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ABSTRACT: Mixtures of two types of nanoparticles can self-
assemble into a wide variety of binary colloidal crystals (also called
binary nanoparticle superlattices), which are interesting for their
structural diversity and potential applications. Although so-called
packing modelswhich usually treat the particles as “hard” with only
excluded volume interactionsseem to explain many reported dense
crystalline phases, these models often fail to predict the right
structure. Here, we examine the role of soft repulsive interparticle
interactions on binary colloidal crystals comprising two sizes of
spherical particles; such “softness” can arise due to ligand shells or
screened electrostatics. We determine the ground state phase diagram
of binary systems of particles interacting with an additive inverse
power law potential using a basin hopping algorithm to calculate the
enthalpy of an extremely large pool of candidate structures. We find
that a surprisingly small amount of softness can destabilize dense packings in favor of less densely packed structures,
which provides further evidence that considerations beyond packing are necessary for describing many of the observed
phases of binary colloidal crystals. Importantly, we find that several of the phases stabilized by softness, which are
characterized by relatively few interparticle contacts and a tendency for local icosahedral order, are more likely to be
observed experimentally than those predicted by packing models. We also report a previously unknown dense AB4 phase
and conduct free energy calculations to examine how the stability of several crystals will vary with temperature. Our
results further our understanding of why particular binary colloidal crystals form and will be useful as a reference for
experimentalists working with softly repulsive colloids.
KEYWORDS: binary crystals, colloidal crystals, binary nanoparticle superlattices, inverse power law potential, basin hopping

Binary systems of spheroidal colloids self-assemble into
many more colloidal crystal phases than do unary
systems of the same particles.1−6 These phases, which

typically have structures analogous to intermetallic or ionic
crystals, are interesting for their structural diversity and
promising functionalities.7−11 The particles may differ in
composition, charge, size, and shape, each of which influences
their self-assembly behavior and potential applications. Models
based on hard particle packings are often invoked to explain
experimentally observed phases, with varying degrees of
success.6,12−16 Failure of packing models to explain observed
phases, in particular, for particles with screened electro-
statics17,18 and/or ligand shells,6,19 could be due to entropic
forces20 or because the interparticle interaction in those
systems is considerably softer than the excluded volume (hard
particle) interaction considered by packing models.21−24

Although the role of entropy has been widely consid-
ered,4,20,25−29 the effect of interaction softness on self-
assembled colloidal crystal phases has received less atten-
tion,23,28,30−32 especially for binary systems.

Here, we examine the enthalpic influence of softness on the
colloidal crystal phase behavior of binary mixtures of spherical
particles of two different sizes interacting via an additive
inverse power law (IPL) potential. We investigate a much
wider range of softness than has been reported to date by
tuning the exponent of the IPL to vary the distance over which
the repulsive interaction falls off from the surface of a particle.
Large exponents describe a very rapid decay (and thus “harder”
interparticle interaction), whereas small exponents describe a
slow decay (becoming a 1/r decay with an exponent of one).
To isolate the role of softness from other effects, we perform
zero-temperature enthalpy calculations (which disregard
entropy) to determine the ground state stability of different
phases. We find several experimentally observed phases that
fail to be described by packing models; instead, we show that
these phases, which have a small number of interparticle
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contacts and a tendency for icosahedral local order, are
stabilized by particle softness. We also use finite temperature
free energy calculations to probe the influence of temperature
for a few phases, generally finding agreement with our ground
state calculations with the exception of a recently reported
dense packing phase.33 We further find that a small amount of
softness (described by a very large IPL exponent) can influence
phase behavior away from that describable by packing models.
These deviations from hard sphere packing behavior partially
explain why the packing fractions of different phases do not
solely determine their self-assembly behavior, as is commonly
invoked. We characterize the degree of softness necessary to
destabilize any binary phases relative to phase-separated unary
phases for the additive IPL potential, which has relevance for
the modeling of binary systems and our understanding of the
interaction between different species of particles. Finally, we
relate our results to recent experimental reports, elucidating
how repulsive forces contribute to the formation of particular
structures observed in experiments.
Model. The use of packing models to understand the

behavior of condensed phases stems in part from the ground
state of the hard sphere model, in which particles are
prohibited from overlapping; the ground state is the phase
with the highest packing fraction at infinite pressure.
Throughout this work, we use the term ϕm to describe the
maximum packing fraction obtainable by hard spheres in a
particular structure. The binary hard sphere model, in which
the particles can be one of two different sizes, describes the
phase behavior of many binary colloidal systems, as shown by
free energy calculations.25,28,34,35 However, no real particle is
perfectly hard,21,22 and in many casesparticularly the self-
assembly of metal and semiconductor nanoparticlesexper-
imental results differ from binary hard sphere predic-
tions.3−5,18,36

In contrast to hard particle models, softly repulsive pair
potentials in binary systems have received much less
consideration. In 2009, Hynninen et al. found the CsCl and
Laves phases to be stable for a particular binary Yukawa
potential.28 In 2015 and 2016, Travesset and Horst found

several more binary phases to be stable for a binary IPL
model.23,32 However, the Laves phases were the only binary
structures found to be stable when the potential was additive
(where unlike particles interact as though their size is the
average of the two particles); observing other phases required
reducing the repulsion between unlike particles. Here, we
ascertain how softness affects crystal stability by considering a
much wider range of softness.
We studied the IPL potential in eq 1; its parametrization for

binary systems is shown in Figure 1.
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The quantity n is related to the hardness of the particles, σij
governs their size, and ϵ determines the units of energy. The
quantity γ in Figure 1 gives the size ratio between large and
small particles. The potential is specified to be additive as is
physically accurate in the limit of n approaching∞. For n =∞,
we obtain the binary hard sphere model; for n = 1, we obtain
the potential describing Coulombic repulsion.
The phase behavior of our model depends upon n, γ, the

stoichiometry, and a variable incorporating both the pressure
and temperature. Note that, for the IPL model, giving ϵ as ϵij to
depend on the types of particles interacting does not increase
the generality of the potential as any variation in ϵij can also be
accounted for through variation in σij. The ability to write the
temperature and pressure of the IPL model as one variable
results from the its thermodynamic scaling properties and is
not possible for most pair potentials.30 We review these scaling
properties in section S2.1 of the Supporting Information. By
constraining T = 0, we are then left with the aforementioned
three parameters: n, γ, and the stoichiometry of the system. We
will present two slices of the model’s phase diagram at constant
stoichiometry and four slices at constant n.
We analyze the phase behavior of our potential at constant

pressure because the stability of densely packed phases for hard
spheres at higher pressures can be justified on the basis of
enthalpy alone. The stability of these phases is often

Figure 1. (a) Plots of the IPL model for different values of n and (b) effective size of different types of particles. The pair potential is given by
eq 1 and is plotted over r/σijthe distance between two particles i and j divided by the average size of the particles. The large and small
particles are represented by “L” and “S”, respectively. The quantity σ is the size of the large particles, and γ is the size ratio between the small
and large particles. Unlike particles interact as though they are the average size of the two particles.
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understood in terms of free volume theory, according to which
particles in the densest packing phases will have more volume
available to them than in other arrangements and thus be
entropically favored. However, at constant pressure, the Gibbs
free energy in the limit of either zero temperature or infinite
pressure can be written as

G G PVlim lim
P T 0

= =
→∞ → (2)

Note that the equivalence of these two limits follows directly
from the well-known thermodynamic scaling (Pσ3/kT)
between pressure and temperature in hard particle systems
(see section S2.1 of the Supporting Information for more
details). Densely packed phases will minimize V, motivating
the idea that they are the ground states of the system. For
completeness, we give two more rigorous proofs that the
densest packing phase has minimal free energy in the limit of
zero temperature at finite pressure in our Supporting
Information; in section S1.5, we take the limit of infinite n
in our equation for the enthalpy of soft spheres, and in section

S2.2, we take the zero temperature limit of our NPT partition
function. Thus, we should expect (and do observe) that
densely packed phases will arise in constant pressure ground
state calculations of the enthalpy for our potential as n
approaches ∞.
The IPL model exhibits thermodynamic scaling of the form

( )/P kT n(3/ 1)3σ
ϵ ϵ

+
.37 Note that as n approaches ∞, the scaling

reduces to that of hard spheres, and that the P → ∞ behavior
is equivalent to that of T → 0. Likewise, one would expect the
specific value of the pressure to not affect phase behavior at T
→ 0 because the scaling term diverges in that limit regardless
of P. Indeed, we find this in our derivation of an equation for
H(T = 0, P) in the first section of the Supporting Information.
Although the IPL model does not perfectly describe

colloidal interactions, we believe it is sufficiently general to
account for the behavior of many colloids. In fact, the effective
n for several colloidal polymer particles have been previously
estimated21,22,38 and are often similar to the values of n we
investigate. In other binary self-assembly experiments, the

Figure 2. Phase diagrams calculated at stoichiometries of (a) xs = 1/2 and (b) xs = 6/7 for the binary IPL model. The diagrams are given in
terms of particle size ratio γ and hardness n. We show 95 values of n spanning from 6 to 100, and 61 values of γ spanning from 0.3 to 0.9.
The n = ∞ slice to the right of each plot was calculated from the densest packings. The equilibrium state consists of two phases unless the
stoichiometry of a phase is identical to that of the system (e.g., CaB6 for xs = 6/7); the colors indicate a region corresponding to a specific set
of equilibrium phases. In regions denoted “Laves + FCCS”, the differences in enthalpy between the different Laves phases were very small. If
the difference in enthalpy between two phases was <0.001%, the point was colored to indicate the presence of the phase nearest in
stoichiometry to that of the entire phase diagram. In every region containing “NaCl”, the difference in enthalpies between NaCl and NiAs
was also <0.001%. The black dots indicate points at which basin hopping runs were performed.
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nature of the interparticle forces during self-assembly is less
clear,39 but similarities between the self-assembled structures
formed from many metal and semiconductor nanoparticles and
those formed with other softly repulsive particles suggest that
repulsive forces play a key role in their assembly, as well. Likely
the most notable way in which our model deviates from other
notions of softness is our neglect of 3-body interactions, such
as the deformation of two particles in contact influencing the
way they act with a third particle (which has been implicated as
important for understanding the self-assembly of certain
ligand-functionalized nanoparticles6). Many colloidal particles,
such as those in charge-stabilized or hard sphere-like colloids,
will be less deformable and thus more likely to correspond to
our model.
Travesset and Horst previously investigated the binary IPL

potential at n = 12 and n = 6, while varying the additivity of the
potential.23,32 Here, we investigate n at values from 6 to 100, a
range inclusive of many experimental particles, as shown in a

recent analysis by Royall et al.22 We keep our potential additive
to maintain correspondence with the hard sphere limit.

RESULTS AND DISCUSSION

In Figure 2, we present phase diagrams calculated at
stoichiometries of xs = 1/2 and xs = 6/7 in terms of γ and n.
Due to the thermodynamic scaling properties of the IPL
model, its ground state phase diagram also corresponds to its
infinite pressure phase diagram and exhibits no pressure
dependence (see section S1.4 of the Supporting Information
for more details). We did not evaluate the enthalpy of any
dense unary sphere packings other than the face-centered cubic
(FCC) crystal due to their great structural similarities (i.e.,
consisting of hexagonal layers stacked upon each other); we
expect them all to have practically identical enthalpies at most
n examined. Visualizations of several stable structures without
equivalents in the Inorganic Crystal Structure Database40

Figure 3. Phase diagrams calculated at n of (a) 20 and (b) 40 for the binary IPL model. The diagrams are given in terms of particle size ratio
γ and concentration of small particles, xs. We use a resolution of 0.01 in determining the phase boundaries with respect to both γ and xs. The
difference in enthalpy between the equilibrium phases and competing combinations of phases is generally >0.001%, with the only exceptions
being the differences between MgZn2 and the other Laves phases, the difference between AB + FCCL and AlB2 + FCCL at γ = 0.48, and the
difference between any region containing NaCl and an equivalent region containing NiAs instead.
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(ICSD) are included in section S3 of the Supporting
Information.
Regions of phase stability were calculated by finding the

combination of phases that minimizes the enthalpy for a given
stoichiometry. Unless the stoichiometry of a phase matches the
system’s stoichiometry (e.g., NaCl for xs = 1/2), the enthalpy at
each point in the phase diagram is minimized by two phases:
one with a stoichiometry greater than that of the system and
one with a stoichiometry less than that of the system. Phases
are taken to be in the thermodynamic limit, and thus no
attempt was made to account for interfaces between coexisting
phases. The specific enthalpy for coexisting phases a and b was
calculated from the standard thermodynamic formula as xaHa +
xbHb, where xa and xb are determined through application of
the lever rule to the natural stoichiometry of each phase a and
b and the global stoichiometry of the system. We examined
every possible combination of our candidate phases to
determine the pair with the lowest enthalpy.
The phases present at n =∞ correspond to the most densely

packed combination of phases at the particular γ and

stoichiometry obtainable with our set of candidate structures.
With the exception of a densely packed phase we discovered,
we generated the n = ∞ regions from the work of Hopkins et
al.41,42 and Filion et al.,43 who both analyzed the densest
packings of binary sphere systems. We denote structures with
no clear atomic counterpart by AxBy, with x and y giving the
stoichiometry. Certain structures that appear on Hopkins et
al.’s phase diagram fail to appear on ours because the region of
size ratios over which they are the densest packing is smaller
than the resolution of our phase diagram (0.01), but we still
examined the stability of these phases for finite n at the size
ratios we did investigate. AB4 is the aforementioned phase
discovered to be a densely packed phase over the course of this
work. The regions denoted d-NaCl and d-AlB2 contain
versions of NaCl or AlB2 slightly distorted from their cubic
or hexagonal symmetry into orthorhombic or monoclinic
crystals, respectively, to have larger ϕm. Densest packing
structures are also common at n = 100. A notable exception is
A3B7 (a slightly symmetrized version of a structure reported by

Figure 4. Phase diagrams calculated at n of (a) 60 and (b) 80 for the binary IPL model. The diagrams are given in terms of particle size ratio
γ and concentration of small particles, xs. The difference in enthalpy between the equilibrium phases and competing combinations of phases
is generally >0.001%, with the only exception being the difference between any region containing NaCl and an equivalent region containing
NiAs instead.
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Hopkins et al.42), which is not present for n ≤ 100, despite
being the densest packing for γ = 0.47.
For n ≤ 100, we found 11 equilibrium phases. Seven of these

correspond to experimentally observed phases:1−6,44 FCC,
NaCl, AlB2, MgZn2, AB4, CaB6, and NaZn13. The four
remaining phases are known to pack very densely.41,42,45 AB6
is a distorted version (from cubic to orthorhombic) of the bcc-
AB6 phase observed experimentally.46 AB2 is an orthorhombic
phase with space group symmetry Cmc21 (no. 36). AB is an
orthorhombic phase with space group symmetry Pmnc (no.
62) and is particularly interesting for the high γ at which it
appears. AB3 is an orthorhombic phase with space group
symmetry Pmmn (no. 59).
In general, lower symmetry sets of space groups and Wyckoff

sites are capable of producing multiple distinct structures
through variation of their degrees of freedom. For example, a
structure in space group Pmnc (no. 62) with both the large and
small particles in Wyckoff sites, 4c will become the much
higher symmetry structure NaCl for particular values of the
free parameters and can be converted into several other
densely packed structures for other values;45 slight variations in
the values will produce slightly distorted structures. In this
manner, our basin hopping procedure enabled us to search
thousands of structures, including slightly distorted versions of
common structures like NaCl. Thus, while it is likely that we
missed some structures, we think enlarging our search space
will not significantly alter the conclusions drawn in this paper.
Variable Stoichiometry Phase Diagrams. In Figures 3

and 4, we plot phase diagrams at constant n but variable
stoichiometry and particle size ratio. The values of n
considered are 20, 40, 60, and 80. These phase diagrams
were generated in a manner similar to those in Figure 2:
discrete values of the parameters were selected, and the
combination of phases resulting in the minimum enthalpy for
those values was determined by comparing all possible
combinations. Because we only consider the possibility of
crystals of constant stoichiometry (as opposed to liquids and
solid solutions), every region will contain two phases bounded
by the xs of the phases present within the region. However, we
observe deviations from this for the AB + FCCL region of our
phase diagrams in Figure 3, whose enthalpy is extremely similar
to that of the AlB2 + FCCL region; we note that these
deviations do not represent any thermodynamic anomaly but
are instead related to our lack of confidence in accurately
distinguishing the difference in enthalpy between the two
phases.
Although Figures 3 and 4 contain only phases present in

Figure 2 (we chose the slices in Figure 2 such that they would
contain at least a small region of every phase we found to be
stable), we plot them to more clearly illustrate the influence of
stoichiometry and to inspire experimentalists to test our
predictions. Of course, these thermodynamic calculations will
not account for experiments involving nonequilibrium
phenomena or polydispersity, such as the assembly of more
than three different superlattices from a single batch of
nanoparticles5 or heterogeneous effects, like the formation of
wetting layers between different superlattices,44 but should be a
guide for the behavior of such particles under certain ideal
conditions.
Influence of Temperature. An immediate concern for our

phase diagram is how well our our ground state calculations
reproduce actual assembly behavior at finite temperatures.
Ideally, we could use direct self-assembly simulations to

determine the phase behavior of our systems, in which we cool
down a simulation of the fluid until we observe nucleation of
the solids. Such methods provide relatively unambiguous
determination of the preferred solid configuration of a
particular set of particles, eliminating the need to examine
the stability of other solids. However, in binary systems of
mutually repulsive particles, the slow assembly kinetics often
render such simulations computationally infeasible.47−49 This
is less of an issue for experiment, in which the time scales and
number of particles are typically orders of magnitude larger
than currently possible with computation. This difficulty has
resulted in equilibrium calculations25,28,34,35 providing much of
our basic understanding of self-assembly in such systems. We
do note two recent papers where binary assembly was observed
for mutually repulsive particles by using specialized Monte
Carlo techniques with particle swaps49 or, intriguingly, tuning
the softness of the particles.50 We discuss possible influences of
kinetics on self-assembly structure in the Experimental
Relevance section.
More tractable is the issue of how increasing the

temperature changes the relative free energies of different
structures. Whereas the ground state phase is often predictive
of finite temperature behavior, several cases exist in the
literature in which raising temperature changes the preferred
solid structure.51,52 As self-assembly generally occurs at higher
temperatures, and large energy barriers may prevent solid−
solid phase transitions at low temperature, finite temperature
free energies should be more predictive of actual behavior.
In Table 1, we present the absolute Gibbs free energies of

several structures for five points in our phase diagram,

computed from a variant of the Frenkel−Ladd method.53,54

We focus on less hard n between 12 and 40, where we see
several experimental structures on our phase diagram. We
examined G at a range of pressures using thermodynamic
integration of pressure−volume data but present it only for the
lowest pressure (least supercooled) in Table 1. We note that
our calculations are unable to account for phase behavior all
the way to the fluid−solid coexistence due to the lack of a

Table 1. Free Energies of Different Structures at kT/ϵ = 1,
xs = 6/7

γ n Pσ3/kT structures G/kT ground state?

0.39 35 203 CaB6 38.729(15) yes
0.39 35 203 NaCl + FCCS 38.806(2) no
0.39 35 203 FCCL + FCCS 39.601(1) no
0.39 35 203 bcc-AB6 39.924(4) no
0.43 40 151 AB4 + FCCS 33.673(3) yes
0.43 40 151 AlB2 + FCCS 33.878(3) no
0.43 40 151 NaCl + FCCS 33.906(3) no
0.43 40 151 FCCL + FCCS 34.264(4) no
0.6 20 56 AB + NaZn13 23.828(2) yes
0.6 20 56 FCCL + NaZn13 23.850(1) no
0.6 20 56 CaCu5 + NaZn13 23.893(3) no
0.6 20 56 AB3 + NaZn13 24.084(2) no
0.63 40 48 AB + FCCS 22.445(3) no
0.63 40 48 FCCL + FCCS 22.489(4) no
0.63 40 48 CaCu5 + FCCS 22.491(3) no
0.63 40 48 AB3 + FCCS 22.527(4) yes
0.63 40 48 FCCL + NaZn13 22.5363(1) no
0.81 12 31 MgZn2 + FCCS 24.108(5) yes
0.81 12 31 FCCL + FCCS 24.159(3) no
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comprehensive equation of state for the binary IPL fluid;
instead, we were limited by the melting point of an FCC crystal
of the small particles.55 These points were chosen to test the
stability of more unusual structures at finite temperatures.
CaCu5 and bcc-AB6 are the only two structures not mentioned
previously; their symmetry and Wyckoff sites are given in
Table 2. The values in parentheses correspond to the standard
deviation × 103 across three independent sets of simulations.

The most stable structures are generally in line with those
for the ground states, with a deviation only being observed in
once case. For n = 40 and γ = 0.6, AB3 changes from being the
ground state to being less favorable than multiple other
structures at finite temperatures, which we discuss in our
Experimental Relevance subsection. Our free energy calcu-
lations also provide evidence that temperature will not
destabilize the AB, AB4, and CaB6 phases.
Naturally, we expect our phase diagram to be most relevant

for systems under high pressure and low temperature. From
literature results on the free energies of binary hard sphere
systems, we can anticipate other changes to our phase diagram
at high temperatures. In particular, we would expect the region
over which the Laves phases are stable to extend all the way to
n = ∞ but over less size ratios at higher n.28 We also expect
that NaZn13 would be present all the way to n = ∞.25

Systematically mapping out their (and the other phases’)
region of stability would require a comprehensive equation of
state for the binary IPL fluid.

Minimization of Contacts. The variation in phase
stability with n and γ shown in Figure 2 necessarily results
from the local environments of each type of particle in the
structure. Considering that our pair potential is purely
repulsive, low energy (ground state) structures would seem
to be those that minimize the number of contacts between
particles. However, at n = ∞, the densest packing structure
becomes favored regardless of the number of interparticle
contacts, so ϕm obviously plays a role, as well (despite not
being directly involved in our calculations), and we find the
structures stabilized by softness to have both high ϕm and a
low number of contacts. The importance of having a high ϕm
for soft particles comes from its correspondence with the
nearest interparticle distance. When comparing two structures
at constant number density, the nearest contact distance
(defined here as the distance between two particles divided by
the average diameter of the particles, σij) of the densest packing
structure will be largest for the structure with the greater ϕm.
The nearest contact will be the largest contribution to the
energy of the structure; thus higher ϕm structures tend to have
lower energy than competing phases. This leads to FCC being
the stable unary phase for all n examined. The binary phase
diagram is more diverse because there are many structures with
both high ϕm and few contacts. Here, we analyze how having a
small number of contacts stabilizes two phases commonly
observed in experiment:1−3,6 AlB2 and NaZn13. In Figure 5, we
highlight the structure of AlB2 optimized for n = 45 and γ =
0.46.
AlB2 is the densest known packing for 0.53 < γ < 0.62.42 Its

large particles are arranged in simple hexagonal layers whose
interstitial voids are occupied by the small particles. The c/a
ratio is the only degree of freedom of its unit cell; optimal c/a
ratios for particular n and γ and interparticle distances are
shown in Figure 5. These distances are scaled by σij, the
quantity relevant for the IPL potential and for ϕm calculations.
Lowering n from ∞ can expand the region of stability for

AlB2 down to γ = 0.43 despite it packing significantly less
effectively than competing phases. For example, the AlB2
structure reported in Figure 5 is more stable than AB4 despite
AB4 having a higher ϕm (0.759 vs 0.722). We can use their ϕm
values to estimate energy differences, as the cube of the ratio of
two structures’ nearest contact distances is proportional to the
ratio of their ϕm values if they have the same stoichiometry
(see section S1.5 of the Supporting Information). Therefore,
this difference in ϕm indicates that the nearest contact of AB4
(scaled to account for the stoichiometry difference) is (0.759/
0.722)1/3 = 1.018 times farther away than in AlB2, which, at n =
45, corresponds to AlB2 having 1.01845 = 2.12 times more
energy per nearest contact. To define an “average” number of
nearest neighbors, we note from Figure 5 that the nearest
contact is at a scaled distance of ∼1.51. The large particle has 8
such contacts, and the two small particles have none; thus we
can define the average number of nearest contacts as 8/3−
2.67. The definition is reasonable as contacts from both large
and small particles contribute equally to the total energy. The
competing AB4 structure has ∼9.4 nearest contacts (data not
shown); this difference enables the less densely packed AlB2
structure to have a lower energy than AB4 at n = 45. Non-
nearest neighbors will also contribute to the total energy of

Table 2. Candidate Structure Types

Wyckoff sites

structure type space group L S

cF8-NaCl Fm3 m 225 4a 4b
hP4-NiAs P63/mmc 194 2a 2c
cP2-CsCl Pm3 m 221 1a 1b
tP2-CuAu P4/mmm 123 1a 1d
oP8-AB Pnma 62 4c 4c
oC8 Cmmm 65 4g 4j
hP3-AlB2 P6/mmm 191 1a 2d
hP12-MgZn2 P63/mmc 194 4f 2a, 6h
hP24-MgNi2 P63/mmc 194 4e, 4f 4f, 6g, 6h
cF24-MgCu2 Fd3 m 227 8b 16c
oP12 P212121 19 4a 4a, 4a
mC6 C2/m 12 2a 4i
oC12-AB2 Cmc21 36 4a 4a, 4a
hP6 P63/mmc 194 2b 4f
oP12 Pnma 62 4c 4c, 4c
mC12 Cm 8 2a, 2a 2a, 2a, 2a, 2a
oC20-A3B7 I222 23 2a, 4j 2c, 4j, 8k
mC14 Cm 8 2a, 2a 2a, 2a, 2a, 4b
cP4-Cu3Au Pm3 m 221 1a 3c
cF16-Li3Bi Fm3 m 225 4a 4b, 8c
cP8-Cr3Si Pm3 n 223 2a 6c
oC16 Cmcm 63 4c 4c, 8g
oP8-AB3 Pmmn 59 2a 2b, 4f
oF20 F222 22 4a 16k
cP5-Fe4C P4 3m 215 1a 4e
tP20-AB4 P4bm 100 4c 4c, 2a, 2a, 8d
hP30 P63mc 186 6c 6c, 6c, 6c, 2a, 2b, 2b
hP6-CaCu5 P6/mmm 191 1a 2c, 3g
cP7-CaB6 Pm3 m 221 1a 6f
cI14-bcc-AB6 Im3 m 229 2a 12d
oI14-AB6 Immm 71 2a 4f, 4h, 4j
cF112-NaZn13 Fm3 c 226 8a 8b, 96i
cP14 Pm3 m 221 1a 1b, 12i
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both crystals but have a substantially lesser influence than the
nearest neighbor.
In NaZn13 and several other structures, particles in a few

Wyckoff sites have many nearest neighbors, but the average
number per particle is low. The local environments of each
Wyckoff site in NaZn13 are shown in Figure 6. The standard
unit cell of NaZn13 contains 8 large particles and 104 small
particles. Each large particle is surrounded by 24 small particles

arranged at the vertices of a snub cube. Small particles in the
8b Wyckoff site occupy the center of an icosahedron of small
particles, whereas those in the 96i position occupy the
icosahedron’s vertices. In general, the snub cube and
icosahedron are slightly distorted from the perfect shapes.
Despite NaZn13’s structural complexity, it is the most
commonly observed binary structure in many colloidal self-

Figure 5. (a) Optimal unit cell parameters (c and a) and local arrangements at the (b) 1a (blue) and (c) 2d Wyckoff sites (red) of the AlB2
structure. The inset in (a) shows the unit cell of AlB2 for a c/a = 1. This particular AlB2 structure was optimized for minimal enthalpy at n =
45 and γ = 0.46. C gives the number of particles at a particular contact distance, whereas dc gives the distance to that particular set of
neighbors divided by the average diameter of the particles, i.e., the distance used in the IPL potential. Distances are all calculated with a
number density of 1/σ3.

Figure 6. (a) NaZn13 unit cell and the environments of its (b) 8a (blue), (c) 8b (light red), and (d) 96i Wyckoff sites (dark red). This
particular NaZn13 structure was optimized for low enthalpy at n = 60 and γ = 0.57. C gives the number of particles at a particular contact
distance, whereas dc gives the distance to that particular set of neighbors divided by the average diameter of the particles (the distance used
in the IPL potential). The distances are all calculated with a number density of 1/σ3.
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assembly experiments, occurring across a wide range of particle
compositions.2,6,18

Particles in the 8a (snub cube-coordinated) and 8b
(icosahedrally coordinated) Wyckoff sites in NaZn13 both
have nearest neighbors slightly closer than competing
structures (e.g., AlB2); furthermore, they both have a significant
number of neighbors at the nearest contact distance. On the
other hand, the 96iWyckoff site, which accounts for 6/7 of the
total number of particles, has relatively few nearest neighbors,
so the average number of nearest neighbors per particle is low.
Thus, if the particles are softer, diminishing slightly the
relevance of the first contact relative to further neighbors,
NaZn13 is stable for several values of γ.
It is interesting to consider NaZn13’s stability in light of its

coordination polyhedron. Both the icosahedron and snub cube
are solutions to the Tammes problem, that is, maximizing the
smallest interparticle distance constrained on the surface of a
sphere.56,57 Although these distances do not correspond to the
nearest contacts in NaZn13, they influence the energy for finite
n. Due to their distance-maximizing nature, the occurrence of
these coordination polyhedra in structures in our phase
diagram seems natural.
We suspect that this partially accounts for the icosahedral

order observed in many binary nanoparticles superlattices,58

several of which11 adopt the structures in our phase diagram.
Particularly notable is MgZn2, which, being a Frank-Kasper
phase, exhibits a significant amount of icosahedral local
arrangements; we also find it to be stable over a substantial
region of our phase diagram.
High n Limit. In Figure 2, we see that the hard sphere limit

is not yet reached for n = 100, although the γ values where
particular phases are stable do appear to be converging to the
hard sphere case. This result is surprising to us, as other studies
indicate that, for certain system properties (e.g., melting points,
transport coefficients) in unary systems, the hard sphere limit
may be effectively reached for n = 72 or even n = 18.59,60 To
better understand the hard sphere limit, we analyzed the
degree to which having few nearest neighbors enhances the
stability of a structure.
If n is sufficiently large, the energy of a structure can be

approximated as
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where C equals the average number of nearest contacts per
particle and r1/σ1 is the nearest contact distance in the
structure. Thus, as mentioned earlier, a structure with low C
may be stabilized over other structures with larger nearest
contact distances (or, equivalently, larger ϕm). By equating the
energy of two structures with different C, we can calculate the
differences in nearest contact distance necessary for two
structures with different C values to have the same energy:
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in which b and a are two different structures and the subscript
Eb = Ea indicates that the energy of the two structures are
equal. We can also rewrite eq 4 in terms of ϕm:
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From this, we calculate the minimum ϕm that a low C structure
can have and still be stable relative to a structure with high C
and ϕm values. We show this in Figure 7 by comparing the

energy for different C and n values to a structure with C = 12.
The y-axis represents the smallest ϕm that a structure with a
given C value can have relative to another structure with C =
12 and still be stable. In this calculation, we are neglecting any
neighbor shells beyond the first one and assuming structures of
equal stoichiometry.
We see in Figure 7 that a low C value can stabilize many low

ϕm structures, even when n > 100. This is essentially why, in
Figure 2, differences exist between n = 100 and n = ∞. As
established earlier, AlB2 has 8/3 nearest contacts per particle
for γ ≈ 0.46; we indicate this point in Figure 7 for n = 100. We
note that for many structures, including the AlB2 and NaZn13
structures shown, the second shell of neighboring particles is
only slightly beyond the first, and thus the approximation in eq
3 is large for smaller n, and the curves shown in Figure 7
should be interpreted qualitatively for real structures.

Low n Limit. For n = 6, every binary phase becomes
unstable with respect to two phase-separated FCC structures
containing only large and only small particles, respectively.
Although the same observation has been made previously for a
smaller group of candidate structures,23,61 we were surprised to
see this occur for our much larger group of candidate
structures. Excluding the Laves phases, which are destabilized
for all γ only below n = 7, every binary structure is destabilized
for n < 13. This destabilization necessarily results from the

Figure 7. Plots of the lowest packing fraction ϕm that a structure b
with a given number of nearest contacts C can have and still be
stable relative to another structure a with higher C and ϕm values.
In this plot, we define structure a as having C = 12 in analogy with
FCC. The subscript Eb = Ea indicates that the energies of the two
structures are equal, so the curves represent lower bounds on what
ϕm,b can be for a stable structure. These curves were computed
with eq 5. In all cases, we assume that any non-nearest neighbors
contribute negligibly to the energy, which is a more accurate
approximation at higher n.
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energetic cost of neighbor shells beyond the first. Thus, it
seems as though FCC has a particularly favorable set of
neighbor shells for very soft particles.
As mentioned previously, other work has shown that

reducing the additivity between unlike particles results in the
observation of more binary phases.23 We keep our potential
additive for consistency with our results at higher n, but, as
others have noted,61,62 it is likely that the assumption of
additivity for very soft, repulsive particles is not applicable to
many binary self-assembly experiments. For our final
optimization run at n = 6, we truncate our potential at the
fairly long distance of 12σ, which makes it very unlikely that
the truncation significantly influenced our results. We also note
the previous reports of fluid−fluid phase separation for the IPL
model at γ = 1/3 and n = 6.63 In this paper, our primary focus
is on higher values of n.
Experimental Relevance. Here, we discuss a few

experimental systems where we believe softly repulsive forces
likely play a role in self-assembly: colloids thought to behave
like hard spheres (“nearly hard spheres”), certain metal and
semiconductor nanoparticles, and like-charged colloids. We
explicitly neglect discussing certain cases where we expect our
model to fail, such as colloids functionalized with comple-
mentary DNA or oppositely charged colloids, who probably
have a significantly different driving force for assembly.64,65 We
also discuss why certain phases we predict to be stable have not
been observed experimentally and possible implications for the
behavior of atomic systems at high pressure.
Our results indicate that softness plays a role in binary

colloidal crystals with “nearly hard” colloidal spheres, as their
effective n is often less than or around 100.22 The phases
observed thus far in experiments are NaCl, AlB2, NaZn13, and
the Laves phases (with various degrees of stacking
disorder).2,24,66 We find that intermediate hardness (∼20 < n
< 100) increases the range of γ over which each of these
structures is stable relative to n =∞. Furthermore, we find that
some densely packed phases that have not been reported in
experiment are destabilized by softness, including d-NaCl, AB3,
and d-AlB2. We suspect that particle softness may be partially
responsible for their failure to assemble in experiment.
Interestingly, all of the experimentally observed phases

reported in the literature are also known to be stabilized by
entropy in binary hard sphere systems; thus entropy and
softness likely both play a role in their formation. Whereas we
do not quantify their relative contributions in this study, we
can say that increasing the softness of the particles (at least to n
∼ 30) should increase their likelihood to self-assemble. In fact,
a recent report found that repulsive softness did promote the
self-assembly of Laves phases, in direct agreement with our
predictions.50 Decreasing the role of entropy in such systems
by reducing the temperature or increasing the density should
further increase their correspondence with our phase diagram;
it would be interesting to see then if the stable phases we find
that have not been observed in experiment (e.g., AB, AB3)
could be experimentally realized.
Our results are particularly interesting with regards to the

self-assembly of the Laves phases with polymer microgels
reported by Schaertl et al.24 The Laves phases are known to be
stabilized by entropy at finite temperatures in hard sphere
systemsa fact that was used to justify their appearance in
these systems. However, Schaertl et al. estimated the n and γ
values of their particles to be ∼45 and ∼0.77, respectively
only slightly outside of the region in which we predict the

Laves phases to be stable due solely to the softness of the
interparticle interactions. Thus, we strongly suspect that
enthalpic effects played a role in the observation of the
Laves phases in that study.24

Experiments with metal and semiconductor nanoparticles
have yielded several phases in addition to those observed for
nearly hard spheres.3,5,6 We also see two of these additional
phases in our phase diagram: AB4

44 and CaB6.
46 The

appearance of these phases in addition to those observed for
nearly hard spheres implies that repulsive forces also play a key
role in their assembly. Nonetheless, our results will not account
for several of the binary colloidal crystals observed in
experiment. These include structures with lower ϕm (e.g.,
AuCu, Li3Bi, Fe4C; with our model, structures generally must
have a fairly high ϕm value to be stable). For many of these
nanoparticles, the size of the ligand corona is comparable to
that of the nanoparticle core and, accounting for the stability of
these structures, has thus far only been accomplished by the
orbifold topological model for ligand behavior.67,68 In
predicting some experimentally observed phases but not
others, our model may be useful in determining when
interactions more complicated than pairwise repulsion are
influencing phase behavior.
Fewer reports of the self-assembly of binary structures with

like-charged particles exist, but most of the reported structures
are similar to those reported for other repulsive particles. The
most notable results are those of Hachisu et al.,1,18 who
investigated binary suspensions of charged latex particles over
30 years ago. They found every structure observed for nearly
hard spheres, as well as two additional ones: CaCu5, which is
commonly observed in nanoparticle assembly, and a structure
with stoichiometry L1S4. Further reports of the structures
observed in nearly hard sphere systems have appeared since
then;17,69 our finding that these phases are also stabilized by
interaction softness explains their occurrence. Below we
discuss the possible reasons why CaCu5 does not appear in
our phase diagram, but the few reports of the L1S4 structure
make its experimental observation harder to understand.
Recently, more self-assembly experiments with polydisperse
charged particles have been reported,69 so hopefully future
results will clarify certain discrepancies between experiment
and our phase diagram.
We also find a few phases to be enthalpically stable for soft

particles that have not been reported in experiment. Most
notable are AB and AB3; we find them to be stable for γ values
commonly examined in experiment. Our finite temperature
results clearly explain the instability of AB3. We could not rule
out the stability of the AB phase on the basis of entropy, but
instead suspect its nonappearance is due to kinetic effects.
CaCu5 and NaZn13 commonly self-assemble in experiment for
similar γ values, and previous research has indicated that both
of these phases may have particularly low nucleation barriers,
which could cause them to form instead of the equilibrium
phases.18,36

Finally, we note that softness may be an important factor in
preventing certain densely packed phases from being observed
in atomic systems. Many recently discovered densely packed
phases42,43 appear to not correspond to any known atomic
structure. They include phases represented in our phase
diagram as d-AlB2, d-NaCl, AB3, and a few others produced by
the candidate structures listed in Table 2. Our results indicate
that a very small amount of interaction softness suffices to
destabilize many of these densely packed structures in favor of
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more commonly observed structures (e.g., the Laves phases,
AlB2), even at the high pressures where densely packed phases
are more likely to appear.

CONCLUSIONS

We investigated the influence of interparticle interaction
softness on the solid phase behavior of binary sphere systems
by determining the ground state enthalpies of a wide variety of
structures modeled by an additive inverse power law potential.
We found that a surprisingly small amount of softness can
influence the phase diagram, and that considerable softness will
destabilize every examined binary phase relative to coexisting
single-component FCC phases at zero temperature. We
compared our results to a long list of experimental findings.
We suspect that the softness of colloidal particles is responsible
for the lack of observation of certain densest packings in
experiment and posit that particle softness likely influences the
frequent observation of structures with icosahedral local order.
In this study, we neglected all kinetic influences on the phase

behavior, and only investigated entropic effects for a few cases.
In doing so, we vastly enlarged the space of structures we were
able to examine, as both free energy calculations and
crystallization simulations from disordered initial conditions
can be computationally expensive. Despite this focus on
ground state crystal phases, our work helps explain why certain
structures not described by dense packings are observed in
experiments on binary colloidal crystals. We expect our
findings to be particularly useful for those working with
particles of variable softness, such as charged particles, polymer
beads, or small nanoparticles functionalized with sterically
interacting ligands, and to guide the design of particle
interactions to self-assemble target structures, particularly in
low temperature or high pressure systems where entropy does
not play a significant role.

METHODS
We calculated the ground state phase diagram by computing the
enthalpy H of different structures at temperature T = 0 and reduced
pressure Pσ3/ϵ = 1. The well-known scaling properties of the IPL
potential model30,37 allow the calculation of H at any P for a
configuration of N particles through a calculation of potential energy
at a given number density (see section S1 of the Supporting
Information for a derivation).
We found low enthalpy structures using a basin hopping global

minimization technique on the free parameters of the Wyckoff sites of
particular space groups. For example, we optimized over structures
with space group symmetry C2/m (no. 12) with the large particles in
Wyckoff site 2a and the small particles in Wyckoff site 4i. Wyckoff site
4i has two free parameters and the monoclinic unit cell of space group
C2/m has an additional three parameters that can be optimized (β,
where a, b, and c correspond to the lattice vectors of the unit cell and
β is the angle between a and c), for a total of 5 degrees of freedom. In
structures where we optimized the lattice vectors, we limited b/a and
c/a to between 0.25 and 4 if no dense known packings exist outside
those bounds. In certain cases where we know dense packings exist
outside those bounds, we expanded the upper bound from 4 to 6. For
monoclinic structures, we kept θ between 60 and 120°, as every
known dense packing is within those bounds. Limiting these
parameters reduced errors resulting from finite size effects. Candidate
space groups and Wyckoff sites (see Table 2) were selected from
those thought to produce structures with high ϕm

43,70 or
experimentally observed structures. Structures are labeled by their
atomic equivalent if known; other structures we found to be stable are
labeled by their stoichiometry. In general, the stoichiometry of a phase
is determined from the number of particles in large (L) or small (S)

Wyckoff sites. We did not include some known dense packing phases
because they have exceedingly low symmetry41,42 and thus would
require extensive time to optimize; however, in such cases, we
included slightly symmetrized versions of the structures with only
marginally reduced ϕm (typically ∼0.2% less). Our overall approach in
optimizing the degrees of freedom of Wyckoff sites is similar to
approaches in the literature.43,45,70

Optimizing over particular space groups and Wyckoff sites enabled
us to search a wide array of possible structures while allowing for
simple identification of the resulting low energy structure. First,
several of the higher symmetry structures had no free parameters (e.g.,
NaCl) or had well-known free parameters (AlB2, CaB6, MgZn2,
NaZn13), which made their identification trivial. The values of the free
parameters would typically vary slightly for different n and γ, similarly
to how they vary for atomic crystals. Second, if the lower symmetry
space groups produced structures with the same energy as those of
known identity that we also examined, we would conclude, after visual
inspection, that they were identical. This situation was extremely
common, as several low symmetry space groups reduced to NaCl or
AlB2. Third, if the structure did not correspond to a known higher
symmetry structure, we compared their packing fractions and
appearance to structures reported to be dense packings in other
papers, allowing us to identify AB, AB2, AB3, and AB6. As with the
more well-known structures the free parameters of these structures
would typically vary slightly with different γ and n. Finally, AB4 was
identified by comparison with a well-described experimental
structure.44 Note that the last two tasks greatly simplified by the
fact that most of our candidate space groups were motivated by
reports of dense packings and experimental structures.

Using the Python library Scipy’s71 functions for basin hopping72

and sequential least-squares programming minimization, we con-
ducted global minimization on almost every structure for IPL
exponent n between 6 and 100 and γ between 0.3 and 0.9. The
exceptions are two structures with a large number of degrees of
freedom (specifically the two with space group symmetry Cm (no.
8)); they were only optimized for γ in the vicinity of where they are
known to produce dense packings (0.43 ≤ γ ≤ 0.52).42 We performed
at least two unbiased runs of 200 basin hopping steps for each
structure with more than two degrees of freedom. After conducting
the unbiased global optimization runs, we determined which
structures are most stable for particular values of n and γ, and for
those structures we conducted another nine local minimization runs
for each n and γ, starting from the values of the free parameters found
previously for the state point, as well as those for the eight
immediately neighboring n and γ values. The second run had a lower
tolerance for convergence and served to refine the boundaries of
phase stability. The presence of distinct regions of structural stability
in our phase diagram gives us confidence that we accurately detected
each enthalpy minimum.

The lowest enthalpy phases in the n = ∞ limit correspond to the
densest packing phases at a given γ and stoichiometry. With the
exception of AB4 (a dense packing discovered in this project), the
putative densest packing phases were taken from the literature. For
AB4 and the approximations of the densely packed phases, we
conducted short basin hopping runs to optimize their ϕm for
particular γ values.

The enthalpy of the candidate structures during optimization was
evaluated by constructing a perfect crystal containing many unit cells
and evaluating the enthalpy of a single, central unit cell. These perfect
structures were all constructed at a number density of 1/σ3. The
number of particles was varied from ∼500 to ∼100 000, depending on
the n used. For the unbiased basin hopping runs, we truncated our
potential at distances varying from 4σ to 10σ; for the final nine local
optimization runs, we truncated it at distances varying from 6σ to 12σ.
Long-range corrections were applied to account for the finite cutoffs
of the potential. The signac data management framework supported
our computational workflow and data management.73,74

The free energies of particular phases at finite temperature were
calculated using the Einstein molecule method with the HOOMD-
blue simulation toolkit.75,76 The Einstein molecule method is a variant
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of the Frenkel−Ladd method in which the position of a single particle
within the simulation box is constrained instead of the center of
mass.54 The methods involve using thermodynamic integration to
compute the free energy differences between a crystal of harmonic
oscillators to the real crystal under scrutiny; the accuracy of the
method is limited only by numerical precision. Further details of the
method have been reported in several places.55,54,77 We set the de
Broglie wavelength of each particle equal to unity; doing so does not
affect phase equilibrium. The integration was performed in 20 steps
using an Einstein molecule with a harmonic constant of 2 × 105 ϵ/σ2.
To reduce the errors from using a large harmonic constant, we used a
time step of 10−4 σ(m/kT)1/2.
Einstein molecule calculations were performed at constant density

and kT/ϵ = 1 on crystals of at least 1000 particles. The density was
chosen to be close to the melting point, and the temperature was
maintained with the Langevin thermostat. Pressure−volume data were
obtained from conducting NPT simulations with the Nose-́Hoover
thermostat and barostat; these data were thermodynamically
integrated to find G at a particular pressure. The pressure presented
in Table 1 was chosen to be slightly lower than the melting point of
FCCS (as determined by interpolating the data of Agrawal et al.55) but
high enough for the crystal to be metastable. Standard deviations were
computed by running three independent replicas of every simulation.
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