Late time approach to Hawking radiation: Terms beyond leading order
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Black hole evaporation is studied using wave packets for the modes. These allow for approximate
frequency and time resolution. The leading order late time behavior gives the well-known Hawking
radiation that is independent of how the black hole formed. The focus here is on the higher order
terms and the rate at which they damp at late times. Some of these terms carry information
about how the black hole formed. A general argument is given which shows that the damping
is significantly slower (power law) than what might be naively expected from a stationary phase
approximation (exponential). This result is verified by numerical calculations in the cases of 2D and
4D black holes that form from the collapse of a null shell.

Hawking’s seminal work showed that particle production occurs when matter collapses to form a black hole and
that at late times the particles are produced in a thermal spectrum (modulo the gray-body factor) at a temperature
that is related to the surface gravity at the event horizon of the black hole [1]. This gives rise to the well-known
information issue [2] which involves the apparent loss of information during the process of formation and evaporation
of the black hole.

Although the leading order late time thermal radiation has been thoroughly studied in many different ways, much
less attention has been paid to the early time nonthermal radiation which at late enough times becomes negligible
compared with the thermal radiation. In [3] a study was done on the time dependence of the particle production that
occurs due to a massless minimally coupled scalar field when a spherically symmetric null shell collapses to form a
black hole in both two and four spacetime dimensions. An exact correspondence [3-6] between the particle production
that occurs due to the collapse of the shell and that which occurs in 2D for a mirror undergoing a particular trajectory
in flat space was shown.

In this paper we study the late time behavior of the particle production process, focusing on the late time behavior
of the terms that are beyond leading order. After deriving a general form for the equations that describe the particle
production process, we show for a specific example in 2D that a stationary phase approximation gives the late time
leading order results found by Hawking with correction terms that are exponentially damped in time. We then show
in general that the true next to leading order (and next to next to leading order, etc.) terms are power law damped
at late times.

For simplicity, the derivation we give uses the form of the Bogolubov coefficients for a massless minimally coupled
scalar field for a 2D asymptotically flat spacetime in which a Schwarzschild black hole forms from collapse. However,
the derivation can be generalized immediately and trivially to the case of 4D spherically symmetric collapse in an
asymptotically flat spacetime and almost certainly to the general case of 4D collapse to form a black hole in an
asymptotically flat spacetime.

We begin by noting that in the case of collapse to form a black hole one can expand the quantum field in terms
of modes that correspond to the natural in vacuum state. For an asymptotically flat spacetime these are positive
frequency at past null infinity, .# ~, and regular at the origin, r = 0, inside the collapsing matter. (This is a necessity
in 4D.) We denote these modes by fI*. For asymptotically flat spacetimes the modes in the out vacuum state that
we are concerned with are positive frequency at future null infinity, .# T, and vanish on the future horizon HT. We
denote them by fo"*. Note that they do not form a complete set. Then in the usual way we write one of these modes
in terms of the complete set of in modes as follows:
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The Bogolubov coefficients are computed using the usual scalar product [7] with the result oy, = (fo", fjj)), Bow =
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—(fout] fin*) The average number of particles produced at frequency w is,

(in| N2"*|in) = /0 dw’ |Buer | - (2)

This number is divergent if backreaction effects are not taken into account since the black hole then radiates forever.
To investigate the time dependence of the particle production process Hawking used wave packets for the out modes,
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with n an integer and j a nonnegative integer. Note that near future null infinity, .#+, fou* ~ e~ (ts=7) with t, the
usual time coordinate in Schwarzschild spacetime and 7, = r + 2M log[(2M)~1(r — 2M)]. Thus the contribution to
the integral is largest if us = ts —r. = 2wn/e. A packet with index j covers the range of frequencies je < w < (54 1)e,
and one with index n covers the approximate time range (2mn — m)/e S us S (27n + 7) /€.

One can also make packets out of the Bogolubov coefficients
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It is useful to write the Bogolubov coefficients in the following form
ﬁww’ _ (w/)—1/2e—i(w+w’)vHe—imflwlog(nflw')B(w’w/) ) (5)
Here, as discussed in [1], vy is the latest time that a left moving radial null geodesic can leave .# ~, pass through the

center of the collapsing object, and reach .# T, while & is the surface gravity of the black hole. Then the number of
particles in a packet is
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A stationary phase approximation can be used to determine the leading order behavior with the stationary phase
point,
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At late times

stph > R,

B(wa w/) = BH(w) + By (va/) ) (8)
with By the asymptotic value found by Hawking and B; — 0 in the limit w’ — co.! Using (8) in (6a) and keeping

only the first term gives Hawking’s result which is independent of n. For the case of a collapsing null shell in 2D one
finds [3, 22]
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Substitution into (6a) and evaluation at the stationary phase point (7) shows that in this case the next to leading
order terms are exponentially damped in n. This analysis might lead one to believe that the distribution of particles
approaches the thermal one predicted by Hawking exponentially in time. However, as shown next, for the general case

I The form (8) can be used to illustrate the thermal behavior at late times in other cases as well such as the 2D mirror trajectories studied
in [3-6, 8-21]. For those trajectories one finds that By is also given by (9b). Substituting into (5) gives |fH2D|2 = L
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of collapse to form a black hole in an asymptotically flat spacetime, there are contributions to Nj, that are damped
like inverse powers of n at late times

To see this, first assume 2mnke~! > 1 and then break the integral over w’ into two parts with the first part going
from w’ = 0 to A and the second part going from w’ = A to co. The cutoff A should be chosen so that 0 < A < Wetph-
Then for the second term the same triple integral with B(w,w’) — By (w) is subtracted off and added back on with
the result

Njn = Ny + Ny + Nj
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Note that Nj, is independent of the value of A.

The leading and next to leading order behaviors for large values of n come from N3. To see this break the integral
over w’ in N into two parts such that [° dw’ = fooo dw' — foA dw'. Integrating the first term over w’ and then wo,
and dropping the subscript on wy gives the leading order late time behavior found by Hawking [1]

oy [UFD)e
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which is independent of n.
The next to leading order term is obtained from the second term for N3 by integrating the integrals over both w;
and wy by parts and noting that since j and n are integers, e?2™(+1) = 277 — 1 The result is

Noy = =5 [|Bu((j + DO + |Bu ()] + On™2) . (12)
It is easy to see by integrating the integrals over w; and ws in Ny and Ny by parts that for large enough values of
n, Nio = O(n~?). If By(w,w’) approached zero slowly enough as w’ — oo, then the stationary phase approximation
would result in terms that fall as slowly or more slowly than n~2 and are independent of the cutoff A. This does not
occur for the collapsing null shell models in 2D and 4D.

It is important to note that some of the terms in N; and N3 and all of the terms in N, that are of order n=2 at large
n depend on the cutoff A. However, it is clear from (10) that the sum of these terms cannot depend on A. Therefore
it is the terms that do not depend on A that we focus on.

We have checked these results for the case of particle production due to a massless minimally coupled scalar field
that occurs when a black hole forms by the collapse of a null shell in 2D and 4D. In the latter case the shell is
spherically symmetric. Previous studies of particle production when a null shell collapses in 4D to form a black hole
were done in [3, 22-24] 2

In the 2D case as previously mentioned the Bogolubov coefficients were computed exactly in [3, 22] with the
result (9). Substitution of (9b) into (11) gives for Jf 2 1 and small values of <

H 1 €
Nso = Njy, = 57— +0(5), (13)
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where w; = (j + 3)e. Substitution of (9b) into (12) gives
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The quantities n2N1, n?Na, and nNs;, are plotted in Fig. 1. As predicted they each approach a constant value in the
large n limit. For nNj;, the constant can be obtained by multiplying (14) by n and taking the limit n — oo.

2 In these studies the effective potential in the mode equation for the scalar field was ignored (with the exception in some cases of the
gray-body factor) allowing for analytic computation of the Bogolubov coefficients.
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FIG. 1: The quantity n?>N; is plotted versus n in the upper left hand plot and the quantity n?>Nx is plotted in the upper right
hand plot for the case of the 2D collapsing null shell with M =1, j = 1, e = 0.1, vy = —4, and 4A = 40'/*®. The quantity
nNsp is plotted in the lower plot. The solid line is the limit n — oo of nN3, which can be obtained from (12) and which is
equal to —0.00239997.

In 4D the relevant Bogolubov transformation is
o . .
St =Y [ [wtmarims S + Butmar o 5] (15)
Z/ml O

where [, m are the usual angular momentum parameters. The right hand side of (5)should be multiplied by the factor
(—1)™84,0/ 0, —m [3]. Using the Cauchy surface consisting of .#~ for vy < v < co plus the trajectory of the null shell,
v =g [3], we find that for the large w’ expansion (8)

_ B W)
Bulw) = =2 (16)

where ﬁ is the gray-body factor [25], while By goes like (w’)~ at leading order, depends on the angular momentum

parameter ¢, and is more complicated than in the 2D case. Numerical computations for £ = 0 show that, as in the 2D
case, By is finite in the limit w’ — 0 for a black hole forming from a collapsing 4D spherically symmetric null shell.
This property was predicted in [1] to occur for the general case of collapse to form a black hole.. The details will be
presented elsewhere.

We have numerically computed N for the case M =1, j = 1, ¢ = 0.1, and vy = —4. We have also numerically
computed in a direct way the value of Nj; for various values of n. In Fig 2 the quantity niVs;, is plotted. As predicted
it approaches a constant value in the large n limit. The constant can be obtained by multiplying (12) by n and taking
the limit n — oo.
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FIG. 2: The quantity niNs, is plotted for the case of the 4D collapsing null shell with M =1, j =1, e = 0.1, vg = —4, and
4A = 4075, The solid line is the limit n — co of n.N3, which can be obtained from (12) and which is equal to —0.00087655.

We have shown that the contribution to the particle production from the next to leading order term goes like n =1,
with n related to the time, when wave packets are used for the out modes. This was unexpected since a stationary
phase approximation would seem to predict that higher order terms are exponentially damped in n.

Interestingly the next to leading order term is still local since it depends on the leading order contribution to the
Bogolubov coefficient 3, in a large w’ expansion and, as Hawking showed, this is independent of the details about
how the black hole formed. However, at the next order, n=2, and for all higher orders n=¢ for a > 2, there are cutoff
independent contributions to N in (10a) which are clearly nonlocal since they depend on much smaller values of w’
that require a full numerical computation of 8, over the entire trajectory of the null shell as well as the contribution
to Buw from past null infinity. Thus these terms carry information about how the black hole formed.

Our findings that at late times the terms beyond leading order in the Hawking effect have a power law rather
than an exponential decay and that the first nonlocal terms emerge at order n~2 put the information loss issue in a
new perspective since the emitted particles in the black hole evaporation process are sensitive to the details of the
collapsing matter for a significantly longer period of time than would have been naively expected from a stationary
phase approximation. Of course for a macroscopic black hole one would still expect that the approach to a thermal
state would occur well before a significant amount of evaporation has occurred.
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