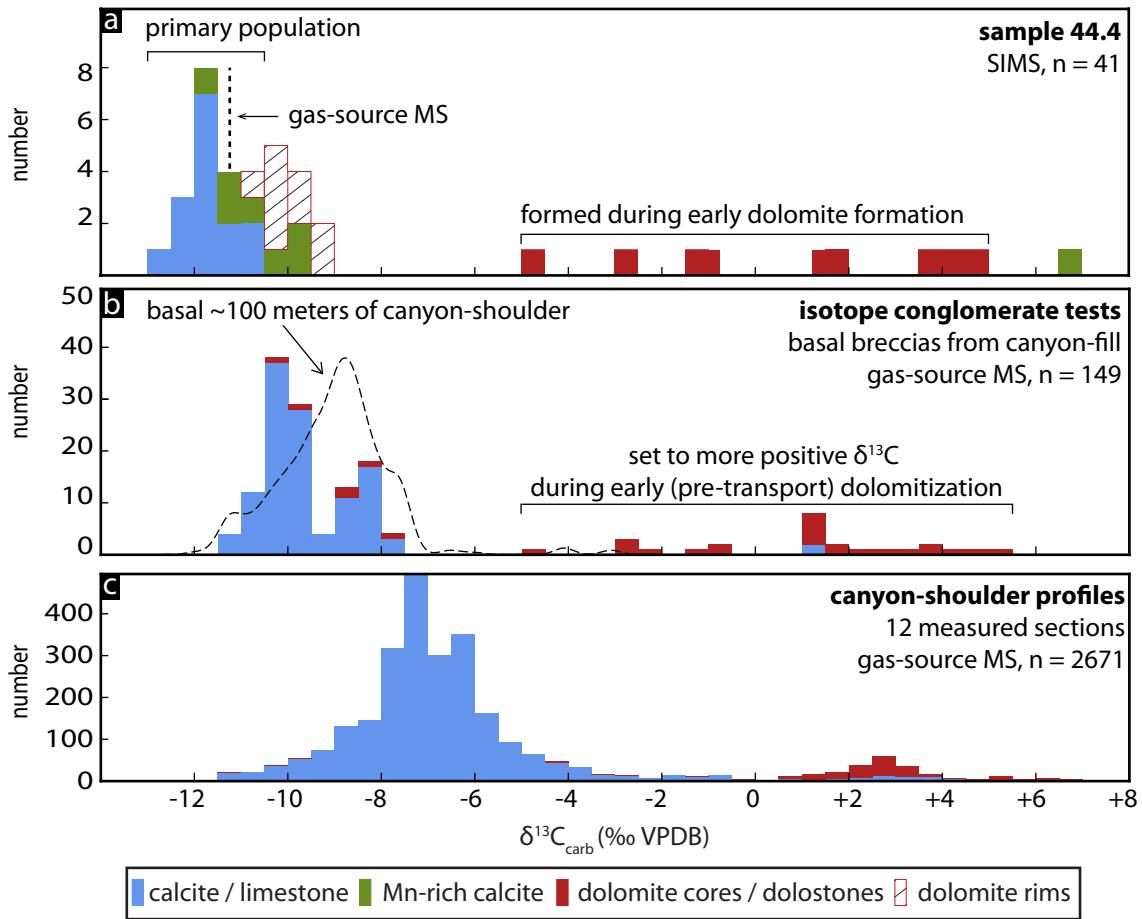


Figure 10: A comparison of distributions of $\delta^{13}\text{C}$ values from sample 44.4, Wonoka canyon-fill breccias and Wonoka canyon-shoulder profiles. (A) The SIMS results are binned and color-coded as in Fig. 6f and annotated according to the conceptual model presented in Fig. 9. (B) Values of $\delta^{13}\text{C}$ values (GSMS) from three basal breccia units are binned and color-coded according to lithology (blue = limestone, red = dolostone). These units are the stratigraphically lowest breccia units from three different canyon-fill sequences (U1, U4 and O1 breccias of Husson et al., 2015b). (C) Values of $\delta^{13}\text{C}$ values (GSMS) from 12 measured sections of the canyon-shoulder (sections 1–12 of Husson et al., 2015b) are binned and color-coded as in Fig. 10b. In panel B, dashed line is a scaled KDE of GSMS $\delta^{13}\text{C}$ values of samples representing the lowermost ~100 meters of the canyon-shoulder sections (i.e., from below the erosional surface in Fig. 1b)