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Abstract— The approximate (multiplier-less) two-dimensional
discrete cosine transform (DCT) is a widely adopted technique
for image/video compression. This paper proposes a determinis-
tic low-complexity approximate DCT technique that accurately
configures the size of the transform matrix (7') according to the
number of retained coefficients in the zigzag scanning process.
This is achieved by establishing the relationship between the
number of retained coefficients and the number of rows of the
T matrix. The proposed technique referred to as the zigzag low-
complexity approximate DCT (ZLCADCT), when compared with
approximate DCT (ADCT), decreases the number of addition
operations and the energy consumption while retaining the PSNR
of the compressed image. In addition, the ZLCADCT eliminates
the zigzag scanning process used in the ADCT. Moreover, to char-
acterize the deterministic operation of the ZLCADCT, a detailed
mathematical model is provided. A hardware platform based on
FPGA:s is then utilized to experimentally assess and compare the
proposed technique; as modular, deterministic, low latency, and
scalable, the proposed techniques can be implemented upon any
change in the number of retaining coefficients by realizing only a
partial reconfiguration of the FPGA resources for the additional
required hardware. The extensive simulation and experimental
results show the superior performance compared to previous
ADCT techniques under different metrics.

Index Terms— Approximate DCT, addition, FPGA, low power
DCT, zigzag scanning.

I. INTRODUCTION

MAGE and video coding techniques (such as high effi-

ciency video coding and HEVC) play an important role in
image processing, storage and transmission. Techniques such
as the discrete cosine transform (DCT) are used to attain a
high image compression rate usually at the expense of a large
computational complexity and high energy consumption [1].
However, human senses such as eyes are tolerant of errors
and a small degradation in the image quality is unlikely to
be recognized. Approximate computing techniques such as
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an approximate/multiplier-less DCT (ADCT) thus have been
proposed to decrease the amount of computation and improve
circuit energy performance by sacrificing some accuracy in the
outputs.

ADCT has been investigated by focusing on the design of a
low-complexity transform matrix to reduce the computational
complexity at algorithmic level and energy consumption at
circuit-level. An approximate 4 x 4 DCT (with no multi-
plication required) is proposed in [2]. Also, several 8 x 8
approximate DCT matrix techniques are proposed in [3]-
[9]; these techniques only require some shifting and addi-
tions, so again without multiplication in processing. Among
these 8 x 8 low-complexity matrixes, [5], [7] introduce two
approximate DCT matrixes which require only 14 additions.
This is the lowest number of addition operations found in the
technical literature. Moreover, multiplication-free 16 x 16 DCT
architectures applicable to HEVC and matrix computation are
proposed in [10]-[12]. Besides, approximate components, such
as multipliers and adders are developed to decrease the number
of operations for DCT at logic and transistor levels.

At logic level, an inexact systolic array is introduced
in [13] to reduce the computational complexity of DCT matrix
multiplication by allowing small errors. Two approximate 4-2
compressors (used in a multiplier) are proposed in [14] for
image multiplication; this scheme decreases energy consump-
tion and delay, so improving performance. At the transistor
level, two approximate XOR-based adders are introduced
in [15]; these adders can be employed to design approximate
DCT hardware to improve performance with respect to power
consumption and delay. Jungqi et al. [16] propose a frequency
up-scaling technique that allows adder cells of DCT to gener-
ate some error and operate under higher frequency for acceler-
ating the processing. Three inexact adders that reduce energy
consumption for DCT, are proposed in [17] by simplifying
a traditional full ripple carry adder; their performances are
evaluated in [1].

A different technique for approximate DCT targets a
low-power design at logic level; [18] has developed a
low-power approximate multiplier for DCT computation
with a critical path shorter than a traditional multiplier.
A low-power DCT architecture is also proposed in [19]
to reduce the computational path of the most significant
coefficients as well as errors caused by voltage scaling. The
approach proposed in [20] achieves error resiliency under

1549-8328 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0003-3152-3245
https://orcid.org/0000-0002-5033-3095
https://orcid.org/0000-0002-2768-134X

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

voltage over-scaling by using unequal error protection accord-
ing to the importance of the output coefficients for DCT.
An Energy aware DCT is proposed in [21] by using a coef-
ficient elimination technique to reduce energy consumption.
An energy-efficient approximate DCT architecture is investi-
gated in [22] by considering the sub-blocks of input images,
while [23] has proposed generalized scalable and recon-
figurable architectures for DCT in which when computing
a large size matrix, resources are appropriately configured.
An approximate IDCT (Inverse DCT) architecture for any
IDCT size has been proposed in [24]; this architecture exploits
an approximate matrix decomposition and simplifies the cosine
and sine terms to reduce the required hardware during the
process of recovering images in HEVC. [25] has proposed
a low-complexity algorithm to avoid multiplications in the
process of an Adaptive Multiple Transform (AMT) which
involves DCT matrix of sizes from 8 x 8 to 128 x 128 for Post-
HEVC technology. An energy-efficient ADCT is proposed
in [26] by using three approximate methods (including opti-
mizing calculation of float-point DCT coefficients, using
threshold setting to determine required additions and partly
adopting truncated approximate adders), while some floating
point calculations and the threshold units may consume too
much energy compared with integer ADCT.

All the above techniques accomplish a reduction in
energy consumption for image compression at different levels
(algorithmic, logic, transistor) and calculate the DCT with
compressed sub-blocks; they are then scanned for retaining
the number of coefficients of the compressed data to be
transferred. The bit rate of transmission and compressed image
quality can be changed by controlling the number of final
retained coefficients and removing less significant coefficients
during the process of scanning. However, ADCT matrixes
proposed by [2]-[12] in the algorithm level all focus on
simplifying the elements in the transform matrix to reduce
the number of additions. The number of retained coefficients
during the process of scanning is not considered in the design.
This means that all coefficients should be calculated, even if
some unused coefficients are finally removed by scanning.
Therefore, the computation and related power consumption
required for the ultimately not retained coefficients are redun-
dant and they can be avoided. In previous literatures about
ADCT techniques, the unused coefficients cannot be fully
avoided in the calculation of ADCT, and these designs cannot
dynamically be adjustable according to the different number
of retained coefficients in scanning process.

The approximate nature of ADCT [7] originates from the
feature that no multiplication is utilized, i.e., only additions
are employed. ADCT [27] just prunes the transfer matrix
(T) by adopting pruned DCT method in [28] to further
enhance the approximation without considering the effect
of the pruned matrix on the number of coefficients to be
transmitted. Different from [27], the proposed ZLCADCT
is a deterministic approach to configure the 7 matrix by
establishing the relationship between the number of retained
coefficients and the number of rows of the 7" matrix. Therefore,
ZLCADCT eliminates the zigzag scanning process and sig-
nificantly reduces the number of required hardware resources
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Fig. 1. The flow chart of JPEG encoder [29].

(adders, gates and LUTSs). In addition, it reduces the figures of
merit such as delay and energy consumption while retaining
a nearly similar image quality compared with [7] and [27] (as
measured by the PSNR). Moreover, the proposed technique is
scalable and experimentally implemented using FPGAs; it is
realized modularly, so that a change in the number of retaining
coefficients does not require a complete reconfiguration of the
FPGAs. Simulation and experimental results show that when
compared with previous approximate techniques, the proposed
technique offers superior performance.

In addition, the proposed method can be used in the image
compression standard such as JPEG (Fig.1) to improve the
resource utilization and energy consumption by retaining the
output image quality. However, as stated in the title, this
manuscript focuses on the optimization of DCT algorithm.

This paper is organized as follows. Section 2 presents the
preliminaries such as the approximate DCT of [7], the but-
terfly algorithm and the zigzag scanning. Section 3 deals
with the proposed zigzag low-complexity approximate DCT
technique (ZLCADCT) as well as its model. Section 4
analyzes performance and complexity of the proposed tech-
niques. Section 5 presents the simulation results, while
Section 6 shows the hardware platform and the experimental
results for the FPGA implementation of the proposed as well
as existing techniques. Section 7 concludes the paper.

II. PRELIMINARIES

Due to its energy properties, 8 x 8 Integer DCT has
become one of the most commonly used transforms in a video
compression system. Eq. (1) and (2) show the basic step for
the DCT and inverse DCT (IDCT) respectively where X is the
8 x 8 matrix from the input image. Y is the 8 x 8 output matrix
of the DCT and A denotes the conventional floating point 8 x 8
DCT matrix. For reducing the computational complexity, A is
divided into D and T such that the DCT can be calculated
in the integer domain (D is the 8 x 8 diagonal matrix and T
is the 8 x 8 integer matrix). Then, the matrix D is extracted
to generate Ef = DEDT . Ey is computed as part of a
quantization process (& denotes the dot product between two
matrixes, while E; denotes the 8 x 8 matrix whose elements
are all ‘1’). Therefore, T - X - TT is the main computation of
the integer DCT, and by simplifying the matrix 7, it is then
possible to decrease the computational complexity of DCT.

Y = axAT = (DT)X (TTDT) - (TXTT) ® (DElDT)
- (TXTT) ® E; (1)

X =ATyA = (TTDT) Y(DT) =TT (Y ® (DElDT)) T
=TT (Y®E/)T 2)
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Fig. 2. Flow diagram of butterfly algorithm for matrix 7" of [7].
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Fig. 3. Zigzag scanning [30].

Different types of 8 x 8 low-complexity matrix 7 have been
proposed in [3]-[9]. Among them, the matrix 7 requiring
the least number of computational resources is presented
in [7]. It only requires 14 additions when using the butterfly
algorithm. (3) shows the matrix 7" proposed in [7], while (3) is
its D matrix. Fig. 2 illustrates the flow diagram of the butterfly
algorithm for 7 - X using the matrix 7 of [7].

1 1 1 1 1 1 1 1
o 1 0 0 0 0 -1 0
1 0 0 -1 -1 0 0 1
1 0 0 0 0 0 0 -1

=11 21 21 1 -1 -1 1 @)
0 0 0 1 -1 0 0 0
0O -1 1 0 0 1 -1 0
0o 0 1 0 0 -1 0 0

i 1 1 1 1 1 I 1 1
D=diag| —=,—=.5,—=,—=—=> 7, —= “)

For image coding after completing DCT, every compressed
sub-block must undergo the so-called zigzag scanning (shown
in Fig. 3). The zigzag scanning finally determines the number
of coefficients that must be retained as compressed data;
for example, if 10 coefficients are retained, all coefficient
data numbered from 11 to 64 are removed and set to zero.
Fig. 4 shows the flow diagram in terms of computational steps
for the entire DCT.

Divided into 8 X 8 Integer ADCT for
¥nput — 1;1ble Lm())( x — every sub-block
image sub-blocks (T-X-T7)

Quantization for
every sub-block
(®F)

Zigzag scanning for every
output sub-block ¥

Fig. 4. Computational flow diagram for a 8 x 8 integer DCT.

III. PROPOSED APPROXIMATE DCT TECHNIQUE

In this section, the proposed technique (ZLCADCT) is
initially presented; then its mathematical modelling is pursued
in detail. ZLCADCT configures the 7 matrix by establishing
a relationship between the number of retained coefficients
and the number of rows of the T matrix, thereby reducing
power/energy consumption and circuit delay. Zigzag scanning
is finally removed at the end of the DCT transform; moreover,
the output image quality can be changed when the number of
coefficients to be retained from the input is changed.

A. Proposed ZLCADCT

The proposed ZLCADCT utilizes a deterministic method to
achieve a low complexity approximate DCT by preprocessing
the transform matrix 7" such that a new T, matrix is found as a
function only of the number of retained coefficients (achieved
by zigzag scanning) and reducing the number of additions
to be performed. In zigzag scanning (with an ordering from
the upper-left to the bottom-right), only some coefficients
are retained; therefore, processing those coefficients that are
not retained is redundant. In ZLCADCT, the implementation
of the required zigzag scanning is performed in the earlier
stage of DCT, i.e., in the 7 matrix. So, it is possible to
reduce the number of calculations by adjusting the matrix 7,
while computing the integer DCT (7 - X - TT) for only
those coefficients that are retained. The resulting matrix is
now denoted as T),. The following definitions are initially
introduced in this manuscript.

1. The Actual Coefficient Retained (ACR) is defined as the
number of coefficients generated when calculating the
new output matrix ¥ =7, - X - TpT.

2. The Targeted Coefficient Retained (TCR) is defined as
the number of coefficients of the new output matrix Y
that are planned to be retained, i.e., TCR is contained in
ACR and obviously, TCR < ACR.

T, is generated based on the targeted coefficients to be
retained. Table 1 shows a few TCR values and their corre-
sponding number of rows (‘m’) to be retained in the T, matrix,
as well as the output vectors created by 7), in X1 =T - X.
During the operation X1 = T, - X, for example if the number
of targeted coefficients to be retained (TCR) in the process
of zigzag scanning is only 6, then only the first three rows
(m = 3) of the T matrix are retained (Table 1) by using the
truncation measure from [27] while the coefficients for the
other rows are set to zero, thus systematically generating the
new T, matrix (as in (5)). Its butterfly flow diagram (Fig. 5)
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TABLE 11
LUT FOR THE TCR RANGE

TCR Output vector Zy_n,—1;(1...m)
TCR=1 Zo,;(1)
TCR € [2,3] Zy,;,(1) to Z, ;(2)
TCR € [4,6] Zy;(1) to Z, ;(3)
TCR € [7,10] Zo;(1) to Z3 ;(4)

TCR € [11,15]

Zo,;(1) to Z, ;(5)

TCR € [16,21]

Z,,;(1) to Zs ;(6)

TCR € [22,28]
TCR € [29,36]

Z,;(1) to Zs ;(7)
Z,,;(1) to Z,;(8)

o|N|loju|s w3

Fig. 5. Butterfly flow diagram of T}, using the truncation measure of [27]
for the proposed ZLCADCT when 6 coefficients are retained.

e
x7/ \’EA7 5 “ v,

Fig. 6. Butterfly flow diagram of 7}, using the truncation measure from [27]
for proposed ZLCADCT when 21 coefficients are retained.

shows that only 9 additions (X/ requires 72 additions) are
required (the red dashed lines identify the redundant operations
not performed by ZLCADCT). Upon applying the new T),
matrix on the input image X, the resulting matrix X/ has
coefficients only for three rows (same as the size of the
T, matrix). Therefore, the coefficients in the other rows are
not computed; in the first step, 7}, substantially reduces 40
addition operations compared with ADCT [7]. As a further
example, consider when 21 coefficients are retained in the
zigzag scanning; then, only the first six rows are calculated.
The new T, matrix is given in (6), and its butterfly flow
diagram is shown in Fig. 6.

1 1 1
T, =10 1 0 O 0o 0 -1 0 5)
1 0 0 -1 -1 0 0 1

TCR € Number of retained coefficients for each row ('k’)
4 5 6 7 8
1 [7,15) |[15,16)] [16,28) [[28,29)[[29,64]
2 2 8,14) [[14,17)|[17.27)| [27.,30) [[30,43)|[43,64]
w3 9,13) |[13,18)([18,26)|[26,31)[ [31,42) |[42,44)|[44,64]
§ 4 [[10,12)|[12,19)|[19,25)|[25,32)|[32,41)| [41,45) |[45,54)|[54,64]
Bl 5 [r1.20)120.24)[124.33)|133.40)|[40,46)| [46,53) [[53.55)]55.641
é 6 1121,23)[23,34)[34,39)[[39.47)[[47,52)| [52,56) |[56,61)|[61,64]
2 7 |[22,35)|[35,38)([38,48)|[48,51)|[51,57)| [57,60) |[60,62)|[62,64]
8 [136,37)[[37.49)([49,50)|[50,58)|[58,59)| [59,63) |[63,64)| 64
1 1 1 1 1 1 1 1
0 1 0 0 0 0 -1 0
1 0 0o -1 =1 0 0 1
=11 o o o o o o -1f ®
1 -1 -1 1 1 -1 -1 1
0O O 0 1 —1 0 0 0

Next, for the operation ¥ = X1 - TpT , the resulting size of
the Y matrix is m x m . For example, TCR = 6 results in a
Y matrix of size 3 x 3 with the number of actual coefficients
retained (ACR) of 9. Therefore, the resulting three coefficients
are not necessary. To address this concern, a look-up-table
(LUT) is needed (Table 2) for the number of coefficients
retained in each row (‘k’) as a function of TCR and ‘m’.
This LUT is used to check the number of coefficients to
be retained in each row of Y, so that 7, can be adjusted
to be of a k x 8 size and so avoiding the generation of
additional and unnecessary coefficients in each row. Thus,
for TCR = 6, as gray highlighted but with right slash too
in Table 2, the numbers of retained coefficients ‘k’ are 3 in
the first row (because TCRe [6,7])), 2 in the second row
(TCRe [5,8])) and 1 for the third row (TCRe< [4,9])). Further-
more, (7), (8) and (9) illustrate the difference for the operation
of Y in the presence or absence of a LUT. With a LUT,
the last coefficient (Z;zo Tom ZZ:O T12Xnm) in the second
row and the last two coefficients (Zzn=o Tim ZLO Ton X m
and ZLZO Tom ZZ;:O T5u X pm) in the third row of Y are zero.
The final 8 x 8 output matrix Y is given in (10); the 6 retained
coefficients are the same for both ZLCADCT and when
employing ADCT [7] by applying the zigzag scanning to retain
these coefficients. Hence, ZLCADCT retains the targeted coef-
ficients with no zigzag scanning while substantially reducing
the number of addition operations (as shown in detail in later
sessions). The algorithm of ZLCADCT and the process step of
ZLCADCT are shown below. Fig. 7 shows the flow diagram
in terms of the entire ZLCADCT.

The process of processing an image by ZLCADCT is given
by the following steps:

1. Read the image and divide it into 8 x 8 sub-blocks (input
matrix X).

2. For a given TCR value provided by the user, calculate the
value of ‘m’ from Table 1 to determine T, (m x 8 size).

3. For every sub-block matrix X.
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ZZ1=O Tom ZLO Ton X nm

ZL:O Tim ZZ=O Ton X nm

ZZ,,:() Tom ZZ,=() Ton X nm

X1- TpT = ZZ,,=() Tom ZZ,=() T Xnum Z;:O Ty ZZ:O T1n Xnm ZZn:O Tom ZZ:(} T1nXnm (8)
Zzlzo Tom ZZ,:() 120 Xym 21711:0 Tim 217,:0 T2nXnm 21711:0 T2m ZZ,:() T2nXnm
>omizo Tom 2o TonXom 2o Tim Sopeg TonXum  Xgre Tom 2o Ton Xum
X1- T; = 231:0 Tom ZZ:() T Xum 231:0 Tim ZZ:() T1n X nm 0 9)
Z;:O Tom ZZ:O 120 Xum 0 0
ST o Tom > o TonXum 0 o Tim S0 TonXom S0 o Tom S _o Ton X 0
m=0 10m n=0 10nAnm m=0 {1m n=0 10nAnm m=0 12m n=0 L0nAnm
2,77,:() Tom ZZ,:() T1n Xnm 2,77,:() Tim ZZ,:() T Xnm 0
>0 Tom o TonXom 0 0
Y=T, X1-T] =
0 0
0 0 0 0 0 0
(10)
Algorithm 1 ZLCADCT Algorithm put Divided into Integer ZLCADCT for every
1: procedure ZLCADCT (X, TCR) image > 8x8 > sub-block (T, - X - T
2. ‘m’ < TCR range sub-blocks
3: Ty < Tp mxs P Quantization for every
4: for j <1, 8 do Output sub-block (®F;) -
5: X1, j) < T, -XC, J)
6: end for Fig. 7. Computational flow diagram for 8 x 8 ZLCADCT.
7: for i <1, m do
8: ‘k> <~ TCR Vv ‘i’ erange in LUT
o Ty <_ Tp kx8 - 5. Quantize every sub-block matrix Y to find the final
10: Y(G,:) <« X1(@,:) - T, results.
11: end for 6. End of processing for the current image.
12 return Y

—
(951

: end procedure

3.1. Compute every column of X by T}, (using the fast
butterfly algorithm) in turn and assign a O to the
not required coefficients; then save the results to
matrix X1.

3.2.

Go back to step 3.1 until the calculation of each

sub-block X is finished.
4. For the matrix X1
4.1. For every ‘m’ rows

4.1.1.

4.1.2.

4.1.3.

Determine the range that covers the value of
TCR by using the LUT in Table 2.

According to the range, find the corresponding
‘k’ value as the number of retained coefficients.
Adjust the T, to k x 8 size and set 0 to
the coefficients that are not required to be
calculated.

. Go back to step 4.1.1 until ¥ = X1 - TpT is

completed

T, X
S0 TonXno  p_o TonXn1
= | X0 TiwXo  Xp_o TinXun
S0 TnXno o TonXni

ZZ=0 TOn Xn7
ZZ,:() T Xn7

ZZ,:() 120 Xn7
(7

Without using LUT: (8), as shown at the top of this page.
Using LUT: (9) and (10), as shown at the top of this

page.

B. Mathematical Modeling

Consider the traditional DCT when computed on 8 x 8
image blocks. The DCT matrix T (To,0,---7;;) and the
input block matrix X (Xo,0,---X;,;) are given by (11);
then the DCT results in a matrix Y (Yoq,---Y;;) = T -
X - TT with coefficients given in (12), as shown at the
top of the next page. The zigzag scanning (Fig. 3) is
then performed to select the coefficients from (12) for
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Too Toi To7 Xoo Xo1 Xo7
Tio T Ty X0 Xn X7
T=|\ . ) . X=1 . ) . (11)
T70 Tmi T77 X70 X7 X77
Z;zo TOm ZZ:() TOanm Z;zo Tlm ZZ:O TOanm Z;zo T7m ZZ:O TOanm
7 7 7 7 7 7
Y=T.X. TT — Zm:O Tom Zn:() T1nXom Zm:() Tim Zn:() T1nXom Zm:O T7m Zn:() T1nXom (12)
im0 Tom g0 TmXom 2 h—o Tim 2p—o T7aXom > =0 Trm 2o T Xam
where
7 7 o
Yi; :zm:() Tim zn:O TinXuym fori,j=0...7 (13)

data storage or transmission (see (11)-(13) at the top of this
page).

In ZLCADCT, instead of T, a new matrix 7T, is first
generated based on the number of retained coefficients.
This new matrix is designed to eliminate those calculations
performed on the unused (not retained) coefficients. The Non-
Zero Partition (NZP) is defined here as the partition of the
new output matrix Y in which a non-zero multiplication of
Y=7,-X- TpT takes place, i.e., NZP does not contain those
zero multiplications that always results in zero vectors, rows
or columns.

Remark 1: The partition matrix NZP is a square matrix,
i.e., of m xm size, where 1 <m < 8. Hence, ACR = m2. For
example, for a TCR of value 10, NZP is of size 4 x4, orm = 4,
and ACR will be of value 16.

Next, consider the first multiplication operation to calculate
Y, ie, X1 = T - X. The matrix T is replaced by the
matrix 7, of m x 8 size. Therefore, the new X1 = T -
X has 8 columns (denoted by X1;0, X1;1,---,X1;7) that
contains the necessary first m elements, i.e. i = 0...m — 1.
The remaining elements i = m...7 will all be zero by
definition. Similarly, the number of final elements in each row
(Yo,j, Y1,j,+--,Y7,;) of Y is determined by the processing of
Yy=X1. TpT. The use of T), instead of 7" allows each row of
Y to retain only the first ‘m’ elements; as only ‘m’ rows are
considered in X1, then only these ‘m’ rows should be used
when calculating ¥ = X1 - TpT .

Remark 2: Since ‘m’ is limited in the range 1 < m < 8§,
then TCR can have eight ranges. Mathematically, TCR €
[1+ 305 0 2]

Table 1 shows the ranges that TCR takes depending on the
value of ‘m’. For example, if m = 4, TCR can take one of the
values in the range from 7 to 10. The reciprocal relationship
is also true, i.e., if 7 < TCR < 10, then ‘m’ should be 4 and
the size of NZP is 4 x 4. So, Y =T, -X - TpT contains at
least 8 x 8 —m x m = 48 coefficients of zero value. These 48
coefficients are not stored/transmitted and therefore they are
not calculated in ZLCADCT. Table 1 is then used to obtain
the value of ‘m’ for determining the size of T,, i.e., m x 8
once the TCR is chosen.

Considering Table 1, for example, when m= 1, the resulting
T, has one row, ie. T, = Tpio0..7 = [Tpo,0, Tpo,1,- "+ »
Tpo71 =1[1,1,1,1,1,1,1, 1] where i = 0. Then for a given
input matrix X, the element of the output vector Z; ; for
each column (j-th) of the output matrix X1 is given by
Zm—1,j(m) = Zo,j (1) = Tpo,0 - Xoj + Tpo1 - X1,j +---+
Tyo7-X7,j = Xo,; + X1, +---+ X7,; where j =0...7.
Similarly, when m =5, T}, has five rows, and for each column
(j-th) of X1, five output vector elements Zo. 1, (1...m)
(Zo,j(1) to Z4,; (5)) are created. For example considering the
fifth row of Ty, (T, 40.7 = [Tp 4.0, Tp a1, Tp a7] =
[1,—1,—1,1,1,—1, —1, 1]). The fifth output element is given
by Zy—1,j (m) = Z4,j (5) = Tpao - Xo,j +Tpa- X1+ -+
Tpaq - X7,j = Xoj — X1,j — Xo,j + X3, + X4j — X5, —
Xe,j+ X7,. By generalizing the above two examples, the first

term (3 [(X,,,- + X7-1,)) - (—I)V(’géﬂj'(m%)} ) of (15) is

logt2+l

m—1
input elements, while (—1) ( 4 ) is used to determine

the sign of the input elements according to 7, ,,—1,0...7 (the m-
th row of T},). In general, the calculation of the output vector
Ziji=0...m—1and j=0...7) for each column (j-th)
of X1 (given by (14)) requires the general expression given

by (15). In (15), Llog’zﬂJ denotes the floor function for the

obtained. 213:0 [(X,,j +X7_,,j)J is used to determine the

maximum integer that is not larger than logt;rl.

X1uxg =Tp mxs - Xgx8

Zo,0(1) Zp,1(1) Zo,7(1)
Z1,0(2) Z1,1(2) Z1,7(2)
= : : : (14)
Zm—l,O(m) Zm—l,l(m) Zm—1,7(m)

Eq. 15 calculates the j-th column vector of X1 =T, -X =
[Xlo,j, X1y, le_l,j] by using the m x 8 matrix 7), to
process j-th column vector of input X, i.e. [Xo j, X1,j, -,
X7, and X1 = [Zoj(1),Z1,j(2),..., Zm-1,j (m)] is
finally produced. All eight column vectors of X are processed
using (15), as shown at the top of the next page, and the final
m x 8 matrix X1 is shown in (14).
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> [(Xf,,- + X7-4j) - (—1)L’0g'2+'J'(mT_')} , m € {1, 5)
X m—1 . X _ m—1 . m—
Zn-1,j(m) = Llogé Jjj ’ Llogﬁ Jjj '(—1){10‘?6 IJ, m € {3,7} (15)
! _X4+Lzogg”’lj,j + X7—Llogg"71J,j
Xloggfm—l,j - X8—loggf"',j’ m e {2,4}
Xlogi“""+1,j - X6flog;0_’",j’ m € {6, 8}
[ ' km—1
> [(zi,t +Zig) - (—DV”&HJ'(T)} : km € {1,5)
Z 0 i) —Z. . .
Vi, 1 (k) = o B L I B L 17
idon—1 (k) = — i,4+L108’(§m_IJ + Zl.j_voglém—lJ 17)
Zi,logg—km,l - Zi,8flogg_k"” km € {2, 4}
LZi,logéo_km+l - Zi,6—log;0_k"’ > ki € {6, 8}

The resulting m xm NZP matrix of Y =T),-X - TpT is given
in Table 2 (gray highlighted) for TCR = 6, then ‘m’ is 3 and
ACR is 9. The remaining 55 coefficients are not calculated.
However, a conventional DCT calculation (using the matrix 7'
in (11) and (12)) requires calculating all 64 coefficients for
the entire 8 x 8 matrix and then retaining the 6 coefficients
(after performing zigzag scanning). Therefore, a considerable
improvement is accomplished by generating only the NZP
matrix; so, the scanning process for transmitting/storing the
selected coefficients can be removed.

By definition, the number of coefficients (9 coefficients)
gray highlighted in Table 2 is not always the same as those
generated using ADCT [7] with a zigzag scanning (gray
highlighted with right slashes). The NZP matrix generates
additional terms, except for the case when the number of
retained coefficients is one (m 1). Therefore, the use of
the NZP matrix may incur in additional overhead.

Remark 3: For a size ‘m’ block, the TCR range is constant
and therefore Table 2 can be used as a LUT, so the unnecessary
coefficients found for ¥ = X1- 7,7 can be entirely avoided.

To remove the additional terms generated by NZP matrix
during the process of calculating ¥ = X1 - T,,T, a LUT
(Table 2) is introduced by ZLCADCT. The size of T
is determined by the number of retained coefficients k €

{k1,kp,---ky} for the different ‘m’ row vectors. For exam-
ple, when k 1, for the i-th row vector of input
X1, T, has only one row, ie. T, Ty 0,0..7
[Tp 0,0, Tp 0,15, Tp 0,7] =[1,1,1,1,1, 1,1, 1]. Therefore,
the output vector Y; ; for the i-th row is given by only
one vector element Y; ;1 (k) = Yi,O(l) = Tpo,0 - Zip +
Tpo - Zip + -+ + Tpo7 - Ziz = Zio + Zig + -+ +
Zi7, where 0 < i < m — 1 and | 0. Similarly,
when k = 5, T, has five rows, and five output vector
elements Y; 1 (k) (Yio (1) to Yi4(5)) are generated for the
i-th row. Therefore, for the fifth row of T,, T, 4,0..7
[Tp 4,0, Tp 41, , Tp 4’7] = [1,-1,-1,1,1,—1,—1,1],
and the fifth output element Y | (k) = Yi4 (5) = Tpao

Zio+ Tpay - Zig + -+ Tpaq - Ziz = Zip — Zijg —
Zi» + Zi3 + Zis — Zi5 — Zis + Zi7 can be found.

By generalizing the above expressions leads to the first
km —1

term (Z?:O [(Zi,; + Z,-,7_,) . (—I)Llog'ﬁlJ.(T) ) of (17),
as shown at the top of this page. Z?:o [(Zis + Zig—1)] i

used to determine the input elements while (—1) VOthHJ (km“_l)
is used to determine the sign of the input elements according
to Tp k—1,0...7 (the k-th row of T},). In general, the calculation
of the output vector ¥; ; 1 =0...m—1and j=0...k—1)
for each (i-th) row of Y (given by (16)) requires the general
expression given by (17).

T

Yo,0(1) Y0,1(2) Yo,k —1 (k1)
Y1,0(1) Y1,1(2) Y15y —1(k2)
= } ) . (16)
Ym—l,()(l) Ym—l,l(z) Ym—l,km—l(km)
where,
kelki,ky, -+ kyp} andk <m (18)
Eq. (17) calculates the i-th row vector of ¥ = X1 -

TpT = [Y()jo,Yl’],“' ,meljkfl] by using the & x 8
matrix 7), to process the i-th vector of the input X1, i.e.
[Z,-,o, Zit, Z,-,7], and then output matrix Y is finally pro-
duced by Y = [Yo,0.4,-1(1...k1), Y1,0. k-1 (1 ... k2),---,
Yin—1,0.dn—1(1...kn)l. All ‘m’ row vectors of X1 are
processed using (17) and the final matrix Y obtained is
shown in (16).

IV. PERFORMANCE AND COMPLEXITY

In this section, the analysis of the proposed new schemes
for DCT is presented with respect to performance and compu-
tational complexity; comparison with previous DCT schemes
is also pursued.
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A. Performance

The performance of ZLCADCT is evaluated by employing
the PSNR (Peak Signal to Noise Ratio) as metric [17]; the
PSNR is used to assess the quality of processed images using
(19) and (20).The Mean Square Error (MSE) (defined in (20))
is first calculated and evaluates the variation of pixel value
between two images; p; ; refers to the pixel value of the
original image of size a x b, while p;; is the pixel value
for the final processed image.

PSNR = 10l0g % D’ (19)
= 09—
$MSE
where:
1 a b .2
MSE=——2% > _ (0ij=hij) (20)

Based on (19) and (20), both ADCT [7] and ZLCADCT
generates the same output matrix (i.e. (10)). So, the values of
Di, j for both these two methods are identical and therefore,
both the MSE and the PSNR have the same values.

However, for ADCT [27], the additional non-zero coeffi-
cients p; j(eg. those coefficients highlighted in bold font in (8))
will cause the difference p;; — p;; for these pixels to be
smaller than p; ; — 0, because the values of these coefficients
for both ADCT [7] and ZLCADCT are all zero. Therefore,
the MSE of ADCT [27] will be smaller than ADCT [7] and
ZLCADCT, and the PSNR of [27] will in turn be higher than
for these two methods.

B. Complexity

Regarding computational complexity, ZLCADCT removes
the unnecessary additions from the process of calculating both
Xl=T,XandY = X1- TpT so making their executions faster
than ADCT [7] and [27]. In the ZLCADCT, for processing
of X1 = T, - X, each column of X1 is calculated using
14 — (8 —m) = m + 6 additions (1 < m < 8); so, the total
number of additions required by X1 is 8 (m + 6) = 8m + 48.
Next, for processing ¥ = X1 - TpT, each non-zero row of
X1 must be checked from LUT. If one row is required to
retain ‘k’ (1 < k < m) rather than ‘m’ coefficients, then the
number of additions for processing this row can be reduced
from m + 6 to k + 6 by removing the unnecessary (redundant)
additions. For example, if TCR is 6 (as explained previously
in Section 3A), the number of additions required by using
LUT for calculating the second row of X1 decreases from
9to 8 (k =2) and from 9 to 7 (k = 1) for the third row.
Thus, the total number of additions required for computing
T, -X - TpT using ZLCADCT is 96, a further saving of 3
additions when compared with [27]. The generic equation to
determine the number of additions required by ZLCADCT is
given in (21), as shown at the bottom of this page; note that
NA is dependent on both ‘m’ and TCR.

Where the value of ‘m’ can be obtained according to the
TCR value. The range covering a TCR can be found in Table 1.
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(1 —TCR/>L, t} denotes the ceiling function for the least
integer that is not smaller than 1 — TCR/ > /1.

The total number of additions required by [27] is given by
(22). As per Remark 2 in Section 3B, the largest TCR value
for a specific ‘m’ is 3" t. Thus, as —2>" 't + TCR =
23 Y gt =m =Yt =m—m(m—1)/2 =
(m —m?)/2 < 0 in (21), then NAzzcapcr will be smaller
than NAspcr(27)-

NAapcripn(m) = m* + 14m + 48 (22)

For ADCT [7], T - X - T7 for an 8 x 8 input block requires
executing 16 times the full fast butterfly algorithm that in
turns requires 14 additions each time, so resulting in a total
of 224 additions for any value of TCR. As explained above,
compare with [7], if TCR = 6, ADCT [27] requires 99
additions and ZLCADCT requires the least (96 additions).

V. EVALUATION BY SIMULATION

In this section, an evaluation of the proposed techniques is
pursued with respect to image compression. Initially, an image
(Lena) is processed by ADCT [7], ADCT [27] and ZLCADCT
for different numbers of retained coefficients. For evaluation
purposes, the selection of the rows to be pruned for the random
technique of [27] is executed using the proposed technique.

Table 3 compares ADCT [7], ADCT [27] and ZLCADCT in
terms of output images for Lena when the numbers of retained
coefficients are 1, 3, 6, 10, 15, 21 and 28. Metrics such as
the number of additions, energy consumption and PSNR of
the output image for the entire computation of 7 - X - TT
are determined; the results are presented in Table 4. The
number of coefficients for transmission/storage increases by
using [27], so ZLCADCT is also evaluated to keep the number
of transmitted coefficients the same as in [7]. In Table 4,
Column 1 shows the number of TCRs (i.e., TCR); Column 2
reports the number of ACRs for [27]. Column 3 shows
the number of retained rows for DCT matrix. Columns 4
to 6 show the number of additions required by ADCT [7],
ADCT [27], and ZLCADCT. The number of additions required
by ZLCADCT is significantly smaller (28% for a single
retained coefficient) at a low number of retained coefficients
compared with ADCT [7]; and it can be even lower than
ADCT [27]. By increasing the number of retained coefficients,
the difference between the numbers of additions by ZLCADCT
and ADCT [7] decreases.

As hardware, a 32-bit Ripple Carry Adder (RCA) (made
of mirror full adder cells) is used to perform the addi-
tion. The eight input cases (i.e., the inputs A, B and Cin:
from 000 to 111) of an exhaustive simulation are applied to a
32-nm single full adder cell. LTSPICE is used to establish the
average energy consumption; the average energy consumption
of a single full adder is found to be 3.58492E-16J. The energy
consumption of DCT using the matrix T}, is given by using the

NAzrcapcr (m,TCR) = [

m?+13m —23" 1 + TCR 4 48,
m? +13m =23 1+ TCR+48 =61 -

me{1,3,5,7}

LER, m e (2,4,6,8)
1=

21
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TABLE III

OuTPUT IMAGES OF ADCT [7], ADCT [27] AND ZLCADCT
FOR DIFFERENT NUMBER OF RETAINED COEFFICIENTS

TCR

ADCT [27] ADCT [7]or ZLCADCT
[ i

15

21

28

total number of additions in the butterfly algorithm; Columns 7
to 9 of Table 4 show the energy consumption of ADCT [7],
ADCT [27] and ZLCADCT. Significant savings in energy
consumption is achieved by ZLCADCT at a lower number
of retained coefficients; as previously when the number of
coefficients increases, also the energy consumption gradually
increases.

As a measure of performance, the delay must also be
assessed. The delay of the butterfly algorithm is determined
by its critical path full adder at each level (so not depending
on the number of adders in each level of addition); for the
proposed matrix T, the critical path of the butterfly algorithm
is always along the 3 additions. Therefore, when the number
of retained coefficients increases, the delay of DCT using the
proposed matrix 7, depends only on the 3 level additions.
Columns 10, 11 and 12 of Table 4 show the software-based
delay evaluation by Matlab. For any TCR value, ZLCADCT
has the lowest delay because its required calculation has the
least complexity compared with ADCT [7] and [27]. For both
ZLCADCT and ADCT [27], the delay is increased as TCR
increases, while the delay of ADCT [7] is unchanged.

Next, PSNR values of output images for ADCT [7],
ADCT [27] and ZLCADCT are considered. The Table 5 shows
the values of the PSNR obtained for different TCRs when
applied on five input images (lena, cameraman, baboon, eagle
and moon) and processed using ADCT [7], ADCT [27] and
ZLCADCT. As it can be observed from the results, when
only one coefficient is retained, the outputs of ZLCADCT
and ADCT [27] are the same; therefore, their PSNR values
are equal only in this case. However, when the number of
retained coefficients increases, the PSNR of ADCT [27] can
be higher than ADCT [7] and ZLCADCT because they retain
more coefficients than ADCT [7] using zigzag scanning and
ZLCADCT. For example, when 6 coefficients are required
for compressing images, only 6 coefficients are retained
using ADCT [7] (after zigzag scanning) and ZLCADCT, but
ADCT [27] retains three more coefficients (highlighted by a
bold font in (8)). ADCT [27] can have a marginally higher
PSNR due to the additional elements in the resulting matrix.
However, by using ZLCADCT, the additional elements are
avoided and ZLCADCT has a PSNR whose value is the
same as ADCT [7]. Moreover, when the number of retained
coefficients is larger than 1, this scheme reduces the number
of additions and energy consumption. Next, the average PSNR
value (rows 6 and 13) and its percentage (rows 7 and 14) for
different TCR shown in Table 5 can be used to determine
the desired value of the TCRdepending on the percentage of
the PSNR required. The percentage values are calculated by
using average PSNR values divided by the PSNR value of
TCR = 63. For example, using ZLCADCT approach, if the
output image quality is required to be at 60% of the PSNR
value then TCR value of 15 has to be selected.

VI. EXPERIMENTAL EVALUATION

ZLCADCT is based on preprocessing 7 and it is also
modularly configurable; for example, one row of the 7, matrix
and the resulting computation in the butterfly algorithm are
required when retaining a coefficient, this matrix is referred
hereafter as the base matrix; subsequently for every increase
in the number of retained coefficients, the matrix 7}, has
additional rows compared to the previous 7, matrix and the
corresponding calculations must be performed. For example,
when 2-3 coefficients are retained, an additional row is added
to the base T, matrix and a few more additions are needed in
the base butterfly algorithm. So, when a new row is included
in the matrix 7,, the number of additions in the butterfly
algorithm is increased by 1. This feature is exploited when
an implementation is considered because ZLCADCT requires
to selectively switch the hardware as a function of the number
of retained coefficients, thus resulting in a reduced number
of additions. In this paper, ZLCADCT is implemented in
hardware by using an FPGA-based platform. Fig. 8 shows
the block diagram of implementing ¥ =T, - X - TpT in such
FPGA platform. The FPGA platforms used in the experiments
are the Spartan 3E and Spartan 6 XC6SLX45 at a clock
speed of SOMHz and 100MHz respectively. The Xilinx ISE
14.7 is used for implementing the design to the FPGAs; the
RS232 serial data transmission (DT) baud rate is set to 9600.
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TABLE IV

COMPARISON AMONG ADCT [7], ADCT [27] AND ZLCADCT WHEN COMPUTING T - X - TT
FOR DIFFERENT TCR FOR 512 x 512 LENA AS AN INPUT IMAGE

rcr | acr | m Number of additions Estimated Energy consumption(J) Matlab implementation Delay(s)
ADCT [7] | ADCT[27] | ZLCADCT ADCT [7] ADCT [27] ZLCADCT ADCT [7] | ADCT [27] | ZLCADCT
1 1 1 224 63 63 2.56967E-12 | 7.22719E-13 7.22719E-13 0.89174 0.66657 0.64775
3 4 2 224 80 79 2.56967E-12 9.17739E-13 9.06267E-13 0.89174 0.70945 0.69138
6 9 3 224 99 96 2.56967E-12 1.1357E-12 1.10129E-12 0.89174 0.75237 0.71599
10 16 4 224 120 114 2.56967E-12 1.37661E-12 1.30778E-12 0.89174 0.76163 0.74088
15 25 5 224 143 133 2.56967E-12 1.64046E-12 1.52574E-12 0.89174 0.79125 0.75129
21 36 6 224 168 153 2.56967E-12 1.92725E-12 1.75517E-12 0.89174 0.82011 0.79121
28 49 7 224 195 174 2.56967E-12 | 2.23699E-12 1.99608E-12 0.89174 0.87752 0.84789
TABLE V
PSNR OF FOUR DIFFERENT INPUT IMAGES COMPUTED BY ADCT [7], ADCT [27] AND ZLCADCT FOR DIFFERENT TCR
Applied PSNR TCR
measure Input images 1 3 6 10 15 21 28
Lena 23.665 24.6831 25.5064 29.0783 29.5925 30.2545 31.1538
Cameraman 19.4785 20.319 21.1865 23.5678 24.4284 25.284 26.6829
baboon 19.7051 20.1917 20.9795 22.4631 23.5461 24.6208 26.2839
ADCT [27] eagle 19.6944 | 20.6155 21.4448 243211 24.9546 25.7347 26.5863
moon 254545 | 26.5577 27.3203 31.3366 31.8525 32.6273 33.3232
Average value 21.5995 | 22.4734 23.2875 | 26.15338 | 26.87482 | 27.70426 | 28.80602
Average (%) 50.30% 52.34% 54.23% 60.91% 62.59% 64.52% 67.09%
Lena 23.665 24.6146 25.2641 27.9908 28.7141 29.4039 30.2238
Cameraman 19.4785 | 20.2603 20.9831 22.792 23.5013 24.2461 25.2993
ADCT [7] baboon 19.7051 20.1185 20.6814 21.708 22.4431 23.2003 24,1371
ZLCADC"?r eagle 19.6944 | 20.5464 21.1677 23.3922 24.1524 24.8455 25.5907
moon 25.4545 | 26.5051 27.1862 30.4515 31.1244 31.9182 32.657
Average value 21.5995 | 22.40898 | 23.0565 25.2669 | 25.98706 | 26.7228 | 27.58158
Average (%) 50.30% 52.19% 53.70% 58.84% 60.52% 62.24% 64.24%
; FPGA according to the ‘m’ and ‘k’ values respectively . Modularity
No. o here refers to the design capability with respect to TCR,
retained T, selection . . .. . .
coefficients i.e., based on TCR, the size of the multipliers is adjusted
A without recurring in the full reconfiguration of the FPGAs.
ipli This is achieved by using ‘m’ and ‘k’ values on the fast
Input o~ RS232 Y M P i/[lu lilp’]lwle.r X . Y & . .
matrix X Rxd E = butterfly algorithm; furthermore, in the hardware architecture
]\OA v of fast butterfly algorithm for two proposed modular multipli-
Output < RS232 | | R Multiplier ers, adders at thf.} same stage er processing the input si.gnals
matrix ¥ Txd Yy [ v=x1- 7 normally are designed to work in parallel. For example, in the
hardware design of X1 = T, - X (Fig.2), there are three
i ) ) ) stages in total to create Ag, A1,..., A7, Bo, B1,..., B7 and
Fig. 8. Block diagram of the proposed FPGA platform for implementing

— T
Y=T, X -T[.

The hardware platform requires two inputs (input pixel
image and the number of the coefficients to be retained) and
generates one output (the compressed image). First, the input
pixel image (in this case the image of Lena) is segmented
as several 8 x 8 sub-blocks in Matlab. Then, every sub-block
is transmitted serially to the hardware using RS232; they are
stored in the memory block. Meanwhile, the ‘T, selection’
block determines the ‘m’ value and the ‘k’ value for T),
depending on proposed LUT and the number of retained
coefficients (TCR) received by the hardware. Two modular
multipliers (X1 Tp- X and Y = X1-T[) which are
based on 32-bits RCAs are utilized for calculating T}, -X-TPT

Co, C1, ..., C7 successively. The required adders at the same
stage are designed to work in parallel (such as 8 adders for
creating Ao, Ay, ..., A7 work in parallel instead of sequen-
tial operations) for improving the performance in processing
speed. Finally, the output of ¥ = T}, - X - T, is stored in
memory and then serially transmitted back to the host through
RS232 and processed by Matlab for quantization; decompres-
sion and the measurement of the PSNR are finally performed
by Matlab.

Using one sub-block of 512 x 512 Lena image as input,
Table 6 compares ADCT [7], ADCT [27] and ZLCADCT in
terms of resource utilization (adders, XOR gates and LUTS),
power consumption (including quiescent power and dynamic
power consumptions) and delay when Spartan 3E FPGA is
utilized in the proposed platform. However, for determining
the PSNR, 4096 sub-blocks of Lena image are used. The
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TABLE VI
COMPARISON OF ADCT [7], ADCT [27] AND ZLCADCT USING SPARTAN 3E FPGA AND ADCT [7] MATRIX FOR LENA INPUT IMAGE
SPARTAN 3E 1600E
Resources/ ADCT [7] ADCT [27] ZLCADCT
Metrics TCR=1 TCR=3 TCR=10 | TCR=21 TCR=1 TCR=3 TCR=10 | TCR=21 TCR=1 TCR=3 | TCR=10 TCR=21
Adders 129 129 129 129 10 21 49 85 10 20 43 70
XOR gates 14336 14336 14336 14336 4032 5120 7680 10752 4032 5056 7296 9792
LUTs 12519 12519 12519 12519 1280 2146 4643 8371 1280 2046 4035 6666
Power
consumption 260 260 260 260 229 232 238 248 229 231 236 244
(mw)
Implementation 276 276 276 276 83 84 104 170 84 90 12 152
time (in sec)
Total processing |, 5, 1.0528 1.0528 10528 | 073949 | 0.75348 | 081013 | 091873 | 072013 | 0.74947 | 0.77127 | 0.83272
time (in sec)
PSNR for 512 x|, o5 24.614 | 27.990 29.403 23.665 | 24.683 29.078 30254 | 23.665 | 24.614 | 27.990 29.403
512 Lena
TABLE VII
COMPARISON OF ADCT [7], ADCT [27] AND ZLCADCT USING SPARTAN 6 FPGA AND ADCT [7] MATRIX FOR LENA INPUT IMAGE
SPARTAN 6 XC6SLX45
Resources/ ADCT[7] ADCT [27] ZLCADCT
Metrics TCR=1 TCR=3 TCR=10 | TCR=21 TCR=1 TCR=3 TCR=10 | TCR=21 TCR=1 TCR=3 TCR=10 | TCR=21
Adders 130 130 130 130 2 12 38 7 2 1 32 57
XOR gates 14336 14336 14336 14336 4032 5120 7680 10752 4032 5056 7296 9792
LUTs 11128 11128 11128 11128 1971 2888 4394 7894 1971 2636 4279 6546
Power
consumption 106 106 106 106 64 67 73 91 64 65 72 84
(mw)
Implementation 210 210 210 210 60 81 112 144 71 80 11 135
time (in sec)
Total processing |, (o, 1.0491 1.0491 10491 | 072896 | 073139 | 0.79558 | 0.89449 | 072932 | 0.73087 | 0.76122 | 0.82051
time (in sec)
PSNSI: Zfoltesniz X | 23665 | 246146 | 27.9908 | 294039 | 23.665 | 24.6831 | 29.0783 | 302545 | 23.665 | 24.6146 | 27.9908 | 29.4039

TABLE VIII
COMPARISON OF ADCT [4], ADCT [27] AND ZLCADCT USING SPARTAN 3E FPGA AND ADCT [4] MATRIX FOR LENA INPUT IMAGE
SPARTAN 3E 1600E
Resources/ ADCT [4] ADCT [27] ZLCADCT
Metrics TCR=1 | TCR=3 | TCR=10 | TCR=21 | TCR=1 | TCR=3 | TCR=10 | TCR=21 | TCR=1 | TCR=3 | TCR=10 | TCR=21
Adders 145 145 145 145 10 31 61 99 10 29 54 83
XOR gates 16384 | 16384 | 16384 | 16384 | 4032 6400 9216 12544 | 4032 6208 8704 11456
LUTs 16003 | 16003 16003 | 16003 1280 3115 5914 9961 1280 2861 5146 8095
Power
consumption 267 267 267 267 229 234 241 251 229 233 239 247
(mw)
Implementation |, 770 770 770 78 92 133 174 77 81 118 168
time (in sec)
Total processing | 1 | o611 | 10611 | 1.0611 | 0.73751 | 074459 | 0.80116 | 0.92309 | 0.73645 | 0.73955 | 0.7603 | 0.82145
time (in sec)
Psfizf"iesniz X | 23665 | 264785 | 299551 | 32.594 | 23.665 | 26.8968 | 31.6145 | 342788 | 23.665 | 264785 | 29.9551 | 32.504

other performance metrics reported in this table are defined 2. Total processing time is the sum of the multiplication
as follows:

and the serial data transmission times.

Compared to ADCT [7], hardware requirements (i.e., the
1. Implementation time refers to the total time taken to numbers of adders, XOR gates and LUTs) show a significant
implement the design onto the FPGAs. decrease for any 7CR using ADCT [27]; moreover, ZLCADCT




This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS

TABLE IX
COMPARISON OF ADCT [4], ADCT [27] AND ZLCADCT USING SPARTAN 6 FPGA AND ADCT [4] MATRIX FOR LENA INPUT IMAGE

SPARTAN 6 XC6SLX45
Resources/ ADCT [4] ADCT [27] ZLCADCT
Metrics TCR=1 TCR=3 TCR=10 | TCR=21 TCR=1 TCR=3 TCR=10 | TCR=21 TCR=1 TCR=3 TCR=10 | TCR=21
Adders 146 146 146 146 2 22 50 86 2 20 43 70
XOR gates 16384 16384 16384 16384 4032 6400 9216 12544 4032 6208 8704 11456
LUTs 13138 13138 13138 13138 1971 3674 5420 8909 1971 3288 5187 7697
Power
consumption 114 114 114 114 64 70 77 94 64 68 75 88
(mw)
Implementation 660 660 660 660 61 89 111 174 62 80 103 136
time (in sec)

T"t:fr'l :’{i‘;c:g‘)“g 10433 | 1.0433 | 1.0433 | 1.0433 | 072732 | 0.73457 | 0.79664 | 0.90155 | 0.72645 | 0.73126 | 0.75933 | 0.81608
PSNSIiZfOEeSI;Z x 23.665 | 26.4785 | 29.9551 32.594 23.665 26.8968 | 31.6145 34.2788 23.665 26.4785 | 29.9551 32.594
TABLE X
AVERAGE REDUCTION (FOUR TCR CASES) OF HARDWARE RESOURCES/METRICS FOR ADCT [27]

AND ZLCADCT CoOMPARED WITH ADCT [7] AND [4]

R y Average hardware resource reduction/performance metrics improvement
;Z‘e’l‘rrlzgs Applied DCT Using ADCT matrix [7] Using ADCT matrix [4]
SPARTAN 3E 1600E SPARTAN 6 XC6SLX45 SPARTAN 3E 1600E SPARTAN 6 XC6SLX45

Adder ADCT [27] 68.02% 76.15% 65.34% 72.60%
ZLCADCT 72.29% 80.38% 69.66% 76.88%
XOR gate ADCT [27] 51.90% 51.90% 50.88% 50.88%
g ZLCADCT 54.35% 54.35% 53.61% 53.61%
LUT ADCT [27] 67.17% 61.48% 68.33% 61.99%
ZLCADCT 71.99% 65.33% 72.85% 65.48%
Power ADCT [27] 8.94% 30.42% 10.58% 33.11%
ZLCADCT 9.62% 32.78% 11.24% 35.31%
Implementation ADCT [27] 60.05% 52.74% 84.51% 83.52%
time ZLCADCT 60.33% 52.74% 85.58% 85.57%
Total processing ADCT [27] 23.49% 24.93% 24.46% 24.28%
time ZLCADCT 27.01% 27.51% 27.96% 27.32%

further reduces the hardware resources. Then, ZLCADCT
requires the least power consumption compared to ADCT [7]
and ADCT [27]. By increasing TCR, more coefficients must
be generated and transmitted. Thus, the implementation time
of ZLCADCT generally increases, also resulting in a modest
increase of the total processing time (note that for ADCT [7]
these times are constant as independent of TCR). As expected,
the PSNR of ZLCADCT is the same as for ADCT [7], while
ADCT [27] shows a marginally higher value of PSNR by
increasing TCR.

Table 7 shows the results when ADCT [7], ADCT [27]
and ZLCADCT are implemented and synthesized by using
Spartan 6 FPGAs and Lena as an input image; also, in this
case, the same trends as for the Spartan 3E FPGAs are
reported.

The hardware performances of ZLCADCT and ADCT [27]
are validated by using the approximate DCT matrix of [4].
Tables 8 and 9 show the result of different metrics when
ADCT [4], ADCT [27] and ZLCADCT approaches are imple-
mented in Spartan 3E and the Spartan 6 FPGAs (by setting
the parameter ‘a’ to 0). The results show that the proposed
method has better performance with respect to metrics such

as number of gates, number of LUTSs, power consumption,
total processing time and PSNR.

Next, consider the average value of each of the hard-
ware resource utilization and performance metrics across the
four TCRs of Tables 6, 7, 8 and 9; the average percentage
reductions and improvement for ADCT [27] and ZLCADCT
(compared with ADCT [4], [7]) are presented in Table 10.
Two implementations using different FPGAs (Spartan 3E and
Spartan 6) are presented. From the results, it can be found that
ZLCADCT outperforms ADCT [27].

VII. CONCLUSION

This paper has initially presented a zigzag low-complexity
approximate DCT (ZLCADCT) approach that configures the
T matrix by establishing the relationship between the number
of retained coefficients and the number of rows of the T
matrix. It significantly reduces the computational complexity
of an approximate DCT scheme (such as ADCT [7]) and
avoids the additional unnecessary coefficients generated
by [27]. A detailed mathematical analysis of ZLCADCT
has been presented to show the properties of T, and a
novel method for removing the additions required to process
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the unused coefficients of a compressed image. A LUT is
employed in ZLCADCT to enhance performance; ZLCADCT
does not require coefficient scanning and its subsequent
processing, while keeping the number of coefficients the
same as ADCT [7].

The performance of ZLCADCT has been extensively
evaluated by both simulation using Matlab/Spice and exper-
imentally by employing a hardware platform based on
FPGAs. The simulation results have shown that in the best
case for the number of targeted coefficients to be retained
(i.e., TCR = 1), ZLCADCT requires only 28.12% of the
adders compared with ADCT [7] and the energy utilized by
ADCT [7] is 3.5 times larger than that for ZLCADCT. Larger
values of TCR modestly increase both the percentages of
the required number of adders and energy consumption by
ZLCADCT; moreover, for the entire range of TCR values,
ZLCADCT retains the same image quality of the compressed
image as [7]. The experimental evaluation based on FPGAs
of the proposed techniques has shown significant reductions
with respect to the number of adders, XOR gates, LUTs, power
consumption, implementation time, total processing time when
compared with ADCT; the PSNR of ZLCADCT has also been
retained as for ADCT over the entire range of TCR values.
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