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ABSTRACT

Mass-dependent fractionation of triple oxygen isotopes during water-rocks interaction has been
previously used to constrain environmental conditions of the Precambrian. To validate those
studies, we report high-precision triple oxygen isotope measurements (expressed as A’'170 with
reference slope 0.528) of quartz, epidote and well fluids from Krafla and Reykjanes geothermal
areas of Iceland as well as measurements from the extinct 6 Ma Geitafell hydrothermal system.
At these systems, basalts reacted with distinct fluid sources at temperatures ranging from 250 to
400 °C. Resolvable difference between isotope compositions of surface waters and rocks enables
novel insights into boiling, isotope exchange at variable water-rock ratios, and remelting of
altered rock. Our measurements of 6D, A’'170, and 6180 in well fluids show the reactions
proceeded at water-rock ratios of 0.1 to 2, and reveal the addition of meteoric water in the
Reykjanes system, and near-surface boiling and steam-liquid separation at Krafla. The 6’180 and
A'170 values of fluids shift due to exchange with rocks at high temperature following the slope
0.51 in the triple isotope space, while boiling causes shifts in 6D and 38’180 values, but does not
affect the A'170 fluids significantly due to equilibrium fractionation Biiquid-vapor = 0.529. Due to
small fractionation between epidote and water, epidote A'170 values in all three localities closely
resemble the isotope composition of local fluid sources. In meteoric hydrothermal systems, the
A"'170 of epidotes range between -0.01 and +0.03 %o, while at seawater-dominated system they
are close to that of modified seawater, between -0.02 and +0.01 %o. The measured slope of triple
oxygen isotope fractionation between quartz and epidote at 250-400 °C is 0.526+0.001. The
calibrated quartz-water equilibrium fractionation for triple oxygen isotopes yields general
agreement with the local fluid sources, within £1.5 %o of their 5180 values, while the A'170 agree

within +0.02 %o. We present in situ 6180 measurements in a quartz crystal from Krafla that show
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several %o heterogeneities which may affect the reconstructed equilibrium fluid values. We
tested the effect of shallow crustal contamination on the A'170 values of rhyolitic glasses from
Krafla, including those quenched and extracted by drilling, that likely formed by assimilation of
low-6180 hydrothermally altered crust. Our A’170 measurements constrain the degree of crustal
assimilation to 10-20 %. Our study shows that the A’'170 values measured in geothermal fluids,
secondary minerals and low 6180 contaminated magmas can provide key information on the
conditions of water-rock reaction and magma genesis, and contain additional details that were

not accessible through conventional analyses of dD and 6180.
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1. INTRODUCTION

Hydrothermal alteration of mid-ocean ridge basalts to greenschist facies mineral assemblages
provides the dominant control on the isotope and elemental budget of seawater and notably
modifies the composition of the oceanic crust (Muehlenbachs and Clayton, 1976; Alt and Teagle,
2000). Since, oxygen is the most abundant element both in water and rocks and has a distinct
isotope composition in these reservoirs, the alteration can be monitored and quantified by the
180/160 ratio. The advent of high precision triple oxygen isotope measurements enables us to use
hydrothermally altered rocks as tracers of fluids in the past and thereby better understand details
of past hydrothermal processes. In this paper, we explore the effects of high-temperature
alteration of basaltic crust using simultaneous measurements of 170/160 and 180/160 ratios in
continental and near-coastal hydrothermal systems of Iceland. We hope to better distinguish the
intertwined effects of temperature, fluid isotope composition, mixing of fluids, boiling, and
exchange at variable water-rock ratios in controlling the isotope compositions of hydrothermally
altered rocks. The systematic mass-dependent relationship between 170/160 and 180/160 in
geothermal fluids and minerals reported here promises to provide a variety of useful applications
ranging from ore potential and geothermal exploration to studies of ophiolites, paleoclimate
proxies, and tracking recycling of isotope compositions through main terrestrial reservoirs.
1.1 Hydrogen and oxygen isotope studies of hydrothermal systems

In areas of extensive magmatism hydrothermal systems are charged with fluids from

local sources that move through the crust via convective groundwater flow and react with the
host rocks at high temperature (Norton, 1984; Hayba and Ingebrigtsen, 1997; Criss and Taylor,
1986; Manning and Ingebritsen, 1999). Due to high-temperature exchange reactions between

fluid and rock, alteration minerals have H- and O-isotope values are close to being in equilibrium
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with hydrothermal fluids. The ratios of hydrogen and oxygen isotopes, D/H and 180/160, are
widely used to investigate fluid sources, temperature of water-rock interaction and processes that
occur in hydrothermal systems such as exchange reactions, boiling, and mixing of various fluid
reservoirs (Ohmoto and Rye, 1974; Taylor, 1974; Gregory and Taylor, 1981).
In fossilized hydrothermal system, where fluids are no longer present, measurements of

0180 values in coexisting mineral pairs, combined with 8D measurements of hydrous minerals
and fluid inclusion studies, are used for isotope equilibrium calculations involving mineral-
mineral and mineral-water calibrations. Combined H- and O-isotope measurements can
fingerprint isotope composition of initial fluids (e.g. Taylor, 1974, 1977; Ohmoto and Rye, 1974;
Truesdell and Hulston, 1980; Dilles et al., 1992; Giggenbach, 1992; Pope et al., 2014), however
the oD values of most hydrous minerals rarely reflect equilibrium with the original hydrothermal
fluids at high-temperature (>250 °C) due to subsequent retrogressive exchange at lower
temperature (< 100 °C), hydration and weathering (Kyser and Kerrich, 1991; Graham, 1981).
Thus, the source of fluids in ancient hydrothermal systems cannot necessarily be determined
from 6180 measurements alone without making assumptions about the isotope composition of
fluids or equilibrium temperature. Moreover, the isotope composition of initial fluids can be
significantly overprinted due to high-temperature exchange with rocks, varying temperature of
alteration, contributions of steam and brine, and addition of magmatic fluids.

Introducing a new isotope parameter 170/160, measured simultaneously with 180/160, enables
a new ability to constrain the isotope signature of initial fluids. The unique and systematic
relationship between triple oxygen isotope compositions of meteoric waters, seawater and rocks
(Landais et al., 2008; Luz and Barkan, 2010; Uemura et al., 2010; Pack and Herwartz, 2014;

Sharp et al., 2018) along with recently calibrated equilibrium fractionations (Sharp et al., 2016;
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Wostrbrock et al., 2018) provide a promising basis to track temperature and O-isotope signature
of fluid at the same time. Similarly to 6180 — D systematics, the 6180 - 6170 systematics of
hydrothermal minerals can identify processes that affect isotope composition of the fluid phase,
such as boiling, mixing of distinct fluids and isotope exchange with rocks. Unlike combined 6D
and 6180 measurements, triple oxygen isotope analyses are obtained concurrently from single
aliquots of sample Oz gas.

In this study we investigate the 3180 - 6170 relationship in fluids and minerals from active
high-temperature (250-400 °C) hydrothermal systems at Reykjanes and Krafla located in
southwest and north Iceland, respectively, and at an exposed subvolcanic section in the 6 Ma
Geitafell central volcano in southeast Iceland (Fig. 1). These systems serve here as natural
laboratories, where distinct fluids with previously determined isotope compositions are reacting
with mantle-derived rocks at known temperatures. Using the previous analyses of local
precipitation and groundwater recharge sources (Fig. 2) and measurements of fluid pressure and
temperature in the geothermal wells, we are able to test the applications of A'170 values under
well-defined conditions. We used drill cuttings of quartz and epidote from known depths at
Reykjanes and Krafla where temperature in the boiling systems can be determined at specified
depth from the boiling point-water depth curve. Quartz and epidote were targeted because their
co-occurrence, especially in veins and vesicles, is indicative of hydrothermal alteration at
temperatures above 250 °C (Bird and Speiler, 2004), and they are not susceptible to isotope
exchange at low temperatures. We also used samples of well fluids from Reykjanes that are
dominated by seawater that underwent boiling at depth and isotope exchange with rocks, and

from Krafla, where meteoric water boils close to the surface after reaction with rocks at depth.
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Measurements from the 6 Ma Geitafell system are used here to validate our findings in the
active hydrothermal systems. We test the ability to reconstruct the triple oxygen isotope values
of ancient meteoric water at Geitafell similarly to using combined 6180 and 6D values (see Pope
et al., 2014). The zoning of alteration minerals and the pattern of isotope ratios in the host rocks
of the Geitafell system display a “bull’s eye” pattern that formed in response to temperature
gradient and circulation of meteoric water around the cooling intrusion (Taylor and Forester,
1979). This study is also a next logical step in validating previous triple oxygen isotope
investigations of ancient hydrothermally altered rocks (Herwartz et al., 2015; Zakharov et al.,
2017; Zakharov and Bindeman, 2019). Those investigations applied the triple oxygen isotope
approach to resolve ancient environment conditions using lithologies that experienced aqueous
alteration billions of years ago. Since the triple oxygen isotope composition of high-temperature
minerals is not easily reset, even during regional metamorphism, the current paper provides basis

for validating the findings in those previous studies.
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Figure 1. (A) Locations of the geothermal systems of Iceland studied here. The Reykjanes and Krafla
systems are currently active, while the 6 Ma Geitafell extinct volcano hosts a fossilized hydrothermal
system eroded to the depth of about 2 km (Fridleifsson, 1983). (B) The temperature of alteration for
Reykjanes and Krafla systems can be approximated by the boiling point of water at depth. The
temperatures are consistent with characteristic alteration mineral zones from top to bottom: smectite,
chlorite, epidote and amphibole. The depth of collected samples is shown with horizontal bands. (C)
General pattern of alteration at the Geitafell subvolcanic system. The gabbro intrusion is surrounded by a
concentric pattern of alteration zones (Fridleifsson, 1983; Thorlacius, 1991) similar to the ones observed
in the downward profiles recovered from drill holes in the modern hydrothermal systems. The average

homogenization temperature (Th, °C in the legend) of fluid inclusions measured in quartz veins
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surrounding the intrusion is shown with blue diamonds (after Troyer et al., 2007). These values were used
as an approximate estimate of temperature of quartz-water equilibrium for corresponding samples
(GER16 and GER34 in Table 1). Topographic contour lines are drawn every 100 m. White area

represents elevation of about 5 meters above sea level.
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Figure 2. Compiled 6D and 8130 data for well fluids and epidotes at the Reykjanes, Krafla and Geitafell
systems. The data gathered from Pope et al. (2011; 2014; small symbols) and multiple measurements
from this study (large symbols). The Reykjanes fluids are derived from seawater (5180 and 6D = 0 %o)
with minor amount of local meteoric water with 8180 of -6.5 %o (Olafsson and Riley, 1978). Krafla fluids
are derived from meteoric water with 8180 of -13 %o and 6D of -90 %o. Geitafell epidote indicates
meteoric waters with 5180 of about -8 %o. Compositional field of mid-ocean ridge basalt (MORB)
represents initial unaltered rock. Isotope shifts experienced by hydrothermal fluids and water-epidote

fractionation are shown schematically in the lower right corner.

1.2 6"180 and A'170 definition
Mass-dependent fractionation of triple oxygen isotopes between entities A and B obeys the

relationship (Urey, 1947; Matsuhisa et al., 1978; Cao and Liu, 2011):
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mYa, =6 -In"%a,_, (1),
where 17,18a4-8 are the ratios of 170/160 or 180/160 in A to that in B. The value of 0, the triple
isotope exponent, is a temperature-dependent variable typically ranging between 0.5 and 0.5305
for equilibrium and kinetic processes (Matsuhisa et al., 1978; Cao and Liu, 2011; Hayles et al.,
2017). Since the relationship between 170 and 18a is exponential, we adopt linearized delta

notation expressed through natural logarithm and denoted by a prime symbol (") (Miller, 2002):

rxXn §%0
6 "0 =1000In (1 + 1000) (2),

where x is either 17 or 18. The 6xO value in Eq. 2 is the conventionally defined delta-notation:

*0
X 16Osample
60 = 1000(z5—== — 1) 3),

16
Oysmow

where VSMOW (Vienna Standard Mean Oceanic Water) represents a standard with isotope
ratios close to that of seawater. Using the linearized notations for triple oxygen isotope
fractionation, the 0 value can be expressed as a slope in the 8’170 — 8'180 coordinates:

_ 6,170A_6,17OB 4
- 6’180A—6’1803 ( )7

where A and B are two substances in equilibrium, for example quartz and water, quartz and
epidote. When measuring fractionations in triple oxygen isotope system, instead of using the
slopes in 8'180 — 8’170 coordinates, it is more illustrative to use A'170 notation, often termed 170-
excess. Deviations of 6'170-8'180 fractionations from a reference line with slope of Arr are then
expressed as A'170:

A’170 — 6/170 _ARF . 6’180 (5)

10
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Following definitions in previous studies of silicate rocks and precipitation (e.g., Landais et al.,
2008; Luz and Barkan, 2010; Pack et al., 2016), in the Eq. 5 we use the reference line with the
slope of Arr = 0.528.
1.3 Isotope signals in hydrothermal systems

The 6D, 0180 and A170 values of fluids and rocks in hydrothermal systems are distinctive
owing to evaporation and condensation that surface waters undergo. Since VSMOW is used as a
standard for the definition of 8D, 8180 and A170, all three values are close to 0 %o in modern
seawater. In the globally averaged meteoric water, hydrogen and oxygen isotopes are related
through the equation also known as the global meteoric water line (Craig, 1961):

8D =8 -8"0 +10 (6).
Likewise, the 8'170 value in meteoric water is related to the 8’180 through the effects of water-
vapor fractionation and relative humidity (Luz and Barkan, 2010). As shown in the recent
compilation of meteoric water values (Sharp et al., 2018), the traditionally used single meteoric
water line with the slope of 0.528 and y-intercept of 0.033 in 6'170-8'180 coordinates (Luz and
Barkan, 2010) may not be representative of precipitation globally. Using the compilation from
Sharp et al. (2018), we approximate the slope and y-intercept of meteoric water line by fitting a
linear regression across the range of 8’180 values between -40 and 0 %o. The linear regression
yields coefficients:

8'*70 = 0.5272(0.0001) - 580 + 0.016(0.002) (7),
with standard errors given in parenthesis. This equation takes into account the diversity of
processes that compose isotope signature of meteoric waters (reevaporation, humidity and water-

vapor fractionation) including hydrologic cycle in the high-latitude regions such as Iceland.

11
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Combined with Eq. (5), triple oxygen isotope meteoric water line in coordinates specific for any
reference slope can be expressed through A'170:

A0 = (0.527 - Agp) - 6180+ 0.016 (8).
We use these global meteoric water relationships (Fig. 3) to approximate the isotope composition
of precipitation at the localities studied here. Using the global 6180 — 8D relationship is a strong
assumption since the correlation between these values in meteoric waters is very tight (r2 > 0.95;
see Craig, 1961) and previous studies showed that the local precipitation is very close to the
global meteoric water line (Arnason, 1976). As for the 8’180 - A'170 relationship, we report 95 %
prediction intervals resulting in a meteoric water “band”. This is done to emphasize the poor fit
(r2=0.23) of'the linear regression line caused by the scatter in the A'170 of meteoric waters
across the range of 0’180 values (see Fig. 3B). Using the prediction intervals allows us to
consider the possible variability within the original local precipitation caused by local isotope
effects (e.g. relative humidity, re-evaporation, water-vapor fractionation) when we sample the
well fluids or when we derive equilibrium fluid values from mineral analyses.

In each of the three localities, water-rock interaction involved distinctly different reservoirs
of surface waters — meteoric water and seawater — reacting with basaltic rocks that have
relatively uniform H- and O-isotope composition (Hattori and Muehlenbachs, 1982; Eiler, 2001).
The triple oxygen isotope compositions of these reservoirs differ due to small but systematic
mass-dependent variations in fractionation of 170/160 relative to 180/160. Mantle rocks have
negative A'170 values ranging between —0.06 and —0.05 %o (Herwartz and Pack, 2014; Pack et
al., 2016) with 6D values of -70 = 10 %o (Kyser and O’Neil, 1984; Dixon et al., 2017). The effect
of isotope exchange between rocks and fluids at high temperature leads to shifts in the 180 and

A'170 values of the fluids, and to a lesser extent, in their 3D values. We show associated isotope

12
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shifts in fluids and its effect on equilibrium quartz and epidote (Fig. 3). In addition, liquid-vapor
separation and mixing between seawater and meteoric water affects the stable isotope
composition of the fluids and minerals in shallow continental systems (Fig. 3).

The Reykjanes, Krafla, and Geitafell systems have well characterized 8D and 6180
compositions of the hydrothermal fluids, local fluid sources and alteration minerals (Fig. 2;
Arnason, 1976; Olafsson and Riley, 1978; Sveinbjornsdottir et al., 1986; Darling and
Armannsson, 1989; Pope et al., 2014; Pope et al., 2016). Reykjanes is a seawater-dominated
hydrothermal system where fluids have salinity of local seawater and 6180 close to those of
seawater, with average value of —1.1 %o and the 6D of about —23 %o reflecting a contribution
from steam and a small addition of local meteoric water (Olafsson and Riley, 1978; Pope et al.,
2009). At Krafla, the meteoric-derived fluids have 5180 values close to those of local
precipitation, ranging between —13 and —12 %o, and 6D values between —94 and —87 %o (Darling
and Armannsson, 1989; Pope et al., 2016). Geitafell has a multi-phase intrusion of gabbro and a
several-kilometer radius areole of hydrothermally altered tholeiitic lavas (Fridleifsson, 1983)
where Pope et al. (2014) measured 3D and 6180 in epidote and determined that hydrothermal
fluids were derived from meteoric water with 6180 of about —8 = 1 %0 and oD of about —60 + 10

%0.
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Figure 3. Systematics of water-rock interaction between meteoric water and mid-ocean ridge basalt
(MORB) for the three stable isotope parameters plotted in coordinates: conventional $D-8130 (A), 8180 —
A'170 (B) and A'170-8D (C). The processes of isotope exchange (solid black line), boiling (blue straight
lines), quartz-water fractionation (light blue curve) and epidote-water fractionation (green curve) at 250-
400 °C are depicted for interaction between unaltered MORB and pristine meteoric water that has 6’130 of
-8 %o (on the global meteoric water line, Craig, 1961). Meteoric water “band” refers to the regression line
(solid blue) and 95 % prediction intervals (dashed blue) that are based on the compilation of A'170 values
in meteoric waters (open grey circles in B; Luz and Barkan, 2010; Sharp et al., 2018 and references
therein). Tick marks on the solid black line and numbers indicate water-rock ratios (W/R) of isotope
exchange reactions. Quartz-water equilibrium at 250-400 °C is after (Sharp et al., 2016). Epidote-water

equilibrium slope is approximated by the quartz-water fractionation at high temperature (>250 °C; see
Methods).
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2 METHODS

2.1 Oxygen isotope measurements

All stable isotope analyses of solids were carried out at the University of Oregon Stable
Isotope Lab. For oxygen isotope analyses we used quartz and epidote from all three localities,
volcanic glasses from Krafla well IDDP-1 and surface exposures (sample KRF14), and one
sample of hydrothermal garnet from Geitafell. All samples were examined with a stereo
microscope for inclusions of other minerals prior to analysis. Small samples (1.5-2 mg) were
placed in a vacuum chamber and pre-treated with BrFs overnight to remove the absorbed
moisture and reactive compounds. The oxygen was liberated from the samples by heating them
with a CO:z laser in presence of BrFs. Extracted oxygen was transported in a stainless steel Ya-
inch tube vacuum line, and traces of remaining reagent and other fluorine-containing byproducts
were removed by cryogenic traps and reaction with Hg-vapor in a mercury diffusion pump. After
the purification, oxygen gas was trapped on a 5A molecular sieve by cooling to liquid nitrogen
temperature. Subsequently released, the gas was carried though a GC-column by He-flow at the
rate 30mL/minute and room temperature. After about 3 minutes of elution time, oxygen gas was
trapped on a SA molecular sieve immersed in liquid nitrogen. The gas was further trapped on
another, smaller volume 5A molecular sieve immersed in liquid nitrogen and introduced into a
MAT 253 gas-source isotope-ratio mass spectrometer at 50-60 °C. Each measurement consisted
of at least 24 cycles of sample-reference gas comparisons with intermittent equilibration of
pressure in the bellows of the mass spectrometer (see Methods in Bindeman et al., 2018;
Zakharov and Bindeman, 2019). A subset of samples collected from the Geitafell extinct volcano
was analyzed for 180/160 ratio only via conversion of O2 gas to COz2 in a heated platinum-

graphite converter for a more rapid analysis.
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The measurements of well fluids were carried out at the [IPM, Okayama University, Japan
using fluorination line with a Ni-reactor tube. A few microliters of fluid samples were injected
into the reactor and fluorinated using BrFs at 250 °C to liberate O2 gas. The rest of the procedure
can be found in Tanaka and Nakamura (2013).

The 6180 and 6170 of fluid samples were calibrated to the VSMOW2-SLAP2 scale using the
VSMOW?2 (8180vsmow2 = 0 £ 0.124 and 8170vsmow2 = 0 + 0.070, N = 5, 2SD) and SLAP2
(0180vsmow2 = -55.283 4+ 0.226 and 6170vsmow2 = -29.572 + 0.141, N = 3, 2SD) values measured
during this study at the Okayama University. The 6’180 and A'170 values of silicates were
measured at the University of Oregon using the reference gas that has values 6170 = 12.042 +
0.067 %0 and 8180 = 23.587 £ 0.084 %o (mean + 2SD). These values were determined by
analyzing it against the VSMOW2-SLAP2-calibrated reference gas at the IsoLab, University of
Washington. Since we did not measure VSMOW?2 and SLAP2 during analyses of silicates, we
used San Carlos olivine (SCO) as an internal standard within each session to monitor the
accuracy. As reported previously (Pack et al., 2016), the SCO values are 6’170 = 2.677 £ 0.086
%0 and 6'180 = 5.140 + 0.161 %o (mean + 1SD) calibrated to VSMOW2-SLAP2 scale. Each
analysis was adjusted to the difference between these and measured values of SCO within the
session. The uncorrected values reported against the reference gas are assembled in
Supplementary Table 1. The measurements of SCO (n=9) yielded 6’170 =2.890 + 0.185 %0 and
0’180 = 5.606 £ 0.301 %o (mean = 1SD).

We also measured 8180 values in situ in a quartz crystal extracted from the Krafla well KJ36
at depth of 744 m using a secondary ion mass spectrometer (SIMS) CAMECA IMS-1280 at the
WiscSIMS lab, University of Wisconsin. First, a polished section of quartz was imaged using a

FEI Quanta field emission gun scanning electron microscope equipped with a
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cathodoluminescence (CL) grayscale detector at the University of Oregon. The 6180 values were
analyzed from 10-pm-diameter spots by SIMS. A polished grain of UWQ-1 quartz standard (5180
= 12.33 %o; Kita et al., 2009) was mounted with the samples and used as a bracketing standard.
The precision during the analyses was + 0.4 %o or better (2 standard errors).
2.2 Hydrogen isotopes

Hydrogen isotopes were analyzed using a high temperature thermal conversion elemental
analyzer (TC/EA) that is connected to the MAT 253 at the University of Oregon, using a
continuous flow mode where gases from samples and standards are transported in He carrier gas
(see methods in Hudak and Bindeman, 2018). Each solid sample and standard were wrapped in a
silver foil capsule and dried in a vacuum oven overnight, then transported to the auto sampler
where they were purged with He carrier gas. In the TC/EA’s furnace lined with a glassy carbon
column, samples experienced pyrolysis at 1450 °C, and all of the H20 in the minerals was
pyrolized to H2 and CO gas. Extracted gas carried by He into a gas chromatograph where H2 is
resolved from CO, which was discarded. The CONFLOIII device was used to lower the sample
pressure to atmospheric, suitable for introduction into the mass spectrometer, which also meters
pulses of monitoring gas. Mica standards, USGS57 and USGS58 (8D = —91 and —28 %o,
respectively; Qi et al., 2017) were included in each analytical session to monitor the accuracy of
analysis. The D values of fluid samples were determined using the same TC/EA set up through
multiple injections directly into the glassy carbon column.
2.3 Equilibrium fractionation calculations

We used the calibrations by Sharp et al., (2016) and Wostbrock et al., (2018) to derive the

0'180 values of equilibrium fluids using measurements of quartz:

/18 /18 _ 4.2840.07x10°  3.5+0.2x103
6 Oquartz -4 Owater - T2 - T (9)a
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and the A'170 of equilibrium fluids:

4.2840.07 x 106 3.5+0.2x103
T2 T

1.85+0.02

A’”Oquartz - AI”Owater = ( ) X (0.5305 — )

(10),
where T is equilibrium temperature in Kelvins. At 250-400 °C, fractionation is such that
0'180quartz —0'180water and A'170quartz-A'170water 1S about +4-9 %o and —0.04 to —0.01 %o
respectively. At this temperature range, epidote has 6180 values within £1.5 %o of the
equilibrium fluids (Zheng, 1993). The approximate A'170 fractionation for epidote-water could
be derived from Eq. 10 by substitution of the first term with the incremental calibration of

180/160 ratio given by Zheng, 1993:

6 3
A,170epidote _ A,170Wﬂer _ (4.05T>; 106 7.81;(10 +2.29) x (0.5305 — 1.85+0.02

)
(11).

In general, the A’170mineral-A"170water fractionation is expected to approach the high-temperature
fractionation limit with increasing temperature, though at different rates for different mineral
species. In this study, the second term in Eq. 11 is borrowed from quartz-water fractionation (Eq.
10). Even though that part of equation has not been calibrated for epidote-water fractionation and
the factor -1.85 is likely not correct, we assume that it may serve as a valid approximation for the
high-temperature systems (250-400 °C), where triple oxygen isotope fractionation approaches its
high-temperature limit. From the equations 10 and 11 it is clear, when the T is high, the second
term (or 0 value in Eq. 4) approaches 0.5305 (Matsuhisa et al., 1978; Bao et al., 2016; Hayles et
al., 2018).

To provide an additional estimate of the temperature of alteration in the Geitafell fossilized
hydrothermal system, we used the empirical calibration for quartz-epidote equilibrium

fractionation given in Matthews (1994):

18



369 10001n18aquartz—epidote = 5’180quartz - 5’180epidote

370 = (2 + 0.75 X Xps)10° /T2 (12),
371  where Xps is mole proportion of pistacite in epidote, calculated as the proportion of iron in
372 formula coefficient units, Fes+/(Al+Fes3+). We used the Xps value of 0.2, which is an average

373 value based on previous measurements for Krafla and Reykjanes epidotes (see Sveinbjornsdottir,

374 1991).
375
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i Oceanic crust : v estimated
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377  Figure 4. Triple oxygen isotope values of minerals (A) and fluids (B) from Reykjanes. A — Values plotted
378  for quartz and epidote from Reykjanes, and from modern oceanic crust as sampled by the drill hole ODP
379  504B in east Pacific Ocean (shown for comparison; Zakharov and Bindeman, 2019). The apparent

380 fractionation of triple oxygen isotopes between quartz and epidote at Reykjanes is shown with grey line
381  and 95% confidence intervals (dashed). Quartz-water equilibrium at 250-400 °C is shown with the blue
382  curve (Sharp et al., 2016). B — Values plotted for estimated equilibrium fluids computed from quartz-
383  water fractionation (Eq. 10) and for well fluids measured directly. For both Reykjanes and modern

384  oceanic crust, seawater, shown with an open circle, is the dominant fluid involved in alteration of mid-
385  ocean ridge basalts (MORB). The seawater exchanged with rocks at high temperature becomes higher in
386  8'180 and lower in A"170 following the slope of L = 0.512 in 8'170 — 6'180 space (black solid curve).

387  Mixing line with local meteoric water at Reykjanes is shown as a dashed curve with maximum percent
388  fraction of local meteoric water. Contribution of vapor phase is shown with an arrow.
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390
391  Figure 5. The 6’150 — A'170 values of minerals (A and C) and fluids (measured and computed; B and D)
392  from Krafla and Geitafell systems. The apparent fractionation of triple oxygen isotopes between quartz
393  and epidote is shown with grey line and 95% confidence intervals (dashed). The vertical bands on the
394  right panels show the 8"1s0 values of local fluid sources (measured directly or inferred from 8D values).
395  Additionally, exchange with meteoric water that composition of modern precipitation at Krafla is shown
396  for Geitafell with dashed curve. The well fluids at Krafla system originated from exchange with rocks and
397  liquid-vapor separation, which is reflected by their high 8’180 values with A’170O similar to those computed
398  from quartz-water equilibrium. The estimated equilibrium fluids were computed using the boiling point of
399  water at collection depth and the 4 samples of quartz collected at shallow depth (<1000m) at Krafla
400  systems were used to calculate equilibrium fluids (grey-filled symbols) at the temperature of local
401  thermocline of 200 °C (Sveinbjornsdottir et al., 1986).
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Figure 6. Combined A'170 and 8D measurements of well fluids (A) and epidotes (B). A - The Reykjanes
well fluids are best explained by small contribution of local meteoric water, subsurface boiling and
isotope exchange with rocks. Krafla fluids represent residual liquid fraction after steam separation, which
explains the heavy 8D values compared to the exchange trend. B — The A'170 and 6D values of epidotes
are shown as boxes (compiled data from here and Pope et al., 2014). Where combined measurements are
available for the same sample, the values are shown with square symbols. At Geitafell these values are
consistent with the reconstructed meteoric water (8180 of -8 %o), while epidotes from Reykjanes may

record contribution of low 6180 and 8D glacial waters (see Pope et al., 2009). Krafla epidotes reflect

equilibrium fluids close to pristine local meteoric water.
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3 RESULTS
3.1 Measured 6'150, A'170 and 6D values

The 6’180, A'170 and 6D values of minerals and well fluids from Reykjanes and Krafla and
mineral separates from Geitafell are reported in Table 1. Quartz, epidote, measured well fluids
and estimated equilibrium fluids are graphically presented in Figures 4, 5 and 6.

The A'170 values of Reykjanes well fluids range between -0.03 and -0.02 %o, in general
agreement with seawater-dominated origin of the fluids. The three measurements of Krafla
fluids, that range in 8’180 between -8 and -6 %o, are several %o higher than the local precipitation
(6180 = -13 %o) since they represent the remaining liquid of the fluids that underwent boiling
and steam-liquid separation in the near surface environment (Armannsson et al., 2014; Pope et
al., 2016). One samples has a high 6’180 value of -5.9 %o. This sample (Krafla pool; Table 1)
represents the power plant discharge at Krafla. The Krafla fluid samples have distinctly high
A'170 values of about +0.01 %o.

The 6’180 and A'170 values of Reykjanes epidotes are close to seawater values, varying
between 0 and +1 %o, and -0.03 and +0.01 %o respectively (Fig. 4). The Krafla epidotes have low
0'180 values, between -14 and -11 %o, and high A’'170 values of -0.01 and +0.03 %o.. Geitafell
epidotes have §'180 values between -7 and -5 %o, and A'170 values between +0.01 and +0.03 %eo.
The quartz samples are consistent with equilibrium fractionation at the temperature range
between 250 and 400 °C being about 5-9 %o higher than the well fluids and epidotes. Their A’170
values are about 0.01-0.03 %o lower than the respective fluid sources and epidotes (Figs 4 and 5).
Our measurements constrain apparent fractionation of triple oxygen isotopes between quartz and
epidote as shown in the Eq. 4. The mean and standard error of the slope in 6'170-6"180

coordinates is 0.526 = 0.001 and shown for each locality along with the 95 % confidence
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intervals (Fig. 4 and 5). This value corresponds to measured fractionation at the temperature
range 250-400 °C and does not necessarily represent equilibrium fractionation between the two
minerals.

In this study, we used a silicate standard (SCO) that has &'180 value about 20 %o higher than
the lowest values measured in Krafla epidotes. It would be a good practice for future workers to
develop a low 9180 silicate standard with the A'170 value calibrated to SLAP2-VSMOW?2 scale.
In such case the values reported here could be corrected for a possible scale distortion effect
using the values in Supplementary Table 1 and the reference gas value (see Methods section).
The documented examples of scale distortions in other mass spectrometers show that the
difference between true and measured A'170 values is on the order of 0.001 - 0.050 %o for the 60
%0 0'180 range of the VSMOW2-SLAP?2 scale (Schoenemann et al., 2013; Pack et al., 2016;
Yeung et al., 2018). We suggest that the measurements used here are appropriate for studying
hydrothermal processes because of the following reasons: 1) the span of 6’180 in studied samples
is less extreme than the VSMOW2-SLAP?2 range; ii) the fluid samples reported here are
calibrated to VSMOW?2- SLAP2 and their values compare well the mineral data.

3.2 Computed equilibrium fluids

Using the boiling point-depth to estimate temperature, the 6’180 values of equilibrium fluids
were computed based on quartz measurements and the Eq. 9 and 10 (Sharp et al., 2016;
Wostbrock et al., 2018). The uncertainty of 6’180 and A'170 values of equilibrium fluids was
estimated by propagating the uncertainties in fractionation factors and the analytical errors
through the equations 9 and 10. We used the average values of analytical standard errors (SE):
0.005 %o for 6’180 and 0.010 %o for A'170. The uncertainty of +£30 °C was used as the largest

possible error on the temperature estimate given by the variations in the well log measurements.
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The resulting propagated uncertainty of equilibrium fluids are 1.151 %o for 8'180 and 0.011 %o
for A'170 (1SE). It is worth mentioning that the equilibrium fractionation of A'170 values
between water and quartz at temperature is not resolvable in the range 350-400 °C due to
analytical uncertainty of ~0.01 %o.
3.3 In situ 6180 measurements of Krafla quart;

The cathodoluminescence (CL) image and the heterogeneous 6180 values measured in situ in
a quartz crystal from Krafla are shown on Fig. 7A. The CL-pattern reveals features indicative of
precipitation at different temperature manifested by different brightness (Fig. 7A). The 6180
values measured in situ vary between -2 and 0 %o for most of the crystal, while the some of the
CL-dark outermost rims are about -4 %.. We show the effect of decreasing temperature and

evolving fluids on the triple oxygen isotope composition of equilibrium quartz in Figure 7B.
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Figure 7. A — Cathodoluminescent image of quartz (grey; center) from Krafla collected at depth of 744 m
and analyzed by SIMS for oxygen isotopes. The 8180 values (shown in white) vary from -4 %o to about
0 %o, which translates to temperature change from 190 to 270 °C assuming a fixed value of equilibrium
fluids (8'180 = -13 %o). B — The combined effect of variable temperature and variable water-rock ratio
(W/R) on the triple oxygen isotope composition of equilibrium quartz. The two concave down curves
indicate equilibrium fractionation between quartz and two arbitrarily chosen shifted fluid compositions
(filled triangles). The tick marks on the curves show quartz compositions at 150 and 300 °C. Mixing
between equilibrium compositions are shown with dashed (variable temperature, fixed W/R), dotted
(variable W/R, fixed temperature) and dashed-dotted (variable temperature, variable W/R) curves. The
reconstructed equilibrium fluids at 200 °C based on measurements of quartz from Krafla (collected at

depth 744 m) are shown with open triangles.
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3.4 Distribution of 6'180 values at the Geitafell system

In addition to the triple oxygen isotope measurements, we present the spatial distribution of
0'180 values measured in quartz and epidote separates from Geitafell. The values are reported in
Supplementary Table 2. The value of 6'180quartz - 8"180epidote ranges between 5 and 10 %o,
approaching the minimum near the contact of the Geitafell intrusion (Fig. 8). This range of
fractionation is consistent with the temperature of alteration between 200 and 450 °C computed
from Eq. 12. In addition, we provide one datum based on pyroxene-magnetite pair from the
gabbro intrusion. Assuming that the minerals record original igneous values, the &'180pyroxene —
0'180magnetite fractionation gives 2.6 %o, which corresponds to equilibrium temperature of 890 °C

(calibration from Valley et al., 2003).

26



494

495
496
497
498
499
500
501
502
503

504

505

506

f

Ao

Idera fault %
[\

i

T

pidote, %o

5180 e

Temperature
estimate

Gabbro outcrop

5'%0, %o VSMOW

-10

0 1ODQ 2000 3000 4000
Distance from contact, m

I
-15.56 -15.48 -15.40 ~15.32 -15.24

Figure 8. Spatial distribution of 8’180 values in epidote (A) and quartz (B) from the host rocks of the
Geitafell intrusion shown in the map view (see lithological legend in Fig. 1). The equilibrium
temperatures computed from mineral pair measurements extracted from the same sample are shown in
(C). The &"180 values plotted as a function of distance from the intrusion contact shown in panel (D).
Based on the 8'180quartz-cpidote fractionation, the temperature around the intrusion is >325 °C near the
contact and 190 °C away from it. The data is compiled from Pope et al., 2014 and this study (dotted
symbols in D). The isotope equilibrium is consistent with the mineralogical pattern of alteration

(Fridliefsson, 1983) and the fluid inclusion data (Troyer et al., 2007).

4. DISCUSSION
Our measurements of minerals and fluids are quite consistent with their respective fluid

sources, confirming that A'170 measurements provide useful constraints for tracking water-rock
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interaction. These results validate previous studies of ancient submarine and continental
hydrothermal systems that focused on the paleoenvironmental conditions of the early
Paleoproterozoic (e.g. Herwartz et al., 2015; Zakharov et al., 2017; Zakharov and Bindeman,
2019; Zakharov et al., 2019). In these works, A’'170 values were measured to derive 8180 of
seawater or to evaluate mean annual temperature using estimated 6180 values of local
precipitation (Dansgaard, 1964). Below we consider how triple oxygen isotope measurements
can be used to constrain the nature of combined isotope shifts owing to boiling, and isotope
exchange, and temperature of mineral alteration based on calibrated thermometers. In addition,
we explore the processes of crustal assimilation of hydrothermally altered rocks by mantle-
derived magmas using the triple oxygen isotope coordinates.

4.1. Triple oxygen isotope shifts in fluids

The distinctly different slopes in the triple oxygen isotope space (see Fig. 3) allow us to
interpret the origin of fluids in a new dimension. We use A'170 directly measured in well fluids
to capture possible isotope shifts occurring in modern hydrothermal systems that enable us to
establish a basis for interpreting the mineral data and for understanding fossilized systems.

In the seawater-dominated Reykjanes system, the 6’180 of well fluids are close to those of
seawater with A'170 around -0.02 %o (Fig. 4). Their 6’180 values range between -0.2 and +1.1 %o,
not quite as high as in seawater-derived fluids measured at submarine vents (+0.5-2 %o; Shanks,
2001). Together with the low 6D values (-20 %o), the isotope compositions of Reykjanes fluids
hint at participation of meteoric water in the measured fluids (Arnorsson, 1978; Pope et al.,
2011). The combined hydrogen and triple oxygen isotope values of these fluids reflect a
combination of exchange with rocks at high temperature and up to 30 wt. % involvement of local

meteoric water (see Fig. 6). The A'170 values slightly below 0 %o, are interpreted as the effect of
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isotope exchange with rocks at high temperature reflecting the water-to-rock mass ratios (W/R)
between 0.1 and 1 (Fig. 4). Finally, some contribution of steam to the well fluids is manifested
by the 6D values that are shifted negatively from the trajectories of exchange with MORB (Fig. 4
and 6).

Boiling that occurs in shallow hydrothermal systems should follow a slope similar to
meteoric water line in the 8’180 — A'170 space due equilibrium fractionation between vapor and
liquid (Bvapor-liquid = 0.529; see Eq. 4). This value was constrained from low temperature
experiments (< 50 °C; Barkan and Luz, 2005) and is likely higher, closer to 0.53, for boiling
water at depth. Thus, boiling affects 3'180 and dD values of fluids in accordance with liquid-
vapor equilibrium fractionation (Horita and Weselowski, 1994), causing only small variations in
A'170. The well fluids at Krafla are derived from local meteoric waters (8’180 = - 13 %o) and are
enriched in heavy isotopes of oxygen so that their values approach -8 %o due to boiling and
steam separation that occurs near the surface (Pope et al., 2016). At a temperature close to 100
°C, and the values of oxygen isotope fractionation, Oliquid-vapor = 0.529 (Barkan and Luz, 2005)
and 1000In1s/16a close to 5 %o (Horita and Weselowski, 1994), the 6180 of remaining liquid can
be computed as Riiguid = Rouik -(1-fo)-(1-f)-1. The measured values (6’180 between -8 and -6 %o)
correspond to about 70-90 % of remaining liquid fraction (value f) of the fluid that originally had
8'180 of around -10 %o due to isotope exchange with rocks. Essentially, boiling and liquid-vapor
separation would result in the A’170 shifts of only about 0.005 %o (Fig. 5). The A'170 values of
these fluids are however shifted negatively by 0.01 %o with respect to the meteoric water line
(Fig. 6), which we interpret to result from isotope exchange with rocks, as supported by
previous measurements of unseparated geothermal fluids at Krafla (Armannsson et al., 2014;

Pope et al., 2016). The oD values actually clarify the effect of water-rock isotope exchange
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combined with shallow boiling and steam loss that occurred between 100 and 200 °C (see Fig.
6). Consistent with the 6D values of measured fluids and their triple oxygen isotope values, the
isotope shifts measured in Krafla well fluids correspond to W/R ratio of about 1-2. We thus
conclude, that the A'170 values of Krafla fluid samples are less affected by the isotope exchange
than the Reykjanes fluids, however carry a strong signature of boiling.

In all three systems we measured A'170 shifts that range between -0.01 and -0.02 %o and
about +0.5 to +2 %o shifts in 8'180. Thus, water-rock interaction produces hydrothermal fluids
that evolve along the slope of 0.510-0.516 in 8'170-6"180 space, with the mean value of 0.512 for
submarine systems (see Fig. 4B). Our estimate is based on the measurements of epidote and
quartz extracted from modern ocean floor, where fluids appear to be shifted the most. This is
similar to the previous estimate of 0.5105 provided by the study of bulk rock samples of altered
oceanic crust (Sengupta and Pack, 2018). The value of this slope represents the input of high-
temperature water-rock interaction in the triple oxygen isotope budget of hydrosphere, and it is
an important variable because it allows to assess the slope and extent of other fluxes (see
Sengupta and Pack, 2018).

4.2. Mineral record of A'170 in fluids in the crust

At Reykjanes and Krafla, the measured A'170 values of minerals are reflective of equilibrium
fluids that were present at depth in the recent past, which for the most part are similar to the
modern-day well fluids (Sveinbjornsdottir et al., 1986). Supporting this are epidotes that have
A'170 and 8'180 values close to the modern-day sources of fluids owing to small equilibrium
fractionation at high temperature (1031n18/160epidote-water = 0-1 %o; Zheng, 1993). Epidotes from
Krafla and Geitafell, fall within the range of meteoric water values, while at Reykjanes, epidote

compositions are very similar to seawater (Figs. 4 and 5). Also, one sample of garnet from the
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Geitafell system has triple oxygen isotope composition close to that of meteoric water. It is
expected, that the A'170 of minerals with small fractionation would be close to that of fluids, i.e.
within about 0.01 %o at these temperatures (Hayles et al., 2018). This small range, £0.01%o, is at
the limit of analytical precision, thus precluding meaningful determination of the reason for
small variations in the A'170 of epidotes. Nevertheless, epidotes provide promising first-order
estimates of A’170 in equilibrium fluids and they reveal reaction with rocks in instances where
the fluids were shifted, as were epidotes recovered from modern oceanic crust (Fig. 4).

Using the calibrated quartz-water fractionation (Eq. 9 and 10; Sharp et al., 2016; Wostbrock
et al., 2018), we find that the 6'180 values of computed equilibrium fluids at Reykjanes are lower
by about 1 %o than the directly measured modern-day well fluids and epidotes, while the A'170
values are close to that of seawater-derived fluids (Fig. 4). Involvement of ancient (Pleistocene)
meteoric or glacial water (Sveinbjornsdottir et al., 1986; Pope et al., 2014) with low 6180 values
would explain these values, as suggested by the low 6D values of epodotes (Fig. 6). That
suggests that the 6’180 values of epidotes are within 1 %o of their equilibrium fluids. Equilibrium
fluids computed from quartz-water fractionation at Krafla and Geitafell plot within the 95 %
prediction intervals around the meteoric water line which agrees well with the estimated values
of local fluid sources and with the epidote values (Fig. 5). The negative shifts in the A'170 of
equilibrium fluids compared to meteoric water likely resulted from isotope exchange with rocks
at high temperature, while negative 6’180 shifts could be a result of combined effects of isotope
exchange and liquid-steam separation with a high input of steam (see Fig. 5).

As an example of ancient hydrothermal alteration, the epidote and quartz 8'180-A"170
measurements from the 6 Ma Geitafell system indicate that the 6'180 values of equilibrium fluids

range between —9 and —3 %o, resembling previous estimates that were based on 6D-6180 values
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of epidotes (Pope et al., 2014). The A'170 values of the Geitafell epidote (+0.01 to +0.03 %) are
consistent with than of inferred meteoric water with 6’180 of -8 + 1 %o, they plot directly on the
meteoric water line (Fig. 5). This value is generally corroborated by the equilibrium fluids
computed from quartz, however those are lower in A'170 that epidote values and a bit more
scattered. The value of -8 %o is somewhat high for precipitation in the interior of Iceland, where
Geitafell was originally formed at 6 Ma (Fig. 1; Fridleifsson, 1983). In comparison, precipitation
at the Krafla system located in the interior of the island has 6180 of around -13 %o. It is possible
to interpret some of the reconstructed fluids as a result of meteoric water with 6’180 lower than -8
%o combined with isotope exchange (see Fig. 5D). However, the dD values of epidotes and
reconstructed equilibrium fluids (Pope et al., 2014) indicate meteoric water source with the 6180
value of -8 = 1 %o corroborating our A'170 estimates (see Fig. 3 and Fig. 6).

We notice that the A'170 values of equilibrium fluids derived from quartz measurements are
consistently lower than that of epidote. This could be partially explained by the wide range of
temperatures and isotope shifts recorded by quartz. The mineral forms over a large span of
temperatures including late-stage veins at low temperature, as low as 150 °C. Thus, we realize
that the applied mineral-water calibration might yield inaccurate equilibrium fluids due to due to
inaccurate choice of equilibrium temperature and due to heterogeneities of oxygen isotope
composition within quartz crystals as revealed by SIMS (Fig. 7). This particular crystal (Fig. 7A)
was extracted from a relatively shallow depth of 744 meters, where borehole temperature
measurements indicate a thermocline in which temperatures are consistently lower than the
boiling point of water (Sveinbjornsdottir et al., 1986). In this case equilibrium temperature of
200 °C is likely a more accurate estimate (Fig. 7). The 4 %o variation measured within the crystal

may related to a change in temperature or/and transition from rock- to meteoric-water-dominated
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fluid isotope composition. The spatial distribution of 3180 values in the rocks surrounding the
Geitafell intrusion display a pattern also consistent with non-isothermal equilibrium fractionation
of oxygen isotope ratios between quartz and water around plutons (Fig. 8) that were emplaced in
the shallow crust causing circulation of meteoric waters around them (see Taylor, 1974; Forester
and Taylor, 1979). The 6180 values of epidote meanwhile vary much less than those of quartz,
partly due to its smaller fractionation factor and partly, due to high and a narrow range
temperatures recorded by the mineral (rarely above or below 250-400 °C; Bird and Spieler,
2004). Additionally, epidote is typically found in areas of high permeability within
hydrothermally altered matrix, where water/rock ratios are high (Bird and Spieler, 2004). We
thus suggest that A’'170 values of epidote (and garnet) can be used as a direct proxy for A'170
values of equilibrium fluids, while caution is needed when using quartz-water calculations to
reconstruct equilibrium fluids.
4.5 Implications for magmatic assimilation and origin of low 01580 rhyolites

In areas of extensive magmatism shallow hydrothermally altered rocks can be assimilated by
partial melts to yield low- 8180 igneous rocks. Similarly to radiogenic isotopes, major elements,
and trace elements, triple oxygen isotope composition of contaminated magmas can trace the
input of hydrothermally altered rock. In Krafla, erupted rhyolites, such as glasses quenched by
drilling of hole IDDP-1 and high silica rocks exposed on the surface carry a low-3180 signature
from assimilated hydrothermally altered crust (Elders et al., 2011). We construct the trajectory of
assimilation of shallow hydrothermally altered rocks in triple oxygen isotope space (Fig. 9)
based on our measurements of epidote and quartz, rhyolitic glasses and the previous
measurements of altered basalts by Herwartz et al. (2015) recalibrated to more accurate standards

(Pack et al., 2016). These measurements provide the basic information needed to estimate the
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effect of crustal assimilation on the triple oxygen isotope composition of contaminated magmas.
Since magmatic differentiation occurs at high temperature, the A'170 values of primitive and
evolved magmas do not vary significantly at the level of analytical precision in the range of
values A'170 =-0.06+0.01 %o (Tanaka and Nakamura, 2013; Pack and Herwartz, 2014; Pack et
al., 2016; Sharp et al., 2018). Thus, incorporation of hydrothermally altered rocks with distinct
isotope composition (A'170 = +0.02 = 0.01 %o), could be resolved within the analytical precision.
We estimate that the low-6180 rhyolitic magmas from Krafla, including those quenched and
extracted by drill hole IDDP-1, were derived from assimilation of 10-20 % hydrothermally
altered crust and 80-90 % uncontaminated magmas (Fig. 9). These estimates agree well with
previous calculations based on combined oxygen and hydrogen isotope composition of the
quenched glasses yielding about 20 % material assimilated (Elders et al., 2011). This approach
for estimating the amount of assimilant through isotope mass balance might help to resolve the
nature of recycled material in other geological situations where the contaminant has very high
0180 and low A'170 values, such as low temperature sedimentary rocks (e.g. shales with A'170 = -

0.10 £ 0.01 %o; Bindeman et al., 2018).
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Figure 9. Triple oxygen isotope systematics of assimilation of low 8180 hydrothermally altered crust at
Krafla by mantle-derived magmas. The contribution of low 6’180 and high A'170 hydrothermally altered
crust from Krafla is resolved due to its distinct isotope signature compared to the isotope composition of
uncontaminated magmas. Measurements of volcanic glasses quenched by the drilling hole IDDP-1 and
surface rhyolites are consistent with assimilation of 20 % of hydrothermally altered crust by mantle-
derived melts. The composition of hydrothermally altered crust is represented by average composition of
bulk hydrothermally altered basalts measured previously (data from Herwartz et al., 2015 recalibrated to
SCO composition from Pack et al., 2016) that can be also reproduced by mixing between average values

of epidote and quartz shown with open square and open diamond symbols, respectively.

5. CONCLUSIONS

We have presented high-precision measurements of A'170 in hydrothermal minerals and
fluids from Icelandic geothermal areas Krafla and Reykjanes and from the fossilized
hydrothermal system at Geitafell. The measurements provide a record of isotope exchange
between rocks and variable fluid sources, such as seawater and meteoric waters of different

isotope composition. We found that:
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Similar to combined 6D and 6180 measurements of hydrous minerals, the triple oxygen
isotope measurements can fingerprint initial fluids, constrain temperature of alteration and
effective water-rock ratios. Our results support previous triple oxygen isotope studies of the
early Paleoproterozoic rocks that recorded composition of ancient precipitation (Herwartz et
al., 2015; Zakharov et al., 2019) and seawater (Zakharov and Bindeman, 2019).
Measurements of high-temperature minerals, such as epidotes and garnet, provide a close
estimate of A'170 in the equilibrium fluids. In our case, epidote has isotope compositions
almost identical to the local fluid sources at Reykjanes and Krafla. Geitafell epidotes record
isotope composition of 6 Ma meteoric water with 6’180 of -8 = 1 %o.

The A'170 measurements of geothermal fluids collected at the surface present a novel way to
resolve the effects of isotope exchange with rocks at high temperature and boiling, which
complements the conventional 6D-6180 measurements. The negative A’'170 shifts in fluids are
due to high-temperature exchange between rocks and local fluid sources, whereas shifts in
0'180 without a significant change in A'170 are due to boiling and vapor-liquid separation.
Quartz are used here to derive equilibrium fluid values via calibrated equilibrium
fractionation. The estimated fluids range within +1.5 %o and £ 0.02 %o in 6’180 and A'170 of
the well fluids at respective localities. However, caution is needed when interpreting the
derived equilibrium fluid values due to presence of multiple generations of equilibrium
compositions within single crystals as shown here with the in situ 3180 measurements.

The 8'180- A'170 values of contaminated magmas might be used to inform about the amount
of assimilated material. The measurements of low 6180 rhyolites from Krafla are consistent

with assimilation of 10-20 % of high-temperature hydrothermally altered crust.
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Table 1. Hydrogen and triple oxygen isotope measurements of minerals and fluids from Reykjanes, Krafla and Geitafell

systems

Drill Depth, m | Material 0'180 SE A'170 SE oD SE H20,

hole/sample (ArF=0.528) wt. %
Reykjanes

RN12 1070 | epidote 0.932 0.002 0.008 0.006

RN12 1070 | epidote 1.676 0.004 20.023 0.007

RN12 1070 | quartz 5.582 0.004 -0.023 0.010

RNI2 1070 | quartz 5.793 0.004 20.029 0.013

RN17B 2645 | epidote 0.760 0.003 20.032 0.006 | -645 4 2.0

RN17B 2645 | epidote 0.342 0.004 0,013 0.010

RN17B 2320 | epidote 0.706 0.003 -0.021 0.007

RN10 well fluids 1.141 0.001 20,025 0.002 | -21.7 1.9

RN12 well fluids -0.200 0.001 0.017 0.002| -209 1.6

RN12 well fluids -0.125 0.001 20015 0.002 | -209 1.6

RN25 well fluids 0.818 0.001 0,015 0.002 | 224 2.1
Krafla

K06 1730 | epidote -13.482 0.006 0.014 0.014

K06 1868 | epidote -13.732 0.003 0.033 0.009

K36 744 | quartz -2.091 0.012 0.007 0.012

K36 744 | quartz -1.482 0.008 0.017 0.008

K36 744 | quartz -1.910 0.009 20.008 0.009

IDDP-1 1220 | quartz -5.048 0.004 20.033 0.008

IDDP-1 1220 | quartz -3.759 0.003 20.022 0.007

IDDP-1 1220 | epidote -10.777 0.003 20.006 0.008

K26 1020 | quartz -7.281 0.004 20.010 0.007

K21 550 | quartz -5.591 0.004 0.001 0.007

IDDP-1 2095 | thyolitic glass 2.726 0.005 20.069 0.010




711

Table 1 Continued

IDDP-1 2095 | rhyolitic glass 2.724 0.008 -0.066 0.009

IDDP-1 2095 | rhyolitic glass 3.080 0.007 -0.040 0.007

KRF14 rhyolitic glass 2.813 0.007 -0.059 0.007

IDDP-01 well fluids -7.903 0.001 0.007 0.002 -76.4 2.0

KJ36 well fluids -8.507 0.001 0.014 0.002 -80.4 2.0

Klafla pool powerplant -5.898 0.001 0.002 -76.6 2.1

discharge 0.008
Geitafell

GER 5 epidote -5.234 0.005 0.005 0.011 -87.9 4 2.5
GER 5 quartz 2.073 0.003 -0.021 0.007

GERI1 garnet -5.737 0.004 0.029 0.010

GTF 25 epidote -5.517 0.004 0.030 0.010 -95.9 4 23
GTF 25 quartz 2.219 0.004 0.002 0.009

GTF28 epidote -6.500 0.004 0.019 0.009 -72.5 4 1.7
GER16 quartz -2.284 0.003 -0.003 0.008

GER16 quartz -1.011 0.004 -0.013 0.008

GER34 quartz 1.978 0.004 -0.014 0.007

GER34 quartz 1.451 0.003 0.019 0.007
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