
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS 1

A Deterministic Low-Complexity Approximate
(Multiplier-Less) Technique for

DCT Computation
Junqi Huang, Member, IEEE, T. Nandha Kumar , Senior Member, IEEE,

Haider A. F. Almurib , Senior Member, IEEE, and Fabrizio Lombardi , Fellow, IEEE

Abstract— The approximate (multiplier-less) two-dimensional
discrete cosine transform (DCT) is a widely adopted technique
for image/video compression. This paper proposes a determinis-
tic low-complexity approximate DCT technique that accurately
configures the size of the transform matrix (T) according to the
number of retained coefficients in the zigzag scanning process.
This is achieved by establishing the relationship between the
number of retained coefficients and the number of rows of the
T matrix. The proposed technique referred to as the zigzag low-
complexity approximate DCT (ZLCADCT), when compared with
approximate DCT (ADCT), decreases the number of addition
operations and the energy consumption while retaining the PSNR
of the compressed image. In addition, the ZLCADCT eliminates
the zigzag scanning process used in the ADCT. Moreover, to char-
acterize the deterministic operation of the ZLCADCT, a detailed
mathematical model is provided. A hardware platform based on
FPGAs is then utilized to experimentally assess and compare the
proposed technique; as modular, deterministic, low latency, and
scalable, the proposed techniques can be implemented upon any
change in the number of retaining coefficients by realizing only a
partial reconfiguration of the FPGA resources for the additional
required hardware. The extensive simulation and experimental
results show the superior performance compared to previous
ADCT techniques under different metrics.

Index Terms— Approximate DCT, addition, FPGA, low power
DCT, zigzag scanning.

I. INTRODUCTION

IMAGE and video coding techniques (such as high effi-
ciency video coding and HEVC) play an important role in

image processing, storage and transmission. Techniques such
as the discrete cosine transform (DCT) are used to attain a
high image compression rate usually at the expense of a large
computational complexity and high energy consumption [1].
However, human senses such as eyes are tolerant of errors
and a small degradation in the image quality is unlikely to
be recognized. Approximate computing techniques such as

Manuscript received December 1, 2018; revised February 8, 2019; accepted
February 21, 2019. This paper was recommended by Associate Editor
M. Mozaffari Kermani. (Corresponding author: T. Nandha Kumar.)

J. Huang, T. N. Kumar, and H. A. F. Almurib are with the
Department of Electrical and Electronic Engineering, University of Not-
tingham, Nottingham, Malaysia (e-mail: kecx5hjn@nottingham.edu.my;
nandhakumaar.t@nottingham.edu.my; haider.abbas@nottingham.edu.my).

F. Lombardi is with the Department of Electrical and Computer Engineering,
Northeastern University, Boston, MA 02115 USA (e-mail: lombardi@
ece.neu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2019.2902415

an approximate/multiplier-less DCT (ADCT) thus have been
proposed to decrease the amount of computation and improve
circuit energy performance by sacrificing some accuracy in the
outputs.

ADCT has been investigated by focusing on the design of a
low-complexity transform matrix to reduce the computational
complexity at algorithmic level and energy consumption at
circuit-level. An approximate 4 × 4 DCT (with no multi-
plication required) is proposed in [2]. Also, several 8 × 8
approximate DCT matrix techniques are proposed in [3]–
[9]; these techniques only require some shifting and addi-
tions, so again without multiplication in processing. Among
these 8 × 8 low-complexity matrixes, [5], [7] introduce two
approximate DCT matrixes which require only 14 additions.
This is the lowest number of addition operations found in the
technical literature. Moreover, multiplication-free 16×16 DCT
architectures applicable to HEVC and matrix computation are
proposed in [10]–[12]. Besides, approximate components, such
as multipliers and adders are developed to decrease the number
of operations for DCT at logic and transistor levels.

At logic level, an inexact systolic array is introduced
in [13] to reduce the computational complexity of DCT matrix
multiplication by allowing small errors. Two approximate 4-2
compressors (used in a multiplier) are proposed in [14] for
image multiplication; this scheme decreases energy consump-
tion and delay, so improving performance. At the transistor
level, two approximate XOR-based adders are introduced
in [15]; these adders can be employed to design approximate
DCT hardware to improve performance with respect to power
consumption and delay. Junqi et al. [16] propose a frequency
up-scaling technique that allows adder cells of DCT to gener-
ate some error and operate under higher frequency for acceler-
ating the processing. Three inexact adders that reduce energy
consumption for DCT, are proposed in [17] by simplifying
a traditional full ripple carry adder; their performances are
evaluated in [1].

A different technique for approximate DCT targets a
low-power design at logic level; [18] has developed a
low-power approximate multiplier for DCT computation
with a critical path shorter than a traditional multiplier.
A low-power DCT architecture is also proposed in [19]
to reduce the computational path of the most significant
coefficients as well as errors caused by voltage scaling. The
approach proposed in [20] achieves error resiliency under

1549-8328 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3152-3245
https://orcid.org/0000-0002-5033-3095
https://orcid.org/0000-0002-2768-134X

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

voltage over-scaling by using unequal error protection accord-
ing to the importance of the output coefficients for DCT.
An Energy aware DCT is proposed in [21] by using a coef-
ficient elimination technique to reduce energy consumption.
An energy-efficient approximate DCT architecture is investi-
gated in [22] by considering the sub-blocks of input images,
while [23] has proposed generalized scalable and recon-
figurable architectures for DCT in which when computing
a large size matrix, resources are appropriately configured.
An approximate IDCT (Inverse DCT) architecture for any
IDCT size has been proposed in [24]; this architecture exploits
an approximate matrix decomposition and simplifies the cosine
and sine terms to reduce the required hardware during the
process of recovering images in HEVC. [25] has proposed
a low-complexity algorithm to avoid multiplications in the
process of an Adaptive Multiple Transform (AMT) which
involves DCT matrix of sizes from 8×8 to 128×128 for Post-
HEVC technology. An energy-efficient ADCT is proposed
in [26] by using three approximate methods (including opti-
mizing calculation of float-point DCT coefficients, using
threshold setting to determine required additions and partly
adopting truncated approximate adders), while some floating
point calculations and the threshold units may consume too
much energy compared with integer ADCT.

All the above techniques accomplish a reduction in
energy consumption for image compression at different levels
(algorithmic, logic, transistor) and calculate the DCT with
compressed sub-blocks; they are then scanned for retaining
the number of coefficients of the compressed data to be
transferred. The bit rate of transmission and compressed image
quality can be changed by controlling the number of final
retained coefficients and removing less significant coefficients
during the process of scanning. However, ADCT matrixes
proposed by [2]–[12] in the algorithm level all focus on
simplifying the elements in the transform matrix to reduce
the number of additions. The number of retained coefficients
during the process of scanning is not considered in the design.
This means that all coefficients should be calculated, even if
some unused coefficients are finally removed by scanning.
Therefore, the computation and related power consumption
required for the ultimately not retained coefficients are redun-
dant and they can be avoided. In previous literatures about
ADCT techniques, the unused coefficients cannot be fully
avoided in the calculation of ADCT, and these designs cannot
dynamically be adjustable according to the different number
of retained coefficients in scanning process.

The approximate nature of ADCT [7] originates from the
feature that no multiplication is utilized, i.e., only additions
are employed. ADCT [27] just prunes the transfer matrix
(T) by adopting pruned DCT method in [28] to further
enhance the approximation without considering the effect
of the pruned matrix on the number of coefficients to be
transmitted. Different from [27], the proposed ZLCADCT
is a deterministic approach to configure the T matrix by
establishing the relationship between the number of retained
coefficients and the number of rows of the T matrix. Therefore,
ZLCADCT eliminates the zigzag scanning process and sig-
nificantly reduces the number of required hardware resources

Fig. 1. The flow chart of JPEG encoder [29].

(adders, gates and LUTs). In addition, it reduces the figures of
merit such as delay and energy consumption while retaining
a nearly similar image quality compared with [7] and [27] (as
measured by the PSNR). Moreover, the proposed technique is
scalable and experimentally implemented using FPGAs; it is
realized modularly, so that a change in the number of retaining
coefficients does not require a complete reconfiguration of the
FPGAs. Simulation and experimental results show that when
compared with previous approximate techniques, the proposed
technique offers superior performance.

In addition, the proposed method can be used in the image
compression standard such as JPEG (Fig.1) to improve the
resource utilization and energy consumption by retaining the
output image quality. However, as stated in the title, this
manuscript focuses on the optimization of DCT algorithm.

This paper is organized as follows. Section 2 presents the
preliminaries such as the approximate DCT of [7], the but-
terfly algorithm and the zigzag scanning. Section 3 deals
with the proposed zigzag low-complexity approximate DCT
technique (ZLCADCT) as well as its model. Section 4
analyzes performance and complexity of the proposed tech-
niques. Section 5 presents the simulation results, while
Section 6 shows the hardware platform and the experimental
results for the FPGA implementation of the proposed as well
as existing techniques. Section 7 concludes the paper.

II. PRELIMINARIES

Due to its energy properties, 8 × 8 Integer DCT has
become one of the most commonly used transforms in a video
compression system. Eq. (1) and (2) show the basic step for
the DCT and inverse DCT (IDCT) respectively where X is the
8×8 matrix from the input image. Y is the 8×8 output matrix
of the DCT and A denotes the conventional floating point 8×8
DCT matrix. For reducing the computational complexity, A is
divided into D and T such that the DCT can be calculated
in the integer domain (D is the 8× 8 diagonal matrix and T
is the 8× 8 integer matrix). Then, the matrix D is extracted
to generate E f = DE1 DT · E f is computed as part of a
quantization process (⊗ denotes the dot product between two
matrixes, while E1 denotes the 8 × 8 matrix whose elements
are all ‘1’). Therefore, T · X · T T is the main computation of
the integer DCT, and by simplifying the matrix T, it is then
possible to decrease the computational complexity of DCT.

Y = AX AT = (DT)X
�

T T DT
�
=
�

T XT T
�
⊗
�

DE1 DT
�

=
�

T XT T
�
⊗ E f (1)

X = AT Y A =
�

T T DT
�

Y (DT) = T T
�

Y ⊗ (DE1 DT)
�

T

= T T �
Y ⊗ E f

�
T (2)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HUANG et al.: DETERMINISTIC LOW-COMPLEXITY APPROXIMATE (MULTIPLIER-LESS) TECHNIQUE 3

Fig. 2. Flow diagram of butterfly algorithm for matrix T of [7].

Fig. 3. Zigzag scanning [30].

Different types of 8×8 low-complexity matrix T have been
proposed in [3]–[9]. Among them, the matrix T requiring
the least number of computational resources is presented
in [7]. It only requires 14 additions when using the butterfly
algorithm. (3) shows the matrix T proposed in [7], while (3) is
its D matrix. Fig. 2 illustrates the flow diagram of the butterfly
algorithm for T · X using the matrix T of [7].

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
0 1 0 0 0 0 −1 0
1 0 0 −1 −1 0 0 1
1 0 0 0 0 0 0 −1
1 −1 −1 1 1 −1 −1 1
0 0 0 1 −1 0 0 0
0 −1 1 0 0 1 −1 0
0 0 1 0 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

D = diag

�
1√
8
,

1√
2
,

1

2
,

1√
2
,

1√
8
,

1√
2
,

1

2
,

1√
2

(4)

For image coding after completing DCT, every compressed
sub-block must undergo the so-called zigzag scanning (shown
in Fig. 3). The zigzag scanning finally determines the number
of coefficients that must be retained as compressed data;
for example, if 10 coefficients are retained, all coefficient
data numbered from 11 to 64 are removed and set to zero.
Fig. 4 shows the flow diagram in terms of computational steps
for the entire DCT.

Fig. 4. Computational flow diagram for a 8× 8 integer DCT.

III. PROPOSED APPROXIMATE DCT TECHNIQUE

In this section, the proposed technique (ZLCADCT) is
initially presented; then its mathematical modelling is pursued
in detail. ZLCADCT configures the T matrix by establishing
a relationship between the number of retained coefficients
and the number of rows of the T matrix, thereby reducing
power/energy consumption and circuit delay. Zigzag scanning
is finally removed at the end of the DCT transform; moreover,
the output image quality can be changed when the number of
coefficients to be retained from the input is changed.

A. Proposed ZLCADCT

The proposed ZLCADCT utilizes a deterministic method to
achieve a low complexity approximate DCT by preprocessing
the transform matrix T such that a new Tp matrix is found as a
function only of the number of retained coefficients (achieved
by zigzag scanning) and reducing the number of additions
to be performed. In zigzag scanning (with an ordering from
the upper-left to the bottom-right), only some coefficients
are retained; therefore, processing those coefficients that are
not retained is redundant. In ZLCADCT, the implementation
of the required zigzag scanning is performed in the earlier
stage of DCT, i.e., in the T matrix. So, it is possible to
reduce the number of calculations by adjusting the matrix T,
while computing the integer DCT (T · X · T T) for only
those coefficients that are retained. The resulting matrix is
now denoted as Tp . The following definitions are initially
introduced in this manuscript.

1. The Actual Coefficient Retained (ACR) is defined as the
number of coefficients generated when calculating the
new output matrix Y = Tp · X · Tp

T .
2. The Targeted Coefficient Retained (TCR) is defined as

the number of coefficients of the new output matrix Y
that are planned to be retained, i.e., TCR is contained in
ACR and obviously, TCR < ACR.

Tp is generated based on the targeted coefficients to be
retained. Table 1 shows a few TCR values and their corre-
sponding number of rows (‘m’) to be retained in the Tp matrix,
as well as the output vectors created by Tp in X1 = T p · X .
During the operation X1 = T p · X , for example if the number
of targeted coefficients to be retained (TCR) in the process
of zigzag scanning is only 6, then only the first three rows
(m = 3) of the T matrix are retained (Table 1) by using the
truncation measure from [27] while the coefficients for the
other rows are set to zero, thus systematically generating the
new Tp matrix (as in (5)). Its butterfly flow diagram (Fig. 5)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

TABLE I

TCR RANGE AND OUTPUT VECTOR FOR DIFFERENT ‘m’ VALUES

Fig. 5. Butterfly flow diagram of Tp using the truncation measure of [27]
for the proposed ZLCADCT when 6 coefficients are retained.

Fig. 6. Butterfly flow diagram of Tp using the truncation measure from [27]
for proposed ZLCADCT when 21 coefficients are retained.

shows that only 9 additions (X1 requires 72 additions) are
required (the red dashed lines identify the redundant operations
not performed by ZLCADCT). Upon applying the new Tp

matrix on the input image X, the resulting matrix X1 has
coefficients only for three rows (same as the size of the
Tp matrix). Therefore, the coefficients in the other rows are
not computed; in the first step, Tp substantially reduces 40
addition operations compared with ADCT [7]. As a further
example, consider when 21 coefficients are retained in the
zigzag scanning; then, only the first six rows are calculated.
The new Tp matrix is given in (6), and its butterfly flow
diagram is shown in Fig. 6.

Tp =
⎛
⎝

1 1 1 1 1 1 1 1
0 1 0 0 0 0 −1 0
1 0 0 −1 −1 0 0 1

⎞
⎠ (5)

TABLE II

LUT FOR THE TCR RANGE

Tp =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
0 1 0 0 0 0 −1 0
1 0 0 −1 −1 0 0 1
1 0 0 0 0 0 0 −1
1 −1 −1 1 1 −1 −1 1
0 0 0 1 −1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(6)

Next, for the operation Y = X1 · T T
p , the resulting size of

the Y matrix is m × m . For example, T C R = 6 results in a
Y matrix of size 3× 3 with the number of actual coefficients
retained (ACR) of 9. Therefore, the resulting three coefficients
are not necessary. To address this concern, a look-up-table
(LUT) is needed (Table 2) for the number of coefficients
retained in each row (‘k’) as a function of TCR and ‘m’.
This LUT is used to check the number of coefficients to
be retained in each row of Y , so that Tp can be adjusted
to be of a k × 8 size and so avoiding the generation of
additional and unnecessary coefficients in each row. Thus,
for T C R = 6, as gray highlighted but with right slash too
in Table 2, the numbers of retained coefficients ‘k’ are 3 in
the first row (because TCR∈ [6,7])), 2 in the second row
(TCR∈ [5,8])) and 1 for the third row (TCR∈ [4,9])). Further-
more, (7), (8) and (9) illustrate the difference for the operation
of Y in the presence or absence of a LUT. With a LUT,
the last coefficient (

�7
m=0 T2m

�7
n=0 T1n Xnm) in the second

row and the last two coefficients (
�7

m=0 T1m
�7

n=0 T2n Xnm

and
�7

m=0 T2m
�7

n=0 T2n Xnm) in the third row of Y are zero.
The final 8×8 output matrix Y is given in (10); the 6 retained
coefficients are the same for both ZLCADCT and when
employing ADCT [7] by applying the zigzag scanning to retain
these coefficients. Hence, ZLCADCT retains the targeted coef-
ficients with no zigzag scanning while substantially reducing
the number of addition operations (as shown in detail in later
sessions). The algorithm of ZLCADCT and the process step of
ZLCADCT are shown below. Fig. 7 shows the flow diagram
in terms of the entire ZLCADCT.

The process of processing an image by ZLCADCT is given
by the following steps:

1. Read the image and divide it into 8×8 sub-blocks (input
matrix X).

2. For a given TCR value provided by the user, calculate the
value of ‘m’ from Table 1 to determine Tp (m×8 size).

3. For every sub-block matrix X .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HUANG et al.: DETERMINISTIC LOW-COMPLEXITY APPROXIMATE (MULTIPLIER-LESS) TECHNIQUE 5

X1 · T T
p =

⎛
⎜⎝

�7
m=0 T0m

�7
n=0 T0n Xnm

�7
m=0 T1m

�7
n=0 T0n Xnm

�7
m=0 T2m

�7
n=0 T0n Xnm�7

m=0 T0m
�7

n=0 T1n Xnm
�7

m=0 T1m
�7

n=0 T1n Xnm
�7

m=0 T2m
�7

n=0 T1nXnm�7
m=0 T0m

�7
n=0 T2n Xnm

�7
m=0 T1m

�7
n=0 T2nXnm

�7
m=0 T2m

�7
n=0 T2nXnm

⎞
⎟⎠ (8)

X1 · T T
p =

⎛
⎜⎝

�7
m=0 T0m

�7
n=0 T0n Xnm

�7
m=0 T1m

�7
n=0 T0n Xnm

�7
m=0 T2m

�7
n=0 T0n Xnm�7

m=0 T0m
�7

n=0 T1n Xnm
�7

m=0 T1m
�7

n=0 T1n Xnm 0�7
m=0 T0m

�7
n=0 T2n Xnm 0 0

⎞
⎟⎠ (9)

Y = Tp · X1 · T T
p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�7
m=0 T0m

�7
n=0 T0n Xnm

�7
m=0 T1m

�7
n=0 T0n Xnm

�7
m=0 T2m

�7
n=0 T0n Xnm 0 · · · 0�7

m=0 T0m
�7

n=0 T1n Xnm
�7

m=0 T1m
�7

n=0 T1n Xnm 0 · · · · · · 0�7
m=0 T0m

�7
n=0 T2n Xnm 0 0 · · · · · · 0

0
...

...
. . . · · · 0

...
...

...
...

. . .
...

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

Algorithm 1 ZLCADCT Algorithm
1: procedure ZLCADCT (X , TCR)
2: ‘m’ ← TCR range
3: Tp ← Tp m×8
4: for j ←1, 8 do
5: X1(:, j)← Tp · X (:, j)
6: end for
7: for i ←1, m do
8: ‘k’ ← TCR ∨ ‘i ’ ∈ range in LU T
9: Tp ← Tp k×8

10: Y (i, :)← X1(i, :) · T T
p

11: end for
12: return Y
13: end procedure

3.1. Compute every column of X by Tp (using the fast
butterfly algorithm) in turn and assign a 0 to the
not required coefficients; then save the results to
matrix X1.

3.2. Go back to step 3.1 until the calculation of each
sub-block X is finished.

4. For the matrix X1

4.1. For every ‘m’ rows

4.1.1. Determine the range that covers the value of
TCR by using the LUT in Table 2.

4.1.2. According to the range, find the corresponding
‘k’ value as the number of retained coefficients.

4.1.3. Adjust the Tp to k × 8 size and set 0 to
the coefficients that are not required to be
calculated.

4.1.4. Go back to step 4.1.1 until Y = X1 · T T
p is

completed

Fig. 7. Computational flow diagram for 8× 8 ZLCADCT.

5. Quantize every sub-block matrix Y to find the final
results.

6. End of processing for the current image.

Tp · X

=
⎛
⎜⎝

�7
n=0 T0n Xn0

�7
n=0 T0n Xn1 · · · �7

n=0 T0n Xn7�7
n=0 T1n Xn0

�7
n=0 T1n Xn1 · · · �7

n=0 T1n Xn7�7
n=0 T2n Xn0

�7
n=0 T2n Xn1 · · · �7

n=0 T2n Xn7

⎞
⎟⎠

(7)

Without using LUT: (8), as shown at the top of this page.
Using LUT: (9) and (10), as shown at the top of this

page.

B. Mathematical Modeling

Consider the traditional DCT when computed on 8 × 8
image blocks. The DCT matrix T (T0,0, · · · Ti, j) and the
input block matrix X (X0,0, · · · Xi, j) are given by (11);
then the DCT results in a matrix Y (Y 0,0, · · · Yi, j) = T ·
X · T T with coefficients given in (12), as shown at the
top of the next page. The zigzag scanning (Fig. 3) is
then performed to select the coefficients from (12) for

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

T =

⎛
⎜⎜⎜⎝

T00 T01 · · · T07
T10 T11 · · · T17
...

...
. . .

...
T70 T71 · · · T77

⎞
⎟⎟⎟⎠ X =

⎛
⎜⎜⎜⎝

X00 X01 · · · X07
X10 X11 · · · X17
...

...
. . .

...
X70 X71 · · · X77

⎞
⎟⎟⎟⎠ (11)

Y = T · X · T T =

⎛
⎜⎜⎜⎜⎝

�7
m=0 T0m

�7
n=0 T0nXnm

�7
m=0 T1m

�7
n=0 T0nXnm · · · �7

m=0 T7m
�7

n=0 T0nXnm
�7

m=0 T0m
�7

n=0 T1nXnm
�7

m=0 T1m
�7

n=0 T1nXnm · · · �7
m=0 T7m

�7
n=0 T1nXnm

...
...

. . .
...�7

m=0 T0m
�7

n=0 T7nXnm
�7

m=0 T1m
�7

n=0 T7nXnm · · · �7
m=0 T7m

�7
n=0 T7nXnm

⎞
⎟⎟⎟⎟⎠

(12)

where

Yi j =
�7

m=0
Tjm

�7

n=0
Tin Xnm for i, j = 0 . . . 7 (13)

data storage or transmission (see (11)-(13) at the top of this
page).

In ZLCADCT, instead of T , a new matrix Tp is first
generated based on the number of retained coefficients.
This new matrix is designed to eliminate those calculations
performed on the unused (not retained) coefficients. The Non-
Zero Partition (NZP) is defined here as the partition of the
new output matrix Y in which a non-zero multiplication of
Y = Tp · X · Tp

T takes place, i.e., NZP does not contain those
zero multiplications that always results in zero vectors, rows
or columns.

Remark 1: The partition matrix NZP is a square matrix,
i.e., of m×m size, where 1 ≤ m ≤ 8. Hence, AC R = m2. For
example, for a TCR of value 10, NZP is of size 4×4, or m = 4,
and ACR will be of value 16.

Next, consider the first multiplication operation to calculate
Y , i.e., X1 = T · X . The matrix T is replaced by the
matrix Tp of m × 8 size. Therefore, the new X1 = Tp ·
X has 8 columns (denoted by X1i,0, X1i,1, · · · , X1i,7) that
contains the necessary first m elements, i.e. i = 0 . . . m − 1.
The remaining elements i = m . . . 7 will all be zero by
definition. Similarly, the number of final elements in each row
(Y0, j , Y 1, j , · · · , Y7, j) of Y is determined by the processing of
Y = X1 · Tp

T . The use of Tp instead of T allows each row of
Y to retain only the first ‘m’ elements; as only ‘m’ rows are
considered in X1, then only these ‘m’ rows should be used
when calculating Y = X1 · T T

p .
Remark 2: Since ‘m’ is limited in the range 1 ≤ m ≤ 8,

then TCR can have eight ranges. Mathematically, T C R ∈�
1+�m−1

t=0 t,
�m

t=0 t
�
.

Table 1 shows the ranges that TCR takes depending on the
value of ‘m’. For example, if m = 4, TCR can take one of the
values in the range from 7 to 10. The reciprocal relationship
is also true, i.e., if 7 ≤ T C R ≤ 10, then ‘m’ should be 4 and
the size of NZP is 4 × 4. So, Y = Tp · X · T T

p contains at
least 8× 8−m×m = 48 coefficients of zero value. These 48
coefficients are not stored/transmitted and therefore they are
not calculated in ZLCADCT. Table 1 is then used to obtain
the value of ‘m’ for determining the size of Tp , i.e., m × 8
once the TCR is chosen.

Considering Table 1, for example, when m= 1, the resulting
Tp has one row, i.e. Tp = Tpi,0...7 = [Tp0,0, Tp0,1, · · · ,
Tp0,7] = [1, 1, 1, 1, 1, 1, 1, 1] where i = 0. Then for a given
input matrix X , the element of the output vector Zi, j for
each column (j -th) of the output matrix X1 is given by
Zm−1, j (m) = Z0, j (1) = Tp0,0 · X0, j + Tp0,1 · X1, j + · · · +
Tp0,7 · X7, j = X0, j + X1, j + · · · + X7, j where j = 0 . . . 7.
Similarly, when m = 5, Tp has five rows, and for each column
(j -th) of X1, five output vector elements Z0...m−1, j (1 . . . m)
(Z0, j (1) to Z4, j (5)) are created. For example considering the
fifth row of Tp, (T p 4,0...7 =

�
Tp 4,0, Tp 4,1, · · · , Tp 4,7

� =
[1,−1,−1, 1, 1,−1,−1, 1]). The fifth output element is given
by Zm−1, j (m) = Z4, j (5) = Tp4,0 · X0, j +Tp4,1 · X1, j +· · ·+
Tp4,7 · X7, j = X0, j − X1, j − X2, j + X3, j + X4, j − X5, j −
X6, j+ X7, j . By generalizing the above two examples, the first

term (
�3

t=0

��
Xt, j + X7−t, j

� · (−1)

�
logt+1

2

�
·
�

m−1
4

��
) of (15) is

obtained.
�3

t=0

��
Xt, j + X7−t, j

��
is used to determine the

input elements, while (−1)

�
logt+1

2

�
·
�

m−1
4

�
is used to determine

the sign of the input elements according to Tp m−1,0...7 (the m-
th row of Tp). In general, the calculation of the output vector
Zi, j (i = 0 . . . m − 1 and j = 0 . . . 7) for each column (j -th)
of X1 (given by (14)) requires the general expression given

by (15). In (15),
�

logt+1
2

�
denotes the floor function for the

maximum integer that is not larger than logt+1
2 .

X1m×8 = Tp m×8 · X8×8

=

⎛
⎜⎜⎜⎝

Z0,0(1) Z0,1(1) · · · Z0,7(1)
Z1,0(2) Z1,1(2) · · · Z1,7(2)

...
...

. . .
...

Zm−1,0(m) Zm−1,1(m) · · · Zm−1,7(m)

⎞
⎟⎟⎟⎠ (14)

Eq. 15 calculates the j -th column vector of X1 = Tp · X =�
X10, j , X11, j , · · · , X1m−1, j

�
by using the m×8 matrix Tp to

process j -th column vector of input X , i.e. [X0, j , X1, j , · · · ,
X7, j], and X1 = �

Z0, j (1) , Z1, j (2) , . . . , Zm−1, j (m)
�

is
finally produced. All eight column vectors of X are processed
using (15), as shown at the top of the next page, and the final
m × 8 matrix X1 is shown in (14).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HUANG et al.: DETERMINISTIC LOW-COMPLEXITY APPROXIMATE (MULTIPLIER-LESS) TECHNIQUE 7

Zm−1, j (m) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�3
t=0

��
Xt, j + X7−t, j

� · (−1)

�
logt+1

2

�
·
�

m−1
4

��
, m ∈ {1, 5}

⎛
⎜⎝

X�
logm−1

6

�
, j
− X

3−
�

logm−1
6

�
, j

−X
4+

�
logm−1

6

�
, j
+ X

7−
�

logm−1
6

�
, j

⎞
⎟⎠ · (−1)

�
logm−1

6

�
, m ∈ {3, 7}

Xlog6−m
2 −1, j − X8−log6−m

2 , j , m ∈ {2, 4}
Xlog10−m

2 +1, j − X6−log10−m
2 , j , m ∈ {6, 8}

(15)

Yi,km−1(km) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�3
t=0

��
Zi,t + Zi,7−t

� · (−1)

�
logt+1

2

�
·
�

km−1
4

��
, km ∈ {1, 5}

⎛
⎜⎝

Z
i,
�

logkm−1
6

� − Z
i,3−

�
logkm−1

6

�

−Z
i,4+

�
logkm−1

6

� + Z
i,7−

�
logkm−1

6

�

⎞
⎟⎠ · (−1)

�
logkm−1

6

�
, km ∈ {3, 7}

Zi,log6−km
2 −1 − Zi,8−log6−km

2
, km ∈ {2, 4}

Zi,log10−km
2 +1 − Zi,6−log10−km

2
, km ∈ {6, 8}

(17)

The resulting m×m NZP matrix of Y = Tp ·X ·Tp
T is given

in Table 2 (gray highlighted) for TCR = 6, then ‘m’ is 3 and
ACR is 9. The remaining 55 coefficients are not calculated.
However, a conventional DCT calculation (using the matrix T
in (11) and (12)) requires calculating all 64 coefficients for
the entire 8 × 8 matrix and then retaining the 6 coefficients
(after performing zigzag scanning). Therefore, a considerable
improvement is accomplished by generating only the NZP
matrix; so, the scanning process for transmitting/storing the
selected coefficients can be removed.

By definition, the number of coefficients (9 coefficients)
gray highlighted in Table 2 is not always the same as those
generated using ADCT [7] with a zigzag scanning (gray
highlighted with right slashes). The NZP matrix generates
additional terms, except for the case when the number of
retained coefficients is one (m = 1). Therefore, the use of
the NZP matrix may incur in additional overhead.

Remark 3: For a size ‘m’ block, the TCR range is constant
and therefore Table 2 can be used as a LUT, so the unnecessary
coefficients found for Y = X1 · Tp

T can be entirely avoided.
To remove the additional terms generated by NZP matrix

during the process of calculating Y = X1 · Tp
T , a LUT

(Table 2) is introduced by ZLCADCT. The size of Tp

is determined by the number of retained coefficients k ∈
{k1, k2, · · · km} for the different ‘m’ row vectors. For exam-
ple, when k = 1, for the i -th row vector of input
X1, Tp has only one row, i.e. Tp = Tp 0,0...7 =�
Tp 0,0, Tp 0,1, . . . , Tp 0,7

� = [1, 1, 1, 1, 1, 1, 1, 1]. Therefore,
the output vector Yi, j for the i -th row is given by only
one vector element Yi,k−1 (k) = Y i,0(1) = Tp0,0 · Zi,0 +
Tp0,1 · Zi,1 + · · · + Tp0,7 · Zi,7 = Zi,0 + Zi,1 + · · · +
Zi,7, where 0 ≤ i ≤ m − 1 and j = 0. Similarly,
when k = 5, Tp has five rows, and five output vector
elements Yi,k−1 (k) (Yi,0 (1) to Yi,4 (5)) are generated for the
i -th row. Therefore, for the fifth row of Tp , Tp 4,0...7 =�
Tp 4,0, Tp 4,1, · · · , Tp 4,7

� = [1,−1,−1, 1, 1,−1,−1, 1],
and the fifth output element Yi,k−1 (k) = Yi,4 (5) = Tp4,0 ·

Zi,0 + Tp4,1 · Zi,1 + · · · + Tp4,7 · Zi,7 = Zi,0 − Zi,1 −
Zi,2 + Zi,3 + Zi,4 − Zi,5 − Zi,6 + Zi,7 can be found.
By generalizing the above expressions leads to the first

term (
�3

t=0

��
Zi,t + Zi,7−t

� · (−1)

�
logt+1

2

�
·
�

km−1
4

��
) of (17),

as shown at the top of this page.
�3

t=0

��
Zi,t + Zi,7−t

��
is

used to determine the input elements while (−1)

�
logt+1

2

�
·
�

km−1
4

�

is used to determine the sign of the input elements according
to Tp k−1,0...7 (the k-th row of Tp). In general, the calculation
of the output vector Yi, j (i = 0 . . . m − 1 and j = 0 . . . k − 1)
for each (i -th) row of Y (given by (16)) requires the general
expression given by (17).

Y = X1m×8 · T T
p km×8

=

⎛
⎜⎜⎜⎝

Y0,0(1) Y0,1(2) · · · Y0,k1−1(k1)
Y1,0(1) Y1,1(2) · · · Y1,k2−1(k2)

...
...

. . .
...

Ym−1,0(1) Ym−1,1(2) · · · Ym−1,km−1(km)

⎞
⎟⎟⎟⎠ (16)

where,

k ∈ {k1, k2, · · · km} and k ≤ m (18)

Eq. (17) calculates the i -th row vector of Y = X1 ·
Tp

T = �
Y0,0, Y1,1, · · · , Ym−1,k−1

�
by using the k × 8

matrix Tp to process the i -th vector of the input X1, i.e.�
Zi,0, Zi,1, · · · , Zi,7

�
, and then output matrix Y is finally pro-

duced by Y = [Y0,0...k1−1(1 . . . k1), Y1,0...k2−1(1 . . . k2), · · · ,
Ym−1,0...km−1(1 . . . km)]. All ‘m’ row vectors of X1 are
processed using (17) and the final matrix Y obtained is
shown in (16).

IV. PERFORMANCE AND COMPLEXITY

In this section, the analysis of the proposed new schemes
for DCT is presented with respect to performance and compu-
tational complexity; comparison with previous DCT schemes
is also pursued.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

A. Performance

The performance of ZLCADCT is evaluated by employing
the PSNR (Peak Signal to Noise Ratio) as metric [17]; the
PSNR is used to assess the quality of processed images using
(19) and (20).The Mean Square Error (MSE) (defined in (20))
is first calculated and evaluates the variation of pixel value
between two images; pi, j refers to the pixel value of the
original image of size a × b, while p̂i, j is the pixel value
for the final processed image.

PSN R = 10log
(2n − 1)2

M SE
(19)

where:

M SE = 1

a × b

�a

i=1

�b

j=1
(pi, j − p̂i, j)

2 (20)

Based on (19) and (20), both ADCT [7] and ZLCADCT
generates the same output matrix (i.e. (10)). So, the values of
p̂i, j for both these two methods are identical and therefore,
both the MSE and the PSNR have the same values.

However, for ADCT [27], the additional non-zero coeffi-
cients p̂i, j (eg. those coefficients highlighted in bold font in (8))
will cause the difference pi, j − p̂i, j for these pixels to be
smaller than pi, j − 0, because the values of these coefficients
for both ADCT [7] and ZLCADCT are all zero. Therefore,
the MSE of ADCT [27] will be smaller than ADCT [7] and
ZLCADCT, and the PSNR of [27] will in turn be higher than
for these two methods.

B. Complexity

Regarding computational complexity, ZLCADCT removes
the unnecessary additions from the process of calculating both
X1 = Tp ·X and Y = X1·T T

p so making their executions faster
than ADCT [7] and [27]. In the ZLCADCT, for processing
of X1 = Tp · X , each column of X1 is calculated using
14 − (8− m) = m + 6 additions (1 ≤ m ≤ 8); so, the total
number of additions required by X1 is 8 (m + 6) = 8m + 48.
Next, for processing Y = X1 · Tp

T , each non-zero row of
X1 must be checked from LUT. If one row is required to
retain ‘k’ (1 ≤ k < m) rather than ‘m’ coefficients, then the
number of additions for processing this row can be reduced
from m+6 to k+6 by removing the unnecessary (redundant)
additions. For example, if TCR is 6 (as explained previously
in Section 3A), the number of additions required by using
LUT for calculating the second row of X1 decreases from
9 to 8 (k = 2) and from 9 to 7 (k = 1) for the third row.
Thus, the total number of additions required for computing
Tp · X · T T

p using ZLCADCT is 96, a further saving of 3
additions when compared with [27]. The generic equation to
determine the number of additions required by ZLCADCT is
given in (21), as shown at the bottom of this page; note that
N A is dependent on both ‘m’ and TCR.

Where the value of ‘m’ can be obtained according to the
TCR value. The range covering a TCR can be found in Table 1.

�
1− T C R/

�m
t=0 t

�
denotes the ceiling function for the least

integer that is not smaller than 1− T C R/
�m

t=0 t .
The total number of additions required by [27] is given by

(22). As per Remark 2 in Section 3B, the largest TCR value
for a specific ‘m’ is

�m
t=0 t . Thus, as −2

�m−1
t=0 t + T C R =

−2
�m−1

t=0 t +�m
t=0 t = m −�m−1

t=0 t = m − m (m − 1)/2 =
(m − m2)/2 ≤ 0 in (21), then N AZ LC ADCT will be smaller
than N A ADCT [27].

N A ADCT [27](m) = m2 + 14m + 48 (22)

For ADCT [7], T · X · T T for an 8× 8 input block requires
executing 16 times the full fast butterfly algorithm that in
turns requires 14 additions each time, so resulting in a total
of 224 additions for any value of TCR. As explained above,
compare with [7], if T C R = 6, ADCT [27] requires 99
additions and ZLCADCT requires the least (96 additions).

V. EVALUATION BY SIMULATION

In this section, an evaluation of the proposed techniques is
pursued with respect to image compression. Initially, an image
(Lena) is processed by ADCT [7], ADCT [27] and ZLCADCT
for different numbers of retained coefficients. For evaluation
purposes, the selection of the rows to be pruned for the random
technique of [27] is executed using the proposed technique.

Table 3 compares ADCT [7], ADCT [27] and ZLCADCT in
terms of output images for Lena when the numbers of retained
coefficients are 1, 3, 6, 10, 15, 21 and 28. Metrics such as
the number of additions, energy consumption and PSNR of
the output image for the entire computation of T · X · T T

are determined; the results are presented in Table 4. The
number of coefficients for transmission/storage increases by
using [27], so ZLCADCT is also evaluated to keep the number
of transmitted coefficients the same as in [7]. In Table 4,
Column 1 shows the number of TCRs (i.e., TCR); Column 2
reports the number of ACRs for [27]. Column 3 shows
the number of retained rows for DCT matrix. Columns 4
to 6 show the number of additions required by ADCT [7],
ADCT [27], and ZLCADCT. The number of additions required
by ZLCADCT is significantly smaller (28% for a single
retained coefficient) at a low number of retained coefficients
compared with ADCT [7]; and it can be even lower than
ADCT [27]. By increasing the number of retained coefficients,
the difference between the numbers of additions by ZLCADCT
and ADCT [7] decreases.

As hardware, a 32-bit Ripple Carry Adder (RCA) (made
of mirror full adder cells) is used to perform the addi-
tion. The eight input cases (i.e., the inputs A, B and Cin:
from 000 to 111) of an exhaustive simulation are applied to a
32-nm single full adder cell. LTSPICE is used to establish the
average energy consumption; the average energy consumption
of a single full adder is found to be 3.58492E-16 J. The energy
consumption of DCT using the matrix Tp is given by using the

N AZ LC ADCT (m, T C R) =
�

m2 + 13m − 2
�m−1

t=0 t + T C R + 48, m ∈ {1, 3, 5, 7}
m2 + 13m − 2

�m−1
t=0 t + T C R + 48− 6

�
1− T C R�m

t=0 t

, m ∈ {2, 4, 6, 8} (21)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HUANG et al.: DETERMINISTIC LOW-COMPLEXITY APPROXIMATE (MULTIPLIER-LESS) TECHNIQUE 9

TABLE III

OUTPUT IMAGES OF ADCT [7], ADCT [27] AND ZLCADCT
FOR DIFFERENT NUMBER OF RETAINED COEFFICIENTS

total number of additions in the butterfly algorithm; Columns 7
to 9 of Table 4 show the energy consumption of ADCT [7],
ADCT [27] and ZLCADCT. Significant savings in energy
consumption is achieved by ZLCADCT at a lower number
of retained coefficients; as previously when the number of
coefficients increases, also the energy consumption gradually
increases.

As a measure of performance, the delay must also be
assessed. The delay of the butterfly algorithm is determined
by its critical path full adder at each level (so not depending
on the number of adders in each level of addition); for the
proposed matrix Tp , the critical path of the butterfly algorithm
is always along the 3 additions. Therefore, when the number
of retained coefficients increases, the delay of DCT using the
proposed matrix Tp depends only on the 3 level additions.
Columns 10, 11 and 12 of Table 4 show the software-based
delay evaluation by Matlab. For any TCR value, ZLCADCT
has the lowest delay because its required calculation has the
least complexity compared with ADCT [7] and [27]. For both
ZLCADCT and ADCT [27], the delay is increased as TCR
increases, while the delay of ADCT [7] is unchanged.

Next, PSNR values of output images for ADCT [7],
ADCT [27] and ZLCADCT are considered. The Table 5 shows
the values of the PSNR obtained for different TCRs when
applied on five input images (lena, cameraman, baboon, eagle
and moon) and processed using ADCT [7], ADCT [27] and
ZLCADCT. As it can be observed from the results, when
only one coefficient is retained, the outputs of ZLCADCT
and ADCT [27] are the same; therefore, their PSNR values
are equal only in this case. However, when the number of
retained coefficients increases, the PSNR of ADCT [27] can
be higher than ADCT [7] and ZLCADCT because they retain
more coefficients than ADCT [7] using zigzag scanning and
ZLCADCT. For example, when 6 coefficients are required
for compressing images, only 6 coefficients are retained
using ADCT [7] (after zigzag scanning) and ZLCADCT, but
ADCT [27] retains three more coefficients (highlighted by a
bold font in (8)). ADCT [27] can have a marginally higher
PSNR due to the additional elements in the resulting matrix.
However, by using ZLCADCT, the additional elements are
avoided and ZLCADCT has a PSNR whose value is the
same as ADCT [7]. Moreover, when the number of retained
coefficients is larger than 1, this scheme reduces the number
of additions and energy consumption. Next, the average PSNR
value (rows 6 and 13) and its percentage (rows 7 and 14) for
different TCR shown in Table 5 can be used to determine
the desired value of the TCRdepending on the percentage of
the PSNR required. The percentage values are calculated by
using average PSNR values divided by the PSNR value of
T C R = 63. For example, using ZLCADCT approach, if the
output image quality is required to be at 60% of the PSNR
value then TCR value of 15 has to be selected.

VI. EXPERIMENTAL EVALUATION

ZLCADCT is based on preprocessing T and it is also
modularly configurable; for example, one row of the Tp matrix
and the resulting computation in the butterfly algorithm are
required when retaining a coefficient, this matrix is referred
hereafter as the base matrix; subsequently for every increase
in the number of retained coefficients, the matrix Tp has
additional rows compared to the previous Tp matrix and the
corresponding calculations must be performed. For example,
when 2-3 coefficients are retained, an additional row is added
to the base Tp matrix and a few more additions are needed in
the base butterfly algorithm. So, when a new row is included
in the matrix Tp , the number of additions in the butterfly
algorithm is increased by 1. This feature is exploited when
an implementation is considered because ZLCADCT requires
to selectively switch the hardware as a function of the number
of retained coefficients, thus resulting in a reduced number
of additions. In this paper, ZLCADCT is implemented in
hardware by using an FPGA-based platform. Fig. 8 shows
the block diagram of implementing Y = Tp · X · T T

p in such
FPGA platform. The FPGA platforms used in the experiments
are the Spartan 3E and Spartan 6 XC6SLX45 at a clock
speed of 50MHz and 100MHz respectively. The Xilinx ISE
14.7 is used for implementing the design to the FPGAs; the
RS232 serial data transmission (DT) baud rate is set to 9600.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

TABLE IV

COMPARISON AMONG ADCT [7], ADCT [27] AND ZLCADCT WHEN COMPUTING T · X · T T

FOR DIFFERENT TCR FOR 512× 512 LENA AS AN INPUT IMAGE

TABLE V

PSNR OF FOUR DIFFERENT INPUT IMAGES COMPUTED BY ADCT [7], ADCT [27] AND ZLCADCT FOR DIFFERENT TCR

Fig. 8. Block diagram of the proposed FPGA platform for implementing
Y = Tp · X · T T

p .

The hardware platform requires two inputs (input pixel
image and the number of the coefficients to be retained) and
generates one output (the compressed image). First, the input
pixel image (in this case the image of Lena) is segmented
as several 8× 8 sub-blocks in Matlab. Then, every sub-block
is transmitted serially to the hardware using RS232; they are
stored in the memory block. Meanwhile, the ‘Tp selection’
block determines the ‘m’ value and the ‘k’ value for Tp

depending on proposed LUT and the number of retained
coefficients (TCR) received by the hardware. Two modular
multipliers (X1 = Tp · X and Y = X1 · T T

p) which are
based on 32-bits RCAs are utilized for calculating Tp ·X·T T

p

according to the ‘m’ and ‘k’ values respectively . Modularity
here refers to the design capability with respect to TCR,
i.e., based on TCR, the size of the multipliers is adjusted
without recurring in the full reconfiguration of the FPGAs.
This is achieved by using ‘m’ and ‘k’ values on the fast
butterfly algorithm; furthermore, in the hardware architecture
of fast butterfly algorithm for two proposed modular multipli-
ers, adders at the same stage for processing the input signals
normally are designed to work in parallel. For example, in the
hardware design of X1 = Tp · X (Fig.2), there are three
stages in total to create A0, A1, . . . , A7, B0, B1, . . . , B7 and
C0, C1, . . . , C7 successively. The required adders at the same
stage are designed to work in parallel (such as 8 adders for
creating A0, A1, . . . , A7 work in parallel instead of sequen-
tial operations) for improving the performance in processing
speed. Finally, the output of Y = Tp · X · T T

p is stored in
memory and then serially transmitted back to the host through
RS232 and processed by Matlab for quantization; decompres-
sion and the measurement of the PSNR are finally performed
by Matlab.

Using one sub-block of 512 × 512 Lena image as input,
Table 6 compares ADCT [7], ADCT [27] and ZLCADCT in
terms of resource utilization (adders, XOR gates and LUTs),
power consumption (including quiescent power and dynamic
power consumptions) and delay when Spartan 3E FPGA is
utilized in the proposed platform. However, for determining
the PSNR, 4096 sub-blocks of Lena image are used. The

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HUANG et al.: DETERMINISTIC LOW-COMPLEXITY APPROXIMATE (MULTIPLIER-LESS) TECHNIQUE 11

TABLE VI

COMPARISON OF ADCT [7], ADCT [27] AND ZLCADCT USING SPARTAN 3E FPGA AND ADCT [7] MATRIX FOR LENA INPUT IMAGE

TABLE VII

COMPARISON OF ADCT [7], ADCT [27] AND ZLCADCT USING SPARTAN 6 FPGA AND ADCT [7] MATRIX FOR LENA INPUT IMAGE

TABLE VIII

COMPARISON OF ADCT [4], ADCT [27] AND ZLCADCT USING SPARTAN 3E FPGA AND ADCT [4] MATRIX FOR LENA INPUT IMAGE

other performance metrics reported in this table are defined
as follows:

1. Implementation time refers to the total time taken to
implement the design onto the FPGAs.

2. Total processing time is the sum of the multiplication
and the serial data transmission times.

Compared to ADCT [7], hardware requirements (i.e., the
numbers of adders, XOR gates and LUTs) show a significant
decrease for any TCR using ADCT [27]; moreover, ZLCADCT

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

TABLE IX

COMPARISON OF ADCT [4], ADCT [27] AND ZLCADCT USING SPARTAN 6 FPGA AND ADCT [4] MATRIX FOR LENA INPUT IMAGE

TABLE X

AVERAGE REDUCTION (FOUR TCR CASES) OF HARDWARE RESOURCES/METRICS FOR ADCT [27]
AND ZLCADCT COMPARED WITH ADCT [7] AND [4]

further reduces the hardware resources. Then, ZLCADCT
requires the least power consumption compared to ADCT [7]
and ADCT [27]. By increasing TCR, more coefficients must
be generated and transmitted. Thus, the implementation time
of ZLCADCT generally increases, also resulting in a modest
increase of the total processing time (note that for ADCT [7]
these times are constant as independent of TCR). As expected,
the PSNR of ZLCADCT is the same as for ADCT [7], while
ADCT [27] shows a marginally higher value of PSNR by
increasing TCR.

Table 7 shows the results when ADCT [7], ADCT [27]
and ZLCADCT are implemented and synthesized by using
Spartan 6 FPGAs and Lena as an input image; also, in this
case, the same trends as for the Spartan 3E FPGAs are
reported.

The hardware performances of ZLCADCT and ADCT [27]
are validated by using the approximate DCT matrix of [4].
Tables 8 and 9 show the result of different metrics when
ADCT [4], ADCT [27] and ZLCADCT approaches are imple-
mented in Spartan 3E and the Spartan 6 FPGAs (by setting
the parameter ‘a’ to 0). The results show that the proposed
method has better performance with respect to metrics such

as number of gates, number of LUTs, power consumption,
total processing time and PSNR.

Next, consider the average value of each of the hard-
ware resource utilization and performance metrics across the
four TCRs of Tables 6, 7, 8 and 9; the average percentage
reductions and improvement for ADCT [27] and ZLCADCT
(compared with ADCT [4], [7]) are presented in Table 10.
Two implementations using different FPGAs (Spartan 3E and
Spartan 6) are presented. From the results, it can be found that
ZLCADCT outperforms ADCT [27].

VII. CONCLUSION

This paper has initially presented a zigzag low-complexity
approximate DCT (ZLCADCT) approach that configures the
T matrix by establishing the relationship between the number
of retained coefficients and the number of rows of the T
matrix. It significantly reduces the computational complexity
of an approximate DCT scheme (such as ADCT [7]) and
avoids the additional unnecessary coefficients generated
by [27]. A detailed mathematical analysis of ZLCADCT
has been presented to show the properties of Tp and a
novel method for removing the additions required to process

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HUANG et al.: DETERMINISTIC LOW-COMPLEXITY APPROXIMATE (MULTIPLIER-LESS) TECHNIQUE 13

the unused coefficients of a compressed image. A LUT is
employed in ZLCADCT to enhance performance; ZLCADCT
does not require coefficient scanning and its subsequent
processing, while keeping the number of coefficients the
same as ADCT [7].

The performance of ZLCADCT has been extensively
evaluated by both simulation using Matlab/Spice and exper-
imentally by employing a hardware platform based on
FPGAs. The simulation results have shown that in the best
case for the number of targeted coefficients to be retained
(i.e., T C R = 1), ZLCADCT requires only 28.12% of the
adders compared with ADCT [7] and the energy utilized by
ADCT [7] is 3.5 times larger than that for ZLCADCT. Larger
values of TCR modestly increase both the percentages of
the required number of adders and energy consumption by
ZLCADCT; moreover, for the entire range of TCR values,
ZLCADCT retains the same image quality of the compressed
image as [7]. The experimental evaluation based on FPGAs
of the proposed techniques has shown significant reductions
with respect to the number of adders, XOR gates, LUTs, power
consumption, implementation time, total processing time when
compared with ADCT; the PSNR of ZLCADCT has also been
retained as for ADCT over the entire range of TCR values.

REFERENCES

[1] H. A. F. Almurib, T. N. Kumar, and F. Lombardi, “Approximate DCT
image compression using inexact computing,” IEEE Trans. Comput.,
vol. 67, no. 2, pp. 149–159, Feb. 2018.

[2] F. M. Bayer, R. J. Cintra, A. Madanayake, and U. S. Potluri, “Multipli-
erless approximate 4-point DCT VLSI architectures for transform block
coding,” Electron. Lett., vol. 49, no. 24, pp. 1532–1534, Nov. 2013.

[3] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “Low-complexity
8× 8 transform for image compression,” Electron. Lett., vol. 44, no. 21,
pp. 1249–1250, 2008.

[4] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “A low-complexity
parametric transform for image compression,” in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), Rio de Janeiro, Brazil, May 2011,
pp. 2145–2148.

[5] F. M. Bayer and R. J. Cintra, “DCT-like transform for image com-
pression requires 14 additions only,” Electron. Lett., vol. 48, no. 15,
pp. 919–921, Jul. 2012.

[6] U. S. Potluri, A. Madanayake, R. J. Cintra, F. M. Bayer, and
N. Rajapaksha, “Multiplier-free DCT approximations for RF multi-beam
digital aperture-array space imaging and directional sensing,” Meas. Sci.
Technol., vol. 23, no. 11, 2012, Art. no. 114003.

[7] U. S. Potluri, A. Madanayake, R. J. Cintra, F. M. Bayer, S. Kulasekera,
and A. Edirisuriya, “Improved 8-point approximate DCT for image and
video compression requiring only 14 additions,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 61, no. 6, pp. 1727–1740, Jun. 2014.

[8] K. Saraswathy, D. Vaithiyanathan, and R. Seshasayanan, “Notice of
Violation of IEEE Publication Principles A DCT approximation with
low complexity for image compression,” in Proc. Int. Conf. Commun.
Signal Process., Melmaruvathur, India, Apr. 2013, pp. 465–468.

[9] R. J. Cintra and F. M. Bayer, “A DCT approximation for image
compression,” IEEE Signal Process. Lett., vol. 18, no. 10, pp. 579–582,
Oct. 2011.

[10] A. Edirisuriya, A. Madanayake, R. J. Cintra, and F. M. Bayer,
“A multiplication-free digital architecture for 16× 16 2-D DCT/DST
transform for HEVC,” in Proc. IEEE 27th Conv. Elect. Electron. Eng.
Isr., Eilat, Israel, Nov. 2012, pp. 1–5.

[11] F. M. Bayer, R. J. Cintra, A. Edirisuriya, and A. Madanayake, “A digital
hardware fast algorithm and FPGA-based prototype for a novel 16-
point approximate DCT for image compression applications,” Meas. Sci.
Technol., vol. 23, no. 11, 2012, Art. no. 114010.

[12] T. L. T. da Silveira, F. M. Bayer, R. J. Cintra, S. Kulasekera,
A. Madanayake, and A. J. Kozakevicius, “An orthogonal 16-point
approximate DCT for image and video compression,” Multidimens. Syst.
Signal Process., vol. 27, no. 1, pp. 87–104, Jan. 2016.

[13] K. Chen, F. Lombardi, and J. Han, “Matrix multiplication by an inexact
systolic array,” in Proc. 2015 IEEE/ACM Int. Symp. Nanosc. Architec-
tures (NANOARCH), Boston, MA, USA, Jul. 2015, pp. 151–156.

[14] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and
analysis of approximate compressors for multiplication,” IEEE Trans.
Comput., vol. 64, no. 4, pp. 984–994, Apr. 2015.

[15] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi, “Approximate
XOR/XNOR-based adders for inexact computing,” in Proc. 13th IEEE
Int. Conf. Nanotechnol., Beijing, China, Aug. 2013, pp. 690–693.

[16] H. Junqi, T. N. Kumar, H. Abbas, and F. Lombardi, “Simulation-based
evaluation of frequency upscaled operation of exact/approximate ripple
carry adders,” in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI
Nanotechnol. Syst. (DFT), Cambridge, U.K., Oct. 2017, pp. 1–6.

[17] H. A. F. Almurib, T. N. Kumar, and F. Lombardi, “Inexact designs for
approximate low power addition by cell replacement,” in Proc. Design,
Automat. Test Eur. Conf. Exhib. (DATE), Dresden, Germany, Mar. 2016,
pp. 660–665.

[18] C. Liu, J. Han, and F. Lombardi, “A low-power, high-performance
approximate multiplier with configurable partial error recovery,” in Proc.
Design, Automat. Test Eur. Conf. Exhib. (DATE), Dresden, Germany,
Mar. 2014, pp. 1–4.

[19] N. Banerjee, G. Karakonstantis, and K. Roy, “Process variation tolerant
low power DCT architecture,” in Proc. Design, Automat. Test Eur. Conf.
Exhib. (DATE), Nice, France, 2007, pp. 630–635.

[20] G. Karakonstantis, D. Mohapatra, and K. Roy, “System level DSP
synthesis using voltage overscaling, unequal error protection & adaptive
quality tuning,” in Proc. IEEE Workshop Signal Process. Syst., Tampere,
Finland, Oct. 2009, pp. 133–138.

[21] T. Darwish and M. Bayoumi, “Energy aware distributed arithmetic DCT
architectures,” in Proc. IEEE Workshop Signal Process. Syst., Seoul,
South Korea, Aug. 2003, pp. 351–356.

[22] B. Garg, N. K. Bharadwaj, and G. K. Sharma, “Energy scalable approx-
imate DCT architecture trading quality via boundary error-resiliency,”
in Proc. 27th IEEE Int. Syst.-on-Chip Conf. (SOCC), Las Vegas, NV,
USA, Sep. 2014, pp. 306–311.

[23] M. Jridi and P. K. Meher, “Scalable approximate dct architectures for
efficient hevc-compliant video coding,” IEEE Trans. Circuits Syst. Video
Technol., vol. 27, no. 8, pp. 1815–1825, Aug. 2017.

[24] S. Chatterjee and K. Sarawadekar, “WHT and matrix decomposition
based approximated IDCT architecture for HEVC,” IEEE Trans. Circuits
Syst., II, Exp. Briefs, to be published. doi: 10.1109/TCSII.2018.2874071.

[25] S. B. Jdidia, M. Jridi, F. Belghith, and N. Masmoudi, “Low-complexity
algorithm using DCT approximation for POST-HEVC standard,” in
Proc. SPIE, vol. 10649, Apr. 2018, Art. no. 106490Y.

[26] Y. Xing, Z. Zhang, Y. Qian, Q. Li, and Y. He, “An energy-efficient
approximate DCT for wireless capsule endoscopy application,” in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), Florence, Italy, May 2018,
pp. 1–4.

[27] R. J. Cintra, F. M. Cintra, V. A. Coutinho, S. Kulasekera,
A. Madanayake, and A. Leite, “Energy-efficient 8-point DCT approx-
imations: Theory and hardware architectures,” Circuits, Syst., Signal
Process., vol. 35, no. 11, pp. 4009–4029, Nov. 2016.

[28] V. de A. Coutinho, R. J. Cintra, F. M. Bayer, S. Kulasekera, and
A. Madanayake, “Low-complexity pruned 8-point DCT approximations
for image encoding,” in Proc. Int. Conf. Electron., Commun. Com-
put. (CONIELECOMP), Cholula, Mexico, Feb. 2015, pp. 1–7.

[29] M. K. Islam, M. Moznuzzaman, M. F. Khatun, and R. Yesmin,
“A proposed modification of baseline JPEG standard image compression
technique,” Int. J. Sci. Eng. Res., vol. 6, no. 8, pp. 180–186, 2015.

[30] L. Dubois, W. Puech, and J. Blanc-Talon, “Fast protection of H.264/AVC
by reduced selective encryption of CAVLC,” in Proc. 19th Eur. Signal
Process. Conf., Barcelona, Spain, Aug./Sep. 2011, pp. 2185–2189.

Junqi Huang (M’18) received the B.S. degree in
electronic engineering from Guangzhou University,
Guangzhou, China, in 2011, and the M.S. degree
in information technology management from Hong
Kong Baptist University, China, in 2013. He is
currently pursuing the Ph.D. degree in electronic
engineering with the University of Nottingham at
Malaysia Campus, Malaysia. His research interests
are in the fields of approximate computing, image
processing, and VLSI design.

http://dx.doi.org/10.1109/TCSII.2018.2874071

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS

T. Nandha Kumar (M’06–SM’11) received the
bachelor’s degree from the University of Madras, the
master’s degree from the National Institute of Tech-
nology, India, and the Ph.D. degree . in electrical
and electronic engineering from The University of
Nottingham. He is currently an Associate Professor
with the University of Nottingham, Malaysia. Prior
to this, he was a Senior Pre-Silicon Validation Engi-
neer with Intel Corporation. He has published over
70 papers in the reputed International journals and
conferences. His research interests are in the fields

of emerging non-volatile memory, approximate computing, VLSI design, and
test and fault/defect tolerance of digital systems. He is an Associate Editor of
the IET Circuits, Devices and Systems.

Haider A. F. Almurib (S’00–M’05–SM’11)
received the Ph.D. degree in electrical engineer-
ing from the University of Malaya, Kuala Lumpur,
Malaysia, in 2006. He is currently a Professor
with the Department of Electrical and Electronic
Engineering, The University of Nottingham, Kuala
Lumpur. Before this, he was a Senior Lecturer
with the University of Malaya. He was with indus-
tries for four years as a Research and Develop-
ment Engineer in the field of computer automation.
His research interests include emerging non-volatile

memory devices, embedded systems, fault tolerance of digital systems,
nonlinear and intelligent control, electric machines and drives. He is currently
an Associate Editor of IET Power Electronics.

Fabrizio Lombardi (M’81–SM’02–F’09) received
the B.Sc. degree (Hons.) in electronic engineering
from the University of Essex, U.K., in 1977, the
master’s degree in microwaves and modern optics,
and the Diploma degree in microwave engineering
from the Microwave Research Unit, University Col-
lege London, in 1978, and the Ph.D. degree from
the University of London in 1982.

He is currently the International Test Conference
Endowed Chair Professor with Northeastern Uni-
versity, Boston, USA. His research interests are

bio-inspired and nano manufacturing/computing, VLSI design, testing, and
fault/defect tolerance of digital systems. He has extensively published in his
research areas. He has co-authored/edited seven books. He was the Editor-in-
Chief of the IEEE TRANSACTIONS ON COMPUTERS from 2007 to 2010 and
the inaugural Editor-in-Chief of the IEEE TRANSACTIONS ON EMERGING

TOPICS IN COMPUTING from 2013 to 2017. He is the Editor-in-Chief of the
IEEE TRANSACTIONS ON NANOTECHNOLOGY.

